WO2017111549A1 - Non-oriented electrical steel sheet and manufacturing method therefor - Google Patents

Non-oriented electrical steel sheet and manufacturing method therefor Download PDF

Info

Publication number
WO2017111549A1
WO2017111549A1 PCT/KR2016/015226 KR2016015226W WO2017111549A1 WO 2017111549 A1 WO2017111549 A1 WO 2017111549A1 KR 2016015226 W KR2016015226 W KR 2016015226W WO 2017111549 A1 WO2017111549 A1 WO 2017111549A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical steel
oriented electrical
annealing
manufacturing
hot
Prior art date
Application number
PCT/KR2016/015226
Other languages
French (fr)
Korean (ko)
Inventor
배병근
김용수
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201680076220.XA priority Critical patent/CN108474076A/en
Priority to JP2018532686A priority patent/JP7008021B2/en
Priority to US16/065,788 priority patent/US20190017137A1/en
Publication of WO2017111549A1 publication Critical patent/WO2017111549A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling

Definitions

  • It relates to a non-oriented electrical steel sheet and a method of manufacturing the same.
  • Non-oriented electrical steel is used as a material for iron cores in rotating equipment such as motors, generators, and stationary equipment such as small transformers, and plays an important role in determining the energy efficiency of electrical equipment. Therefore, the recent demands for energy saving and miniaturization of electrical equipment have been required to improve the efficiency of electrical equipment, which has led to the demand for improvement of characteristics of non-oriented electrical steel sheets.
  • the characteristics of the steel sheet include iron loss and magnetic flux density. The iron loss is small and the magnetic flux density is higher, which is good. When the electric core is added to the core to induce a magnetic field, the lower the iron loss, the less energy is lost. The higher the magnetic flux density, the greater the magnetic field can be induced with the same energy. Therefore, in order to save energy and meet the demand for eco-friendly products, it is necessary to develop a non-oriented electrical steel sheet manufacturing technology with low iron loss and high magnetic flux density.
  • representative methods for improving iron loss include a method of thinning a large thickness and adding a large resistivity element such as Si and A1.
  • the thickness is determined by the characteristics of the product used. The thinner the thickness, the lower the productivity and the higher the cost.
  • the addition of Si, Al, and Mn, which are alloy elements with high resistivity, is a method of reducing iron loss by increasing the electrical resistivity of general materials. There is a contradiction that it cannot be avoided.
  • the amount of Si added is more than 4% , workability is lowered, cold rolling is difficult, productivity is reduced, and as much Al, Mn, etc. are added, the rolling property is lowered, the hardness is increased, and the workability is also decreased.
  • the additive elements Fe, SI, Al,. Impurity elements C, S, N, 0, Ti, and the like, which are inevitably added to Mn and the like, are combined to form fine precipitates, thereby inhibiting the growth of grains and impeding the movement of magnetic domains, thereby degrading magnetic properties.
  • Precipitates in these steels include carbides, nitrides, sulfides and oxides. These are shown individually or in combination. These fine compounds are classified into inclusions or precipitates according to their size and cause of formation. Inclusions are larger than 100 nm in size, which does not significantly affect grain growth, and precipitates found to be less than 100 nm inhibit grain growth.
  • One embodiment of the present invention is to provide a non-oriented electrical steel sheet and a method for manufacturing the same by limiting the amount of alloying elements to be added and to increase the precipitates to facilitate the grain growth and the movement of the magnetic domain during magnetization by improving the magnetic allol.
  • Non-oriented electrical steel sheet according to an embodiment of the present invention by weight%, C: 0.005% or less (excluding 0%), Si: 1.0 to 4.0%, Al: 0.15 to 1.5%, Mn: 0.1 to 1.0% , P: 0.2% or less (excluding 0% ' ), N: 0.005% or less (excluding 0%), S: 0.001% to 0.0063 ⁇ 4>,: 0.005% or less (excluding 0%) , 0 : 0.005% or less (excluding 0%) and the balance includes Fe and other unavoidable impurities, satisfy the following formula 1, the average size of the oxide in the precipitate is larger than the average size of the non-oxide.
  • the number of oxides in the precipitate may be higher than that of the nonoxide.
  • Sn and Sb may each further comprise 0.01 to 0.2% by weight further alone or in combination.
  • Precipitate Increase The number of FeO or precipitates containing FeO may be 4OT or more.
  • the average grain size may be 50 to 180.
  • Method for producing a non-oriented electrical steel sheet according to an embodiment of the present invention in weight% (: 0.005% or less (excluding 0%), Si: 1.0 to 4.0%, Al: 0.15 to 1.5%, Mn: 0.1 to 1.0%, P: 0.3 ⁇ 4 or less (excluding 0%), N: 0.005% or less (excluding 0%), S: 0.001% to 0.0063 ⁇ 4>,: 0.0053 ⁇ 4> or less (0% ), 0: 0.005% or less (excluding OT), and the balance includes Fe and other unavoidable impurities, and hot rolling a slab satisfying the following formula 1 to produce a hot rolled sheet; Winding the hot rolled sheet; annealing and cooling the hot rolled sheet; and rolling the hot rolled annealing sheet to produce a rolled sheet; and finally rolling and rolling the rolled sheet.
  • the slab may further comprise 0.01 to 0.2% by weight of Sn and Sb, alone or in combination, respectively.
  • the slab In the step of preparing a hot-rolled sheet, it is possible to heat the slab to less than 1200 ° C.
  • the coiling temperature is 600 to 800 ° C. Can be.
  • the hot rolled sheet annealing temperature may be 850 to 1,150 ° C.
  • the hot-rolled annealing plate to manufacture the hot-rolled sheet In the step of hot rolling the hot-rolled annealing plate to manufacture the hot-rolled sheet, it can be rolled to a thickness of 0.1 to 0.7 kPa.
  • the rolling rolling may include primary rolling, intermediate annealing and secondary rolling.
  • the cracking of the annealing may be between 850 and 1, 100 ° C.
  • the average size of the oxide in the precipitate of the prepared electrical steel sheet may be larger than the average size of the non-oxide.
  • the number of oxides in the precipitate may be higher than that of the nonoxide.
  • the number of precipitates containing FeO or FeO in the precipitate may be 40% or more.
  • the average grain size may be 50 to 180 mm 3.
  • the non-oriented electrical steel sheet according to an embodiment of the present invention can improve the magnetism by making the precipitate grow large, thereby facilitating the grain growth and the movement of the magnetic domain during magnetization.
  • first, second, and third are used to describe various parts, components, regions, layers, and / or sections, but are not limited to these. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, one part, component region, layer or section described below may be referred to as a second portion, component, region, layer or section without departing from the scope of the present invention.
  • Non-oriented electrical steel sheet according to an embodiment of the present invention by weight%, C: 0.005% or less (excluding 0%), Si: 1.0 to 4.0%, Al: 0.15 to 1.5%, Mn: 0.1 to 1.0% , P: 0.2% or less (except 0%), N: 0.005% or less (except 0%), S: 0.001% to 0.006%,: 0.005% or less (except 03 ⁇ 4), 0: 0.005 % Or less (excluding 0%) and the balance include Fe and other unavoidable impurities, satisfy the following formula 1, the average size of the oxide in the precipitate is larger than the average size of the non-oxide.
  • the components of the non-oriented electrical steel sheet in particular, by controlling the components such as Si, Al, Mn precisely, precipitates are generated as large as possible, precipitates do not exist alone, and the complex precipitates This was to be precipitated greatly.
  • the average size of the oxide in the extract compared to the average size of the non-oxide to improve the magnetic properties.
  • the element to be added in one embodiment of the present invention is Si, Mn, Al, P or, if necessary, Sn, Sb, there is Fe of the base material.
  • Other added elements are 0, C, N, S and the like and they need to be managed low.
  • the present invention was intended to coarsen the precipitates, in particular to grow more easily by allowing the precipitates to be precipitated in combination, not alone.
  • oxides are possible elements without adding additional elements, so that coarsening is easier.
  • the oxide was more than 50% of the total number of precipitates, especially FeO accounted for more than 40% among the oxides.
  • the effect of the oxide had a great effect on the complex precipitate. These oxides are lowered to zero during steelmaking, but are believed to precipitate after remaining or annealing as oxides in the steel.
  • the sulfides are precipitated in significant amounts upon reheating and hot rolling after slab, which are precipitated as CuS, MnS or their composite precipitates.
  • oxides had more complex precipitates of oxides such as FeO, A1 2 0 3 , and Si0 2 than sulfides, and the bonds of oxides with nitrides and carbides were relatively small.
  • Oxides of the precipitate generated in one embodiment of the present invention is present alone or combined, and were an average size of 15nm to 70nm, the average yield was observed in 1 ⁇ 10, 000 per two or 400, 000 pieces.
  • the non-oxide in the precipitate alone Alternatively, the average size was 10nm to 50 ⁇ , and the average yield was found to be 5,000 to 200,000 per 1 mm 2 .
  • the average grain size of the oxide in the precipitate larger than the average size of the non-oxide can facilitate grain growth, specifically, the average grain size can be 50 to 180.
  • the grain size refers to grain size measured by an intercept method which is generally used in the field of electrical steel sheet. The reason for component limitation of a non-oriented electrical steel sheet is demonstrated below.
  • Si is the main element added because it increases the specific resistance of steel and lowers the eddy current loss in iron loss, and is an element that easily forms an oxide. If too much Si is included, low iron loss characteristics are difficult to obtain, and if too much Si is added, rolling may be difficult. Therefore, it can be limited to 1.0 to 4.0% by weight.
  • Manganese (Mn) is added for the purpose of improving iron loss by adding Mn at least 0.1 weight 3 ⁇ 4> because it has an effect of lowering iron loss by increasing specific resistance together with Si and A1.
  • Mn Manganese
  • the saturation magnetic flux density decreases, so the magnetic flux density decreases.
  • Aluminum (A1) is an element that is inevitably added for deoxidation of steel in the steelmaking process, and is mainly added to reduce iron loss, but also serves to reduce saturation magnetic flux density.
  • A1 is excessively small, fine A1N is formed. Grain growth can be suppressed to reduce magnetism.
  • the amount of M may be limited to 0.1 to 1.5% by weight. P: 0.2 Weight 3 ⁇ 4> or less
  • Phosphorus (P) decreases iron loss by increasing specific resistance and segregates at grain boundaries to suppress the formation of harmful textures to magnetism and forms an advantageous texture ⁇ 100 ⁇ . can do.
  • Nitrogen ( ⁇ ) is preferably an element which is harmful to magnetism such as to form nitrides by strongly bonding with Al, Ti and the like to inhibit grain growth, and therefore it is preferably contained in a small amount, and can be limited to 0.005% by weight or less.
  • Sulfur (S) is an element which forms sulfides such as MnS, CuS, and (Cu, Mn) S, which are detrimental to magnetic properties. Therefore, it is preferable to add sulfur (S) as low as possible. However, if too little is added, rather it is disadvantageous to the formation of texture, the magnetism may be lowered. In addition, when too much is added, the magnetism may be inferior due to the increase of the fine sulfide. Therefore, it can be limited to 0.001 to 0.006% by weight. Ti : 0.005 wt% or less Titanium (Ti) forms fine carbides and nitrides to suppress grain growth. The more the titanium is added, the more the carbides and nitrides increase the inferior texture, resulting in poor magnetic properties. Therefore, it can be limited to 0.005 weight or less.
  • oxygen (0) produces various oxides and suppresses grain growth, it can be contained as low as possible. Therefore, it can be limited to 0.005% by weight or less.
  • Sn, Sb 0.01 to 0.2% by weight
  • Tin (Sn) and antimony (Sb) are segregated elements in the grain boundary to suppress the diffusion of nitrogen through the grain boundary, to suppress the harmful ⁇ 111 ⁇ texture and increase the advantageous ⁇ 100 ⁇ texture to improve the magnetic properties.
  • Sn and Sb may be limited to 0.01 to 0.2% by weight each alone or in combination.
  • Si, Mn, A1 in the additive element to satisfy the following formula 1 to have a high Si content without a high Mn content, A1 also contains a considerable amount to suppress A1N, etc. .
  • a method for manufacturing a non-oriented electrical steel sheet according to an embodiment of the present invention Silver% by weight, C: 0.005% or less (excluding 0%), Si: 1.0 to 4.0%, Al: 0.15 to 1.5%, Mn: 0.1 to 1.0%, P: 0.2% or less (excluding OT) , N: 0.005% or less (0% S: 0.001% to 0.006%,: 0.005% or less (excluding 0%), 0: 0.005% or less (excluding 0%), and the balance includes Fe and other unavoidable impurities, Manufacturing a hot rolled sheet by heating and heating the slab satisfying 1; Etching the hot rolled sheet after winding; Annealing and engraving the hot rolled sheet; Rolling a hot rolled annealing plate for 4 seconds to produce a cold rolled plate; And final annealing and engraving step of the copper plate, in the step of winding
  • the slab is heated and hot rolled to produce a hot rolled sheet.
  • the reason for limiting the addition ratio of each composition is the same as the reason for limiting the non-oriented electrical steel sheet described above. Since the composition of the slab is not substantially changed in the course of hot rolling, hot rolling annealing, hot rolling, final annealing, and the like, the composition of the slab and the composition of the non-oriented electrical steel sheet are substantially the same.
  • the slabs can be charged into a furnace and heated up to 1,200 ° C. If the heating temperature is too high, precipitates such as A1N and MnS present in the slab are re-used and then finely precipitated during hot rolling to suppress grain growth and lower magnetism. More specifically, it can be heated at 1,050 ° C to 1,200 ° C.
  • the heated slabs are hot rolled to 1.4 kPa to 3 kPa to produce hot rolled plates.
  • finishing rolling in finishing rolling is finished on ferrite phase, and final rolling reduction is 20% or less to correct plate shape.
  • the hot rolled sheet is wound up at a temperature of 60CTC to 800 ° C and indented in air or in a separate furnace.
  • the temperature should be maintained at 600 ° C or higher for at least 30 minutes.
  • Temperature If it is too low or the time is kept short, the precipitates are difficult to grow and may be finely precipitated. More specifically, it may be maintained for 30 minutes to 3 hours at a temperature of 600 to 800 ° C.
  • the hot rolled sheet is annealed for magnetic improvement, and the hot rolled sheet annealing temperature is set to 850 to 1,150 ° C. If the hot rolled sheet annealing temperature is too low, grain growth may be uneven. If the hot-rolled sheet annealing temperature is too high, the grains may grow excessively and the surface defects of the plate may be excessive.
  • the angle is not quenched and maintained at 60CTC or more for 5 seconds. If the temperature is too low or the holding time is too short, the precipitate may be difficult to coarsen and the plate may bend. More specifically, the temperature may be 600 to 800 ° C., and may be maintained for 5 to 30 seconds.
  • the hot rolled annealing plate is rolled by steel to manufacture a hot rolled sheet.
  • Cold rolling is the final rolling thickness from 0.1 ⁇ to 0.7 ⁇ , and if necessary, cold rolling, intermediate annealing, secondary rolling can be carried out, and the final rolling rate may be in the range of 50 to 95%.
  • the annealing board is finally annealed and inscribed.
  • Cracking temperature of the soft decision nyaeng annealing when annealing at the annealing step of nyaeng lead plate all is to be 850 to 1, 100 ° C.
  • Nyaeng the soft decision annealing temperature is below 850 ° C the growth of crystal grains is insufficient increase in the deleterious set organization ⁇ in ⁇ texture on the magnetic, and the noo ° c or more, since the crystal grains are excessively growth can adversely affect the magnetic
  • the cracking temperature of the cold rolled sheet is 850 to 110CTC.
  • the corner angle is not abruptly maintained for at least 5 seconds at 600 ° C or higher. If the temperature is too low or the holding time is short when the angle is fine, fine precipitates may be precipitated alone. More specifically, the cooling temperature may be 600 to 800 ° C, it can be maintained for 5 to 30 seconds.
  • Annealed plates are shipped to customers after the insulation coating.
  • the insulating coating may be treated with an organic, inorganic and organic-inorganic composite coating, and may be treated with other insulating coating. Customer is intact after processing steel sheet Can be used.
  • the present invention will be described in more detail with reference to Examples. However, these examples are only for illustrating the present invention, and the present invention is not limited thereto.
  • the molten steels A1 to A7 were prepared in the range of Si, Al, and Mn in the range of the invention, and each ingot was heated at 112 CTC, hot rolled to a thickness of 2.2 kPa, then wound up, and then slowly cooled in air as shown in Table 2 and wound up.
  • the cooled hot rolled steel sheet was annealed in a nitrogen atmosphere for 5 minutes, and was squeezed at a temperature of 600 ° C. or higher in an atmosphere in which nitrogen and oxygen were common, and quenched by spraying final water. After annealing, the hot rolled sheet was pickled and cold rolled to a thickness of 0.35 kPa.
  • the final annealed sheet was annealed for 2 minutes in a mixed atmosphere of hydrogen 3 OT and nitrogen of 70%. Each corner was changed in an atmosphere of 40% hydrogen and nitrogen.
  • the final annealing plate was examined for the size and quantity of oxides, sulfides, carbides, nitrides and composite precipitates for each specimen, and are summarized in Table 3 by measuring grains and magnetic properties.
  • Iron loss was measured as the average loss (W / kg) in the rolling direction and the vertical direction when the magnetic flux density of 1.5 Tesla was induced at 50 Hz.
  • the magnetic flux density (B 50 ) was measured by the magnitude of the magnetic flux density (Tes la) when a magnetic field of 5000 A / m was added.
  • Table 1 Al 0.0025 1.56 0.25 0.42 0.031 0.0024 0.0014 0.0002 0.026 0.012
  • A1 to A7 satisfy the composition range and Equation 1 of the electrical steel sheet. It can be confirmed that the larger than, the crystal grains are also well grown, and the iron loss and magnetic flux density is also excellent.
  • A8 to A12 does not satisfy the composition range and formula 1 of the electrical steel sheet, and some can confirm that the size of the oxide in the precipitate is smaller than the size of the non-oxide. Therefore, it can be confirmed that iron loss and magnetic flux density are poor.
  • Ingots were prepared as shown in Tables 4 and 5 through vacuum dissolution to dissolve Si, Al, and Mn by invented steels A13 to A15 in which the amounts of the weight percent of Eq.
  • Each ingot is heated at 1120 ° C, hot rolled to a thickness of 2.2 ⁇ , wound up and wound up in the air as shown in Table 5, and the hot rolled steel sheet is annealed in a nitrogen atmosphere for 5 minutes, and nitrogen and oxygen are common. Sudden at a temperature of 600 ° C. or more in the atmosphere was sprinkled with the final water. The annealed hot rolled sheet was pickled and rolled to a thickness of 0.35 mm, and the final annealed of the cold rolled sheet was annealed for 2 minutes in a mixed atmosphere of 30% hydrogen and 70% nitrogen. The cooling zone was different in an atmosphere of 40% hydrogen and nitrogen. The final annealing plate was examined for the size and quantity of oxides, sulfides, carbides, nitrides, and composite precipitates for each specimen, and are summarized in Table 6 by measuring grains and magnetic properties. TABLE 4
  • Equation 1 ⁇ 3 ⁇ s ⁇ I over 11
  • the inventive steel gave sufficient cooling time after winding, and after forming annealing hot-rolled and annealed plates, the oxides including FeO oxides were formed at a temperature of 600 ° C or more. It was confirmed that the crystal grains grew well and the magnetism was excellent.
  • comparative steel 6 had a low degree of hot-rolled sheet annealing, short holding time over 600 ° C, and small amount of oxide in precipitate. After the annealing of the hot-rolled steel sheet at 7 ° C, the angle of shortening was short, so the oxides in the precipitates were relatively small in size compared to the non-oxides . The yield was low and the ratio of FeO oxide was low as 40% or less. Comparative steel 8 was shortened by the angle of winding after winding, and was short after 60CTC after hot-rolled sheet annealing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

