JP2019507305A - 予測フリークーリング - Google Patents

予測フリークーリング Download PDF

Info

Publication number
JP2019507305A
JP2019507305A JP2018536852A JP2018536852A JP2019507305A JP 2019507305 A JP2019507305 A JP 2019507305A JP 2018536852 A JP2018536852 A JP 2018536852A JP 2018536852 A JP2018536852 A JP 2018536852A JP 2019507305 A JP2019507305 A JP 2019507305A
Authority
JP
Japan
Prior art keywords
data
free cooling
external application
hvac
application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018536852A
Other languages
English (en)
Other versions
JP7009372B2 (ja
Inventor
エアペルディング、ベン
デンプスター、イアン
チェン、ペング
マシース、クラーク
Original Assignee
オプティマム・エナジー,エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オプティマム・エナジー,エルエルシー filed Critical オプティマム・エナジー,エルエルシー
Publication of JP2019507305A publication Critical patent/JP2019507305A/ja
Application granted granted Critical
Publication of JP7009372B2 publication Critical patent/JP7009372B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0426Programming the control sequence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • F24F11/523Indication arrangements, e.g. displays for displaying temperature data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/76Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by means responsive to temperature, e.g. bimetal springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • F24F2011/0002Control or safety arrangements for ventilation for admittance of outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/10Weather information or forecasts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2614HVAC, heating, ventillation, climate control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/54Free-cooling systems

Abstract

暖房、換気および空調(HVAC)システムを有する、地理的ロケーション中のビルディングのための環境制御システムは、外部アプリケーションと通信する少なくとも1つの処理デバイスによって実行されるとき、少なくとも1つの処理デバイスが、地理的ロケーションに対して予め定められた時間期間を通して天気予報を特徴付ける天気データを受信し、フリークーリングウィンドウデータを受信し、天気データとフリークーリングウィンドウデータとに基づいて、利用可能フリークーリング時間ウィンドウを決定し、利用可能フリークーリング時間ウィンドウの間、HVACシステムがフリークーリングモードに入るように、外部アプリケーションに実行可能コマンドを発行できるようにする、命令を記憶した少なくとも1つのコンピュータ読取可能媒体を含む。【選択図】図3

