JP2019207767A - Manufacturing method of power storage device - Google Patents

Manufacturing method of power storage device Download PDF

Info

Publication number
JP2019207767A
JP2019207767A JP2018101528A JP2018101528A JP2019207767A JP 2019207767 A JP2019207767 A JP 2019207767A JP 2018101528 A JP2018101528 A JP 2018101528A JP 2018101528 A JP2018101528 A JP 2018101528A JP 2019207767 A JP2019207767 A JP 2019207767A
Authority
JP
Japan
Prior art keywords
tab
tab group
protective member
terminal
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018101528A
Other languages
Japanese (ja)
Inventor
康寿 松浦
Yasuhisa Matsuura
康寿 松浦
木下 恭一
Kyoichi Kinoshita
恭一 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2018101528A priority Critical patent/JP2019207767A/en
Publication of JP2019207767A publication Critical patent/JP2019207767A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

To provide a manufacturing method of power storage device capable of shortening the time required for weldment process, while restraining occurrence of poor weld.SOLUTION: A protective member 40 is used for manufacturing a secondary cell. Assuming the direction of laminating tabs 26 constituting a tab group 15 as the lamination direction of the tabs 26, the protective member 40 has multiple holes 41 penetrating in the lamination direction of the tabs 26. A manufacturing method of secondary cell includes an arrangement step of arranging the tab group 15 between a conductive member 17, i.e., a part of terminal structure, and the protective member 40, and a weldment step of forming a weld zone 45 while pressing the protective member 40 toward the tab group 15. In the weldment step, the tab group 15 is irradiated with laser by a laser irradiation device 70 from the protective member 40 side, and the laser irradiation device 70 is moved across multiple holes 41.SELECTED DRAWING: Figure 4

Description

本発明は、タブ群と導電部材との溶接部を有する蓄電装置の製造方法に関する。   The present invention relates to a method for manufacturing a power storage device having a welded portion between a tab group and a conductive member.

従来から、EV(Electric Vehicle)やPHV(Plug in Hybrid Vehicle)などの車両には、電動機などへの供給電力を蓄える蓄電装置としてリチウムイオン二次電池やニッケル水素二次電池などが搭載されている。特許文献1に開示の二次電池は、複数の電極が積層され、かつ電極の一縁部から突出したタブが積層されたタブ群を有する電極組立体と、電極組立体と外部装置とを接続する端子構造と、タブ群に重ねて配置された平板状の保護部材とを備える。保護部材の厚みは、タブよりも厚い。保護部材の材料は、例えば、タブと同種の金属である。タブ群は、端子構造の一部である導電部材と保護部材との間に位置する。タブ群を構成する複数のタブのうち、積層方向の一端に位置するタブは導電部材と対向し、積層方向の他端に位置するタブは保護部材と対向する。二次電池は、タブ群と導電部材と保護部材とが溶接された溶接部を備える。   Conventionally, vehicles such as EVs (Electric Vehicles) and PHVs (Plug in Hybrid Vehicles) have been mounted with lithium-ion secondary batteries or nickel-hydrogen secondary batteries as power storage devices that store power supplied to electric motors and the like. . The secondary battery disclosed in Patent Literature 1 connects an electrode assembly having a tab group in which a plurality of electrodes are stacked and tabs protruding from one edge of the electrode are stacked, and the electrode assembly and an external device. And a flat plate-shaped protective member disposed on the tab group. The protective member is thicker than the tab. The material of the protection member is, for example, the same kind of metal as the tab. The tab group is located between the conductive member and the protective member which are part of the terminal structure. Of the plurality of tabs constituting the tab group, the tab positioned at one end in the stacking direction faces the conductive member, and the tab positioned at the other end in the stacking direction faces the protective member. The secondary battery includes a welded portion in which a tab group, a conductive member, and a protective member are welded.