A non-oriented electrical steel sheet according to one embodiment of the present invention comprises 0.005 wt% or less of C (excluding 0 wt%), 1.0-4.0 wt% of Si, 0.15-1.5 wt% of Al, 0.1-1.0 wt% of Mn, 0.2 wt% or less of P (excluding 0 wt%), 0.005 wt% or less of N (excluding 0 wt%), 0.001-0.006 wt% of S, 0.005 wt% or less of Ti (excluding 0 wt%), 0.005 wt% or less of O (excluding 0 wt%), and the remainder being Fe and other inevitable impurities, and satisfies formula 1 below, wherein a mean size of oxides in precipitates is larger than a mean size of non-oxides. Formula (1) (Here, [Si], [Al] and [Mn] respectively indicate the amounts (wt%) of Si, Al, and Mn.)

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
무방향성 전기강판 및 그 제조방법  Non-oriented electrical steel sheet and manufacturing method
【기술분야】  Technical Field
무방향성 전기강판 및 그 제조방법에 관한 것이다.  It relates to a non-oriented electrical steel sheet and a method of manufacturing the same.
【발명의 배경이 되는 기술】 ' [Technology behind the invention] '
무방향성 전기강판은 모터, 발전기 등의 회전 기기와 소형 변압기 등의 정지기기에서 철심용 재료로 사용되며 전기기기의 에너지 효율을 결정하는데 중요한 역할을 한다. 따라서 최근 에너지의 절감, 전기 기기의 소형화 등에 대한 요구는 전기기기의 효율 향상을 요구하고 있으며 이는 무방향성 전기강판의 특성 개선에 대한 요구로 이어지고 있다. 전기강판의 특성으로는 대표적으로 철손과 자속밀도를 들 수 있는데 철손은 작고, 자속밀도는 높을 수록 좋은데 이는 철심에 전기를 부가하여 자기장을 유도할 때, 철손이 낮을 수록 열로 손실되는 에너지를 줄일 수 있으며, 자속밀도가 높을수록 똑같은 에너지로 더 큰 자기장을 유도할 수 있기 때문이다. 따라서 에너지의 절감, 친환경 제품의 수요 증가에 대응하기 위해서는 철손은 낮고 자속밀도는 높은 무방향성 전기강판 제조 기술의 개발이 필요하다.  Non-oriented electrical steel is used as a material for iron cores in rotating equipment such as motors, generators, and stationary equipment such as small transformers, and plays an important role in determining the energy efficiency of electrical equipment. Therefore, the recent demands for energy saving and miniaturization of electrical equipment have been required to improve the efficiency of electrical equipment, which has led to the demand for improvement of characteristics of non-oriented electrical steel sheets. The characteristics of the steel sheet include iron loss and magnetic flux density. The iron loss is small and the magnetic flux density is higher, which is good. When the electric core is added to the core to induce a magnetic field, the lower the iron loss, the less energy is lost. The higher the magnetic flux density, the greater the magnetic field can be induced with the same energy. Therefore, in order to save energy and meet the demand for eco-friendly products, it is necessary to develop a non-oriented electrical steel sheet manufacturing technology with low iron loss and high magnetic flux density.
무방향성 전기강판의 자기적 성질 중, 철손을 개선하기 위한 대표적인 방법으로는 크게 두께를 얇게 하는 방법과 Si , A1등의 비저항이 큰 원소를 첨가시키는 방법이 있다. 하지만 두께의 경우 사용되는 제품의 특성에 따라 결정되며 두께가 얇을수록 생산성 저하 및 원가 증가라는 문제를 안고 있다. 일반적인 소재의 전기 비저항 증가를 통한 철손 감소 방법인 비저항이 큰 합금 원소인 Si , Al , Mn등을 첨가하는 방법 역시 합금 원소를 첨가하게 되면 철손은 감소하지만 포화 자속밀도 감소로 인해 자속밀도의 감소 역시 피할 수 없다는 모순을 안고 있다. 또한, Si 첨가량이 4%이상이 되면 가공성이 저하되어 냉간압연이 곤란해져 생산성이 떨어지게 되며 Al , Mn등도 많이 첨가될수록 압연성도 저하되며 경도가 증가하며 가공성도 떨어지게 된다. 따라서 이들 첨가원소를 가장 적절히 첨가하여 원가를 낮추면서도 자성을 향상하도록 하는 기술이 필요하다. 한편, 강 중에는 첨가원소인 Fe, SI, Al, . Mn 등과 불가피하게 첨가되는 불순물 원소인 C, S, N, 0, Ti 등이 결합하여 미세한 석출물을 형성하여 결정립의 성장을 억제시키고 자구의 이동을 방해하여 자기적 성질을 저하시킨다. 이러한 강중의 석출물에는 탄화물, 질화물, 황화물 및 산화물 등이 있다. 이들은 단독 또는 복합하여 나타나고 있다. 이들 미세한 화합물은 그 크가나 형성 원인에 따라 개재물 또는 석출물로 구분하는데, 개재물은 lOOnm이상의 크기이어서 결정립 성장에는 큰 영향을 미치지 아니하며, lOOnm이하로 발견되는 석출물이 결정립성장을 억제하는 것으로 알려져 있다. Among the magnetic properties of non-oriented electrical steel sheet, representative methods for improving iron loss include a method of thinning a large thickness and adding a large resistivity element such as Si and A1. However, the thickness is determined by the characteristics of the product used. The thinner the thickness, the lower the productivity and the higher the cost. The addition of Si, Al, and Mn, which are alloy elements with high resistivity, is a method of reducing iron loss by increasing the electrical resistivity of general materials. There is a contradiction that it cannot be avoided. In addition, when the amount of Si added is more than 4% , workability is lowered, cold rolling is difficult, productivity is reduced, and as much Al, Mn, etc. are added, the rolling property is lowered, the hardness is increased, and the workability is also decreased. Therefore, there is a need for a technique for improving the magnetic properties while lowering the cost by adding these additive elements most appropriately. On the other hand, the additive elements Fe, SI, Al,. Impurity elements C, S, N, 0, Ti, and the like, which are inevitably added to Mn and the like, are combined to form fine precipitates, thereby inhibiting the growth of grains and impeding the movement of magnetic domains, thereby degrading magnetic properties. Precipitates in these steels include carbides, nitrides, sulfides and oxides. These are shown individually or in combination. These fine compounds are classified into inclusions or precipitates according to their size and cause of formation. Inclusions are larger than 100 nm in size, which does not significantly affect grain growth, and precipitates found to be less than 100 nm inhibit grain growth.
이들 석출물이 미세하면 그만큼 수량이 많아져서 자구의 이동이나 결정립성장을 억제하기 때문에 석출물의 크기를 크게 하거나 또는 둘 아상의 복합 석출물을 만드는 것이 중요하다.  If these precipitates are fine, the amount of the precipitates increases so that it is important to increase the size of the precipitates or to make a composite precipitate of two phases.
【발명의 내용】  [Content of invention]
【해결하고자 하는 과제】  Problem to be solved
본 발명의 일 실시예는 첨가되는 합금원소량을 한정하고 석출물을 크게 성장하도록 하여서 결정립 성장과 자화 중 자구의 이동을 용이하게 함으로써 자성올 향상시킨 무방향성 전기강판 및 그 제조 방법을 제공하는 것이다.  One embodiment of the present invention is to provide a non-oriented electrical steel sheet and a method for manufacturing the same by limiting the amount of alloying elements to be added and to increase the precipitates to facilitate the grain growth and the movement of the magnetic domain during magnetization by improving the magnetic allol.
【과제의 해결 수단】  [Measures of problem]
본 발명의 일 실시예에 의한 무방향성 전기강판은 중량 %로, C :0.005%이하 (0%는 제외함), Si :1.0 내지 4.0%, Al:0.15 내지 1.5%, Mn:0.1 내지 1.0%, P :0.2%이하 (0%는 ' 제외함), N :0.005%이하 (0%는 제외함), S: 0.001% 내지 0.006¾>, :0.005%이하(0%는 제외함), 0: 0.005%이하 (0%는 제외함) 및 잔부는 Fe 및 기타 불가피한 불순물을 포함하고, 하기 식 1을 만족하고, 석출물 중 산화물의 평균크기가 비산화물의 평균크기에 비해 크다. Non-oriented electrical steel sheet according to an embodiment of the present invention by weight%, C: 0.005% or less (excluding 0%), Si: 1.0 to 4.0%, Al: 0.15 to 1.5%, Mn: 0.1 to 1.0% , P: 0.2% or less (excluding 0% ' ), N: 0.005% or less (excluding 0%), S: 0.001% to 0.006¾>,: 0.005% or less (excluding 0%) , 0 : 0.005% or less (excluding 0%) and the balance includes Fe and other unavoidable impurities, satisfy the following formula 1, the average size of the oxide in the precipitate is larger than the average size of the non-oxide.
[식 1]  [Equation 1]
1  One
- + 13 X [A1] > 3,7 X ftf l x ¾  -+ 13 X [A1]> 3,7 X ftf l x ¾
1JS: 1JS :
(단, 식 1에서 [Si], [Al] 및 [Mn]은 각각 Si, Al 및 Mn의 함량 (중량 %)을 나타낸다.) (Wherein [Si], [Al] and [Mn] are represented by Si, Al and Mn, respectively) Content (% by weight).)
석출물 중 산화물이 비산화물에 비해 개수가 많을 수 있다.  The number of oxides in the precipitate may be higher than that of the nonoxide.
Sn 및 Sb를 각각 단독 또는 복합으로 0.01 내지 0.2 중량 % 더 포함할 수 있다.  Sn and Sb may each further comprise 0.01 to 0.2% by weight further alone or in combination.
석출물 증 FeO 또는 FeO가 함유된 석출물의 개수가 4OT 이상이 될 수 있다.  Precipitate Increase The number of FeO or precipitates containing FeO may be 4OT or more.
평균 결정립 입경이 50 내지 180 이 될 수 있다.  The average grain size may be 50 to 180.
본 발명의 일 실시예에 의한 무방향성 전기강판의 제조 방법은 중량 %로, (::0.005%이하(0%는 제외함), Si :1.0 내지 4.0%, Al:0.15 내지 1.5%, Mn:0.1 내지 1.0%, P:0.¾이하 (0%는 제외함), N: 0.005%이하 (0%는 제외함), S: 0.001% 내지 0.006¾>, :0.005¾>이하(0%는 제외함), 0:0.005%이하 (OT는 제외함) 및 잔부는 Fe 및 기타 불가피한 불순물을 포함하고, 하기 식 1을 만족하는 슬라브를 가열한 후 열간 압연하여 열연판을 제조하는 단계 ;열연판을 권취 후 넁각하는 단계 ; 열연판을 소둔하고 냉각하는 단계; 열연 소둔판을 넁간 압연하여 넁연판을 제조하는 단계; 및 넁연판을 최종 소둔하고 넁각하는 단계를 포함하고, 열연판을 권취 후 넁각하는 단계에서 600°C 이상에서 30분 이상 유지하여 넁각하고, 열연판 소둔하고 넁각하는 단계에서 600°C 이상에서 5초 이상 넁각하고, 넁연판을 최종 소둔하고 넁각하는 단계에서 60CTC 이상에서 5초 이상 넁각한다. 國1 Method for producing a non-oriented electrical steel sheet according to an embodiment of the present invention in weight%, (: 0.005% or less (excluding 0%), Si: 1.0 to 4.0%, Al: 0.15 to 1.5%, Mn: 0.1 to 1.0%, P: 0.¾ or less (excluding 0%), N: 0.005% or less (excluding 0%), S: 0.001% to 0.006¾>,: 0.005¾> or less (0% ), 0: 0.005% or less (excluding OT), and the balance includes Fe and other unavoidable impurities, and hot rolling a slab satisfying the following formula 1 to produce a hot rolled sheet; Winding the hot rolled sheet; annealing and cooling the hot rolled sheet; and rolling the hot rolled annealing sheet to produce a rolled sheet; and finally rolling and rolling the rolled sheet. after nyaeng SIR is maintained for 30 minutes at 600 ° C or higher in steps to nyaenggak, and the hot-rolled sheet annealing and nyaeng Sir nyaenggak at least 5 seconds at more than 600 ° C in step Finish-annealing the soft decision nyaeng and nyaeng Sir nyaenggak at least 5 seconds in the above step in 60CTC. 國 1
― + 1.3 X lM] > 3.7 X ] X \Μ?ι]  ― + 1.3 X lM]> 3.7 X] X \ Μ? Ι]
1.8  1.8
