JP2013515166A - Non-oriented electrical steel sheet having relatively high magnetic induction and high strength, and method for producing the same - Google Patents

Non-oriented electrical steel sheet having relatively high magnetic induction and high strength, and method for producing the same Download PDF

Info

Publication number
JP2013515166A
JP2013515166A JP2012545077A JP2012545077A JP2013515166A JP 2013515166 A JP2013515166 A JP 2013515166A JP 2012545077 A JP2012545077 A JP 2012545077A JP 2012545077 A JP2012545077 A JP 2012545077A JP 2013515166 A JP2013515166 A JP 2013515166A
Authority
JP
Japan
Prior art keywords
steel sheet
electrical steel
oriented electrical
magnetic induction
high strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012545077A
Other languages
Japanese (ja)
Inventor
瞻 源 胡
波 王
世 殊 ▲謝▼
▲愛▼ ▲華▼ ▲馬▼
▲亮▼ ▲鄒▼
子 涛 王
雨 ▲華▼ 朱
Original Assignee
宝山鋼鉄股▲分▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山鋼鉄股▲分▼有限公司 filed Critical 宝山鋼鉄股▲分▼有限公司
Publication of JP2013515166A publication Critical patent/JP2013515166A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

相対的な高い磁気誘導および高強度を有する無方向性電磁鋼板、ならびにその製造方法は、1)製錬および鋳込みを含み、電磁鋼板の成分の重量パーセントは:C≦0.0040%、Siは2.50%〜4.00%であり、Alは0.20%〜0.80%であり、Crは1.0〜8.0%であり、Niは0.5〜5.0%であり、Mn≦0.50%、P≦0.30%、S≦0.0020%、N≦0.0030%、Ti≦0.0030%、Nb≦0.010%、V≦0.010%、C+S+N+Ti≦0.010%、ならびに残部が実質的にFeおよび不可避的不純物であり;製錬、RH真空プロセスおよび鋳込みを行ない、さらに、2)熱間圧延と;3)焼ならしとを含み、温度は850〜950℃であり、時間は0.5〜3分であり、次いで、5〜15℃/sで650〜750℃に徐冷され、さらに20〜70℃/sで100℃以下に急冷され;さらに、4)酸洗および冷間圧延を含み、総スクリューダウンレートは70%以上であり;さらに、5)アニールを含み、温度は800〜1000℃であり、5〜60s保持し、次いで、3〜10℃/sで650〜750℃に徐冷され、さらに、20〜70℃/sで100℃以下に急冷される。この発明は、生産の際の困難を増すことなく、高強度および高い磁気誘導を有する無方向性電磁鋼板を製造できる。  A non-oriented electrical steel sheet having a relatively high magnetic induction and high strength, and its manufacturing method includes 1) smelting and casting, and the weight percentage of the components of the electrical steel sheet is: C ≦ 0.0040%, Si is 2.50% to 4.00%, Al is 0.20% to 0.80%, Cr is 1.0 to 8.0%, Ni is 0.5 to 5.0% Yes, Mn ≦ 0.50%, P ≦ 0.30%, S ≦ 0.0020%, N ≦ 0.0030%, Ti ≦ 0.0030%, Nb ≦ 0.010%, V ≦ 0.010% , C + S + N + Ti ≦ 0.010%, and the balance being substantially Fe and inevitable impurities; smelting, RH vacuum process and casting, and further including 2) hot rolling and 3) normalization The temperature is 850-950 ° C., the time is 0.5-3 minutes, , Gradually cooled to 650 to 750 ° C. at 5 to 15 ° C./s, and further rapidly cooled to 100 ° C. or less at 20 to 70 ° C./s; and 4) including pickling and cold rolling, and the total screw down rate is 5) Including annealing, the temperature is 800-1000 ° C., held for 5-60 s, then slowly cooled to 650-750 ° C. at 3-10 ° C./s, and 20 It is rapidly cooled to 100 ° C or lower at -70 ° C / s. The present invention can produce a non-oriented electrical steel sheet having high strength and high magnetic induction without increasing difficulty during production.

Description

この発明は、電気自動車モータおよび駆動電気機械のような、高い開始トルクおよび耐衝撃性能を必要とする装置に適用され、Ni、Crなどのような固溶強化要素の添加、およびC、N、S、Tiなどのような磁気特性を損なう元素の制御によって、電磁鋼板の磁気特性が電磁鋼板の降伏強さを改善するように確実にされるのを、製品の磁気誘導を改善するように熱間圧延鋼板に適切な焼ならしアニール工程を同時に実行することによって行う、電磁鋼板の製造の分野、特に、相対的な高い磁気誘導および高強度を有する無方向性電磁鋼板ならびにその製造方法に関する。   The present invention applies to devices that require high starting torque and impact resistance performance, such as electric vehicle motors and drive electric machines, the addition of solid solution strengthening elements such as Ni, Cr, etc., and C, N, By controlling the elements that impair the magnetic properties such as S, Ti, etc., the magnetic properties of the electrical steel sheet are ensured to improve the yield strength of the electrical steel sheet, and the heat is improved to improve the magnetic induction of the product. The present invention relates to the field of electrical steel sheet manufacturing performed by simultaneously performing an appropriate annealing annealing step on a hot-rolled steel sheet, and more particularly to a non-oriented electrical steel sheet having a relatively high magnetic induction and high strength and a method for manufacturing the same.

石油および石炭のような再生不能資源などが日ごとに枯渇するなか、環境における温室効果の有害さは日ごとに厳しくなり、電気自動車およびハイブリッドパワー自動車は、汚染が少なく環境保護性の高い車両として、ますます多くの注目を得ており、それは疑いもなく広く適用される。電気自動車およびハイブリッドパワー自動車の電動機のステータコアおよびロータコアは、無方向性電磁鋼板から形成され、自動車が始動し加速するとき、電動機は高いトルクを必要とし、電気鋼板が高い磁気誘導を有することを必要とする。さらに、モータのロータコアは、高速における遠心力による極端な負荷に耐え、自動車が始動するとき、強い衝撃に瞬間的にさらされ、したがって、コア材料は、高強度および靱性を有することが必要である。   As non-renewable resources such as oil and coal are depleted every day, the harmfulness of the greenhouse effect in the environment becomes more severe every day, and electric vehicles and hybrid power vehicles are less environmentally friendly vehicles with less pollution. Has gained more and more attention, and it is undoubtedly widely applied. The stator core and rotor core of electric motors and electric motors of hybrid power vehicles are formed from non-oriented electrical steel sheets, and when the car starts and accelerates, the motors need high torque and the electric steel plates need to have high magnetic induction And Furthermore, the rotor core of the motor withstands extreme loads due to centrifugal forces at high speeds and is momentarily exposed to strong impacts when the car starts, thus the core material needs to have high strength and toughness. .