このような二次電池の製造方法は、タブ群と導電部材と保護部材とを溶接する溶接工程を含む。溶接工程は、例えば、レーザ照射装置により、積層方向の他端側からタブ群に向けてレーザを照射することで行われる。溶接工程では、レーザを照射する前準備として、治具によって保護部材をタブ群に向けて押圧し、タブ群を構成するタブ同士を密着させた状態とする。レーザは、治具が保護部材を介してタブ群を押圧した状態で照射される。保護部材が無いと、積層方向の他端に位置するタブは熱収縮によって他のタブから浮き上がり、浮き上がったタブと他のタブとの間に隙間ができることで、タブ同士の溶接不良が発生することがある。保護部材は、積層方向の他端に位置するタブの浮き上がりを規制する。これにより、タブ群を構成するタブ同士が密接した状態で溶接工程が行われるため、タブ同士の溶接不良の発生が抑制される。   Such a method for manufacturing a secondary battery includes a welding step of welding the tab group, the conductive member, and the protective member. A welding process is performed by irradiating a laser toward a tab group from the other end side of a lamination direction with a laser irradiation apparatus, for example. In the welding process, as a preparation for laser irradiation, the protective member is pressed against the tab group by a jig so that the tabs constituting the tab group are brought into close contact with each other. The laser is irradiated in a state where the jig presses the tab group via the protective member. Without a protective member, the tab located at the other end in the stacking direction floats from the other tabs due to heat shrinkage, and there is a gap between the raised tab and the other tab, resulting in poor welding between the tabs. There is. The protective member regulates the lifting of the tab located at the other end in the stacking direction. Thereby, since a welding process is performed in the state which the tabs which comprise a tab group closely_contact | adhere, generation | occurrence | production of the welding defect of tabs is suppressed.

特開2016−219274号公報JP-A-2006-219274

しかしながら、保護部材を用いた溶接工程では、保護部材を用いない溶接工程と比較して、保護部材を溶融させる分、溶接工程に要する時間が長くなる。溶接工程に要する時間が長くなると、二次電池の生産効率が低下するため、好ましくない。保護部材の厚みを薄くすれば溶接工程に要する時間を短縮できるが、保護部材の厚みを薄くしすぎると、保護部材がタブ群を導電部材に向けて押圧する力が不足する。すると、タブ群と導電部材とが溶接されず、タブ群と導電部材との溶接不良が発生することがある。   However, in the welding process using the protection member, the time required for the welding process becomes longer as the protection member is melted compared to the welding process not using the protection member. If the time required for the welding process becomes long, the production efficiency of the secondary battery is lowered, which is not preferable. If the thickness of the protective member is reduced, the time required for the welding process can be shortened. However, if the thickness of the protective member is made too thin, the force with which the protective member presses the tab group toward the conductive member is insufficient. Then, the tab group and the conductive member are not welded, and poor welding between the tab group and the conductive member may occur.

本発明は、上記課題を解決するためになされたものであり、その目的は、溶接不良の発生を抑制できるとともに、溶接工程に要する時間を短縮できる蓄電装置の製造方法を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method of manufacturing a power storage device that can suppress the occurrence of poor welding and reduce the time required for the welding process.

上記問題点を解決するための蓄電装置の製造方法は、複数の電極が積層され、かつ前記電極の一縁部から突出したタブが積層されたタブ群を有する電極組立体と、前記電極組立体と外部装置とを接続する端子構造と、前記タブ群と前記端子構造とが重ねられた状態でレーザ溶接された溶接部と、を備えた蓄電装置の製造方法であって、前記タブ群を構成する前記タブが積層された方向をタブの積層方向としたとき、前記タブの積層方向に貫通する孔を複数有する保護部材が用いられ、前記端子構造と前記保護部材との間に前記タブ群を配置する配置工程と、前記保護部材を前記タブ群に向けて押圧しつつ前記溶接部を形成する溶接工程と、を含み、前記溶接工程において、レーザ照射装置により、前記保護部材側から前記タブ群に向けてレーザを照射するとともに、前記レーザ照射装置を前記複数の孔を跨ぐように移動させることを要旨とする。   A method of manufacturing a power storage device for solving the above problems includes an electrode assembly having a tab group in which a plurality of electrodes are stacked and tabs protruding from one edge of the electrode are stacked, and the electrode assembly And a welding part laser-welded in a state where the tab group and the terminal structure are overlapped with each other, and the tab group is configured When the direction in which the tabs are stacked is defined as the tab stacking direction, a protection member having a plurality of holes penetrating in the tab stacking direction is used, and the tab group is disposed between the terminal structure and the protection member. An arrangement step of arranging, and a welding step of forming the welded portion while pressing the protective member toward the tab group. In the welding step, the tab group from the protective member side by a laser irradiation device. Leh towards Irradiates a and summarized in that moving the laser irradiation device so as to straddle the plurality of holes.