(단, 식 1에서 [Si], [A1] 및 [Mn]은 각각 Si, A1 및 Mn의 함량 (중량 ¾ 을 나타낸다.)  (In formula 1, [Si], [A1] and [Mn] represent Si, A1 and Mn content (weight ¾), respectively.)
슬라브는 Sn 및 Sb를 각각 단독 또는 복합으로 0.01 내지 0.2 중량 % 더 포함할 수 있다.  The slab may further comprise 0.01 to 0.2% by weight of Sn and Sb, alone or in combination, respectively.
열연판을 제조하는 단계에서, 슬라브를 1200°C 이하로 가열할 수 있다. In the step of preparing a hot-rolled sheet, it is possible to heat the slab to less than 1200 ° C.
열연판을 권취 후 냉각하는 단계에서 권취온도는 600 내지 800°C가 될 수 있다. In the step of cooling the hot rolled sheet after cooling, the coiling temperature is 600 to 800 ° C. Can be.
열연판을 소둔하고 넁각하는 단계에서, 열연판 소둔 온도는 850 내지 1 , 150°C가 될 수 있다. In the step of annealing and engraving the hot rolled sheet, the hot rolled sheet annealing temperature may be 850 to 1,150 ° C.
열연 소둔판을 넁간 압연하여 넁연판을 .제조하는 단계에서, 0. 1 내지 0.7匪의 두께로 넁간 압연할 수 있다.  In the step of hot rolling the hot-rolled annealing plate to manufacture the hot-rolled sheet, it can be rolled to a thickness of 0.1 to 0.7 kPa.
열연 소둔판을 넁간 압연하여 냉연판을 제조하는 단계에서, 넁간 압연은 1차 넁간압연, 중간 소둔 및 2차 넁간 압연을 포함할 수 있다.  In the step of hot rolling the hot rolled annealing plate to produce a cold rolled plate, the rolling rolling may include primary rolling, intermediate annealing and secondary rolling.
냉연판을 최종 소둔하고 넁각하는 단계에서 소둔시, 소둔의 균열은도는 850 내지 1 , 100°C가 될 수 있다. During annealing in the final annealing and engraving process of the cold rolled sheet, the cracking of the annealing may be between 850 and 1, 100 ° C.
제조된 전기강판의 석출물 중 산화물의 평균크기가 비산화물의 평균크기에 비해 클 수 있다.  The average size of the oxide in the precipitate of the prepared electrical steel sheet may be larger than the average size of the non-oxide.
석출물 중 산화물이 비산화물에 비해 개수가 많을 수 있다.  The number of oxides in the precipitate may be higher than that of the nonoxide.
석출물 중 FeO 또는 FeO가 함유된 석출물의 개수가 40% 이상일 수 있다.  The number of precipitates containing FeO or FeO in the precipitate may be 40% or more.
평균 결정립 입경이 50 내지 180卿일 수 있다.  The average grain size may be 50 to 180 mm 3.
【발명의 효과】  【Effects of the Invention】
본 발명의 일 실시예에 의한 무방향성 전기강판은 석출물을 크게 성장하도록 하여서 결정립 성장과 자화 중 자구의 이동을 용이하게 함으로써 자성을 향상시킬 수 있다.  The non-oriented electrical steel sheet according to an embodiment of the present invention can improve the magnetism by making the precipitate grow large, thereby facilitating the grain growth and the movement of the magnetic domain during magnetization.
【발명을 실시하기 위한 구체적인 내용 ] [Specific contents to carry out invention]
제 1, 제 2 및 제 3 등의 용어들은 다양한 부분, 성분, 영역, 층 및 /또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서, 이하에서 서술하는 게 1 부분, 성분 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제 2 부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다.  Terms such as first, second, and third are used to describe various parts, components, regions, layers, and / or sections, but are not limited to these. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, one part, component region, layer or section described below may be referred to as a second portion, component, region, layer or section without departing from the scope of the present invention.
여기서 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는" 의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및 /또는. 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및 /또는 성분의 존재나 부가를 제외시키는 것은 아니다. The terminology used herein is for reference only to specific embodiments and is not intended to limit the invention. As used herein, the singular forms “a,” “an,” and “the” include plural forms as well, unless the phrases clearly indicate the opposite. As used in the specification, the meaning of "comprising" means certain characteristics, Region, integer, step, action, element, and / or . It is not intended to specify components but to exclude the presence or addition of other properties, domains, integers, steps, actions, elements and / or components.
어느 부분이 다른 부분의 "위에 " 또는 "상에 " 있다고 언급하는 경우, 이는 바로 다른 부분의 위에 또는 상에 있을 수 있거나 그 사이에 다른 부분이 수반될 수 있다. 대조적으로 어느 부분이 다른 부분의 "바로 위에 " 있다고 언급하는 경우, 그 사이에 다른 부분이 개재되지 않는다.  When a portion is referred to as "on" or "on" another portion, it may be directly on or on the other portion or may be accompanied by another portion therebetween. In contrast, when a part is mentioned as "directly above" another part, no other part is intervened in between.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 -가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은' 관련기술문헌과 현재 개시된 내용에 부합하는 의마를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다. Although not defined otherwise, all terms including technical and scientific terms used herein have the same meaning as commonly understood by one having ordinary knowledge in the technical field to which the present invention belongs. Commonly defined terms used are ' further interpreted as having a meaning consistent with the related technical literature and the presently disclosed contents, and are not interpreted in an ideal or very formal sense unless defined.
또한, 특별히 언급하지 않는 한 %는 중량 %를 의미하며, lppm 은  Also, unless stated otherwise% means weight% and lppm is
0.00이중량 )이다. 0.00 2 weight).
이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 본 발명의 일 실시예에 의한 무방향성 전기강판은 중량 %로, C :0.005%이하 (0%는 제외함), Si:1.0 내지 4.0%, Al:0.15 내지 1.5%, Mn:0.1 내지 1.0%, P: 0.2%이하 (0%는 제외함), N :0.005%이하 (0%는 제외함), S: 0.001% 내지 0.006%, :0.005%이하(0¾)는 제외함), 0:0.005%이하 (0%는 제외함) 및 잔부는 Fe 및 기타 불가피한 불순물을 포함하고, 하기 식 1을 만족하고, 석출물 중 산화물의 평균크기가 비산화물의 평균크기에 비해 크다.  Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily practice. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. Non-oriented electrical steel sheet according to an embodiment of the present invention by weight%, C: 0.005% or less (excluding 0%), Si: 1.0 to 4.0%, Al: 0.15 to 1.5%, Mn: 0.1 to 1.0% , P: 0.2% or less (except 0%), N: 0.005% or less (except 0%), S: 0.001% to 0.006%,: 0.005% or less (except 0¾), 0: 0.005 % Or less (excluding 0%) and the balance include Fe and other unavoidable impurities, satisfy the following formula 1, the average size of the oxide in the precipitate is larger than the average size of the non-oxide.
[식 1]  [Equation 1]
p]  p]
1.8 J (단, 식 1에서 [Si ] , [A1 ] 및 [Mn]은 각각 Si , A1 및 Mn의 함량 (중량 %)을 나타낸다. ) 1.8 J (However, in formula 1 [Si], [A1] and [Mn] represents the content (% by weight) of Si, A1 and Mn, respectively.)
본 발명의 일 실시예에서는 무방향성 전기강판의 성분 중에서도 특히 Si , Al , Mn 등의 성분을 정밀하게 조절하여, 석출물이 가능한한 크게 생성되고, 석출물이 단독으로 존재하지 않고 복합적으로 석출하게 함으로서 석출물이 크게 석출하고자 하였다. 또한 식출물 중 산화물의 평균크기가 비산화물의 평균크기에 비해 크게 형성함으로써 자성을 향상시킨다.  In one embodiment of the present invention, among the components of the non-oriented electrical steel sheet, in particular, by controlling the components such as Si, Al, Mn precisely, precipitates are generated as large as possible, precipitates do not exist alone, and the complex precipitates This was to be precipitated greatly. In addition, by increasing the average size of the oxide in the extract compared to the average size of the non-oxide to improve the magnetic properties.
본 발명의 일 실시예에서 첨가하는 원소는 Si , Mn, Al , P 또는 필요에 따라 Sn , Sb이며, 모재의 Fe가 있다. 그 외의 첨가되는 원소는 0 , C , N, S 등이 있으며 이들은 낮게 관리될 필요가 있다. 이들 원소 N나 C가 다른 원소와 만드는 질화물과 탄화물이 있으며, Al , Mn , Si 및 Fe 등이 0와 만드는 산화물, 그리고 Mn과 Cu가 S와 만드는 황화물 등이 있으며, 이들은 단독 또는 복합하여 발생한다.  The element to be added in one embodiment of the present invention is Si, Mn, Al, P or, if necessary, Sn, Sb, there is Fe of the base material. Other added elements are 0, C, N, S and the like and they need to be managed low. There are nitrides and carbides that make these elements N and C with other elements, oxides made by Al, Mn, Si and Fe, etc., and sulfides made by S, Mn and Cu. These occur alone or in combination. .
본 발명의 일 실시예에서는 석출물을 조대화하고자 하였고, 특히 석출물이 단독이 아닌 복합적으로 석출되도록 함으로써 보다 용이하게 성장시키고자 하였다. 그 중에서 산화물은 추가 원소를 들이지 않고도 가능한 원소이어서 보다 조대화가 용이하였다. 이를 통해 전기강판의 자성이 향상됨을 확인할 수 있었다.  In one embodiment of the present invention was intended to coarsen the precipitates, in particular to grow more easily by allowing the precipitates to be precipitated in combination, not alone. Among them, oxides are possible elements without adding additional elements, so that coarsening is easier. As a result, it was confirmed that the magnetic properties of the electrical steel sheet were improved.
본 발명의 일 실시예에서는 석출물 중에서 산화물이 전체 석출물 개수의 50% 이상이었으며, 산화물 중에서도 특히 FeO가 40% 이상을 차지하였다. 특히 석출물이 복합적으로 석출하는데 산화물의 영향이 크게 작용하였다. 이들 산화물은 제강 작업할 때 0를 낮추었으나 강 중에 산화물로 잔존 또는 소둔 후 석출되는 것으로 판단된다. 황화물은 슬라브 재가열하고 열간압연 후 넁각할 때 상당량 석출되며, 이들은 CuS , MnS 또는 이들의 복합 석출물로 석출되어 나타났다. 하지만 산화물은 황화물 보다는 FeO , A1203 , Si02 등의 산화물의 복합 석출물이 많았고 산화물이 질화물과 탄화물과의 결합은 상대적으로 적다. In one embodiment of the present invention, the oxide was more than 50% of the total number of precipitates, especially FeO accounted for more than 40% among the oxides. In particular, the effect of the oxide had a great effect on the complex precipitate. These oxides are lowered to zero during steelmaking, but are believed to precipitate after remaining or annealing as oxides in the steel. The sulfides are precipitated in significant amounts upon reheating and hot rolling after slab, which are precipitated as CuS, MnS or their composite precipitates. However, oxides had more complex precipitates of oxides such as FeO, A1 2 0 3 , and Si0 2 than sulfides, and the bonds of oxides with nitrides and carbides were relatively small.