現在の無方向性珪素鋼製品では、Siの含有量が改善するにつれて、製品の強度が改善し、トップレベルの高鋼グレード製品の一部の降伏強度は、450MPaに達し、製品の鉄損も相対的に低く、それは通常の産業的な電気的機械類および電気的発電装置における適用を満たす。しかし、きしみの傾向があり、この種の製品の靱性および可塑性は悪く、そして、磁気誘導も相対的に低く、それは電気自動車モータのような駆動電気機械の使用において適用されず、したがって、高強度および高い磁気誘導を有する無方向性電磁鋼板を開発する必要がある。   In the current non-oriented silicon steel products, as the Si content improves, the strength of the products improves, and the yield strength of some of the top level high steel grade products reaches 450 MPa, and the iron loss of the products also increases. Relatively low, it meets application in normal industrial electrical machinery and electrical generators. However, there is a tendency to squeeze, the toughness and plasticity of this type of product is poor, and the magnetic induction is also relatively low, which is not applicable in the use of driving electric machines such as electric vehicle motors, and thus high strength And there is a need to develop non-oriented electrical steel sheets with high magnetic induction.

「高強度電磁鋼板、その加工部品、およびその製造方法」が、中国特許出願CN 1863934において開示され、そこでは、電磁鋼板の降伏強度および引張り強度を改善するよう、Mn、Cuなどのような強化元素を、その組成において追加するが、その問題点は、製品がこの方法に従って製造されるとき、冷間圧延が困難であり、電磁鋼板の磁気特性も影響され、したがって、製造された電磁鋼板の磁気誘導は相対的に低い。製品の強度を改善するためには、冷間圧延板がアニールされた後、高温から中間温度まで速い冷却速度で冷却することが必要であるが、この処理では、より大きな応力が、鋼帯の内側において生じ、それは鋼帯の形状に悪影響があり、製品の磁気特性および耐疲労性に影響する。さらに、この特許出願では、中間温度帯で長い時間を保持して、冷間圧延のためにアニールおよび冷却において硬化処理を実行することが必要であるが、それは、通常の産業的なアニール機械一式において達成することに不利である。この出願の別の局面は電磁鋼板を製造することであり、その材料は、穴を空けられる前は相対的に柔軟であり、製造された構成要素は強度改善および摩耗抵抗の目的を達成するために熱硬化され、それは、顧客使用において加えられるいくつかの熱処理プロセスをなす。   “High-strength electrical steel sheet, its processed parts, and its manufacturing method” is disclosed in Chinese patent application CN 1863934, where strengthening such as Mn, Cu, etc. to improve the yield strength and tensile strength of electrical steel sheet The element is added in its composition, but the problem is that when the product is manufactured according to this method, cold rolling is difficult and the magnetic properties of the electrical steel sheet are also affected, so Magnetic induction is relatively low. In order to improve the strength of the product, it is necessary to cool the cold-rolled sheet at a high cooling rate from the high temperature to the intermediate temperature after being annealed. It occurs on the inside, which adversely affects the shape of the steel strip and affects the magnetic properties and fatigue resistance of the product. Furthermore, in this patent application, it is necessary to hold a long time in an intermediate temperature zone and to perform a curing process in annealing and cooling for cold rolling, which is a set of conventional industrial annealing machines Is disadvantageous to achieve. Another aspect of this application is to manufacture electrical steel sheets, the material of which is relatively flexible before being pierced, so that the manufactured components achieve the objectives of strength improvement and wear resistance. It undergoes several heat treatment processes that are applied in customer use.

出願WO 2009/128428 A1では、製品が最後にアニールされた後、900℃から500℃までの温度区間において50℃/sを越える冷却速度で冷却することが必要である。しかし、この方法では、強い応力が鋼帯において生じ、鋼帯の形状および磁気特性に強い影響があり、それは実際の産業的生産において適用されることに不利である。   In the application WO 2009/128428 A1, it is necessary to cool at a cooling rate in excess of 50 ° C./s in the temperature range from 900 ° C. to 500 ° C. after the product is finally annealed. However, in this method, a strong stress is generated in the steel strip, which has a strong influence on the shape and magnetic properties of the steel strip, which is disadvantageous for being applied in actual industrial production.

この発明の目的は、既存の装置から、生産上の困難を増さずに、高強度、摩耗抵抗、および高い磁気特性も有する無方向性電磁鋼板を安定して製造するように製造することができる、相対的に高い磁気誘導および高強度を有する無方向性電磁鋼板、ならびにその製造方法を提供することである。   An object of the present invention is to manufacture a non-oriented electrical steel sheet having high strength, wear resistance, and high magnetic properties from an existing apparatus in a stable manner without increasing production difficulties. It is possible to provide a non-oriented electrical steel sheet having relatively high magnetic induction and high strength, and a method for producing the same.

上記目的を達成するために、この発明の技術的解決策は、相対的な高い磁気誘導および高強度を有する無方向性電磁鋼板であって、その化学的組成の重量パーセントは:
C:≦0.0040%
Si:2.50%〜4.00%
Al:0.20%〜0.80%
Cr:1.0〜8.0%
Ni:0.5〜5.0%
Mn:≦0.50%
P:≦0.30%
S:≦0.0020%
N:≦0.0030%
Ti:≦0.0030%
Nb:≦0.010%
V:≦0.010%
C+S+N+Ti:≦0.010%
ならびに残部が実質的にFeおよび不可避的不純物である。
To achieve the above objective, the technical solution of the present invention is a non-oriented electrical steel sheet having a relatively high magnetic induction and high strength, the weight percentage of its chemical composition being:
C: ≦ 0.0040%
Si: 2.50% to 4.00%
Al: 0.20% to 0.80%
Cr: 1.0-8.0%
Ni: 0.5-5.0%
Mn: ≦ 0.50%
P: ≦ 0.30%
S: ≦ 0.0020%
N: ≦ 0.0030%
Ti: ≦ 0.0030%
Nb: ≦ 0.010%
V: ≦ 0.010%
C + S + N + Ti: ≦ 0.010%
And the balance is substantially Fe and inevitable impurities.

さらに、この発明の無方向性電磁鋼板は、重量%で、Cu≦3%を含む。
さらに、この発明の無方向性電磁鋼板は、重量%で、0.5%以下の総含有量を有するSbおよび/またはSnを含む。
Furthermore, the non-oriented electrical steel sheet of the present invention contains Cu ≦ 3% by weight.
Furthermore, the non-oriented electrical steel sheet of the present invention contains Sb and / or Sn having a total content of 0.5% or less by weight%.

好ましくは、この発明の無方向性電磁鋼板においては、重量%で、C≦0.002%またはC≦0.0015%であり;Siの含有量は2.8〜3.3%であり;Alの含有量は0.4%〜0.6%であり;Crの含有量は2.5%〜6%であり;Niの含有量は1.0%〜3.5%であり;Pの含有量は0.1%以下であり、Sの含有量は0.0015%以下であり;Nの含有量は0.002%以下であり;Tiの含有量は、0.0015%以下である。   Preferably, in the non-oriented electrical steel sheet according to the present invention, by weight%, C ≦ 0.002% or C ≦ 0.0015%; the Si content is 2.8 to 3.3%; The Al content is 0.4% to 0.6%; the Cr content is 2.5% to 6%; the Ni content is 1.0% to 3.5%; The content of S is 0.1% or less, the content of S is 0.0015% or less; the content of N is 0.002% or less; the content of Ti is 0.0015% or less. is there.