これによれば、保護部材において孔が形成された部分では、レーザ照射装置から照射されたレーザは、孔を通過してタブ群まで到達する。タブ群は、保護部材の孔から露出した部分から溶融し始めるため、保護部材を溶融させることなく溶接部を形成できる。よって、孔の無い保護部材を用いて溶接工程を行う場合と比較して、溶接工程に要する時間を短縮できる。   According to this, in the part where the hole is formed in the protection member, the laser irradiated from the laser irradiation device passes through the hole and reaches the tab group. Since the tab group starts to melt from the portion exposed from the hole of the protective member, the welded portion can be formed without melting the protective member. Therefore, compared with the case where a welding process is performed using a protective member without a hole, the time required for the welding process can be shortened.

また、保護部材を用いずに溶接を行う場合、従来では、タブ群における溶接部が形成される部分よりも外側の部分を治具等により押圧しつつレーザを照射していた。このとき、タブ群において、治具が押圧する部分は、レーザが照射される部分の近傍であるのが好ましい。しかしながら、溶接部は、ライン状又は面状に形成されるため、部位によっては、治具とレーザ照射装置とが干渉する等の要因により、治具が押圧する部分をレーザが照射される部分に近付けられないことがある。この場合、溶接部が形成される部分全体に亘ってタブの浮き上がりが規制されるようにタブ群を押圧するのが困難であった。保護部材を用いた場合、孔が形成されていない部分は孔と隣接しているため、孔が形成されていない部分全体によって、タブ群におけるレーザが照射される部分の近傍を押圧することができる。よって、保護部材を用いることにより、タブ群における溶接部が形成される部分全体に亘って、タブの浮き上がりを規制できる。その結果、タブ同士の溶接不良を抑制できる。また、保護部材において孔が形成されていない部分を溶融させる必要が無いため、タブ群を押圧するための十分な強度を保護部材に持たせるために、保護部材の厚みを厚くできる。よって、保護部材により、タブ群を導電部材に向けて十分押圧できる。その結果、タブ群と導電部材との溶接不良を抑制できる。   Further, when welding is performed without using a protective member, conventionally, laser irradiation is performed while pressing a portion of the tab group outside the portion where the welded portion is formed with a jig or the like. At this time, in the tab group, the portion pressed by the jig is preferably in the vicinity of the portion irradiated with the laser. However, since the welded portion is formed in a line shape or a surface shape, depending on the part, the portion pressed by the jig is changed to the portion irradiated with the laser due to factors such as interference between the jig and the laser irradiation device. There are times when it cannot be approached. In this case, it has been difficult to press the tab group so that the lifting of the tab is restricted over the entire portion where the weld is formed. When the protective member is used, since the portion where the hole is not formed is adjacent to the hole, the entire portion where the hole is not formed can press the vicinity of the portion irradiated with the laser in the tab group. . Therefore, by using the protective member, it is possible to regulate the lifting of the tab over the entire portion of the tab group where the welded portion is formed. As a result, poor welding between the tabs can be suppressed. Moreover, since it is not necessary to melt the part in which the hole is not formed in the protection member, the thickness of the protection member can be increased in order to give the protection member sufficient strength for pressing the tab group. Therefore, the tab group can be sufficiently pressed toward the conductive member by the protective member. As a result, poor welding between the tab group and the conductive member can be suppressed.

また、上記蓄電装置の製造方法について、前記端子構造は、前記溶接部が形成される板状の導電部材と、前記導電部材に接続され、前記蓄電装置の内外を接続する引出端子とを備え、前記保護部材は、三次元構造をなすのが好ましい。   Further, with respect to the method for manufacturing the power storage device, the terminal structure includes a plate-like conductive member on which the weld is formed, and a lead terminal connected to the conductive member and connecting the inside and outside of the power storage device, The protective member preferably has a three-dimensional structure.

これによれば、タブの積層方向に対する保護部材の剛性は、保護部材が三次元構造をなしていない場合よりも高い。よって、保護部材をタブ群に向けて押圧した際の保護部材の変形を抑制できる。   According to this, the rigidity of the protection member with respect to the stacking direction of the tabs is higher than when the protection member does not have a three-dimensional structure. Therefore, deformation of the protective member when the protective member is pressed toward the tab group can be suppressed.