Description

優先権の主張
[0001]
本願は、2016年1月12日に出願された米国仮特許出願第62/277,883号からの優先権を主張し、その内容は、参照によって、完全にここで説明しているかのように組み込まれる。
背景
[0002]
ビルディングのエネルギー消費、特に、HVACシステムのエネルギー消費を制御することは、機器動作特性に対応する定数値を組み込むソフトウェア実行可能アルゴリズムを有するビルディングオートメーションシステム(BAS)を通して達成されている。図1は、制御設定が受信される間、HVACシステム内のリアルタイム動作条件がBASに送られるHVACシステムと対話するBASを示している。
[0003]
HVACシステムの機器は、チラー(chillers)、ポンプ、コンデンサ、ボイラー、エアハンドラ、端末装置等含んでいてもよいがこれらに限定されない。BASによって利用される値は、HVACシステムの取り付けの間、典型的にプログラムされ、ローカルの気候と周囲条件にしたがって、設定される。ローカルの気候とテナント快適苦情において予測された変化に対して、BASを手動で評価し、再プログラミングすることによって、これらの値を周期的に変化させてもよい。
[0004]
過去のHVACシステムは、エネルギー効率を考慮することなく、設計され、取り付けられていた。上昇するエネルギーコストと環境を保護することへの重要視とにより、顧客は、現在、エネルギー消費を減少させることを目指している。HVACシステム内のエネルギー効率に取り組む他の発明は、実現するのに長い時間がかかり、多くの先行コストを必要とし、オリジナルのBASまたはHVACシステムへの大量なハードウェア修正を必要とし、取り付け、メンテナンス、更新、顧客使用でさえに対しても専門知識を必要とする。これらの従来のシステムは、頻繁な更新および修理を必要とするかもしれない。このような更新および修理を自身で実行するために、顧客は豊富な訓練を必要とすることが多い。典型的に、これらのシステムは、それぞれの異なるHVACシステムに対して特有の修正も必要とするかもしれず、これは、各取り付けのコストおよび複雑さを追加する。さらに、従来のBASは、一般的に、データを処理し、交換し、計算することに関する能力が、リソース面で限定されている。
[0005]
フリークーリング(free cooling)は、水を冷却する際に、低い外気温度を使用する経済的な方法であり、これは、産業プロセスのために、または、グリーンデータセンタにおける空調システムのために使用されることができる。周囲の大気温度が設定温度に下がるとき、調節弁は、冷水のすべてまたは一部が既存のチラーをバイパスして、フリークーリングシステムを通ることを可能にし、これは、より少ない電力を使用し、冷却要件を損なうことなく、システム中の水を冷却するためにより低い周囲の大気温度を使用する。
[0006]
フリークーリング(ウォーターサイドエコノマイジング)は、複雑な冷却システムにおいて全体的なエネルギー消費を低減させるために効果的なツールである。しかしながら、実際には、効果的に実現することは難しく、いつオン、オフするかを決定する際に、当て推量を伴うことが多い。
[0007]
詳細な情報の欠如により、急にチラーを再起動することによって消費される余分なエネルギー浪費の可能性を最小化するために、オペレータはフリークーリングを使用することを避ける傾向がある。フリークーリングが使用されるとき、再び、詳細なデータの欠如により、非効率的に実現されることが多く、ファンはオーバーランする。
[0008]
次の図を参照して、本発明の好ましいおよび代替の実施形態を以下で詳細に説明する。
[0009] 図1は、従来の環境制御システムにしたがう外部アプリケーションを有しない、HVACシステムと対話するビルディングオートメーションシステムの概略ダイヤグラムである。 [0010] 図2は、本発明の実施形態にしたがうHVACシステムのエネルギー消費を制御するために、ビルディングオートメーションシステムと通信する外部アプリケーションを有する環境制御システムの概略ダイヤグラムである。 [0011] 図3は、本発明の実施形態にしたがう図2の環境制御システムの通信および動作のブロック論理ダイヤグラムである。 [0012] 図4は、本発明の実施形態にしたがう図3の環境制御システムに関連するフリークーリング機能性の通信および動作のブロック論理ダイヤグラムである。
詳細な説明
[0013]
この特許出願は、本発明の1つ以上の実施形態を説明することを意図している。特定の量はもちろん、「しなければならない」、「するだろう」およびこれらに類するもののような絶対的な用語の使用は、必ずしもすべてのこのような実施形態に適用可能ではないが、このような実施形態のうちの1つ以上に適用可能であると解釈されると理解されるだろう。このように、本発明の実施形態は、このような絶対的な用語の文脈で説明されている1つ以上の特徴および機能性を省略してもよく、または、その修正を含んでいてもよい。
[0014]
1つ以上の実施形態にしたがうと、ソフトウェアまたはコンピュータ実行可能な命令と、コンピュータ読取可能媒体との組み合わせは、結果として機械または装置を生み出すことになる。同様に、処理デバイスによるソフトウェアまたはコンピュータ実行可能な命令の実行は、結果として機械または装置を生み出すことになり、機械または装置は、実施形態にしたがって、処理デバイス、それ自体から識別可能であってもよい。
[0015]
対応して、ソフトウェアまたはコンピュータ実行可能な命令を記憶することにより、コンピュータ読取可能媒体は変形される(transformed)ということが、理解されるだろう。同様に、ソフトウェアまたはコンピュータ実行可能な命令を実行する過程において、処理デバイスは変形される。さらに、処理デバイスによるソフトウェアまたはコンピュータ実行可能な命令の実行の間に、またはさもなければ実行に関係して、処理デバイスに入力されるデータの第1のセットは、そのような実行の結果として、データの第2のセットに変形されるということが理解されるだろう。この第2のデータのセットは、後に記憶され、表示され、またはさもなければ通信されてもよい。上記の例のそれぞれの中に示唆されているそのような変形は、コンピュータ読取可能媒体の一部分の物理的な変化の結果であってもよく、またはさもなければ物理的な変化を伴ってもよい。上記の例のそれぞれの中に示唆されているそのような変形はまた、例えば、処理デバイスによるソフトウェアまたはコンピュータ実行可能な命令の実行の間、処理デバイスに関係するレジスタおよび/またはカウンタの状態の、物理的な変化の結果であってもよく、またはさもなければ物理的な変化を伴ってもよい。
[0016]
ここで使用されるように、「自動的に」実行されるプロセスは、機械が実行した命令の結果としてプロセスが実行されると意味してもよく、ユーザの選好の確立以外、手動の労力を必要としない。
[0017]
以下の説明では、本発明のさまざまな実施形態の十分な理解を提供するために、ある特定の詳細を述べる。しかしながら、これらの詳細がなくとも、本発明を実施できることを当業者は理解するであろう。他の例では、HVACシステムおよび個々のHVACコンポーネントに関係付けられている既知の構造、ビルディング気候または環境制御システム、ビルディングオートメーションシステム(BAS)およびさまざまな気候制御または環境制御プロセス、パラメータ、およびこれらの動作は、本発明の実施形態の説明を不必要に不明瞭にすることを避けるために、必ずしも詳細に示されない、または、説明されない。
[0018]
実施形態は、HVACシステムのBASとの対外的対話により、機器制御機能からエネルギー最適化計算を分離する。1つの実施形態では、外部アプリケーションのような最適化モジュールは、グローバル制御装置中に位置づけられるが、内部マイクロプロセッサを含む別のハードウェアデバイス中に収容されることができる。外部アプリケーションは、BASと通信し、次に、HVACシステムと通信する。外部アプリケーションは、リアルタイムHVACシステムデータを処理するソフトウェアサブルーチンまたはモジュールを実行し、BASによって読み取られるそのデータを提供し、次に、さまざまなHVACシステムコンポーネントを新たなまたは所望の設定ポイント(set points)(例えば、ビルディングの領域に対する新たな温度設定、ポンプまたはファンに対する新たなフローレート等)に向けるための命令を提供する。外部アプリケーションの1つの特定の実施形態は、さまざまなパラメータ、データ、設定ポイントを、読み取り、処理し、および、訂正することにより、HVACシステムの全体的なエネルギー効率を最適化するように、最適化するまたは試行する方法を含む。
[0019]