この発明に従って相対的な高い磁気誘導および高強度を有する無方向性電磁鋼板を製造する方法は、
1)製錬および鋳込みステップを含み、
無方向性電磁鋼板の化学的成分の重量パーセントは、C≦0.0040%、Siは2.50%〜4.00%であり、Alは0.20%〜0.80%であり、Crは1.0〜8.0%であり、Niは0.5〜5.0%であり、Mn≦0.50%、P≦0.30%、S≦0.0020%、N≦0.0030%、Ti≦0.0030%、Nb≦0.010%、V≦0.010%、C+S+N+Ti≦0.010%、ならびに残部が実質的にFeおよび不可避的不純物であり、製錬、RH真空プロセスを行って、上記の組成に従ってスラブに注がれ;前記方法はさらに、
2)熱間圧延ステップを含み、
スラブの加熱温度は1050℃〜1200℃であり、保持時間は30分以上であり、圧延平滑プロセスにおける初期圧延温度は940℃〜1000℃に制御され、最終圧延温度は850℃以上であり、最終スタンドスクリューダウンレートは10〜15%に制御され、巻取温度は500〜700℃に制御され、圧延鋼板の厚みは2.0〜2.6mmであり;前記方法はさらに、
3)熱間圧延鋼板焼ならしステップを含み、
焼ならし温度は850〜950℃であり、保持時間は0.5〜3分であり、次いで、5〜15℃/sの冷却速度で650〜750℃に徐冷され、さらに20〜70℃/sの冷却速度で100℃以下に急冷され;前記方法はさらに、
4)酸洗および冷間圧延ステップを含み、
単一の冷間圧延プロセスで冷間圧延され、総スクリューダウンレートは70%以上であり;前記方法はさらに、
5)連続炉でアニールするステップを含み、
連続炉でアニール処理を実行し、アニール温度は800〜1000℃であり、それを5〜60s保持し、次いで、3〜10℃/sの冷却速度で650〜750℃に徐冷され、さらに、20〜70℃/sの冷却速度で100℃以下に急冷される。
A method for producing a non-oriented electrical steel sheet having a relatively high magnetic induction and high strength according to the present invention comprises:
1) including smelting and casting steps,
The weight percentage of chemical components of the non-oriented electrical steel sheet is C ≦ 0.0040%, Si is 2.50% to 4.00%, Al is 0.20% to 0.80%, Cr Is 1.0 to 8.0%, Ni is 0.5 to 5.0%, Mn ≦ 0.50%, P ≦ 0.30%, S ≦ 0.0020%, N ≦ 0.0. 0030%, Ti ≦ 0.0030%, Nb ≦ 0.010%, V ≦ 0.010%, C + S + N + Ti ≦ 0.010%, and the balance is substantially Fe and inevitable impurities, smelting, RH vacuum The process is performed and poured into the slab according to the above composition;
2) including a hot rolling step,
The heating temperature of the slab is 1050 ° C. to 1200 ° C., the holding time is 30 minutes or more, the initial rolling temperature in the rolling smoothing process is controlled to 940 ° C. to 1000 ° C., the final rolling temperature is 850 ° C. or more, and the final The stand screw down rate is controlled to 10 to 15%, the coiling temperature is controlled to 500 to 700 ° C., and the thickness of the rolled steel sheet is 2.0 to 2.6 mm;
3) including a hot rolled steel plate normalizing step,
The normalizing temperature is 850 to 950 ° C., the holding time is 0.5 to 3 minutes, then gradually cooled to 650 to 750 ° C. at a cooling rate of 5 to 15 ° C./s, and further 20 to 70 ° C. Quenching to 100 ° C. or less at a cooling rate of / s;
4) including pickling and cold rolling steps;
Cold rolled in a single cold rolling process, the total screw down rate is 70% or more;
5) including annealing in a continuous furnace,
Annealing is performed in a continuous furnace, the annealing temperature is 800-1000 ° C., holding it for 5-60 s, then slowly cooling to 650-750 ° C. at a cooling rate of 3-10 ° C./s, It is rapidly cooled to 100 ° C. or lower at a cooling rate of 20 to 70 ° C./s.

さらに、この発明の無方向性電磁鋼板は、重量%で、Cu≦3%を含む。
さらに、この発明の無方向性電磁鋼板は、重量%で、0.5%以下の総含有量を有するSbおよび/またはSnを含む。
Furthermore, the non-oriented electrical steel sheet of the present invention contains Cu ≦ 3% by weight.
Furthermore, the non-oriented electrical steel sheet of the present invention contains Sb and / or Sn having a total content of 0.5% or less by weight%.

この発明の組成設計では、Cは鋼板の強度を改善できるが、微細な炭化が磁気特性を大きく低下させ、Cの含有量がより大きいと、磁気時効が電磁鋼板において生じ、したがって、Cのパーセンテージはこの発明においては0.004%以下であり、Cの含有量が0.002%以下である場合、磁気時効に対する抑止的な効果が顕著であり、炭化などのような非金属の析出を生じさせずに強度を改善するためには、≦0.0015%がより好ましい。   In the composition design of the present invention, C can improve the strength of the steel sheet, but fine carbonization greatly reduces the magnetic properties, and if the content of C is larger, magnetic aging occurs in the electrical steel sheet, and therefore the percentage of C In this invention, it is 0.004% or less, and when the C content is 0.002% or less, the deterrent effect on magnetic aging is significant, and non-metallic precipitation such as carbonization occurs. In order to improve the strength without causing it, ≦ 0.0015% is more preferable.

Siは鋼の電気抵抗を改善し、鉄損を低減することができ、Siの含有量を改善する場合、強度が改善され得る一方、鉄損が低減され得、したがって、Siの含有量は、2.5%以上を要して、できるだけ高く改善され得るが、Siの含有量がある程度まで改善されると、製品は脆くなる一方で、磁気誘導は減少し、したがって、Siの含有量は4.0%以下であり、さらに好ましくは2.8〜3.3%であることが必要とされる。   Si can improve the electrical resistance of the steel and reduce iron loss, and when improving the Si content, the strength can be improved while the iron loss can be reduced, so the Si content is It can take as much as 2.5% and can be improved as high as possible, but if the Si content is improved to some extent, the product becomes brittle while the magnetic induction is reduced, so the Si content is 4 0.0% or less, and more preferably 2.8 to 3.3%.

Alの効果はSiのそれに類似し、それは鉄損を低減し得、Alの含有量が改善される場合、AlNは粗くなるかもしれず、それは、鋼の磁気特性を改善するよう、構造結晶粒の成長を容易にするが、Alの増加で、液体鋼の粘性が上昇して、製鋼をより困難にし、一方、磁気誘導も減少し、したがって、Alの含有量は0.2%〜0.8%、好ましくは0.4%〜0.6%に選ばれる。   The effect of Al is similar to that of Si, which can reduce iron loss, and if the Al content is improved, AlN may become coarser, which improves the magnetic properties of the steel to improve the magnetic properties of the steel. Easy to grow, but with increasing Al, the viscosity of the liquid steel increases, making steelmaking more difficult, while also reducing magnetic induction, so the Al content is between 0.2% and 0.8%. %, Preferably 0.4% to 0.6%.