본 발명의 일 실시예에서 발생된 석출물 중 산화물은 단독 또는 복합으로 존재하며 평균 크기가 15nm 내지 70nm 이었고, 평균수량은 1醒 2당 10 , 000개에서 400 , 000개로 확인되었다. 또한 석출물 중 비산화물은 단독 또는 복합하여 평균크기가 10nm 내지 50皿 이고, 평균수량은 1mm2당 5,000개에서 200,000개로 확인되었다. Oxides of the precipitate generated in one embodiment of the present invention is present alone or combined, and were an average size of 15nm to 70nm, the average yield was observed in 1醒10, 000 per two or 400, 000 pieces. In addition, the non-oxide in the precipitate alone Alternatively, the average size was 10nm to 50 皿, and the average yield was found to be 5,000 to 200,000 per 1 mm 2 .
이처럼 석출물 중 산화물의 평균크기가 비산화물의 평균크기에 비해 크게 형성함으로써 결정립 성장을 용이하게 할 수 있고, 구체적으로 평균 결정립 크기를 50 내지 180 로 할 수 있다. 이 때 결정립 크기는 전기강판 분야에서 일반적으로 사용되는 절편법 (intercept method)에 의해 측정된 결정립 크기를 의미한다. 무방향성 전기강판의 성분 한정의 이유를 하기에 설명한다.  Thus, by forming the average size of the oxide in the precipitate larger than the average size of the non-oxide can facilitate grain growth, specifically, the average grain size can be 50 to 180. In this case, the grain size refers to grain size measured by an intercept method which is generally used in the field of electrical steel sheet. The reason for component limitation of a non-oriented electrical steel sheet is demonstrated below.
Si: 1.0 내지 4.0 중량 %  Si: 1.0 to 4.0 wt%
실리콘 (Si)은 강의 비저항을 증가시켜서 철손 중 와류손실을 낮추는 성분이기 때문에 첨가되는 주요 원소이며 산화물을 쉽게 형성하는 원소이다. Si가 너무 적게 함유되면 저철손 특성을 얻기 어렵고, Si가 너무 많이 첨가되면 넁간압연이 곤란할 수 있다. 따라서 1.0 내지 4.0 중량 %로 제한할 수 있다.  Silicon (Si) is the main element added because it increases the specific resistance of steel and lowers the eddy current loss in iron loss, and is an element that easily forms an oxide. If too much Si is included, low iron loss characteristics are difficult to obtain, and if too much Si is added, rolling may be difficult. Therefore, it can be limited to 1.0 to 4.0% by weight.
Mn:0.1 내지 1.0중량 % Mn: 0.1-1.0 wt%
망간 (Mn)은 Si, A1등과 더불어 비저항을 증가시켜 철손을 낮추는 효과가 있기 때문에 Mn을 적어도 0.1 중량 ¾>이상 첨가함으로써 철손을 개선하려는 목적으로 첨가된다. 그러나 Mn 첨가량이 증가할수록 포화자속밀도가 감소하기 때문에 자속밀도가 감소하며 또한 S와 결합하여 미세한 MnS 석출물을 형성하여 결정립 성장을 억제하며 자벽 이동을 방해하여 철손 중 특히 이력 손실을 증가시키는 단점이 있어서 1.0 중량 ¾> 이하로 첨가한다.  Manganese (Mn) is added for the purpose of improving iron loss by adding Mn at least 0.1 weight ¾> because it has an effect of lowering iron loss by increasing specific resistance together with Si and A1. However, as the amount of Mn added increases, the saturation magnetic flux density decreases, so the magnetic flux density decreases. In addition, it forms a fine MnS precipitate in combination with S to suppress grain growth and impede the movement of the wall, thereby increasing hysteresis loss among iron losses. 1.0 weight ¾> or less.
Α1:0·15 내지 1.5중량 % A1: 0-15 to 1.5% by weight
알루미늄 (A1)은 제강공정에서 강의 탈산을 위하여 불가피하게 첨가되는 원소로서 비저항을 증가시키는 주요 원소이기 때문에 철손을 낮추기 위하여 많이 첨가되지만 첨가하여 포화 자속밀도를 감소시키는 역할도 한다. 또한 A1 첨가량이 과도하게 적으면 미세한 A1N을 형성시켜 결정립 성장을 억제하여 자성을 저하시킬 수 있다. 또한 M이 너무 많이 첨가되면 자속밀도가 감소되는 원인이 되므로 그 첨가량을 0. 15 내지 1.5 중량 %로 제한할 수 있다. P : 0.2 중량 ¾> 이하 Aluminum (A1) is an element that is inevitably added for deoxidation of steel in the steelmaking process, and is mainly added to reduce iron loss, but also serves to reduce saturation magnetic flux density. In addition, when the amount of A1 is excessively small, fine A1N is formed. Grain growth can be suppressed to reduce magnetism. In addition, since too much M causes a decrease in magnetic flux density, the amount of M may be limited to 0.1 to 1.5% by weight. P: 0.2 Weight ¾> or less
인 (P)은 비저항을 증가시켜 철손을 낮추며 결정립계에 편석함으로써 자성에 유해한 집합조직의 형성을 억제하고 유리한 집합조직인 { 100}을 형성하나 너무 많이 첨가되면 압연성을 저하시키므로 0.2 중량 % 이하로 제한할 수 있다.  Phosphorus (P) decreases iron loss by increasing specific resistance and segregates at grain boundaries to suppress the formation of harmful textures to magnetism and forms an advantageous texture {100}. can do.
C : 0.005 중량 % 이하 C: 0.005% by weight or less
탄소 (C)는 많이 첨가될 경우 오스테나이트 영역을 확대하며 상변태 구간을 증가시키고 소둔 할 때 페라이트의 결정립성장을 억제하여 철손을 높이는 효과를 나타내며, 또한 Ti등과 결합하여 탄화물을 형성하여 자성을 열위시키며 최종제품에서- 전기 제품으로 가공 후 사용 시 자기시효에 의하여 철손을 높이기 때문에 0.005 중량 % 이하로 제한할 수 있다.  When a large amount of carbon (C) is added, it increases the austenite region, increases the phase transformation period, and increases the iron loss by suppressing the grain growth of ferrite during annealing, and also inferior magnetism by forming carbides in combination with Ti. In the final product-it can be limited to 0.005% by weight or less because the iron loss is increased by self-aging when processed into electrical products.
N: 0.005 중량 % 이하 N: 0.005% by weight or less
질소 (Ν)는 Al , Ti등과 강하게 결합함으로써 질화물을 형성하여 결정립 성장을 억제하는 등 자성에 해로운 원소이므로 적게 함유시키는 것이 바람직하며, 0.005 중량 % 이하로 제한할 수 있다.  Nitrogen (Ν) is preferably an element which is harmful to magnetism such as to form nitrides by strongly bonding with Al, Ti and the like to inhibit grain growth, and therefore it is preferably contained in a small amount, and can be limited to 0.005% by weight or less.
S : 0.001 내지 0.006중량 % S: 0.001 to 0.006% by weight
황 (S)은 자기적 특성에 유해한 MnS , CuS 및 (Cu ,Mn)S 등의 황화물을 형성하는 원소이므로 가능한 한 낮게 첨가하는 것이 바람직하다. 하지만 너무 적게 첨가될 경우 오히려 집합조직 형성에 불리하여 자성이 저하될 수 있다. 또한 너무 많이 첨가될 경우는 미세한 황화물의 증가로 인해 자성이 열위해질 수 있다. 따라서 0.001 내지 0.006 중량 %로 제한할 수 있다. Ti:0.005 중량 % 이하 티타늄 (Ti)은 미세한 탄화물과 질화물을 형성하여 결정립성장을 억제하며 많이 첨가될 수록 증가된 탄화물과 질화물로 인해 집합 조직도 열위하게 되어 자성이 나빠지게 된다. 따라서 0.005 중량 이하로 제한할 수 있다. Sulfur (S) is an element which forms sulfides such as MnS, CuS, and (Cu, Mn) S, which are detrimental to magnetic properties. Therefore, it is preferable to add sulfur (S) as low as possible. However, if too little is added, rather it is disadvantageous to the formation of texture, the magnetism may be lowered. In addition, when too much is added, the magnetism may be inferior due to the increase of the fine sulfide. Therefore, it can be limited to 0.001 to 0.006% by weight. Ti : 0.005 wt% or less Titanium (Ti) forms fine carbides and nitrides to suppress grain growth. The more the titanium is added, the more the carbides and nitrides increase the inferior texture, resulting in poor magnetic properties. Therefore, it can be limited to 0.005 weight or less.
0 : 0.005 중량 % 이하 0 : 0.005% by weight or less
산소 (0)는 여러가지 산화물을 만들어 결정립성장을 억제하기 때문에 가능한 낮게 함유시킬 수 있다. 따라서 0.005 중량 % 이하로 제한할 수 있다. Sn, Sb: 0.01 내지 0.2중량 %  Since oxygen (0) produces various oxides and suppresses grain growth, it can be contained as low as possible. Therefore, it can be limited to 0.005% by weight or less. Sn, Sb: 0.01 to 0.2% by weight
주석 (Sn)과 안티몬 (Sb)은 결정립계에 편석원소로써 결정립계를 통한 질소의 확산을 억제하며 자성에 해로운 {111} 집합조직을 억제하고 유리한 {100}집합조직을 증가시켜 자기적 특성을 향상시키기 위하여 첨가하며, Sn 및 Sb 각각 단독 또는 그 합이 너무 많이 첨가하면 결정립 성장을 억제하여 자성을 떨어뜨리고 압연성상이 나빠질 수 있다. 따라서, Sn 또는 Sb를 포함하는 경우, Sn 및 Sb 각각 단독 또는 그 합으로 0.01 내지 0.2 중량 %로 제한할 수 있다. 특히 본 발명의 일 실시예에서는 첨가원소 중에서 Si, Mn, A1을 하기 식 1을 만족하도록 조절함으로써 Mn함량이 높지 않으면서 Si함량이 높은 조건을 갖도록 하며 A1도 상당량 함유시켜 A1N 등을 억제하도록 하였다.  Tin (Sn) and antimony (Sb) are segregated elements in the grain boundary to suppress the diffusion of nitrogen through the grain boundary, to suppress the harmful {111} texture and increase the advantageous {100} texture to improve the magnetic properties. In addition, if Sn and Sb are added alone or too much, respectively, grain growth may be suppressed to decrease magnetism and worsen rolling properties. Therefore, in the case of containing Sn or Sb, Sn and Sb may be limited to 0.01 to 0.2% by weight each alone or in combination. In particular, in one embodiment of the present invention by controlling the Si, Mn, A1 in the additive element to satisfy the following formula 1 to have a high Si content without a high Mn content, A1 also contains a considerable amount to suppress A1N, etc. .
[식 1]  [Equation 1]
^ ' i- 1.3 X ίΑΙ] > 3,7 χ iM l χ ΓΜι] ^ ' i- 1.3 X ίΑΙ]> 3,7 χ iM l χ ΓΜι]
1,8  1,8
(단, 식 1에서 [Si], [A1] 및 . [Mn]은 각각 Si, A1 및 Mn의 함량 (중량 %)을 나타낸다.) 본 발명의 일 실시예에 의한 무방향성 전기강판의 제조 방법은 중량 %로, C :0.005%이하 (0%는 제외함), Si :1.0 내지 4.0%, Al:0.15 내지 1.5%, Mn:0.1 내지 1.0%, P:0.2%이하 (OT는 제외함), N :0.005%이하 (0%는 제외함), S: 0.001% 내지 0.006%, :0.005%이하(0%는 제외함), 0:0.005%이하 (0%는 제외함) 및 잔부는 Fe 및 기타 불가피한 불순물을 포함하고, 하기 식 1을 만족하는 슬라브를 가열한 후 열간 압연하여 열연판을 제조하는 단계; 열연판을 권취 후 넁각하는 단계; 열연판을 소둔하고 넁각하는 단계; 열연 소둔판흘 넁간 압연하여 냉연판을 제조하는 단계; 및 넁연판을 최종 소둔하고 넁각하는 단계를 포함하고, 열연판을 권취 후 넁각하는 단계에서 600°C 이상에서 30분 이상 유지하여 냉각하고, 열연판 소둔하고 넁각하는 단계에서 600 °C 이상에서 5초 이상 넁각하고, 넁연판을 최종 소둔하고 넁각하는 단계에서 600°C 이상에서 5초 이상 넁각한다. (However, in formula 1 [Si], [A1] and. [Mn] represents the content (wt%) of Si, A1 and Mn, respectively.) A method for manufacturing a non-oriented electrical steel sheet according to an embodiment of the present invention Silver% by weight, C: 0.005% or less (excluding 0%), Si: 1.0 to 4.0%, Al: 0.15 to 1.5%, Mn: 0.1 to 1.0%, P: 0.2% or less (excluding OT) , N: 0.005% or less (0% S: 0.001% to 0.006%,: 0.005% or less (excluding 0%), 0: 0.005% or less (excluding 0%), and the balance includes Fe and other unavoidable impurities, Manufacturing a hot rolled sheet by heating and heating the slab satisfying 1; Etching the hot rolled sheet after winding; Annealing and engraving the hot rolled sheet; Rolling a hot rolled annealing plate for 4 seconds to produce a cold rolled plate; And final annealing and engraving step of the copper plate, in the step of winding and rolling the hot rolled steel plate to maintain at least 600 ° C 30 minutes or more to cool, 600 ° C in the step of annealing and engraving the hot rolled plate 5 seconds or more at the above stage, at least 5 seconds at 600 ° C or more in the final annealing and engraving stage.