1つの実施形態では、HVACシステムは、BASの制御下にあるチラープラント機器を含んでいてもよい。BASの責務のうちのいくつかは、リード/ラグ切り替え、機器障害監視、機器の起動、機器のシャットダウン、アラームの認識およびアナウンス、ならびに、チラープラントの障害切り替えシーケンスのような機器制御機能を含んでいる。
[0020]
チラープラントの外部の湿球温度が、必要とされる冷水設定ポイントより低いときはいつでも、エネルギーを節約するためにフリークーリングを使用することができる。このような省エネルギーは、例えば、換気のために低減された除湿負荷と冷却塔の増加した効率とにより実現することができる。実施形態は、予測フリークーリング機能性(predictive free-cooling functionality)を提供する。予測フリークーリングは、フリークーリングが必要とされるまたは自動的に実現されるべきであるか否かを決定するための入力として、天気予報(例えば、ネットワークおよび/または手動入力を通して受信され、予め定められたおよび/または選択可能時間間隔にわたり、ならびに、冷却されることになる構造の外部における、予測される周囲の大気温度を記述するデータ)の使用を可能にする。
[0021]
実施形態は、外気湿球しきい値に基づいて、フリークーリング利用可能性を正確に予測する天気予報データを組み込む。周囲の外部温度が最小フリークーリングウィンドウ期間に対するしきい値よりも低いとき、現在のプラント条件はフリークーリング動作を可能にし、実施形態はフリークーリングが利用可能であることをオペレータに知らせることができる。このプロセスはまた、オペレータの介入なくフリークーリングモードをイネーブルおよび/またはディセーブルにする実施形態により、自動的に生じることができる。外気湿球しきい値と、サイトの特定の要件に基づいて調整されることになる最小フリークーリングウィンドウ期間との両方を考慮して、予測フリークーリングが構成可能である。実施形態は、利用可能なフリークーリング時間、アクティブ化されるフリークーリング時間、および、他の方法で利用可能なときに失われるフリークーリング時間への洞察を与える月次報告を生成してもよい。
[0022]
予測フリークーリングは、天気利用可能性のウィンドウが存在することを保証する能力を加えるが、それを伴わずに、現在の条件のみが使用されてもよい。この正確な天気条件データを時間の前に提供することにより、チラーのシャットダウンと、再起動による、非効率的なエネルギー消費の可能性が最小化される。言い換えると、チラーを再起動するのに必要とされるエネルギーを越えるフリークーリングエネルギー節約を生成するのに十分長く、周囲の大気温度条件が天気予報にしたがって持続する場合のみ、チラーはシャットダウンされてもよい。この後者の決定は、典型的には、問題になっているチラーに関係付けられている、特定のトン数、流量、および/または、現在の湿球温度設定ポイント(集合的に「フリークーリングウィンドウデータ」)の関数であってもよい。
[0023]
フリークーリングの増加した使用およびシステム動作における改善した効率性を通して、結果は全体的なエネルギー消費を減少させる。1つの実施形態におけるリアルタイム動作データを活用することにより、システムは、経時的に学習し、改善し、オペレータがより頻繁に、かつ、最適な効率性で、フリークーリングを使用することを可能にする。
[0024]
図1は、ビルディングオートメーションシステム(BAS)102とHVACシステム104との間の対話を含む環境制御システム100を明確に図示する目的で提供されている。システム100は、外部アプリケーションを含まず、したがって、既存のまたは従来の環境制御システムと一致する。動作中、HVACシステム104内のリアルタイム動作条件106は、BAS102に送信され、その後、設定ポイントとも呼ばれる制御設定108は、BAS102からHVACシステムシステム104に制御可能に送信される。このシステムでは、機器制御機能および最適化機能は、BAS中で組み合わせられなければならない。
[0025]
図2は、上記で説明したように、HVACシステムシステム204内のリアルタイム動作データ206がBAS202に送信される、BAS202とHVACシステム204との間の対話を含む環境制御システム200を示している。リアルタイム動作データ206は、電圧、速度、温度および圧力、以下、「リアルタイム動作データ」と呼ぶ、のような機器動作条件を含んでいてもよいがこれらに限定されない。さらに、環境制御システム200は、(示していない)データ通信ネットワークを通してBAS202と通信するように構成されている外部アプリケーション210を含む。1つの実施形態では、外部アプリケーション210とBAS202との間の対話は、外部アプリケーション210がBAS202から遠隔で対話すること、オプション的に他のBAS202と対話することを可能にする論理インターフェースによって達成される。外部アプリケーション210は、アプリケーションデータ214をBAS202に提供する。アプリケーションデータ214は、HVACシステム204についての動作パラメータを含んでいてもよく、例えば、アプリケーションデータ214は、どの速度で、どのHVACシステムコンポーネントを現在実行すべきであるか等を示してもよい。HVAC機器の直接(ハードウェアレベル)制御は、BAS202により提供される。外部アプリケーション210からBAS202に提供されるアプリケーションデータ214は、好ましくは、機器速度を変更し、新たな機器設定ポイントを規定するデータを含んでいてもよいが、追加のデータも提供されてもよい。
[0026]
BAS202は、HVACシステム204からリアルタイム動作データ206を読み取る。外部アプリケーション210は、BAS202と対話して、BAS202から機器データ212を受信し、その後、HVACシステム204に対する所望の動作設定を計算するまたはさもなければ決定するソフトウェアアルゴリズムを使用して機器データ212を処理することにより、HVACシステム204に対するエネルギー節約を達成する。所望の動作設定を達成するために、アプリケーションデータ214は、外部アプリケーション210からBAS202に送られ、次に、外部アプリケーション210から提供されたアプリケーションデータ214にしたがって、BAS202が、HVACシステム204を動作することを可能にする。例として、BAS202は、制御命令208によりHVACシステム204を動作してもよい。1つの実施形態では、外部アプリケーション210は、プログラム可能マイクロプロセッサユニットを含む。
[0027]
外部アプリケーション210は、BAS202と対話するとき、3つのタイプのデータ、機器データ212とアプリケーションデータ214とステータスデータ215を使用する。機器データ212は、HVACシステム204によって最初に提供され、BAS202によってプロセス間で修正されるリアルタイム動作データ206を含む。機器データ212は、電力消費、機器の速度、供給温度、機器設定ポイント、機器障害、実行ステータス等に関するデータの形態をとってもよい。BAS202は機器データ212を外部アプリケーション210に書き込む。アプリケーションデータ214は、外部アプリケーション210によって処理され、BAS202によって読み取られる動作パラメータを含む。アプリケーションデータ214は、その後、HVACシステム204によって規定された所望の動作可能および/または安全限界内で作用してもよい。アプリケーションデータ214は、最適化された設定ポイント、最適化された速度設定ポイント、温度設定ポイント等を含んでいてもよい。好ましい実施形態では、アプリケーションデータ214が外部アプリケーション210によって提供される間、機器データ212は、外部アプリケーション210に送られる。ステータスデータ215は、BAS202と外部アプリケーション210との間で交換され、それぞれが他方の現在のステータスへのアクセスを有する。より複雑な制御能力を含み、より計算能力を必要とするかもしれない外部アプリケーション210のようなものを実行するために必要な制御論理または計算能力を、既存のBASは有していない。
[0028]
図3は、ビルディングまたは他の構造400(図4)のための環境制御システムの論理ダイヤグラムを示す。制御システム300は、BAS302と、HVACシステム304と、外部アプリケーション306とを含む。
[0029]
BAS302は、HVACシステム304からリアルタイム動作データ322を読み取り、データ322をBAS入力データベース324に変換する。BAS入力データベース324は、通常BAS制御シーケンス320と上述した機器データの形態をとってもよい機器データ316との両方に向けられている。
[0030]