CrおよびNiは、この発明においては必須元素であり、強化元素として追加され、CrおよびNiに基いた金属相が鋼板において形成され、磁気特性における劣化なしで高強度を狙う。Crの含有量が低い場合、高強度の効果は減少し、鋼板の強度を改善するためには、後のプロセスにおける技術的な要件が高く、製造における調整の自由度は低いが、Crの含有量が高ければ、磁気特性は低下し、クラックが熱間圧延工程において生じやすく、したがって、Crの含有量は1.0%〜8.0%、さらに好ましくは2.5%〜6%であることが必要とされる。   Cr and Ni are essential elements in the present invention, added as strengthening elements, and a metal phase based on Cr and Ni is formed in the steel sheet, aiming at high strength without deterioration in magnetic properties. When the Cr content is low, the effect of high strength is reduced, and in order to improve the strength of the steel sheet, the technical requirements in the subsequent processes are high and the degree of freedom of adjustment in manufacturing is low, but the Cr content If the amount is high, the magnetic properties are reduced, and cracks are likely to occur in the hot rolling process, so the Cr content is 1.0% to 8.0%, more preferably 2.5% to 6%. Is needed.

Niは、鋼板の強度を改善し、磁気誘導を改善し得、鉄損にほとんど影響せず、有益な元素として添加されるが、Niが添加されすぎる場合、クラックが熱間圧延工程において生じやすく、表面の被覆性能は悪化し、製品コストが増大し、したがって、この発明においては、Niの含有量は、0.5%〜5.0%、さらに好ましくは1.0%〜3.5%であるということが必要である。   Ni can improve the strength of the steel sheet and improve magnetic induction, has little effect on iron loss and is added as a useful element, but if Ni is added too much, cracks are likely to occur in the hot rolling process. In this invention, the content of Ni is 0.5% to 5.0%, more preferably 1.0% to 3.5%. It is necessary to be.

Mnは鋼の強度を改善し得るが、この発明では、Mnはその目的のためには添加されず、固有抵抗を改善または硫化物を粗くして鉄損を低減するために添加され、Mnをより添加しすぎることは磁気誘導の低減を生じ、したがって、Mnの含有量は0.5%以下であることが必要とされる。   Although Mn can improve the strength of the steel, in this invention, Mn is not added for that purpose, but is added to improve resistivity or roughen the sulfides to reduce iron loss. Adding too much results in a reduction in magnetic induction, so the Mn content is required to be 0.5% or less.

Pは、張力応力を顕著に改善するための元素であるが、結晶粒界において分離し蓄積し易く、鋼板をひどく脆くし、したがって、Pの含有量は0.3%以下、好ましくは0.1%以下であることが必要とされる。   P is an element for remarkably improving the tensile stress. However, it is easy to separate and accumulate at the crystal grain boundary, making the steel sheet extremely brittle. Therefore, the P content is 0.3% or less, preferably 0.8. It is required to be 1% or less.

Sは磁気特性を損なう元素であり、形成された微細な硫化物が、結晶粒の成長を抑制し、鉄損を増加させ、したがって、Sの含有量は0.002%以下、好ましくは0.0015%以下であることが必要とされる。   S is an element that impairs magnetic properties, and the formed fine sulfide suppresses the growth of crystal grains and increases the iron loss. Therefore, the S content is 0.002% or less, preferably 0.8. It is required to be 0015% or less.

Nは、Sに類似し、磁気特性を損ない、したがって、Nの含有量は0.003%以下、好ましくは0.002%以下であることが必要とされる。   N is similar to S and impairs magnetic properties, and therefore the N content is required to be 0.003% or less, preferably 0.002% or less.

Tiは鋼板の強度を改善し得るが、磁気特性に強い影響があり、TiCおよびTiNのようなその微細な析出は結晶粒界において定着することになり、それは結晶粒の成長を抑制し、鉄損を増加させ、磁気誘導を低減し、したがって、Tiの含有量は0.003%以下、好ましくは0.0015%以下であることが必要とされる。   Ti can improve the strength of the steel sheet, but it has a strong influence on the magnetic properties, and its fine precipitation like TiC and TiN will settle at the grain boundaries, which suppresses the growth of the grains and iron The loss is increased and magnetic induction is reduced, so the Ti content is required to be 0.003% or less, preferably 0.0015% or less.

この発明では、C+N+S+Tiの総含有量は、鋼板の磁気特性を保証するように0.01%内に制御される。   In this invention, the total content of C + N + S + Ti is controlled within 0.01% so as to guarantee the magnetic properties of the steel sheet.

NbおよびVは、磁気特性を損なう元素として、0.01%以下に制御されるように要求される。   Nb and V are required to be controlled to 0.01% or less as elements that impair the magnetic properties.

Cuは、強度を改善するための元素として選択的に添加され、SnおよびSbは、磁気特性を改善するための元素として選択的に添加される。   Cu is selectively added as an element for improving the strength, and Sn and Sb are selectively added as elements for improving the magnetic properties.

上に記載された組成を含む鋼は、通常の電磁鋼板に類似するように、転炉において脱炭するための製錬、酸素を除去するための取鍋精製および合金化による連続鋳造工程を用いることによって製造されるスラブから、熱間圧延、焼ならし、酸洗、冷間圧延および最終アニールなどのようなプロセスによって製造される。   Steel containing the composition described above uses a continuous casting process with smelting to decarburize in a converter, ladle refining to remove oxygen and alloying to resemble ordinary electrical steel sheets Slabs are manufactured by processes such as hot rolling, normalizing, pickling, cold rolling and final annealing.

製造方法では、鋼板において特徴をなす金属相を生じさせ、ならびに製造性および磁気特性を保証するために、焼ならしプロセスにおける冷却過程および最終アニールプロセスは、以下のように制御される。   In the manufacturing method, the cooling phase and the final annealing process in the normalization process are controlled as follows in order to generate a characteristic metal phase in the steel sheet and to ensure manufacturability and magnetic properties.

熱間圧延鋼板が焼ならしされた後、冷却がセグメントにおいて行われ、徐冷は高温段階において用いられ、急冷は低温段階において行われ、鋼帯が焼ならし均熱部から来た後、鋼帯は5〜15℃/sの冷却速度で650〜750℃に徐冷され、次いで、20〜70℃/sの冷却速度で100℃以下に急冷される。高温段階において冷却速度を低減することは結晶粒構造を十分に回復させ、それは鋼板において応力を低減し、焼ならし鋼板の平坦度および形状を改善し、冷間圧延の効率を向上させる。さらに、焼きならしされた後に高温段階において冷却速度を低減することは、固溶炭化および窒化物堆積を十分に形成して、炭化および窒化物の粗大な不純物を形成し、結晶粒の成長を抑制する微細な不純物を形成しないようにし、および仕上げ鋼板内において有利な構造を形成し、その結果鋼板の磁気特性を改善する。   After the hot rolled steel sheet has been normalized, cooling is performed in the segment, slow cooling is used in the high temperature stage, rapid cooling is performed in the low temperature stage, and after the steel strip comes from the normalized soaking section, The steel strip is gradually cooled to 650 to 750 ° C. at a cooling rate of 5 to 15 ° C./s, and then rapidly cooled to 100 ° C. or less at a cooling rate of 20 to 70 ° C./s. Reducing the cooling rate in the high temperature stage sufficiently restores the grain structure, which reduces stress in the steel sheet, improves the flatness and shape of the normalized steel sheet, and improves the efficiency of cold rolling. In addition, reducing the cooling rate in the high temperature stage after normalizing sufficiently forms solid solution carbonized and nitride deposits, forms coarse impurities of carbonized and nitride, and reduces grain growth. Prevents the formation of fine impurities to suppress and forms an advantageous structure within the finished steel sheet, resulting in improved magnetic properties of the steel sheet.