また、上記蓄電装置の製造方法について、前記溶接工程後に、前記保護部材を除去する除去工程を含むのが好ましい。
これによれば、保護部材を繰り返し使用することができる。
Moreover, it is preferable that the manufacturing method of the said electrical storage apparatus includes the removal process which removes the said protection member after the said welding process.
According to this, the protective member can be used repeatedly.

また、上記蓄電装置の製造方法について、前記溶接工程において、前記保護部材は、前記タブ群及び前記端子構造とともに溶接され、前記タブ群に溶接された前記保護部材と、前記タブ群を有する前記電極組立体のタブ側端面との間に絶縁部材を挿入する取付工程を有し、前記取付工程において、前記絶縁部材が前記保護部材に接触した際に、前記保護部材は前記タブの積層方向に弾性変形するのが好ましい。   Moreover, about the manufacturing method of the said electrical storage apparatus, in the said welding process, the said protection member is welded with the said tab group and the said terminal structure, the said protection member welded to the said tab group, and the said electrode which has the said tab group An attaching step of inserting an insulating member between the tab side end surface of the assembly, and when the insulating member comes into contact with the protective member in the attaching step, the protective member is elastic in the stacking direction of the tabs; It is preferable to deform.

これによれば、取付工程において、絶縁部材が保護部材に接触することがあるが、保護部材は、タブの積層方向に弾性変形する。よって、絶縁部材の挿入が妨げられない。
また、上記蓄電装置の製造方法について、前記保護部材には、エキスパンドメタルが用いられるのが好ましい。
According to this, in an attachment process, although an insulating member may contact a protection member, a protection member elastically deforms in the lamination direction of a tab. Therefore, the insertion of the insulating member is not hindered.
In the method for manufacturing the power storage device, it is preferable that expanded metal is used for the protective member.

これによれば、例えば、山と谷が繰り返されるフィンに複数の貫通孔を形成した板状部材を保護部材とする場合と比較して、保護部材のコストを下げることができる。   According to this, the cost of a protection member can be reduced compared with the case where the plate-shaped member which formed the several through-hole in the fin with which a peak and a trough are repeated is made into a protection member, for example.

本発明によれば、溶接不良の発生を抑制できるとともに、溶接工程に要する時間を短縮できる。   According to the present invention, it is possible to suppress the occurrence of poor welding and shorten the time required for the welding process.

実施形態の二次電池の分解斜視図。The disassembled perspective view of the secondary battery of embodiment. 二次電池の断面図。Sectional drawing of a secondary battery. (a)は配置工程を示す斜視図、(b)は(a)の部分拡大図。(A) is a perspective view which shows an arrangement | positioning process, (b) is the elements on larger scale of (a). 溶接工程におけるタブ群及び導電部材の溶融状態を示す断面図。Sectional drawing which shows the molten state of the tab group and conductive member in a welding process. 溶接部の断面金属組織を顕微鏡観察した図。The figure which observed the cross-sectional metal structure of the welding part under the microscope. 二次電池の別例を示す断面図。Sectional drawing which shows another example of a secondary battery.

以下、蓄電装置の製造方法を二次電池の製造方法に具体化した一実施形態を図1〜図5にしたがって説明する。
図1に示すように、蓄電装置としての二次電池10は、ケース11と、ケース11に収容された電極組立体12とを備える。ケース11は、直方体状のケース本体13と、ケース本体13の開口部13aを閉塞する矩形平板状の蓋14とを有する。蓋14において、ケース11の内側に臨む面を内面14aとし、ケース11の外側に臨む面を外面14bとする。ケース11を構成するケース本体13と蓋14は、何れも金属製(例えば、ステンレスやアルミニウム)である。また、本実施形態の二次電池10は、その外観が角型をなす角型電池である。また、本実施形態の二次電池10は、リチウムイオン電池である。
Hereinafter, an embodiment in which a method for manufacturing a power storage device is embodied in a method for manufacturing a secondary battery will be described with reference to FIGS.
As shown in FIG. 1, a secondary battery 10 as a power storage device includes a case 11 and an electrode assembly 12 accommodated in the case 11. The case 11 includes a rectangular parallelepiped case main body 13 and a rectangular flat lid 14 that closes the opening 13 a of the case main body 13. In the lid 14, a surface facing the inner side of the case 11 is an inner surface 14 a, and a surface facing the outer side of the case 11 is an outer surface 14 b. Both the case main body 13 and the lid 14 constituting the case 11 are made of metal (for example, stainless steel or aluminum). Further, the secondary battery 10 of the present embodiment is a prismatic battery whose appearance is square. Further, the secondary battery 10 of the present embodiment is a lithium ion battery.