デフォルトBAS制御シーケンス320は、外部アプリケーション306なしで、または、外部アプリケーション306が非動作可能または非通信モードであるときに、HVACシステム304を直接制御するために使用される。シーケンス320は、外部アプリケーション306のBAS302との統合の前に、HVACシステム304を制御したオリジナルの制御論理シーケンスである。シーケンス320は、これに限定されないが、安定状態動作コンフィギュレーションを含んでいてもよく、安定した方法でHVACシステム304を動作させてもよいが、シーケンス320はHVACシステム304の効率性を最適化しないかもしれないと認識される。
[0031]
機器データ316を処理し、所望のアプリケーション設定319を決定するために、外部アプリケーション306の機器アプリケーション制御シーケンス318によって、機器データ316は利用される。所望のアプリケーション設定319は、アプリケーションデータ314になるように、アプリケーションフォーマットモジュール310によってフォーマットされる。アプリケーションフォーマットモジュール310は、外部アプリケーション準備312から受信した信号またはデータに基づいてトリガされる。
[0032]
例として、外部アプリケーション準備312(以下、準備312と呼ぶ)はアプリケーションフォーマットモジュール310が所望のアプリケーション設定319をアプリケーションデータ314にフォーマットできるようにするように、準備312は、外部アプリケーション306がある基準を満たすか否かをアプリケーションフォーマットモジュール310に通知する。準備のための先行する基準は、以下のそれぞれ、具体的には、(1)外部アプリケーションが動作可能モードである、(2)外部アプリケーションがBAS302と通信モードである、(3)BASが動作可能である、および、(4)BAS302は、外部アプリケーション306から命令を受信して動作することを予期する、を満たすことを必要とするかもしれない。
[0033]
外部アプリケーション306が動作可能ではない、BAS302との通信はない、または、動作するために外部アプリケーション306をBAS302は必要としない、と準備312が決定する場合、準備312は、初期化データ311をアプリケーションデータ314にフォーマットするように、アプリケーションフォーマットモジュール310に通知する。したがって、準備312は、外部アプリケーション306が内部ステータスチェックを通して動作可能であるか否かを決定する。準備312は、ステータスデータ315を介してBAS302との通信を決定し、このステータスを周期的に再チェックする。準備312は、外部アプリケーションイネーブル308からの信号を含むステータスデータ315を介して、BAS302は動作するために外部アプリケーション306を必要とすると決定する。
[0034]
初期化データ311は、アプリケーションデータ314がBASによって利用される場合、最小の安定レベルでHVACシステムを動作させるためのアプリケーション設定を含んでいてもよい。初期化データ311は、外部アプリケーション306が準備されるまで、外部アプリケーション306とBAS302との間の通信が回復されるまで、外部アプリケーション306からアプリケーションデータ314を受信して動作することをBAS302が予期するまで、または、上述の任意の組み合わせで、利用されてもよい。
[0035]
BAS302は、外部アプリケーション306からアプリケーションデータ314を受信する。シーケンスセレクタ326は、データシーケンスのどちら(アプリケーションデータ314または通常BAS制御シーケンス320)をBAS出力データ構造328に送るかを決定する。シーケンスセレクタ326は、外部アプリケーションイネーブル308を介して、どのデータ信号を送るかを決定する。1つの実施形態では、BAS302が、HVACシステム304を動作するために外部アプリケーション306を使用することを示すために、外部アプリケーションイネーブル308は、オペレータが制御システム300を手動でトリガできるようにするオペレータ規定イネーブルポイントを含む。
[0036]
オペレータ規定イネーブルポイントがイネーブルであると外部アプリケーションイネーブル308がシーケンスセレクタ326に通知する場合、外部アプリケーション306との通信は動作可能であり、外部アプリケーション306は動作する準備ができており、その後、シーケンスセレクタ326がアプリケーションデータ314をBAS出力データ構造328に送ることをイネーブル308は可能にする。
[0037]
オペレータ規定イネーブルポイントがディセーブルであると外部アプリケーションイネーブル308が決定する場合、外部アプリケーション306は動作可能ではなく、外部アプリケーション306との通信はなく、または、これらのいくつかの組み合わせであり、イネーブル308は、アプリケーションデータ314を送ることとは対照的に、通常BAS制御シーケンス320をBAS出力データ構造328に送ることをシーケンスセレクタ326に通知する。BAS出力データ構造328は、受信したデータを制御命令330に変換してもよく、これは、その後、HVACシステム304によって受信される。
[0038]
引き続き図3を参照すると、環境制御システムの1つの例は、チラープラント(例えばHVACシステム304)を制御するためにBAS302と対話する外部アプリケーション306を含む。BAS302において、BAS302内の外部アプリケーションイネーブル値は、ビルディング内で最適化される冷却に対する需要があると外部アプリケーションイネーブル308に指示し、したがって、イネーブル値は真に設定される。次に、アプリケーション制御シーケンス318によって処理されるとき、アプリケーションデータ314が外部アプリケーション306から必要とされると外部アプリケーション306は命令される。アプリケーションデータ314は、シーケンスセレクタ326によって処理され、BAS出力データ構造328によって受信されるデータに変換されてもよく、これは、向上した最適化シーケンスを提供して、チラープラントの全体的な動作効率を増加させるように意図されている制御命令330として、チラープラント304に送信されてもよい。
[0039]
外部アプリケーションイネーブル値が偽である場合、これは、手動またはBAS制御下でチラープラント304が動作するように設定されており、外部アプリケーション306から処理されたアプリケーションデータ314を必要としないことを、外部アプリケーション306に示す。このようなコンフィギュレーションでは、初期化データ311またはシーケンスセレクタ326によってアクセス可能な他のデフォルトデータは、処理され、次に、制御命令330をチラープラント304に提供するBAS出力データ構造328に送信されてもよい。
[0040]
外部アプリケーションを使用してチェックまたは他の方法で検証される所望の効率性でチラープラントがいったん動作すると、外部アプリケーション306は、アプリケーション制御シーケンス318内で、必要とされるチラー動作パラメータを分析し、決定し、その後、処理されたアプリケーションデータ314をBAS302に送信してもよく、これは、次に、外部アプリケーション306によって決定されると、所望の効率性または他の効率性でチラーを動作させるための制御命令330を提供する。同様に、リアルタイム動作データ322を受信することと、リアルタイム動作データ322を機器データ316に変換することとの後に、外部アプリケーション306は、新たな冷水温度設定ポイントを決定してもよい。外部アプリケーション306は、アプリケーションデータ314を介して、新たな冷水温度設定ポイントをBAS302に送る。前述のデータフローを利用して、制御命令330をチラー以外の他のコンポーネント、例えば、ボイラー、ファン、エアハンドリングユニット、可変風量ユニット、または、HVACシステムの他の任意の何らかのコンポーネントに提供してもよいと理解されるだろう。
[0041]
外部アプリケーション306とBAS302との間の通信の喪失がある場合、BAS302は、最後に供給されるアプリケーションデータ314を所望の時間期間保持してもよい。この所望の時間期間の後、BAS302は、通信が回復するまで、通常BAS制御シーケンス320に戻ってもよい。通信が回復した後に、および、ある追加の時間期間の後に、外部アプリケーション306を再度オンラインにして、新たなアプリケーションデータ314を生成してもよい。BAS302は、緩やかで効率的な方法で、通常BAS制御シーケンス320からアプリケーションデータ314の利用に円滑に移行するように構成されてもよい。
[0042]