鋼帯が最後にアニールされた後、冷却がセグメントにおいて行われ、鋼帯は、まず、3〜10℃/sの冷却速度で650〜750℃に徐冷され、次いで、20〜70℃/sの冷却速度で100℃以下に急冷される。高温徐冷期間では、組成、サイズおよび数密度において特徴付けられるCrおよびNiの金属相が効率的に形成され、磁気特性を大きく悪化させる、強化能力が低い固溶体または硫化物は形成されない。一方、高温段階における徐冷は、さらに、仕上げ鋼帯における内部応力を低減し、完成品の磁気特性を改善し、製品の耐疲労性も改善する。   After the steel strip has been annealed last, cooling takes place in the segment, the steel strip is first slowly cooled to 650-750 ° C. at a cooling rate of 3-10 ° C./s and then 20-70 ° C./s. It is rapidly cooled to 100 ° C. or lower at a cooling rate of In the high temperature annealing period, Cr and Ni metal phases characterized in composition, size and number density are efficiently formed, and solid solutions or sulfides with low strengthening ability that greatly deteriorate the magnetic properties are not formed. On the other hand, gradual cooling in the high temperature stage further reduces internal stress in the finished steel strip, improves the magnetic properties of the finished product, and improves the fatigue resistance of the product.

この発明の高い磁気誘導および高強度を有する無方向性電磁鋼板では、NiおよびCrのような強化元素が成分に添加され、C、N、S、Tiなど磁気特性を損なう元素は、相対的に低レベルに制御され、電磁鋼板の強度が、磁気特性における顕著な劣化なしで改善される。冷却プロセスは焼きならしプロセスおよびアニールプロセスにおいて制御することができ、それは鋼帯の形状を保証し、製品の磁気特性を安定させ、冷間圧延が困難であるという問題も解決する。   In the non-oriented electrical steel sheet having high magnetic induction and high strength according to the present invention, strengthening elements such as Ni and Cr are added to the components, and elements that impair magnetic properties such as C, N, S, and Ti are relatively Controlled to a low level, the strength of the electrical steel sheet is improved without significant degradation in magnetic properties. The cooling process can be controlled in the normalizing and annealing processes, which ensures the shape of the steel strip, stabilizes the magnetic properties of the product, and solves the problems of cold rolling difficult.

以下に、この発明を実施例に関して記載する。
実施例における成分は表1において理解することができる。
In the following, the invention will be described with reference to examples.
The ingredients in the examples can be seen in Table 1.

製造されたスラブを1120℃に加熱し、この温度を60分保持した後、この製造されたスラブを、2.3mmの厚みを有する鋼帯に熱間圧延し、最終圧延温度は860℃、巻取温度は570℃である。熱間圧延鋼板が、60sの熱保存時間の間、900℃の焼きならし温度で焼きならしされた後、この熱間圧延鋼板を、厚みが0.5mmである冷間圧延鋼板に圧延する。冷間圧延鋼板が15sの熱保存時間の間、900℃のアニール温度でアニールされた後、異なる冷却速度で900℃から500℃までこの冷間圧延鋼板を冷却し、次いで70℃/sで室温に冷却し、製造されたサンプルの磁気特性はEPSTINEフレームによって測定され、サンプルの機械的性能および高サイクル疲労性能は、JIS5張力(平均荷重は172MPa、振幅は156MPaである)によって測定され、成分およびプロセスに対応する性能測定結果は、表2において理解することができる。   The manufactured slab was heated to 1120 ° C., and this temperature was maintained for 60 minutes. Then, the manufactured slab was hot-rolled to a steel strip having a thickness of 2.3 mm, and the final rolling temperature was 860 ° C. The taking temperature is 570 ° C. After the hot-rolled steel sheet is normalized at a normalizing temperature of 900 ° C. for a heat storage time of 60 s, the hot-rolled steel sheet is rolled into a cold-rolled steel sheet having a thickness of 0.5 mm. . After the cold rolled steel sheet is annealed at an annealing temperature of 900 ° C. for a heat storage time of 15 s, the cold rolled steel sheet is cooled from 900 ° C. to 500 ° C. at different cooling rates and then at room temperature at 70 ° C./s. The magnetic properties of the manufactured samples were measured by an EPSTIN frame, and the mechanical performance and high cycle fatigue performance of the samples were measured by JIS5 tension (average load is 172 MPa, amplitude is 156 MPa). The performance measurement results corresponding to the process can be understood in Table 2.

スラブは表1の実施例11に従う成分で製造され、スラブを1120℃に加熱し、この温度を60分保持した後、このスラブを、2.3mmの厚みを有する鋼帯に熱間圧延し、最終圧延温度は860℃、巻取温度は570℃である。熱間圧延鋼板が、60sの熱保存時間の間、900℃の焼きならし温度で焼きならしされた後、この熱間圧延鋼板を、厚みが0.5mmである冷間圧延鋼板に圧延する。冷間圧延鋼板が、15sの熱保存時間の間、900℃のアニール温度でアニールされた後、この冷間圧延鋼板は異なる冷却速度(1#〜5#)で900℃から500〜600℃まで冷却され、冷却プロセスは表3において理解することができる。   The slab was manufactured with the ingredients according to Example 11 in Table 1, and after heating the slab to 1120 ° C. and holding this temperature for 60 minutes, the slab was hot rolled into a steel strip having a thickness of 2.3 mm, The final rolling temperature is 860 ° C. and the winding temperature is 570 ° C. After the hot-rolled steel sheet is normalized at a normalizing temperature of 900 ° C. for a heat storage time of 60 s, the hot-rolled steel sheet is rolled into a cold-rolled steel sheet having a thickness of 0.5 mm. . After the cold rolled steel sheet is annealed at an annealing temperature of 900 ° C. for a heat storage time of 15 s, the cold rolled steel sheet is heated from 900 ° C. to 500-600 ° C. at different cooling rates (1 # -5 #). Cooled and the cooling process can be seen in Table 3.

製造されたサンプルの磁気特性はEPSTINEフレームによって測定され、サンプルの機械的性能および高サイクル疲労性能は、JIS5張力(平均荷重は172MPa、振幅は156MPaである)によって測定され、性能測定結果は、表4において理解することができる。   The magnetic properties of the manufactured samples were measured by an EPSTIN frame, and the mechanical performance and high cycle fatigue performance of the samples were measured by JIS5 tension (average load is 172 MPa, amplitude is 156 MPa). 4 can be understood.

表3および表4において理解することができるように、アニール冷却温度は急速すぎると、鋼板の磁気性能はより悪くなり、その結果、鉄損は増大し、磁気誘導は減少し、耐疲労性はより悪くなる。   As can be seen in Tables 3 and 4, if the annealing cooling temperature is too rapid, the magnetic performance of the steel sheet becomes worse, resulting in increased iron loss, decreased magnetic induction, and fatigue resistance. It gets worse.