본 발명의 일 실시예에서는 열연판 제조 후, 열연판 소둔 후, 넁연판 소둔 후 냉각할 때 천천히 넁각하여 석출물이 성장하는 시간을 갖도록 하여 자성을 향상하고자 하였다.  In an embodiment of the present invention, after manufacturing the hot rolled sheet, after the hot rolled sheet annealing, and after cooling the molten sheet annealing slowly to cool to have a time to grow the precipitate to improve the magnetic properties.
이하에서는 각 단계별로 공정을 설명한다.  The following describes the process for each step.
먼저 슬라브를 가열한 후 열간 압연하여 열연판을 제조한다. 각- 조성의 첨가 비율을 한정한 이유는 전술한 무방향성 전기강판의 한정 이유와 동일하다. 후술할 열간 압연, 열연판 소둔, 넁간 압연, 최종 소둔 등의 과정에서 슬라브의 조성은 실질적으로 변동되지 아니하므로, 슬라브의 조성과 부방향성 전기강판의 조성이 실질적으로 동일하다 .  First, the slab is heated and hot rolled to produce a hot rolled sheet. The reason for limiting the addition ratio of each composition is the same as the reason for limiting the non-oriented electrical steel sheet described above. Since the composition of the slab is not substantially changed in the course of hot rolling, hot rolling annealing, hot rolling, final annealing, and the like, the composition of the slab and the composition of the non-oriented electrical steel sheet are substantially the same.
슬라브를 가열로에 장입하여 1,200°C 이하로 가열할 수 있다. 가열 온도가 너무 높을 경우 슬라브 내에 존재하는 A1N, MnS등의 석출물이 재고용된 후 열간 압연 시 미세 석출되어 결정립 성장을 억제하고 자성을 저하시킬 수 있다. 더욱 구체적으로 1,050°C 내지 1,200°C에서 가열할 수 있다. The slabs can be charged into a furnace and heated up to 1,200 ° C. If the heating temperature is too high, precipitates such as A1N and MnS present in the slab are re-used and then finely precipitated during hot rolling to suppress grain growth and lower magnetism. More specifically, it can be heated at 1,050 ° C to 1,200 ° C.
가열된 슬라브는 1.4画 내지 3隱로 열간 압연하여 열연판으로 제조된다. 열간 압연할 때 사상압연에서의 마무리압연은 페라이트상에서 종료하며 판형상 교정을 위하여 최종 압하율은 20%이하로 실시한다.  The heated slabs are hot rolled to 1.4 kPa to 3 kPa to produce hot rolled plates. When hot rolling, finishing rolling in finishing rolling is finished on ferrite phase, and final rolling reduction is 20% or less to correct plate shape.
다음으로 열연판을 권취 후 넁각한다. 열연판은 60CTC 내지 800°C의 온도에서 권취하고, 공기중이나 별도의 노에 넣어서 넁각한다. 냉각할 때의 온도는 600°C 이상에서 적어도 30분 이상 유지될 수 있도록 한다. 온도가 너무 낮거나 시간이 짧게 유지되면 석출물의 성장이 어려워 미세하게 석출될 수 있다. 더욱 구체적으로 600 내지 800 °C의 온도에서 30분 내지 3시간 동안 유지될 수 있다. Next, roll the hot rolled sheet and roll it. The hot rolled sheet is wound up at a temperature of 60CTC to 800 ° C and indented in air or in a separate furnace. When cooling, the temperature should be maintained at 600 ° C or higher for at least 30 minutes. Temperature If it is too low or the time is kept short, the precipitates are difficult to grow and may be finely precipitated. More specifically, it may be maintained for 30 minutes to 3 hours at a temperature of 600 to 800 ° C.
다음으로 열연판을 소둔하고 넁각한다. 자성개선을 위하여 열연판을 소둔하는 것이며, 열연판 소둔 온도는 850 내지 1 , 150°C로 한다. 열연판 소둔 온도가 너무 낮으면 결정립 성장이 불층분할 수 있다. 열연판 소둔 온도가 너무 높으면 결정립이 과도하게 성장하고 판의 표면 결함이 과다해 질 수 있다. Next, the annealing and annealing the hot rolled sheet. The hot rolled sheet is annealed for magnetic improvement, and the hot rolled sheet annealing temperature is set to 850 to 1,150 ° C. If the hot rolled sheet annealing temperature is too low, grain growth may be uneven. If the hot-rolled sheet annealing temperature is too high, the grains may grow excessively and the surface defects of the plate may be excessive.
열연판 소둔 후 넁각할 때 넁각은 급냉하지 않고 60CTC 이상에서 5초 이상 유지한다. 넁각할 때 온도가 너무 낮거나, 유지 시간이 짧으면 석출물이 조대화가 어렵고 판이 휠 수도 있다. 더욱 구체적으로 넁각시 온도는 600 내지 800 °C가 될 수 있고, 5 내지 30초간 유지할 수 있다. When burning after hot-rolled sheet annealing, the angle is not quenched and maintained at 60CTC or more for 5 seconds. If the temperature is too low or the holding time is too short, the precipitate may be difficult to coarsen and the plate may bend. More specifically, the temperature may be 600 to 800 ° C., and may be maintained for 5 to 30 seconds.
열연판 소둔 후 산세할 수도 있다.  It can also be pickled after hot-rolled sheet annealing.
다음으로, 열연 소둔판을 넁간 압연하여 넁연판을 제조한다. 냉간 압연은 0. 1隱에서 0.7隱의 두께로 최종 압연하며, 필요시 1차 냉간압연, 중간소둔, 2차 넁간 압연할 수 있으며, 최종 압하율은 50 내지 95%의 범위로 할 수 있다.  Next, the hot rolled annealing plate is rolled by steel to manufacture a hot rolled sheet. Cold rolling is the final rolling thickness from 0.1 隱 to 0.7 隱, and if necessary, cold rolling, intermediate annealing, secondary rolling can be carried out, and the final rolling rate may be in the range of 50 to 95%.
다음으로, 넁연판을 최종 소둔하고 넁각한다. 넁연판올 소둔하는 공정에서 소둔할 때 넁연판 소둔의 균열온도는 850 내지 1 , 100°C로 한다. 넁연판 소둔온도가 850 °C이하에서는 결정립의 성장이 미흡하여 자성에 해로운 집합 조직인 {in} 집합조직이 증가하며, noo°c이상에서는 결정립이 과도하게 성장하여 자성에 나쁜 영향을 미칠 수 있기 때문에 냉연판의 균열온도는 850 내지 110CTC로 한다. Next, the annealing board is finally annealed and inscribed. Cracking temperature of the soft decision nyaeng annealing when annealing at the annealing step of nyaeng lead plate all is to be 850 to 1, 100 ° C. Nyaeng the soft decision annealing temperature is below 850 ° C the growth of crystal grains is insufficient increase in the deleterious set organization {in} texture on the magnetic, and the noo ° c or more, since the crystal grains are excessively growth can adversely affect the magnetic The cracking temperature of the cold rolled sheet is 850 to 110CTC.
넁연판 소둔 후 냉각할 때 넁각은 급넁하지 않고 600 °C 이상에서 5초 이상 유지한다. 넁각할 때 온도가 너무 낮거나, 유지 시간이 짧으면 미세한 석출물이 단독으로 석출될 수 있다. 더욱 구체적으로 냉각시 온도는 600 내지 800 °C가 될 수 있고, 5 내지 30초간 유지할 수 있다. When cooling after annealing the sheet, the corner angle is not abruptly maintained for at least 5 seconds at 600 ° C or higher. If the temperature is too low or the holding time is short when the angle is fine, fine precipitates may be precipitated alone. More specifically, the cooling temperature may be 600 to 800 ° C, it can be maintained for 5 to 30 seconds.
소둔판은 절연피막처리 후 고객사로 출하된다. 상기 절연피막은 유기질, 무기질 및 유무기 복합피막으로 처리될 수 있으며, 기타 절연이 가능한 피막제로 처리하는 것도 가능하다. 고객사는 강판을 가공 후 그대로 사용할 수 있다. 이하에서는 실시예를 통하여 본 발명을 좀더 상세하게 설명한다. 그러나 이러한 실시예는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다. Annealed plates are shipped to customers after the insulation coating. The insulating coating may be treated with an organic, inorganic and organic-inorganic composite coating, and may be treated with other insulating coating. Customer is intact after processing steel sheet Can be used. Hereinafter, the present invention will be described in more detail with reference to Examples. However, these examples are only for illustrating the present invention, and the present invention is not limited thereto.
실시예 1  Example 1
잔공 용해를 통하껴 하기 표 1 및 표 2와 같이 조성되는 강괴를 제조하여 Si , Al , Mn의 중량 %의 양이 식 1을 만족하는 발명강 A1에서 A7까지, 그리고 식 1을. 만족하지 못하는 A8에서 A12까지 비교강을 용해하였다.  Through the residual air melting, the steel ingots prepared as shown in Tables 1 and 2 were prepared, and the inventive steels A1 to A7 in which the weight% amounts of Si, Al and Mn satisfy Equation 1, and Equation 1 below. Unsatisfactory A8 to A12 melted comparative steel.
진공용해강 A1 내지 A7은 Si , Al , Mn 함량이 발명의 범위로 제조하고 각 강괴는 112CTC에서 가열하고, 2.2瞧의 두께로 열간압연한 후 권취하고 표 2에서와 같이 대기 중에서 서냉하여 권취하고 냉각한 열연강판은 5분간 질소 분위기에서 소둔하고, 질소와 산소가 흔재하는 분위기의 600°C 이상 온도에서 서넁하고 최종 물을 뿌려 급냉하였다. 소둔한 열연판은 산세한 다음 0.35隱 두께로 냉간압연하고, 넁연판의 최종 소둔은 수소 3OT와 질소 70%의 분합분위기에서 2분간 소둔하였다. 넁각대는 수소 40%와 질소의 분위기에서 넁각하였다. 최종 소둔판은 각각의 시편에 대하여 산화물, 황화물, 탄화물, 질화물 및 그 복합 석출물의 크기 및 수량을 조사하였고 결정립 및 자성을 측정하여 하기 표 3에 정리하였다. The molten steels A1 to A7 were prepared in the range of Si, Al, and Mn in the range of the invention, and each ingot was heated at 112 CTC, hot rolled to a thickness of 2.2 kPa, then wound up, and then slowly cooled in air as shown in Table 2 and wound up. The cooled hot rolled steel sheet was annealed in a nitrogen atmosphere for 5 minutes, and was squeezed at a temperature of 600 ° C. or higher in an atmosphere in which nitrogen and oxygen were common, and quenched by spraying final water. After annealing, the hot rolled sheet was pickled and cold rolled to a thickness of 0.35 kPa. The final annealed sheet was annealed for 2 minutes in a mixed atmosphere of hydrogen 3 OT and nitrogen of 70%. Each corner was changed in an atmosphere of 40% hydrogen and nitrogen. The final annealing plate was examined for the size and quantity of oxides, sulfides, carbides, nitrides and composite precipitates for each specimen, and are summarized in Table 3 by measuring grains and magnetic properties.
석출물의 크기, 종류 및 분포를 분석하기 위한 방법으로는 시편으로부터 추출된 carbon repl i ca를 TEM으로 관찰하며 EDS로 분석하는 방법을 사용하였다. TEM 관찰은 치우침이 없이 무작위로 선택된 영역으로 EDS spectrum을 통하여 석출물의 종류를 분석하였다.  As a method for analyzing the size, type, and distribution of precipitates, carbon repl i ca extracted from specimens was observed by TEM and analyzed by EDS. In the TEM observation, the precipitates were analyzed by EDS spectrum with randomly selected areas without bias.
철손 (W15/50)은 50Hz주파수에서 1.5Tes la의 자속밀도가 유기되었을 때의 압연방향과 압연방향 수직방향의 평균 손실 (W/kg)로 측정하였다. Iron loss (W 15/50 ) was measured as the average loss (W / kg) in the rolling direction and the vertical direction when the magnetic flux density of 1.5 Tesla was induced at 50 Hz.