ここで図4を参照すると、実施形態は、予測フリークーリングモジュール402を含む。モジュール402は、外部アプリケーション306からフリークーリングウィンドウデータとビルディングのロケーション400を受信する。モジュール402は、ビルディングのロケーション400を天気予報エンジン404にパスする。予報エンジン404は、例えばNOAAのような、第三者天気サービスによって提供されてもよい。予報エンジン404は、ビルディング400のロケーションに対して予め定められた時間期間にわたって天気予報を戻す。代替的に、天気予報は、モジュール402によって提供され、それ自体はモジュールがインターフェースされる天気センサを使用する。
[0043]
モジュール402は、エンジン404から受信した天気予報とフリークーリングウィンドウデータとに基づいて、フリークーリングウィンドウ利用可用性データを決定する。1つの実施形態では、天気予報形態エンジン404は、将来の期間(例えば、24時間から72時間の間)に対する乾球温度(標準温度)、相対湿度、気圧、および、湿球温度の予測を提供する。
[0044]
フリークーリング天気データは、(典型的に、華氏32度と50度との間で、取り付けによって構成可能であってもよい)湿球温度しきい値、(典型的に、華氏32度と50度との間で、取り付けによって構成可能であってもよい)乾球温度しきい値、(典型的に、1−24時間の間で、取り付けによって構成可能であってもよい)フリークーリングウィンドウからなってもよい。
[0045]
モジュール402は、湿球しきい値(または乾球しきい値;いずれかまたは両方が使用されてもよい)およびフリークーリングウィンドウのようなフリークーリングデータを予測された天気データに適用し、予測された湿球温度(または乾球しきい値:いずれか1つあるいは両方を並行して使用してもよい)が連続した時間期間について関係付けられているしきい値温度より低いか否かを決定してもよく、この連続時間量がフリークーリングウィンドウ期間を満たすまたは超える場合、「フリークーリングウィンドウ」は利用可能であると決定され、この連続時間量がフリークーリングウィンドウ期間と等しくないまたは超えない場合、「フリークーリングウィンドウ」は利用可能であると決定されない。
[0046]
例えば、湿球温度しきい値=華氏35度、乾球温度しきい値=華氏40度、フリークーリングウィンドウ期間=4時間であり、予測された天気データが午前1:00に湿球温度が華氏35.2度になり、乾球温度は華氏40.1度になると示す場合、「フリークーリングウィンドウ」は利用可能でないと決定される。午前2:00まで、湿球温度は華氏34.8度になり、乾球温度は華氏38度になり、午前7:32まで湿球温度および乾球温度は、それぞれのしきい値より低いままであり、湿球温度が華氏35.4度になり、乾球温度が華氏40.3度になるとき、この期間は4時間のフリークーリングウィンドウ期間を超え、したがって、午前2:00に開始し、午前7:32に終了する「フリークーリングウィンドウ」が利用可能であると決定される。
[0047]
モジュール402は、フリークーリングウィンドウ利用可能性データを外部アプリケーション306にパスし、フリークーリング条件が満たされる場合、外部アプリケーションに、チラーがディセーブルにされるまたは低電力状態にされるフリークーリングモードにチラープラント304を切り替えるように命令でき、冷却液(例えば、水)は周囲の大気にさらされる導管にルーティングされる。フリークーリングウィンドウが閉じると、モジュール402は、チラープラント304をフリークーリングモードから切り替えるように外部アプリケーション306にさらに命令でき、これにより、チラーを再起動する。
[0048]
フリークーリングウィンドウ利用可能性データは、ウェブページ406を介してユーザに表示されてもよい。モジュール402によって提供されるこの表示されるデータは、識別されたフリークーリングウィンドウの間、チラープラント304がフリークーリングモードで過去にどの程度動作したかとともに、フリークーリングモードでチラープラントによって費やした時間、予め定められた履歴時間範囲で利用可能なフリークーリングウィンドウの数、フリークーリングウィンドウの平均的長さのような他の性能インジケータを記述する情報をさらに含んでいてもよい。
[0049]
このデータはまた、直感的なダッシュボードビューを通してオペレータまたは顧客に表示されてもよい。
[0050]
ダッシュボードは以下を表示する:
[0051]
フリークーリングウィンドウ利用可能性ステータス
[0052]
フリークーリングウィンドウが利用可能な場合、「フリークーリングウィンドウ利用可能」を緑で表示
[0053]
フリークーリングウィンドウが利用不可能な場合、「フリークーリング利用不可能」をグレーで表示
[0054]
天気データステータスを示す
[0055]
ファイルが古い(24時間の間予報データがない)場合、「フリークーリング利用不可能、天気予報が古い」を表示
[0056]
ファイルが古くない場合、何も表示しない
[0057]
フリークーリングステータス
[0058]
フリークーリングが利用可能=YESおよびフリークーリングステータス=ONの場合;「フリークーリングがオン」をグレーで表示
[0059]
フリークーリングが利用可能=YESおよびフリークーリングステータス=OFFの場合;「フリークーリングがオフ」を赤で表示
[0060]
フリークーリングが利用可能=NOおよびフリークーリングステータス=OFFの場合;「フリークーリングがオフ」をグレーで表示
[0061]
フリークーリングが利用可能=NOおよびフリークーリングステータス=YESの場合;「フリークーリングがオフ」を赤で表示
[0062]
湿球温度
[0063]
湿球しきい値を表示(これは、傾向点になるだろう)
[0064]
現在のOAWBを表示
[0065]
フリークーリングウィンドウ期間
[0066]
必要とされるウィンドウは、最小時間量であり、フリークーリングを利用可能にするために、予報湿球はしきい値より低くなければならない
[0067]
必要とされる最小ウィンドウを表示(これは、傾向点になるだろう)
[0068]
残り時間を表示
[0069]
現在のウィンドウがある場合、ウィンドウに残っている時間を表示
[0070]
現在のウィンドウがない場合、「現在のウィンドウなし」を表示
[0071]
天気データが古い場合、「不明」を表示
[0072]
現在のフリークーリングウィンドウが将来72より多い場合、「72時間より多い」を表示
[0073]
フリークーリングウィンドウ利用可能性
[0074]
現在のウィンドウが開始:
[0075]
(古い天気データステータスに関係なく)アクティブなフリークーリングウィンドウがある場合、ウィンドウ開始日と時間を表示
[0076]
(古い天気データステータスに関係なく)現在のウィンドウがない場合、「現在のウィンドウがない」を表示
[0077]
次のウィンドウが利用可能:
[0078]
天気データが古い場合、「不明」を表示
[0079]
(現在のウィンドウではない)次の72時間に利用可能なフリークーリングウィンドウがある場合、ウィンドウ開始日と時間を表示
[0080]
現在のフリークーリングウィンドウが将来72より多い場合、「72時間より多い」を表示
[0081]
1つの実施形態では、外部アプリケーション306は、更新されたフリークーリングウィンドウデータをモジュール402に継続的または周期的に提供する。外部アプリケーション306によって提供されるこの情報は、このような情報(例えば、必要とされる負荷)は経時的に変化するので、モジュール402が更新されたフリークーリングウィンドウを計算できるようにする。
[0082]
さらに、および1つの実施形態では、外部アプリケーション306は、チラープラント304がフリークーリングモードで動作しているか否かをモジュール402に継続的または周期的に通知する。外部アプリケーション306によって提供されるこの情報は、チラープラント304が利用可能なフリークーリングウィンドウのすべての部分をどの程度効果的に活用したかをモジュール402が計算できるようにする。
[0083]
さらなる実施形態を提供するために、上記で説明したさまざまな実施形態を組み合わせることができる。米国特許第6,185,946,号とともに、この明細書中で参照されている上記の米国特許、特許出願および公報のすべては、参照によりその全体がここに組み込まれる。必要な場合、さまざまな特許、出願および公報の、デバイス、特徴、方法および概念を用いて、さらなる実施形態を提供するために、態様を修正することができる。
[0084]
発明の好ましい実施形態を図示し、説明してきたが、上記で着目したように、発明の精神および範囲から逸脱することなく、多くの変更を行うことができる。したがって、本発明の範囲は、好ましい実施形態の開示によって限定されない。代わりに、本発明は、次の特許請求の範囲を参照することによって完全に決定されるべきである。