Claims (14)

相対的な高い磁気誘導および高強度を有する無方向性電磁鋼板であって、その化学的組成の重量パーセントは:
C:≦0.0040%
Si:2.50%〜4.00%
Al:0.20%〜0.80%
Cr:1.0〜8.0%
Ni:0.5〜5.0%
Mn:≦0.50%
P:≦0.30%
S:≦0.0020%
N:≦0.0030%
Ti:≦0.0030%
Nb:≦0.010%
V:≦0.010%
C+S+N+Ti:≦0.010%
ならびに残部が実質的にFeおよび不可避的不純物である、無方向性電磁鋼板。
A non-oriented electrical steel sheet having a relatively high magnetic induction and high strength, the weight percentage of its chemical composition is:
C: ≦ 0.0040%
Si: 2.50% to 4.00%
Al: 0.20% to 0.80%
Cr: 1.0-8.0%
Ni: 0.5-5.0%
Mn: ≦ 0.50%
P: ≦ 0.30%
S: ≦ 0.0020%
N: ≦ 0.0030%
Ti: ≦ 0.0030%
Nb: ≦ 0.010%
V: ≦ 0.010%
C + S + N + Ti: ≦ 0.010%
And a non-oriented electrical steel sheet, the balance being substantially Fe and inevitable impurities.
重量%で、Cu≦3%を含む、請求項1に記載の、相対的な高い磁気誘導および高強度を有する無方向性電磁鋼板。   The non-oriented electrical steel sheet having a relatively high magnetic induction and high strength according to claim 1, wherein the non-oriented electrical steel sheet has a relatively high magnetic induction and high strength. 重量%で、0.5%以下の総含有量を有するSbおよび/またはSnを含む、請求項1または2に記載の、相対的な高い磁気誘導および高強度を有する無方向性電磁鋼板。   The non-oriented electrical steel sheet having a relatively high magnetic induction and high strength according to claim 1 or 2, comprising Sb and / or Sn having a total content of 0.5% or less by weight. 重量%で、C≦0.002%またはC≦0.0015%である、請求項1に記載の、相対的な高い磁気誘導および高強度を有する無方向性電磁鋼板。   The non-oriented electrical steel sheet having a relatively high magnetic induction and high strength according to claim 1, wherein C ≦ 0.002% or C ≦ 0.0015% by weight. 重量%で2.8〜3.3%のSiの含有量を有する、請求項1に記載の、相対的な高い磁気誘導および高強度を有する無方向性電磁鋼板。   The non-oriented electrical steel sheet having a relatively high magnetic induction and high strength according to claim 1, having a Si content of 2.8 to 3.3% by weight. 重量%で0.4〜0.6%のAlの含有量を有する、請求項1に記載の、相対的な高い磁気誘導および高強度を有する無方向性電磁鋼板。   The non-oriented electrical steel sheet having a relatively high magnetic induction and high strength according to claim 1, having an Al content of 0.4 to 0.6% by weight. 重量%で2.5〜6%のCrの含有量を有する、請求項1に記載の、相対的な高い磁気誘導および高強度を有する無方向性電磁鋼板。   The non-oriented electrical steel sheet having a relatively high magnetic induction and high strength according to claim 1, having a Cr content of 2.5 to 6% by weight. 重量%で1.0〜3.5%のNiの含有量を有する、請求項1に記載の、相対的な高い磁気誘導および高強度を有する無方向性電磁鋼板。   The non-oriented electrical steel sheet having a relatively high magnetic induction and high strength according to claim 1, having a Ni content of 1.0 to 3.5% by weight. 重量%で、Pの含有量が0.1%以下であり、Sの含有量が0.0015%以下である、請求項1に記載の、相対的な高い磁気誘導および高強度を有する無方向性電磁鋼板。   2. Non-directional with relatively high magnetic induction and high strength according to claim 1, wherein the content of P is 0.1% or less and the content of S is 0.0015% or less by weight%. Electrical steel sheet. 重量%で0.002%以下のNの含有量を有する、請求項1に記載の、相対的な高い磁気誘導および高強度を有する無方向性電磁鋼板。   The non-oriented electrical steel sheet having a relatively high magnetic induction and high strength according to claim 1, having a content of N of 0.002% or less by weight. 重量%で0.0015%以下のTiの含有量を有する、請求項1に記載の、相対的な高い磁気誘導および高強度を有する無方向性電磁鋼板。   The non-oriented electrical steel sheet having a relatively high magnetic induction and high strength according to claim 1, having a Ti content of 0.0015% or less by weight. 相対的な高い磁気誘導および高強度を有する無方向性電磁鋼板を製造する方法であって、
1)製錬および鋳込みステップを含み、
無方向性電磁鋼板の化学的成分の重量パーセントは、C≦0.0040%、Siは2.50%〜4.00%であり、Alは0.20%〜0.80%であり、Crは1.0〜8.0%であり、Niは0.5〜5.0%であり、Mn≦0.50%、P≦0.30%、S≦0.0020%、N≦0.0030%、Ti≦0.0030%、Nb≦0.010%、V≦0.010%、C+S+N+Ti≦0.010%、ならびに残部が実質的にFeおよび不可避的不純物であり;製錬、RH真空プロセスを行って、上記の組成に従ってスラブに注がれ;前記方法はさらに、
2)熱間圧延ステップを含み、
スラブの加熱温度は1050℃〜1200℃であり、保持時間は30分以上であり、圧延平滑プロセスにおける初期圧延温度は940℃〜1000℃に制御され、最終圧延温度は850℃以上であり、最終スタンドスクリューダウンレートは10〜15%に制御され、巻取温度は500〜700℃に制御され、圧延鋼板の厚みは2.0〜2.6mmであり;前記方法はさらに、
3)熱間圧延鋼板焼ならしステップを含み、
焼ならし温度は850〜950℃であり、保持時間は0.5〜3分であり、次いで、5〜15℃/sの冷却速度で650〜750℃に徐冷され、さらに20〜70℃/sの冷却速度で100℃以下に急冷され;前記方法はさらに、
4)酸洗および冷間圧延ステップを含み、
単一の冷間圧延プロセスで冷間圧延され、総スクリューダウンレートは70%以上であり;前記方法はさらに、
5)連続炉でのアニールステップを含み、
連続炉でアニール処理を実行し、アニール温度は800〜1000℃であり、それを5〜60s保持し、次いで、3〜10℃/sの冷却速度で650〜750℃に徐冷され、さらに、20〜70℃/sの冷却速度で100℃以下に急冷される、方法。
A method for producing a non-oriented electrical steel sheet having a relatively high magnetic induction and high strength comprising:
1) including smelting and casting steps,
The weight percentage of chemical components of the non-oriented electrical steel sheet is C ≦ 0.0040%, Si is 2.50% to 4.00%, Al is 0.20% to 0.80%, Cr Is 1.0 to 8.0%, Ni is 0.5 to 5.0%, Mn ≦ 0.50%, P ≦ 0.30%, S ≦ 0.0020%, N ≦ 0.0. 0030%, Ti ≦ 0.0030%, Nb ≦ 0.010%, V ≦ 0.010%, C + S + N + Ti ≦ 0.010%, and the balance is substantially Fe and inevitable impurities; smelting, RH vacuum The process is performed and poured into the slab according to the above composition;
2) including a hot rolling step,
The heating temperature of the slab is 1050 ° C. to 1200 ° C., the holding time is 30 minutes or more, the initial rolling temperature in the rolling smoothing process is controlled to 940 ° C. to 1000 ° C., the final rolling temperature is 850 ° C. or more, and the final The stand screw down rate is controlled to 10 to 15%, the coiling temperature is controlled to 500 to 700 ° C., and the thickness of the rolled steel sheet is 2.0 to 2.6 mm;
3) including a hot rolled steel plate normalizing step,
The normalizing temperature is 850 to 950 ° C., the holding time is 0.5 to 3 minutes, then gradually cooled to 650 to 750 ° C. at a cooling rate of 5 to 15 ° C./s, and further 20 to 70 ° C. Quenching to 100 ° C. or less at a cooling rate of / s;
4) including pickling and cold rolling steps;
Cold rolled in a single cold rolling process, the total screw down rate is 70% or more;
5) including an annealing step in a continuous furnace,
Annealing is performed in a continuous furnace, the annealing temperature is 800-1000 ° C., holding it for 5-60 s, then slowly cooling to 650-750 ° C. at a cooling rate of 3-10 ° C./s, A method of rapidly cooling to 100 ° C. or lower at a cooling rate of 20 to 70 ° C./s.
無方向性電磁鋼板は重量%でCu≦3%をさらに含む、請求項12に記載の、相対的な高い磁気誘導および高強度を有する無方向性電磁鋼板を製造する方法。   The method of manufacturing a non-oriented electrical steel sheet having a relatively high magnetic induction and high strength according to claim 12, wherein the non-oriented electrical steel sheet further comprises Cu ≦ 3% by weight. 無方向性電磁鋼板は重量%で0.5%以下の総含有量を有するSbおよび/またはSnをさらに含む、請求項12または13に記載の、相対的な高い磁気誘導および高強度を有する無方向性電磁鋼板を製造する方法。   The non-oriented electrical steel sheet further comprises Sb and / or Sn having a total content of 0.5% or less by weight, and having no relative high magnetic induction and high strength according to claim 12 or 13. A method for producing a grain-oriented electrical steel sheet.
JP2012545077A 2010-10-25 2011-04-27 Non-oriented electrical steel sheet having relatively high magnetic induction and high strength, and method for producing the same Pending JP2013515166A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201010518005.5 2010-10-25
CN2010105180055A CN102453838A (en) 2010-10-25 2010-10-25 High-strength non-oriented electrical steel with high magnetic induction and manufacturing method thereof
PCT/CN2011/073368 WO2012055223A1 (en) 2010-10-25 2011-04-27 High strength non-oriented electric steel having higher magnetic flux density and manufacture method thereof