자속밀도 (B50)는 5000A/m의 자기장을 부가하였을 때 유도되 자속밀도의 크기 (Tes l a)로 측정하였다. The magnetic flux density (B 50 ) was measured by the magnitude of the magnetic flux density (Tes la) when a magnetic field of 5000 A / m was added.
【표 1】
Figure imgf000013_0001
Al 0.0025 1.56 0.25 0.42 0.031 0.0024 0.0014 0.0002 0.026 0.012
Table 1
Figure imgf000013_0001
Al 0.0025 1.56 0.25 0.42 0.031 0.0024 0.0014 0.0002 0.026 0.012
A2 0.0028 2.64 0.22 0.4 0.036 0.0021 0.0021 0.0015 0.019 0A2 0.0028 2.64 0.22 0.4 0.036 0.0021 0.0021 0.0015 0.019 0
A3 0.0025 2.82 0.82 0.8 0.045 0.0028 0.0014 0.0017 0 0A3 0.0025 2.82 0.82 0.8 0.045 0.0028 0.0014 0.0017 0 0
A4 0.0022 2.95 0.78 0.62 0.055 0.0021 0.0012 0.0016 0 0A4 0.0022 2.95 0.78 0.62 0.055 0.0021 0.0012 0.0016 0 0
A5 0.0025 2.82 1.3 0.45 0.032 0.0015 0.0025 0.0011 0 0.031A5 0.0025 2.82 1.3 0.45 0.032 0.0015 0.0025 0.0011 0 0.031
A6 0.0028 2.91 0.32 0.52 0.031 0.0018 0.0021 0.0011 0.024 0.021A6 0.0028 2.91 0.32 0.52 0.031 0.0018 0.0021 0.0011 0.024 0.021
A7 0.0022 3.3 0.25 0.4 0.035 0.0032 0.0026 0.0015 0.036 0.015A7 0.0022 3.3 0.25 0.4 0.035 0.0032 0.0026 0.0015 0.036 0.015
A8 0.0021 0.52 0.002 0.45 0.031 0.0024 0.0014 0.0002 0.026 0.012A8 0.0021 0.52 0.002 0.45 0.031 0.0024 0.0014 0.0002 0.026 0.012
A9 0.0026 1.43 0.25 0.62 0.045 0.0001 0.0015 0.0019 0.025 0.031A9 0.0026 1.43 0.25 0.62 0.045 0.0001 0.0015 0.0019 0.025 0.031
A10 0.0023 2.24 0.12 0.72 0.055 0.0032 0.0018 0.0021 0 0.019A10 0.0023 2.24 0.12 0.72 0.055 0.0032 0.0018 0.0021 0 0.019
All 0.0027 2.51 0.45 0.9 0.023 0.0035 0.0021 0.0021 0.035 0All 0.0027 2.51 0.45 0.9 0.023 0.0035 0.0021 0.0021 0.035 0
A12 0.0029 2.96 0.74 1.3 0.019 0.0019 0.0019 0.0025 0.043 0 A12 0.0029 2.96 0.74 1.3 0.019 0.0019 0.0019 0.0025 0.043 0
【표 2] [Table 2]
Figure imgf000014_0001
Al
Figure imgf000014_0001
Al
X 650 60 1000 12 1050 15 비교강 3 0  X 650 60 1000 12 1050 15 Comparative Steel 3 0
Al  Al
X 650 60 1000 12 1050 15 비교강 4 1  X 650 60 1000 12 1050 15 Comparative Steel 4 1
Al  Al
X 650 60 1000 12 1050 15 비교강 5 2  X 650 60 1000 12 1050 15 Comparative Steel 5 2
【표 3] [Table 3]
Figure imgf000015_0001
표 1 내지 표 3에서 나타나듯이 A1 내지 A7은 전기강판의 조성 범위 및 식 1을 만족하고 있으며, 석출물 중 산화물의 크기가 비산화물의 크기에 비해 큰 것을 확인할 수 있으며, 결정립도 잘 성장되었고, 철손 및 자속밀도도 우수함을 확인할 수 있다. 반면 , A8 내지 A12는 전기강판의 조성 범위 및 식 1을 만족하지 아니하며, 일부는 석출물 중 산화물의 크기가 비산화물의 크기에 비해 작은 것을 확인할 수 있다. 따라서 철손 및 자속밀도가 열악함을 확인할 수 있다. 실시예 2
Figure imgf000015_0001
As shown in Tables 1 to 3, A1 to A7 satisfy the composition range and Equation 1 of the electrical steel sheet. It can be confirmed that the larger than, the crystal grains are also well grown, and the iron loss and magnetic flux density is also excellent. On the other hand, A8 to A12 does not satisfy the composition range and formula 1 of the electrical steel sheet, and some can confirm that the size of the oxide in the precipitate is smaller than the size of the non-oxide. Therefore, it can be confirmed that iron loss and magnetic flux density are poor. Example 2
진공 용해를 통하여 하기 표 4 및 표 5와 같이 조성되는 강괴를 제조하여 Si , Al , Mn의 중량 %의 양이 식 1을 만족하는 발명강 A13에서 A15까지 용해하였다.  Ingots were prepared as shown in Tables 4 and 5 through vacuum dissolution to dissolve Si, Al, and Mn by invented steels A13 to A15 in which the amounts of the weight percent of Eq.
각 강괴는 1120°C에서 가열하고, 2.2隱의 두께로 열간압연한 후 권취하고 표 5에서와 같이 대기 중에서 서넁하여 권취하고 넁각한 열연강판은 5분간 질소 분위기에서 소둔하고, 질소와 산소가 흔재하는 분위기의 600 °C 이상 온도에서 서넁하고 최종 물을 뿌려 급넁하였다. 소둔한 열연판은 산세한 다음 0.35mm 두께로 넁간압연하고, 냉연판의 최종 소둔은 수소 30%와 질소 70%의 분합분위기에서 2분간 소둔하였다. 냉각대는 수소 40%와 질소의 분위기에서 넁각하였다. 최종 소둔판은 각각의 시편에 대하여 산화물, 황화물, 탄화물, 질화물 및 그 복합 석출물의 크기 및 수량을 조사하였고 결정립 및 자성을 측정하여 하기 표 6에 정리하였다. [표 4】 Each ingot is heated at 1120 ° C, hot rolled to a thickness of 2.2 隱, wound up and wound up in the air as shown in Table 5, and the hot rolled steel sheet is annealed in a nitrogen atmosphere for 5 minutes, and nitrogen and oxygen are common. Sudden at a temperature of 600 ° C. or more in the atmosphere was sprinkled with the final water. The annealed hot rolled sheet was pickled and rolled to a thickness of 0.35 mm, and the final annealed of the cold rolled sheet was annealed for 2 minutes in a mixed atmosphere of 30% hydrogen and 70% nitrogen. The cooling zone was different in an atmosphere of 40% hydrogen and nitrogen. The final annealing plate was examined for the size and quantity of oxides, sulfides, carbides, nitrides, and composite precipitates for each specimen, and are summarized in Table 6 by measuring grains and magnetic properties. TABLE 4
Figure imgf000016_0001
Figure imgf000016_0001
【표 5] [Table 5]
식 1 Έ3τ sᅳ 내가 여여 11  Equation 1 Έ3τ s ᅳ I over 11
o— i ᅡ S □j 내가 내여  o— i ᅡ S □ j
o— 1 ο ΐ2 ιι_ι!μ ΤΓ gj 내가  o— 1 ο ΐ2 ιι_ι! μ ΤΓ gj i
ο— 1  ο— 1
¾ o좃 o 만족 온도 시간 600°C이상 600°C이상 비고 소둔온도 (0C) 소둔온도 (°C) ¾ of sick o o satisfy Temperature Time 600 ° C or higher than 600 ° C Remarks annealing temperature (0 C) annealing temperature (° C)
여부 (°C) (분) 유지 (초) 유지시간  Whether (° C) (minutes) hold (seconds) hold time
A13 0 650 50 950 . 12 980 10 발명강 8 A13 0 650 50 800 2 980 2 비교강 6A13 0 650 50 950. 12 980 10 Inventive Steel 8 A13 0 650 50 800 2 980 2 Comparative steel 6
A14 0 620 80 1020 10 1020 11 발명강 9A14 0 620 80 1020 10 1020 11 Steel of invention 9
A14 0 620 80 1020 2 1020 11 비교강 7A14 0 620 80 1020 2 1020 11 Comparative Steel 7
A14 0 620 1 1020 2 900 2 비교강 8A14 0 620 1 1020 2 900 2 Comparative steel 8
A14 0 520 80 1020 2 . 1020 2 비교강 9A14 0 520 80 1020 2. 1020 2 Comparative Steel 9
A15 0 650 30 1020 15 1020 12 발명강 10A15 0 650 30 1020 15 1020 12 Inventive Steel 10
A15 0 650 1 1020 2 1020 2 비교강 10A15 0 650 1 1020 2 1020 2 Comparative Steel 10
A15 0 650 30 1020 2 1020 2 비교강 11 A15 0 650 30 1020 2 1020 2 Comparative steel 11
【표 6】 Table 6
석출물 중  In the precipitate
7=1ᄌ BI 석출물 중 大 소 7 = 1 ᄌ BI Largest precipitate
≡亡 자속밀  Magnetic flux
강 산화물 비산화물 Steel oxide nonoxide
크기 FeO비율 ( (W15/50) 도 (B50) 비고 조 Size FeO ratio ((W 15/50) Fig. (B 50) Remarks Division
크기 비을 크기 비을  Size rain size rain
(μιη) %) W/kg Tesla  (μιη)%) W / kg Tesla
(nm) (%) (nm) (%)  (nm) (%) (nm) (%)
A1  A1
75 47 68 52 35 32 2.81 1.75 발명강 8 75 47 68 52 35 32 2.81 1.75 Inventive Steel 8
3 3
A1  A1
45 30 41 35 38 59 3.52 1.72 비교강 6 3  45 30 41 35 38 59 3.52 1.72 Comparative Steel 6 3
A1  A1
78 52 65 45 46 35 2.23 1.71 발명강 9 4  78 52 65 45 46 35 2.23 1.71 Inventive Steel 9 4
A1  A1
60 28 38 38 35 , 62 2.52 1.68 비교강 7 4 60 28 38 38 35 62 2.52 1.68 Comparative Steel 74
A1  A1
40 31 35 35 35 65 2.43 1.67 비교강 8 4  40 31 35 35 35 65 2.43 1.67 Comparative Steel 8 4
A1  A1
60 28 36 32 36 64 2.61 1.68 비교강 9 4  60 28 36 32 36 64 2.61 1.68 Comparative Steel 9 4
A1  A1
120 65 80 57 38 20 2.11 1.71 발명강 10 5  120 65 80 57 38 20 2.11 1.71 Inventive Steel 10 5
A1  A1
72 25 45 35 33 55 2.43 1.65 비교강 10 5 Al 72 25 45 35 33 55 2.43 1.65 Comparative Steel 10 5 Al
67 21 42 36 33 58 2.64 1.63 비교강 11 67 21 42 36 33 58 2.64 1.63 Comparative Steel 11
5 표 4 내지 표 6에서 나타나듯이, 비교강에 비하여 발명강은 권취 후 냉각시간을 충분히 주었고, 열연판 및 넁연판을 소둔 후 600 °C 이상에서 시간을 층분히 주어서 FeO 산화물을 비롯한 산화물의 형성이 잘 되어서 결정립이 잘 성장하였고 자성이 우수함을 확인할 수 있다. 5 As shown in Tables 4 to 6, in comparison with the comparative steels, the inventive steel gave sufficient cooling time after winding, and after forming annealing hot-rolled and annealed plates, the oxides including FeO oxides were formed at a temperature of 600 ° C or more. It was confirmed that the crystal grains grew well and the magnetism was excellent.
반면, 비교강 6은 열연판소둔 은도가 낮으며 넁각할 때 600 °C이상 유지시간이 짧았으며 석출물 중 산화물의 크기가 작으며 그 수량도 작았다. 비교강 7도 열연판 소둔후 넁각시간이 짧아서 석출물 중 산화물이 크기가 비산화물에 비하여 상대적으로 작고 .수량이 적었으며, FeO 산화물의 비율도 40%이하로 낮았다. 비교강 8은 권취 후 넁각을 수넁하여 빨리 넁각하였고, 열연판 소둔한 후 60CTC이상에서 넁각시간이 짧았으며 넁연판 소둔후 시간도 짧아서 석출물 중 FeO를 비롯한 산화물의 형성이 미흡하여 철손이 상대적으로 높고 자속밀도가 낮다. 비교강 9도 성분은 만족하지만 권취온도가 낮으며, 열연판 소둔 후 냉각시 소둔시간이 짧아서 FeO를 비롯한 산화물 단독 또는 복합 석출물의 크기가 작고 그 수도 비산화물에 비하여 적어서 결정립의 크기도 작고 자성이 저조함을 확인할 수 있다. 비교강 10은 권취 후 넁각을 물속에 급넁하고 비교강 11과 함께 열연판 및 넁연판 소둔 후 넁각시간을 짧게한 결과 석출물 중 FeO비율이 낮고 산화물의 형성이 적어서 결정립이 작고 자성이 미흡한 것을 확인할 수 있다. 본 발명은 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. On the other hand, comparative steel 6 had a low degree of hot-rolled sheet annealing, short holding time over 600 ° C, and small amount of oxide in precipitate. After the annealing of the hot-rolled steel sheet at 7 ° C, the angle of shortening was short, so the oxides in the precipitates were relatively small in size compared to the non-oxides . The yield was low and the ratio of FeO oxide was low as 40% or less. Comparative steel 8 was shortened by the angle of winding after winding, and was short after 60CTC after hot-rolled sheet annealing. Low magnetic flux density Although the 9 ° C of the comparable steel is satisfactory, the coiling temperature is low, and the annealing time during cooling after the annealing of the hot rolled sheet is short. We can see that it is poor. Comparative steel 10 was rapidly wound up into the water and wound together with comparative steel 11 to shorten the time after annealing the hot rolled and rolled sheets. have. The present invention is not limited to the embodiments can be manufactured in a variety of different forms, those skilled in the art to which the present invention pertains to other specific forms without changing the technical spirit or essential features of the present invention It will be appreciated that it may be practiced. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Claims