Claims (18)

  1. 地理的ロケーション中のビルディングのための環境制御システムであって、
    前記ビルディングの環境態様をターゲットパラメータに変化させるように制御可能に構成されている暖房、換気および空調(HVAC)システムと、
    前記HVACシステムと通信し、および、前記ターゲットパラメータのうちの少なくとも1つを所望の値に調節可能に制御するように構成されているビルディングオートメーションシステム(BAS)と、
    前記ビルディングオートメーションシステムと通信し、および、前記ビルディングオートメーションシステムから受信した機器データを評価し、アプリケーション制御シーケンスを使用してアプリケーションデータを生成するために、前記機器データを処理するように構成されている外部アプリケーションと、前記外部アプリケーションは、前記ターゲットパラメータのうちの少なくとも1つの前記所望の値を達成するように、前記HVACシステムを制御するために前記アプリケーションデータを前記ビルディングオートメーションシステムに提供し、
    前記ビルディングオートメーションシステムと通信する少なくとも1つの処理デバイスによって実行されるとき、前記少なくとも1つの処理デバイスが、前記地理的ロケーションに対して予め定められた時間期間を通して天気予報を特徴付ける天気データを受信し、フリークーリングウィンドウデータを受信し、前記天気データとフリークーリングウィンドウデータとに基づいて、利用可能フリークーリング時間ウィンドウを決定し、前記利用可能フリークーリング時間ウィンドウを前記外部アプリケーションに提供できるようにする、命令を記憶した少なくとも1つのコンピュータ読取可能媒体と、を備えるシステム。
  2. 前記外部アプリケーションは、最適化された、エネルギー効率のよい方法で前記HVACシステムを動作させるようにさらに構成されている。請求項1に記載のシステム。
  3. 前記ビルディングオートメーションシステムは、通信障害の間、動作のデフォルトシーケンスに戻るようにさらに構成されている、請求項1に記載のシステム。
  4. 前記機器データは、前記HVACシステムによって前記ビルディングオートメーションシステムに最初に提供されたリアルタイム動作データを含む、請求項1に記載のシステム。
  5. 前記アプリケーションデータは、前記ビルディングオートメーションシステムによって前記外部アプリケーションから読み取った動作パラメータを含む、請求項1に記載のシステム。
  6. 前記動作パラメータは、前記HVACシステムから取得した動作限界を含む、請求項5に記載のシステム。
  7. 前記動作パラメータは、前記HVACシステムに関係付けられている安全限界を含む、請求項5に記載のシステム。
  8. 前記フリークーリングウィンドウデータは、前記地理的ロケーション中の周囲の大気に対するしきい値湿球温度値を備える、請求項1に記載のシステム。
  9. 前記フリークーリングウィンドウデータは、最小フリークーリングウィンドウ時間期間を表す数値を備える、請求項1に記載のシステム。
  10. 地理的ロケーション中のビルディングのための環境制御システムであって、前記ビルディングの環境態様をターゲットパラメータに変化させるように制御可能に構成されている暖房、換気および空調(HVAC)システム、および、前記HVACシステムと通信し、前記ターゲットパラメータのうちの少なくとも1つを所望の値に調節可能に制御するように構成されているビルディングオートメーションシステムを有し、前記システムは、
    前記ビルディングオートメーションシステムと通信し、および、前記ビルディングオートメーションシステムから受信した機器データを評価し、アプリケーション制御シーケンスを使用してアプリケーションデータを生成するために、前記機器データを処理するように構成されている外部アプリケーションと、前記外部アプリケーションは、前記ターゲットパラメータのうちの少なくとも1つの前記所望の値を達成するように、前記HVACシステムを制御するために前記アプリケーションデータを前記ビルディングオートメーションシステムに提供し、
    前記外部アプリケーションと通信する少なくとも1つの処理デバイスによって実行されるとき、前記少なくとも1つの処理デバイスが、前記地理的ロケーションに対して予め定められた時間期間を通して天気予報を特徴付ける天気データを受信し、フリークーリングウィンドウデータを受信し、前記天気データとフリークーリングウィンドウデータとに基づいて、利用可能フリークーリング時間ウィンドウを決定し、前記利用可能フリークーリング時間ウィンドウの間、前記HVACシステムがフリークーリングモードに入るように、前記外部アプリケーションに実行可能コマンドを発行できるようにする、命令を記憶した少なくとも1つのコンピュータ読取可能媒体と、を備えるシステム。
  11. 前記外部アプリケーションは、最適化された、エネルギー効率のよい方法で前記HVACシステムを動作するようにさらに構成されている。請求項10に記載のシステム。
  12. 前記ビルディングオートメーションシステムは、通信障害の間、動作のデフォルトシーケンスに戻るようにさらに構成されている、請求項10に記載のシステム。
  13. 前記機器データは、前記HVACシステムによって前記ビルディングオートメーションシステムに最初に提供されたリアルタイム動作データを含む、請求項10に記載のシステム。
  14. 前記アプリケーションデータは、前記ビルディングオートメーションシステムによって前記外部アプリケーションから読み取った動作パラメータを含む、請求項10に記載のシステム。
  15. 前記動作パラメータは、前記HVACシステムから取得した動作限界を含む、請求項14に記載のシステム。
  16. 前記動作パラメータは、前記HVACシステムに関係付けられている安全限界を含む、請求項14に記載のシステム。
  17. 前記フリークーリングウィンドウデータは、前記地理的ロケーション中の周囲の大気に対するしきい値湿球温度値を備える、請求項10に記載のシステム。
  18. 前記フリークーリングウィンドウデータは、最小フリークーリングウィンドウ時間期間を表す数値を備える、請求項10に記載のシステム。
JP2018536852A 2016-01-12 2017-01-12 予測フリークーリング Active JP7009372B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662277883P 2016-01-12 2016-01-12
US62/277,883 2016-01-12
PCT/US2017/013254 WO2017123810A1 (en) 2016-01-12 2017-01-12 Predictive free cooling