図2に示すように、電極組立体12は、複数の正極電極21と負極電極22とセパレータ23とを備える。電極組立体12は、正極電極21と負極電極22との間にセパレータ23を介在させ、かつ相互に絶縁させた状態で積層した層状構造を有する。正極電極21と負極電極22とが積層された方向を積層方向とする。   As shown in FIG. 2, the electrode assembly 12 includes a plurality of positive electrodes 21, negative electrodes 22, and separators 23. The electrode assembly 12 has a layered structure in which separators 23 are interposed between the positive electrode 21 and the negative electrode 22 and are laminated in a mutually insulated state. The direction in which the positive electrode 21 and the negative electrode 22 are stacked is defined as a stacking direction.

正極電極21は、矩形シート状の正極金属箔24と、正極金属箔24の両面に存在する正極活物質層25とを有する。本実施形態の正極金属箔24の材料は、アルミニウム(融点:約660度)である。正極電極21は、一対の長辺に沿う縁部のうちの一方の縁部にタブ側縁部21aを備える。正極電極21は、タブ側縁部21aの一部から突出した矩形状の正極のタブ26を有する。正極のタブ26は、正極活物質層25が存在せず、正極金属箔24そのもので構成されている。負極電極22は、矩形シート状の負極金属箔27と、負極金属箔27の両面に存在する負極活物質層28とを有する。本実施形態の負極金属箔27の材料は、銅(融点:約1085度)である。負極電極22は、一対の長辺に沿う縁部のうちの一方の縁部にタブ側縁部22aを備える。負極電極22は、タブ側縁部22aの一部から突出した矩形状の負極のタブ26を有する。負極のタブ26は、負極活物質層28が存在せず、負極金属箔27そのもので構成されている。セパレータ23は、矩形シート状の絶縁性材料からなる。セパレータ23は、正極電極21と負極電極22とを絶縁する。   The positive electrode 21 has a rectangular sheet-like positive electrode metal foil 24 and a positive electrode active material layer 25 present on both surfaces of the positive electrode metal foil 24. The material of the positive electrode metal foil 24 of the present embodiment is aluminum (melting point: about 660 degrees). The positive electrode 21 includes a tab side edge portion 21a at one edge portion of the edge portions along the pair of long sides. The positive electrode 21 has a rectangular positive electrode tab 26 protruding from a part of the tab side edge 21a. The positive electrode tab 26 is formed of the positive electrode metal foil 24 itself without the positive electrode active material layer 25. The negative electrode 22 includes a rectangular sheet-like negative electrode metal foil 27 and negative electrode active material layers 28 present on both sides of the negative electrode metal foil 27. The material of the negative electrode metal foil 27 of the present embodiment is copper (melting point: about 1085 degrees). The negative electrode 22 includes a tab side edge portion 22a on one edge portion of the edge portions along the pair of long sides. The negative electrode 22 has a rectangular negative electrode tab 26 protruding from a part of the tab side edge 22a. The negative electrode tab 26 is composed of the negative electrode metal foil 27 itself without the negative electrode active material layer 28. The separator 23 is made of a rectangular sheet-like insulating material. The separator 23 insulates the positive electrode 21 and the negative electrode 22 from each other.

電極組立体12は、各正極電極21の正極のタブ26が積層方向の一端側に寄せ集められ積層された正極のタブ群15と、各負極電極22の負極のタブ26が積層方向の一端側に寄せ集められ積層された負極のタブ群15とを備える。正極のタブ群15と負極のタブ群15とは、タブ側縁部21a,22aに沿う方向において間隔を置いて並べて配置されている。電極組立体12は、正極のタブ群15及び負極のタブ群15が存在する端面にタブ側端面12aを有する。   The electrode assembly 12 includes a positive electrode tab group 15 in which the positive electrode tabs 26 of the positive electrode electrodes 21 are gathered and stacked on one end side in the stacking direction, and the negative electrode tab 26 of each negative electrode electrode 22 on one end side in the stacking direction. And a negative electrode tab group 15 stacked together. The positive electrode tab group 15 and the negative electrode tab group 15 are arranged side by side at intervals in the direction along the tab side edge portions 21a and 22a. The electrode assembly 12 has a tab-side end surface 12a on an end surface where the positive electrode tab group 15 and the negative electrode tab group 15 are present.