【청구범위】 【청구항 1】 중량 %로, C :0.005%이하 (0%는 제외함), Si:1.0 내지 4.OT, Al:0.15 내지 1.5%, Mn:0.1 내지 1.0%, ?:0. 이하(0¾)는 제외함), Ν:0.005%이하 (0%는 제외함), S: 0.001% 내지 0.006%, Ti :0.005%이하 (0%는 제외함), 0 :0.005%이하 (0%는 제외함) 및 잔부는 Fe 및 기타 불가피한 불순물을 포함하고, 하기 식 1을 만족하고, 석출물 중 산화물의 평균크기가 비산화물의 평균크기에 비해 큰 무방향성 전기강판. 【Claims】 【Claim 1】 By weight %, C: 0.005% or less (excluding 0%), Si: 1.0 to 4.OT, Al: 0.15 to 1.5%, Mn: 0.1 to 1.0%, ?: 0 . (0¾ or less is excluded), Ν:0.005% or less (0% is excluded), S: 0.001% to 0.006%, Ti:0.005% or less (0% is excluded), 0:0.005% or less (0 % is excluded) and the remainder contains Fe and other inevitable impurities, satisfies Equation 1 below, and the average size of oxides in precipitates is larger than the average size of non-oxides.
[식 1] [Equation 1]
+ 1.3 X [A1] > 3,7 X ΪΜτ x [ a - + 1.3
(단, 식 1에서 [Si], [Al] 및 [Mn]은 각각 Si, Al 및 Mn의 함량 (중량 ¾>)을 나타낸다.) (However, in Formula 1, [Si], [Al], and [Mn] represent the contents (weight ¾>) of Si, Al, and Mn, respectively.)
【청구항 2】 【Claim 2】
거 U항에 있어서, In clause U,
상기 석출물 중 산화물이 비산화물에 비해 개수가 많은 무방향성 전기강판. A non-oriented electrical steel sheet in which oxides among the precipitates are greater in number than non-oxides.
【청구항 3】 【Claim 3】
제 1항에 있어서, In clause 1,
Sn 및 Sb를 각각 단독 또는 복합으로 0.01 내지 0.2 중량 % 더 포함하는 무방향성 전기강판. Non-oriented electrical steel sheet further containing 0.01 to 0.2% by weight of Sn and Sb, either alone or in combination.
【청구항 4] [Claim 4]
게 1항에 있어서, In clause 1,
석출물 중 FeO 또는 FeO가 함유된 석출물의 개수가 40% 이상인 무방향성 전기강판. Non-oriented electrical steel sheet with more than 40% of FeO or FeO-containing precipitates.
【청구항 5】 【Claim 5】
제 1항에 있어서, In clause 1,
평균 결정립 입경이 50 내지 180卿인 무방향성 전기강판. Non-oriented electrical steel sheet with an average grain size of 50 to 180卿.
【청구항 6】 【Claim 6】
중량 %로, (::0.005%이하(0%는 제외함), Si : 1.0 내지 4.0%, Α1 :0 · 15 내지 1.5%, Μη: 0.1 내지 1.0%, Ρ: 0.2%이하 (0%는 제외함), 0.005¾>이하(0¾)는 제외함), S: 0.001% 내지 0.006%, Ti :0.005¾>이하 (0%는 제외함), 0 : 0.005%이하 (0%는 제외함) 및 잔부는 Fe 및 기타 불가피한 불순물을 포함하고, 하기 식 1을 만족하는 슬라브를 가열한 후 열간 압연하여 열연판을 제조하는 단계; In weight %, (::0.005% or less (excluding 0%), Si: 1.0 to 4.0%, Α1:0·15 to 1.5%, Μη: 0.1 to 1.0%, Ρ: 0.2% or less (0% is excluded), 0.005¾> or less (0¾) is excluded), S: 0.001% to 0.006%, Ti: 0.005¾> or less (0% is excluded), 0: 0.005% or less (0% is excluded) and the remainder contains Fe and other inevitable impurities, heating a slab that satisfies the following equation 1 and then hot rolling to produce a hot-rolled sheet;
상기 열연판을 권취 후 넁각하는 단계; A step of winding the hot-rolled sheet and then cutting it;
상기 열연판을 소둔하고 넁각하는 단계 ; Annealing and cutting the hot-rolled sheet;
열연 소둔판을 넁간 압연하여 넁연판을 제조하는 단계; 및 Manufacturing a nap-annealed plate by rolling a hot-rolled annealed plate; and
상기 냉연판을 최종 소둔하고 넁각하는 단계를 포함하고, It includes the step of final annealing and sharpening the cold rolled sheet,
상기 열연판을 권취 후 냉각하는 단계에서 600°C 이상에서 30분 이상 유지하여 냉각하고, In the step of cooling after winding the hot-rolled sheet, it is cooled by maintaining it at 600 ° C or higher for more than 30 minutes,
상기 열연판 소둔하고 넁각하는 단계에서 600°C 이상에서 5초 이상 넁각하고, · In the step of annealing and flattening the hot-rolled sheet, annealing is performed at 600 ° C or higher for more than 5 seconds,
상기 넁연판을 최종 소둔하고 냉각하는 단계에서 60CTC 이상에서 5초 이상 넁각하는 무방향성 전기강판의 제조방법 . A method of manufacturing a non-oriented electrical steel sheet in which the nap sheet is annealed at 60 CTC or more for more than 5 seconds in the final annealing and cooling step.
[식 1] [Equation 1]
pi) pi)
+ 1.3 X > 3.7 X ΪΜτί X pn] (단, 식 1에서 [Si ] , [A1 ] 및 [Mn]은 각각 Si , A1 및 Mn의 함량 (중량 ¾>)을 나타낸다. ) + 1.3
【청구항 7】 【Claim 7】
제 6항에 있어서, In clause 6,
상기 슬라브는 Sn 및 Sb를 각각 단독 또는 복합으로 0.01 내지 0.2 증량 % 더 포함하는 무방향성 전기강판의 제조방법 . A method of manufacturing a non-oriented electrical steel sheet in which the slab further contains 0.01 to 0.2% of Sn and Sb alone or in combination.
【청구항 8】 【Claim 8】
제 6항에 있어서, In clause 6,
상기 열연판을 제조하는 단계에서, 상기 슬라브를 1200°C 이하로 가열하는 무방향성 전기강판의 제조방법 . In the step of manufacturing the hot-rolled sheet, a method of manufacturing a non-oriented electrical steel sheet by heating the slab to 1200 ° C or less.
【청구항 9】 【Claim 9】
거 16항에 있어서, In paragraph 16,
상기 열연판을 권취 후 넁각하는 단계에서 권취온도는 600 내지 800°C인 무방향성 전기강판의 제조방법 . A method of manufacturing a non-oriented electrical steel sheet in which the coiling temperature is 600 to 800 ° C in the step of coiling the hot rolled sheet.
【청구항 10】 【Claim 10】
거 16항에 있어서, In paragraph 16,
상기' 열연판을 소둔하고 넁각하는 단계에서, 열연판 소둔 온도는 850 내지 1 , 150 °C인 무방향성 전기강판와 제조방법 . In the step of annealing and annealing the hot - rolled sheet, the annealing temperature of the hot-rolled sheet is 850 to 1, 150 ° C. Non-oriented electrical steel sheet and manufacturing method.
【청구항 11】 【Claim 11】
게 6항에 있어서, In clause 6,
상기 열연 소둔 ¾을 냉간 압연하여 넁연판을 제조하는 단계에서, 0. 1 내지 0 7匪의 두께로 넁간 압연하는 무방향성 전기강판의 제조방법 . In the step of manufacturing a nap sheet by cold rolling the hot-rolled annealed ¾, a method of manufacturing a non-oriented electrical steel sheet in which the nap is rolled to a thickness of 0.1 to 07匪.
【청구항 12】 【Claim 12】
제 6항에 있어서, In clause 6,
상기 열연 소둔판을 넁간 압연하여 넁연판을 제조하는 단계에서, 상기 넁간 압연은 1차 넁간압연, 중간 소둔 및 2차 넁간 압연을 포함하는 무방향성 전기강판의 제조방법 . In the step of producing a nub-rolled sheet by rolling the hot-rolled annealed sheet, the nub-rolling is a method of manufacturing a non-oriented electrical steel sheet including primary nub-rolling, intermediate annealing, and secondary nub-rolling.
【청구항 13] [Claim 13]
제 6항에 있어서, In clause 6,
상기 넁연판을 최종 소둔하고 넁각하는 단계에서 소둔시, 소둔의 균열온도는 850 내지 1 , 10(TC인 무방향성 전기강판의 제조방법 . When annealing in the final annealing and flattening step of the nub soft plate, the cracking temperature of the annealing is 850 to 1, 10 (TC). Method of manufacturing a non-oriented electrical steel sheet.
【청구항 14】 ' 【Claim 14】 '
제 6항에 있어서, In clause 6,
제조된 전기강판의 석출물 중 산화물의 평균크기가 비산화물의 평균크기에 비해 큰 무방향성 전기강판의 제조방법 / Method for manufacturing non-oriented electrical steel sheets in which the average size of oxides among the precipitates of manufactured electrical steel sheets is larger than the average size of non-oxides /
【청구항 15】 【Claim 15】
제 14항에 있어서, In clause 14,
상기 석출물 중 산화물이 비산화물에 비해 개수가 많은 무방향성 전기강판의 제조방법 . A method of manufacturing a non-oriented electrical steel sheet in which oxides among the precipitates are greater in number than non-oxides.
【청구항 16】 제 14항에 있어서, 【Claim 16】 In clause 14,
석출물 중 FeO 또는 FeO가 함유된 석출물의 개수가 40% 이상인 무방향성 전기강판의 제조방법 . Method for manufacturing non-oriented electrical steel sheets in which the number of precipitates containing FeO or FeO is 40% or more.
【청구항 17] [Claim 17]
제 14항에 있어서, According to clause 14,
평균 결정립 입경이 50 내지 180卿인 무방향성 전기강판의 제조방법. A method of manufacturing a non-oriented electrical steel sheet with an average grain size of 50 to 180卿.
PCT/KR2016/015226 2015-12-23 2016-12-23 Non-oriented electrical steel sheet and manufacturing method therefor WO2017111549A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680076220.XA CN108474076A (en) 2015-12-23 2016-12-23 Non-oriented electromagnetic steel sheet and its manufacturing method
JP2018532686A JP7008021B2 (en) 2015-12-23 2016-12-23 Non-oriented electrical steel sheet and its manufacturing method
US16/065,788 US20190017137A1 (en) 2015-12-23 2016-12-23 Non-oriented electrical steel sheet and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0185425 2015-12-23
KR1020150185425A KR102175064B1 (en) 2015-12-23 2015-12-23 Non-orientied electrical steel sheet and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2017111549A1 true WO2017111549A1 (en) 2017-06-29