Publications (2)

Publication Number Publication Date
JP2019507305A true JP2019507305A (ja) 2019-03-14
JP7009372B2 JP7009372B2 (ja) 2022-01-25

Family

ID=59275545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018536852A Active JP7009372B2 (ja) 2016-01-12 2017-01-12 予測フリークーリング

Country Status (7)

Country Link
US (1) US11294343B2 (ja)
EP (1) EP3403151A4 (ja)
JP (1) JP7009372B2 (ja)
KR (1) KR20180100230A (ja)
CN (1) CN108700871A (ja)
CA (1) CA3011094A1 (ja)
WO (1) WO2017123810A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10386820B2 (en) 2014-05-01 2019-08-20 Johnson Controls Technology Company Incorporating a demand charge in central plant optimization
US9986664B1 (en) * 2014-12-01 2018-05-29 Amazon Technologies, Inc. Variable time delay on datacenter pod direct cooling
SG11201807975UA (en) 2016-03-16 2018-10-30 Inertech Ip Llc System and methods utilizing fluid coolers and chillers to perform in-series heat rejection and trim cooling
US9982903B1 (en) 2017-01-20 2018-05-29 Johnson Controls Technology Company HVAC system with predictive free cooling control based on the cost of transitioning into a free cooling state
US10605477B2 (en) 2017-01-20 2020-03-31 Johnson Controls Technology Company HVAC system with free cooling optimization based on coolant flowrate
CN108917111A (zh) * 2018-07-25 2018-11-30 奥克斯空调股份有限公司 一种智能空调器及其控制方法
CN110442170B (zh) * 2019-07-03 2022-05-27 平安科技(深圳)有限公司 设备运行及监测方法、装置、设备及介质

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08114347A (ja) * 1994-10-18 1996-05-07 Yamatake Honeywell Co Ltd フリークーリング管理装置
US6202429B1 (en) * 1996-03-05 2001-03-20 Phoenix Manufacturing Inc. Heating and cooling unit
JP2008082641A (ja) * 2006-09-28 2008-04-10 Shimizu Corp 蓄熱槽熱源システムの制御装置及び制御方法
JP2008170131A (ja) * 2007-01-15 2008-07-24 Hitachi Plant Technologies Ltd 空調システム
US20110054698A1 (en) * 2009-09-02 2011-03-03 Optimum Energy, Llc Environmental control for hvac system
JP2012184864A (ja) * 2011-03-03 2012-09-27 Fuji Electric Co Ltd 空調システム、その制御装置、プログラム
JP2012190442A (ja) * 2011-03-10 2012-10-04 Internatl Business Mach Corp <Ibm> データ・センタの効率分析及び最適化のための方法、システム、コンピュータ・プログラム
US20130124003A1 (en) * 2011-11-10 2013-05-16 International Business Machines Corporation Optimizing Free Cooling Of Data Centers Through Weather-Based Intelligent Control
JP2013178097A (ja) * 2013-06-26 2013-09-09 Dai-Dan Co Ltd 熱源システム
US20140316583A1 (en) * 2013-04-18 2014-10-23 Level 3 Communications, Llc Systems and methods for optimizing the efficiency of hvac systems
WO2016013487A1 (ja) * 2014-07-23 2016-01-28 ダイキン工業株式会社 室温調整システム