図1に示すように、正極のタブ群15には、電極組立体12と後述の正極の端子構造16の一部である矩形板状の導電部材17が接合されている。また、負極のタブ群15には、電極組立体12と後述の負極の端子構造16の一部である矩形板状の導電部材17が接合されている。各導電部材17は、蓋14の内面14aに沿うようにして、蓋14の内面14aと電極組立体12のタブ側端面12aとの間に配置されている。   As shown in FIG. 1, a positive electrode tab group 15 is joined with a rectangular plate-like conductive member 17 that is a part of a positive electrode terminal structure 16 described later and an electrode assembly 12. Further, the negative electrode tab group 15 is joined with a rectangular plate-like conductive member 17 which is a part of the electrode assembly 12 and a later-described negative electrode terminal structure 16. Each conductive member 17 is disposed between the inner surface 14 a of the lid 14 and the tab side end surface 12 a of the electrode assembly 12 along the inner surface 14 a of the lid 14.

各導電部材17の長手は、蓋14の長手方向へ延びるクランク状であり、各導電部材17の短手は、積層方向へ延びる。各導電部材17の長手方向の端部において、蓋14の長手方向の中央寄りの端部を一端部とし、蓋14の短縁部側に位置する端部を他端部とする。正極の導電部材17は、長手方向の一端部に正極のタブ群15と接合された電極接合部17aを備え、長手方向の他端部に正極の端子構造16の一部である引出端子31と接合された端子接合部17bを備える。同様に、負極の導電部材17は、長手方向の一端部に負極のタブ群15と接合された電極接合部17aを備え、長手方向の他端部に負極の端子構造16の一部である引出端子31と接合された端子接合部17bを備える。各導電部材17の電極接合部17aと蓋14の内面14aとの間には、隙間が存在する。   The length of each conductive member 17 is a crank shape extending in the longitudinal direction of the lid 14, and the short side of each conductive member 17 extends in the stacking direction. At the end in the longitudinal direction of each conductive member 17, the end near the center in the longitudinal direction of the lid 14 is one end, and the end located on the short edge side of the lid 14 is the other end. The positive electrode conductive member 17 includes an electrode bonding portion 17a bonded to the positive electrode tab group 15 at one end portion in the longitudinal direction, and an extraction terminal 31 that is a part of the positive electrode terminal structure 16 at the other end portion in the longitudinal direction. The terminal joining part 17b joined is provided. Similarly, the negative electrode conductive member 17 includes an electrode bonding portion 17a bonded to the negative electrode tab group 15 at one end portion in the longitudinal direction, and a lead that is a part of the negative electrode terminal structure 16 at the other end portion in the longitudinal direction. A terminal joint 17b joined to the terminal 31 is provided. There is a gap between the electrode joint portion 17 a of each conductive member 17 and the inner surface 14 a of the lid 14.