Publications (1)

Publication Number Publication Date
JP2013515166A true JP2013515166A (en) 2013-05-02

Family

ID=45993119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012545077A Pending JP2013515166A (en) 2010-10-25 2011-04-27 Non-oriented electrical steel sheet having relatively high magnetic induction and high strength, and method for producing the same

Country Status (8)

Country Link
US (1) US20120298267A1 (en)
EP (1) EP2631315A1 (en)
JP (1) JP2013515166A (en)
KR (1) KR20120086367A (en)
CN (1) CN102453838A (en)
MX (1) MX2012007473A (en)
RU (1) RU2012129346A (en)
WO (1) WO2012055223A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016194099A (en) * 2015-03-31 2016-11-17 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet for rotor and manufacturing method of non-oriented electromagnetic steel sheet
JP2017137537A (en) * 2016-02-04 2017-08-10 新日鐵住金株式会社 Nonoriented magnetic steel sheet
JP2019508574A (en) * 2015-12-23 2019-03-28 ポスコPosco Non-oriented electrical steel sheet and method of manufacturing the same
CN110724808A (en) * 2019-10-09 2020-01-24 马鞍山钢铁股份有限公司 Method for producing electrical steel by cold rolling of 3.01 ~ 4.5.5 mm hot rolled coil
WO2020153387A1 (en) * 2019-01-24 2020-07-30 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for producing same
US11230745B2 (en) 2015-12-23 2022-01-25 Posco Non-oriented electrical steel sheet and manufacturing method therefor
JP2022545027A (en) * 2019-08-26 2022-10-24 バオシャン アイアン アンド スティール カンパニー リミテッド 600MPa class non-oriented electrical steel sheet and manufacturing method thereof

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6127408B2 (en) * 2012-08-17 2017-05-17 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheet
CN102851577B (en) * 2012-08-28 2014-05-14 武汉钢铁(集团)公司 High grade non-oriented silicon steel produced by continuous casting and rolling of sheet billet and production method thereof
CN102787276B (en) 2012-08-30 2014-04-30 宝山钢铁股份有限公司 High magnetic induction oriented silicon steel and manufacturing method thereof
CN107002160A (en) * 2014-05-08 2017-08-01 材料开发中心股份公司 Method for preparing the electric furnace steel band with the crystal grain non-oriented spent under high cold rolling
CN104046760B (en) * 2014-06-19 2016-08-31 马钢(集团)控股有限公司 A kind of production method of electric steel plate
PL3165624T3 (en) * 2014-07-02 2019-09-30 Nippon Steel & Sumitomo Metal Corporation Non-oriented magnetic steel sheet, and manufacturing method for same
CN104120234A (en) * 2014-07-02 2014-10-29 东北大学 Preparation method of high-magnetic-induction non-oriented high-silicon steel thin plate
CN105779731A (en) * 2014-12-23 2016-07-20 鞍钢股份有限公司 Hot-rolled plate normalizing process for improving electromagnetic performance of low-grade non-oriented electrical steel
CN108504952B (en) * 2018-04-09 2019-06-25 内蒙古工业大学 The method of thin slab continuous casting and rolling production new-energy automobile non-oriented electrical steel
CN108504926B (en) * 2018-04-09 2019-06-21 内蒙古工业大学 New-energy automobile non-oriented electrical steel and its production method
CN108411205B (en) * 2018-04-09 2019-07-09 内蒙古工业大学 The method of CSP process production high-magnetic induction, low-iron loss non-oriented electrical steel
CN110172560B (en) * 2019-05-30 2020-07-03 江苏良工精密合金钢有限公司 Preparation method of high-Si-content electrical steel
CN111088457B (en) * 2019-12-05 2021-01-22 华北理工大学 Non-oriented electrical steel and preparation method thereof
CN111057821B (en) * 2019-12-27 2021-06-29 首钢智新迁安电磁材料有限公司 Non-oriented electrical steel and preparation method and application thereof
CN111926171B (en) * 2020-08-31 2022-04-29 武汉钢铁有限公司 Continuous annealing cooling control method for cold-rolled non-oriented silicon steel strip
CN112501407A (en) * 2020-11-30 2021-03-16 武汉钢铁有限公司 Non-oriented silicon steel plate for high-efficiency variable-frequency compressor and production method thereof
CN114058963A (en) * 2021-11-26 2022-02-18 东北大学 Method for preparing high-strength non-oriented silicon steel based on nano precipitation strengthening
CN114737129B (en) * 2022-03-02 2023-02-28 新余钢铁股份有限公司 High-performance non-oriented silicon steel for wound motor iron core and production method thereof
CN114606445B (en) * 2022-05-10 2022-07-29 江苏省沙钢钢铁研究院有限公司 Production method of non-oriented silicon steel, non-oriented silicon steel and application thereof
CN115369225B (en) * 2022-09-14 2024-03-08 张家港扬子江冷轧板有限公司 Non-oriented silicon steel for new energy driving motor and production method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241907A (en) * 2001-02-19 2002-08-28 Kawasaki Steel Corp Monoriented silicon steel sheet having excellent high frequency magnetic property and blanking workability
JP2004339603A (en) * 2003-04-25 2004-12-02 Jfe Steel Kk High-strength non-oriented electromagnetic steel sheet superior in high-frequency magnetic property, and manufacturing method therefor
JP2011184787A (en) * 2010-03-11 2011-09-22 Nippon Steel Corp High tensile strength non-oriented electromagnetic steel sheet having excellent high frequency iron loss