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5535814A (en) 1995-09-22 1996-07-16 Hartman; Thomas B. Self-balancing variable air volume heating and cooling system
US5725148A (en) 1996-01-16 1998-03-10 Hartman; Thomas B. Individual workspace environmental control
US6079626A (en) 1996-01-16 2000-06-27 Hartman; Thomas B. Terminal unit with active diffuser
US5946926A (en) 1998-04-07 1999-09-07 Hartman; Thomas B. Variable flow chilled fluid cooling system
US6257007B1 (en) 1998-11-19 2001-07-10 Thomas Hartman Method of control of cooling system condenser fans and cooling tower fans and pumps
US6185946B1 (en) 1999-05-07 2001-02-13 Thomas B. Hartman System for sequencing chillers in a loop cooling plant and other systems that employ all variable-speed units
US6352106B1 (en) 1999-05-07 2002-03-05 Thomas B. Hartman High-efficiency pumping and distribution system incorporating a self-balancing, modulating control valve
EP1279902A3 (en) 2001-07-25 2004-10-13 Lg Electronics Inc. Apparatus and method for controlling operation of air conditioner
JP4337391B2 (ja) 2003-04-28 2009-09-30 ダイキン工業株式会社 空調制御装置、空調制御プログラム、空調制御方法、および空調制御システム
US7083109B2 (en) 2003-08-18 2006-08-01 Honeywell International Inc. Thermostat having modulated and non-modulated provisions
US7894943B2 (en) 2005-06-30 2011-02-22 Sloup Charles J Real-time global optimization of building setpoints and sequence of operation
US8050801B2 (en) 2005-08-22 2011-11-01 Trane International Inc. Dynamically extensible and automatically configurable building automation system and architecture
US7870090B2 (en) * 2005-08-22 2011-01-11 Trane International Inc. Building automation system date management
US7956719B2 (en) 2005-09-29 2011-06-07 Siemens Industry Inc. Building control system communication system timing measurement arrangement and method
US8818563B2 (en) 2005-10-14 2014-08-26 Siemens Aktiengesellschaft System for controlling room temperature in a building using a free energy source, an additional energy source, and predictive control
US7890215B2 (en) 2006-12-22 2011-02-15 Duncan Scot M Optimized control system for cooling systems
US20090065596A1 (en) 2007-05-09 2009-03-12 Johnson Controls Technology Company Systems and methods for increasing building space comfort using wireless devices
US8543244B2 (en) 2008-12-19 2013-09-24 Oliver Joe Keeling Heating and cooling control methods and systems
US8141374B2 (en) * 2008-12-22 2012-03-27 Amazon Technologies, Inc. Multi-mode cooling system and method with evaporative cooling
US8291720B2 (en) 2009-02-02 2012-10-23 Optimum Energy, Llc Sequencing of variable speed compressors in a chilled liquid cooling system for improved energy efficiency
WO2011079229A2 (en) 2009-12-23 2011-06-30 AEA Integration System and method for automated building services design
US9476649B2 (en) 2011-09-23 2016-10-25 R4 Ventures Llc Real-time individual electronic enclosure cooling system
AU2011384046A1 (en) * 2011-12-22 2014-07-17 Schneider Electric It Corporation Analysis of effect of transient events on temperature in a data center
US20130345882A1 (en) * 2011-12-22 2013-12-26 Steven David Dushane Programmable environmental comfort controller
WO2013110164A1 (en) 2012-01-26 2013-08-01 S. A. Armstrong Limited Method and system for prioritizing a plurality of variable speed devices
US9310092B2 (en) 2012-11-27 2016-04-12 International Business Machines Corporation Analytics for optimizing usage of cooling subsystems
EP2932342B1 (en) 2012-12-12 2021-05-19 S. A. Armstrong Limited Co-ordinated sensorless control system
DE102013111053A1 (de) * 2013-01-18 2014-07-24 Rittal Gmbh & Co. Kg Verfahren zum Klimatisieren einer IT-Umgebung bzw. einer Umgebung, die Wärmeerzeuger enthält
US9476657B1 (en) * 2013-03-13 2016-10-25 Google Inc. Controlling data center cooling systems
US9423146B2 (en) * 2013-03-14 2016-08-23 Bradley Steve Bruce HVAC controller having integrated comfort window display
MX2015012279A (es) * 2013-03-15 2016-04-15 Pacecontrols Llc Controlador para control automatico de equipo de calefaccion, ventilacion, y aire acondicionado (hvac&r) en ciclo de trabajo, y sistemas y metodos que usan el mismo.
US9494334B2 (en) 2013-03-15 2016-11-15 Transformative Wave Technologies Llc Method of advanced digital economization
US10387581B2 (en) * 2013-09-05 2019-08-20 Greensleeves, LLC System for optimization of building heating and cooling systems
US9970675B2 (en) * 2013-11-04 2018-05-15 Honeywell International Inc. Remote building monitoring system with contractor locator
US10605474B2 (en) * 2015-07-30 2020-03-31 Encycle Corporation Smart thermostat orchestration
US10094586B2 (en) 2015-04-20 2018-10-09 Green Power Labs Inc. Predictive building control system and method for optimizing energy use and thermal comfort for a building or network of buildings
US10180261B1 (en) * 2015-12-28 2019-01-15 Amazon Technologies, Inc. Model based cooling control system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08114347A (ja) * 1994-10-18 1996-05-07 Yamatake Honeywell Co Ltd フリークーリング管理装置
US6202429B1 (en) * 1996-03-05 2001-03-20 Phoenix Manufacturing Inc. Heating and cooling unit
JP2008082641A (ja) * 2006-09-28 2008-04-10 Shimizu Corp 蓄熱槽熱源システムの制御装置及び制御方法
JP2008170131A (ja) * 2007-01-15 2008-07-24 Hitachi Plant Technologies Ltd 空調システム
US20110054698A1 (en) * 2009-09-02 2011-03-03 Optimum Energy, Llc Environmental control for hvac system
JP2012184864A (ja) * 2011-03-03 2012-09-27 Fuji Electric Co Ltd 空調システム、その制御装置、プログラム
JP2012190442A (ja) * 2011-03-10 2012-10-04 Internatl Business Mach Corp <Ibm> データ・センタの効率分析及び最適化のための方法、システム、コンピュータ・プログラム
US20130124003A1 (en) * 2011-11-10 2013-05-16 International Business Machines Corporation Optimizing Free Cooling Of Data Centers Through Weather-Based Intelligent Control
US20140316583A1 (en) * 2013-04-18 2014-10-23 Level 3 Communications, Llc Systems and methods for optimizing the efficiency of hvac systems
JP2013178097A (ja) * 2013-06-26 2013-09-09 Dai-Dan Co Ltd 熱源システム
WO2016013487A1 (ja) * 2014-07-23 2016-01-28 ダイキン工業株式会社 室温調整システム

Also Published As

Publication number Publication date
KR20180100230A (ko) 2018-09-07
CN108700871A (zh) 2018-10-23
CA3011094A1 (en) 2017-07-20
EP3403151A1 (en) 2018-11-21
US20170198933A1 (en) 2017-07-13
EP3403151A4 (en) 2019-12-25
US11294343B2 (en) 2022-04-05
WO2017123810A1 (en) 2017-07-20
JP7009372B2 (ja) 2022-01-25

Similar Documents

Publication Publication Date Title
JP7009372B2 (ja) 予測フリークーリング
US20170241661A1 (en) Predictive free cooling
US11438189B2 (en) Environmental control for HVAC system
US9714771B1 (en) Dynamically programmable thermostat
EP2868991B1 (en) Heat recovery plant control device, heat recovery plant system comprising such a control device, and heat recovery plant control method
EP3193510B1 (en) Control device, system and control method therefor
CN111594984A (zh) 一种中央空调全链路协调控制系统及控制方法
US20160054016A1 (en) Ventilation control device, ventilation system, and program
US20190293318A1 (en) Prognostics system and method for hvac system comfort failure forecasting
JP5136403B2 (ja) 設備機器制御システム
KR101577218B1 (ko) 모바일 클라우드 환경의 냉난방공조 제어 시스템
CN110651156A (zh) 预测性自由冷却
US10274228B2 (en) Packaged HVAC unit with secondary system capability
CA3011094C (en) Predictive free cooling
JP5131185B2 (ja) 設備機器制御システム
US11566806B2 (en) Humidity analytics
JP6279242B2 (ja) 空調システム及び空調システムの制御方法
CN115523644B (zh) 控制空调系统的主机的方法、设备和存储介质
CN114110957B (zh) 风频联动控制方法、装置、空调器及存储介质
US20230358424A1 (en) Operation of environmental control system during thermostat failure
CN117515782A (zh) 一种控制空调设备智能运行的方法及装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220112

R150 Certificate of patent or registration of utility model

Ref document number: 7009372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150