Family

ID=59089606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015226 WO2017111549A1 (en) 2015-12-23 2016-12-23 Non-oriented electrical steel sheet and manufacturing method therefor

Country Status (5)

Country Link
US (1) US20190017137A1 (en)
JP (1) JP7008021B2 (en)
KR (1) KR102175064B1 (en)
CN (1) CN108474076A (en)
WO (1) WO2017111549A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3733901A4 (en) * 2017-12-26 2020-11-04 Posco Non-oriented electrical steel sheet and method for preparing same
JP2022509675A (en) * 2018-11-30 2022-01-21 ポスコ Non-oriented electrical steel sheet with excellent magnetism and its manufacturing method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574194B (en) * 2019-03-20 2022-09-30 日本制铁株式会社 Non-oriented electromagnetic steel sheet
CN112143961A (en) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 Non-oriented electrical steel plate with excellent magnetic property and continuous annealing method thereof
CN112143964A (en) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 Non-oriented electrical steel plate with extremely low iron loss and continuous annealing process thereof
CN112143962A (en) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 Non-oriented electrical steel plate with high magnetic induction and low iron loss and manufacturing method thereof
CN112143963A (en) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 Non-oriented electrical steel plate with excellent magnetic property and continuous annealing method thereof
CN112430776B (en) * 2019-08-26 2022-06-28 宝山钢铁股份有限公司 Non-oriented electrical steel plate with small magnetic anisotropy and manufacturing method thereof
EP4063534A4 (en) 2019-11-21 2022-12-28 Nippon Steel Corporation Non-oriented electromagnetic steel sheet and method for producing same
KR102325011B1 (en) * 2019-12-20 2021-11-11 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
KR102468078B1 (en) * 2020-12-21 2022-11-16 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
KR20240012071A (en) * 2022-07-20 2024-01-29 현대제철 주식회사 Non-oriented electrical steel sheet and method for manufacturing the same
WO2024070489A1 (en) * 2022-09-30 2024-04-04 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing non-oriented electromagnetic steel sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088298A (en) * 1996-09-19 1998-04-07 Nkk Corp Nonoriented silicon steel sheet
JP2000008147A (en) * 1998-06-24 2000-01-11 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet excellent in magnetic characteristic and its production
JP2002356752A (en) * 2001-05-31 2002-12-13 Nippon Steel Corp Nonoriented silicon steel sheet having excellent core loss and magnetic flux density, and production method therefor
JP2008285721A (en) * 2007-05-17 2008-11-27 Nippon Steel Corp Nonoriented silicon steel sheet having excellent blanking workability and core loss, and method for producing the same
KR20140073569A (en) * 2011-11-11 2014-06-16 신닛테츠스미킨 카부시키카이샤 Anisotropic electromagnetic steel sheet and method for producing same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19930519C1 (en) * 1999-07-05 2000-09-14 Thyssenkrupp Stahl Ag Non-textured electrical steel sheet, useful for cores in rotary electrical machines such as motors and generators, is produced by multi-pass hot rolling mainly in the two-phase austenite-ferrite region
JP2984185B2 (en) * 1994-07-26 1999-11-29 川崎製鉄株式会社 Manufacturing method of low iron loss non-oriented electrical steel sheet with small magnetic anisotropy
CN100436631C (en) * 2006-05-18 2008-11-26 武汉科技大学 Low-carbon high-manganese oriented electrical steel plate, and its manufacturing method
CN102199721B (en) * 2010-03-25 2013-03-13 宝山钢铁股份有限公司 Manufacture method of high-silicon non-oriented cold-rolled sheet
CN102453838A (en) 2010-10-25 2012-05-16 宝山钢铁股份有限公司 High-strength non-oriented electrical steel with high magnetic induction and manufacturing method thereof
CN103534376B (en) * 2011-08-18 2016-08-17 新日铁住金株式会社 Non-oriented electromagnetic steel sheet having, its manufacture method, motor iron core duplexer and manufacture method thereof
EP2612942B1 (en) * 2012-01-05 2014-10-15 ThyssenKrupp Steel Europe AG Non-grain oriented electrical steel or sheet metal, component produced from same and method for producing non-grain oriented electrical steel or sheet metal
CN102650016B (en) * 2012-05-24 2014-03-19 宝山钢铁股份有限公司 Manufacturing method for high-magnetic induction low-cost 250 MPa cold-rolled magnetic pole steel
KR20140058935A (en) * 2012-11-07 2014-05-15 주식회사 포스코 Non-oriented electrical steel sheets and method for manufacturing the same
PL2985360T3 (en) * 2013-04-09 2018-12-31 Nippon Steel & Sumitomo Metal Corporation Non-oriented magnetic steel sheet and method for producing same
CN104674136B (en) * 2013-11-28 2017-11-14 Posco公司 The excellent non-oriented electromagnetic steel sheet of permeability and its manufacture method
KR101634092B1 (en) * 2015-10-27 2016-06-28 주식회사 포스코 Non-oriented electrical steel sheet and manufacturing method for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088298A (en) * 1996-09-19 1998-04-07 Nkk Corp Nonoriented silicon steel sheet
JP2000008147A (en) * 1998-06-24 2000-01-11 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet excellent in magnetic characteristic and its production
JP2002356752A (en) * 2001-05-31 2002-12-13 Nippon Steel Corp Nonoriented silicon steel sheet having excellent core loss and magnetic flux density, and production method therefor
JP2008285721A (en) * 2007-05-17 2008-11-27 Nippon Steel Corp Nonoriented silicon steel sheet having excellent blanking workability and core loss, and method for producing the same
KR20140073569A (en) * 2011-11-11 2014-06-16 신닛테츠스미킨 카부시키카이샤 Anisotropic electromagnetic steel sheet and method for producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3733901A4 (en) * 2017-12-26 2020-11-04 Posco Non-oriented electrical steel sheet and method for preparing same
US11773463B2 (en) 2017-12-26 2023-10-03 Posco Co., Ltd Non-oriented electrical steel sheet and method for preparing same
JP2022509675A (en) * 2018-11-30 2022-01-21 ポスコ Non-oriented electrical steel sheet with excellent magnetism and its manufacturing method
JP7253054B2 (en) 2018-11-30 2023-04-05 ポスコ カンパニー リミテッド Non-oriented electrical steel sheet with excellent magnetism and its manufacturing method

Also Published As

Publication number Publication date
CN108474076A (en) 2018-08-31
JP7008021B2 (en) 2022-01-25
US20190017137A1 (en) 2019-01-17
KR20170075592A (en) 2017-07-03
KR102175064B1 (en) 2020-11-05
JP2019508574A (en) 2019-03-28

Similar Documents

Publication Publication Date Title
WO2017111549A1 (en) Non-oriented electrical steel sheet and manufacturing method therefor
JP6890181B2 (en) Non-oriented electrical steel sheet and its manufacturing method
KR101223113B1 (en) Method for manufacturing non-oriented electrical steel sheets having excellent magnetic properties and high permeability and non-oriented electrical steel sheets thereof
KR101507942B1 (en) Non-oriented electrical steel steet and method for the same
KR20160073222A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101493059B1 (en) Non-oriented electrical steel steet and method for the same
CN115003843A (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP3456352B2 (en) Grain-oriented electrical steel sheet with excellent iron loss characteristics and method of manufacturing the same
KR100779579B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic flux density
KR102353673B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101353463B1 (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR101701195B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR102134311B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR102099866B1 (en) Grain oriented electrical steel sheet method for manufacturing the same
KR101353459B1 (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR101110257B1 (en) Non-oriented electrical steel sheet with high magnetic flux density and manufacturing method thereof
KR20160021164A (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR101630425B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20150062245A (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR20140058934A (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR20150074930A (en) Non-oriented electrical steel steet and manufacturing method for the same
KR20150015308A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101665951B1 (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR101410475B1 (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR20150062247A (en) Non-oriented electrical steel sheets and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16879416

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018532686

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16879416

Country of ref document: EP

Kind code of ref document: A1