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5037493A (en) * 1989-03-16 1991-08-06 Nippon Steel Corporation Method of producing non-oriented magnetic steel plate having high magnetic flux density and uniform magnetic properties through the thickness direction
JP4126479B2 (en) * 2000-04-28 2008-07-30 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheet
US20050000596A1 (en) * 2003-05-14 2005-01-06 Ak Properties Inc. Method for production of non-oriented electrical steel strip
CN100526492C (en) 2003-10-06 2009-08-12 新日本制铁株式会社 High-strength magnetic steel sheet and worked part therefrom, and process for producing them
CN100446919C (en) * 2005-06-30 2008-12-31 宝山钢铁股份有限公司 Production process of cold rolled orientation-free electrical steel plate with low iron loss and high magnetic induction
CN100513060C (en) * 2006-05-12 2009-07-15 武汉分享科工贸有限公司 Method for making orientation-free cold-rolled electric steel-board
CN100567545C (en) * 2007-06-25 2009-12-09 宝山钢铁股份有限公司 A kind of high grade non-oriented silicon steel and manufacture method thereof
US20110056592A1 (en) 2008-04-14 2011-03-10 Yoshihiro Arita High-strength non-oriented electrical steel sheet and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241907A (en) * 2001-02-19 2002-08-28 Kawasaki Steel Corp Monoriented silicon steel sheet having excellent high frequency magnetic property and blanking workability
JP2004339603A (en) * 2003-04-25 2004-12-02 Jfe Steel Kk High-strength non-oriented electromagnetic steel sheet superior in high-frequency magnetic property, and manufacturing method therefor
JP2011184787A (en) * 2010-03-11 2011-09-22 Nippon Steel Corp High tensile strength non-oriented electromagnetic steel sheet having excellent high frequency iron loss

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016194099A (en) * 2015-03-31 2016-11-17 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet for rotor and manufacturing method of non-oriented electromagnetic steel sheet
JP2019508574A (en) * 2015-12-23 2019-03-28 ポスコPosco Non-oriented electrical steel sheet and method of manufacturing the same
US11230745B2 (en) 2015-12-23 2022-01-25 Posco Non-oriented electrical steel sheet and manufacturing method therefor
JP7008021B2 (en) 2015-12-23 2022-01-25 ポスコ Non-oriented electrical steel sheet and its manufacturing method
JP2017137537A (en) * 2016-02-04 2017-08-10 新日鐵住金株式会社 Nonoriented magnetic steel sheet
TWI717201B (en) * 2019-01-24 2021-01-21 日商杰富意鋼鐵股份有限公司 Non-directional electromagnetic steel sheet and manufacturing method thereof
JP6767687B1 (en) * 2019-01-24 2020-10-14 Jfeスチール株式会社 Non-oriented electrical steel sheet and its manufacturing method
WO2020153387A1 (en) * 2019-01-24 2020-07-30 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for producing same
RU2771133C1 (en) * 2019-01-24 2022-04-26 ДжФЕ СТИЛ КОРПОРЕЙШН Sheet of non-textured electrical steel and the method for its production
JP2022545027A (en) * 2019-08-26 2022-10-24 バオシャン アイアン アンド スティール カンパニー リミテッド 600MPa class non-oriented electrical steel sheet and manufacturing method thereof
JP7462737B2 (en) 2019-08-26 2024-04-05 バオシャン アイアン アンド スティール カンパニー リミテッド 600MPa-class non-oriented electrical steel sheet and its manufacturing method
CN110724808B (en) * 2019-10-09 2021-01-26 马鞍山钢铁股份有限公司 Method for producing electrical steel by cold rolling of 3.01-4.5 mm hot rolled coil
CN110724808A (en) * 2019-10-09 2020-01-24 马鞍山钢铁股份有限公司 Method for producing electrical steel by cold rolling of 3.01 ~ 4.5.5 mm hot rolled coil

Also Published As

Publication number Publication date
MX2012007473A (en) 2012-10-10
US20120298267A1 (en) 2012-11-29
WO2012055223A1 (en) 2012-05-03
CN102453838A (en) 2012-05-16
EP2631315A1 (en) 2013-08-28
RU2012129346A (en) 2014-01-20
KR20120086367A (en) 2012-08-02

Similar Documents

Publication Publication Date Title
JP2013515166A (en) Non-oriented electrical steel sheet having relatively high magnetic induction and high strength, and method for producing the same
CN110536971B (en) Method for manufacturing non-oriented electromagnetic steel sheet, method for manufacturing motor iron core, and motor iron core
JP6596016B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
TWI404806B (en) High strength non - directional electrical steel sheet and its manufacturing method
RU2536711C1 (en) Plate from non-textured electrical steel, and method for its manufacture
JP5712863B2 (en) Method for producing non-oriented electrical steel sheet
JP5146169B2 (en) High strength non-oriented electrical steel sheet and manufacturing method thereof
TW200948985A (en) High tensile strength steel sheet for can and its production method
JP5028992B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
CN109852878B (en) Non-oriented electrical steel sheet having excellent magnetic properties and method for manufacturing the same
TWI499677B (en) A non-oriented electrical steel sheet, a manufacturing method thereof, a laminate for a motor core, and a method of manufacturing the same
CA3146888A1 (en) 600mpa grade non-oriented electrical steel sheet and manufacturing method thereof
JP4696750B2 (en) Method for producing non-oriented electrical steel sheet for aging heat treatment
WO2021128409A1 (en) Non-oriented electrical steel, preparation method therefor and use thereof
JP2007247047A (en) Non-oriented electromagnetic steel sheet
JP4349340B2 (en) Method for producing Cu-containing non-oriented electrical steel sheet
JP4710458B2 (en) Method for producing non-oriented electrical steel sheet for rotor
CN114606445B (en) Production method of non-oriented silicon steel, non-oriented silicon steel and application thereof
JP5418469B2 (en) Method for producing non-oriented electrical steel sheet for aging heat treatment
JP5245977B2 (en) Method for producing non-oriented electrical steel sheet
JP4424075B2 (en) Non-oriented electrical steel sheet, non-oriented electrical steel sheet for aging heat treatment, and production method thereof
JP5186781B2 (en) Non-oriented electrical steel sheet for aging heat treatment, non-oriented electrical steel sheet and method for producing the same
TWI813235B (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5648661B2 (en) Non-oriented electrical steel sheet for aging heat treatment, non-oriented electrical steel sheet and method for producing the same
JP4356580B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140507