正極の端子構造16は、蓋14の長手方向の一端側に配置され、負極の端子構造16は、蓋14の長手方向の他端側に配置される。正極及び負極の端子構造16はそれぞれ、導電部材17に接続された引出端子31を備える。各引出端子31は、板状の基部31aと、基部31aから突出する軸部31bとを有する。引出端子31は、電極組立体12と電気を授受する。正極の引出端子31の基部31aは、正極の導電部材17の端子接合部17bと電気的に接続され、負極の引出端子31の基部31aは、負極の導電部材17の端子接合部17bと電気的に接続されている。各引出端子31の軸部31bの先端部は、蓋14を貫通してケース11の外部に突出するとともに、かしめられている。引出端子31の軸部31bは、二次電池10の内外を接続する。正極及び負極の端子構造16はそれぞれ、ケース11の外部で引出端子31の軸部31bと電気的に接続された端子接合部材32と、端子接合部材32と電気的に接続された外部接続端子33とを備える。外部接続端子33には、二次電池10同士を電気的に接続する図示しない外部装置としてのバスバーが固定可能である。各端子構造16は、電極組立体12とバスバーとを電気的に接続している。   The positive terminal structure 16 is disposed on one end side in the longitudinal direction of the lid 14, and the negative terminal structure 16 is disposed on the other end side in the longitudinal direction of the lid 14. Each of the positive and negative terminal structures 16 includes a lead terminal 31 connected to the conductive member 17. Each extraction terminal 31 has a plate-like base portion 31a and a shaft portion 31b protruding from the base portion 31a. The lead terminal 31 exchanges electricity with the electrode assembly 12. The base 31 a of the positive lead terminal 31 is electrically connected to the terminal joint 17 b of the positive conductive member 17, and the base 31 a of the negative lead terminal 31 is electrically connected to the terminal joint 17 b of the negative conductive member 17. It is connected to the. The distal end portion of the shaft portion 31b of each extraction terminal 31 penetrates the lid 14 and protrudes to the outside of the case 11, and is crimped. The shaft portion 31 b of the lead terminal 31 connects the inside and outside of the secondary battery 10. Each of the positive electrode and negative electrode terminal structures 16 includes a terminal joining member 32 that is electrically connected to the shaft portion 31 b of the lead terminal 31 outside the case 11, and an external connection terminal 33 that is electrically connected to the terminal joining member 32. With. A bus bar as an external device (not shown) that electrically connects the secondary batteries 10 to each other can be fixed to the external connection terminal 33. Each terminal structure 16 electrically connects the electrode assembly 12 and the bus bar.

図1及び図2に示すように、二次電池10は、端子接合部材32を蓋14から絶縁する外側絶縁部材34を蓋14の外面14bに備える。二次電池10は、引出端子31の基部31aを蓋14から絶縁する内側絶縁部材35をケース11の内部に備える。電極組立体12と、蓋14と、正極及び負極の端子構造16と、外側絶縁部材34と、内側絶縁部材35とは、蓋端子組立体Wとして一体化されている。   As shown in FIGS. 1 and 2, the secondary battery 10 includes an outer insulating member 34 that insulates the terminal bonding member 32 from the lid 14 on the outer surface 14 b of the lid 14. The secondary battery 10 includes an inner insulating member 35 in the case 11 that insulates the base portion 31 a of the lead terminal 31 from the lid 14. The electrode assembly 12, the lid 14, the positive and negative terminal structures 16, the outer insulating member 34, and the inner insulating member 35 are integrated as a lid terminal assembly W.

二次電池10は、電極組立体12を覆う絶縁シート36を備える。絶縁シート36は、電極組立体12のタブ側端面12aを除く5面を覆っている。絶縁シート36は、電極組立体12のタブ側端面12aを除く5面と、ケース本体13の内面とを絶縁する。   The secondary battery 10 includes an insulating sheet 36 that covers the electrode assembly 12. The insulating sheet 36 covers five surfaces of the electrode assembly 12 excluding the tab side end surface 12a. The insulating sheet 36 insulates the five surfaces excluding the tab side end surface 12 a of the electrode assembly 12 from the inner surface of the case body 13.

図2に示すように、二次電池10は、正極のタブ群15と正極の導電部材17とがレーザ溶接された正極の溶接部と、負極のタブ群15と負極の導電部材17とがレーザ溶接された負極の溶接部45とを備える。本実施形態の各溶接部45は、面状である。各溶接部45の長手方向は、導電部材17の長手方向に沿い、各溶接部45の短手方向は、導電部材17の短手方向に沿っている。   As shown in FIG. 2, the secondary battery 10 includes a positive electrode welded portion in which the positive electrode tab group 15 and the positive electrode conductive member 17 are laser welded, and a negative electrode tab group 15 and the negative electrode conductive member 17 in the laser beam. And a welded portion 45 of the welded negative electrode. Each welding part 45 of this embodiment is planar. The longitudinal direction of each welded portion 45 is along the longitudinal direction of the conductive member 17, and the short direction of each welded portion 45 is along the shortwise direction of the conductive member 17.

二次電池10は、電極組立体12のタブ側端面12aと蓋14の内面14aとの間に配置された絶縁カバー50を備える。絶縁カバー50は、蓋端子組立体Wに対し、積層方向の他端側から取り付けられる。   The secondary battery 10 includes an insulating cover 50 disposed between the tab-side end surface 12 a of the electrode assembly 12 and the inner surface 14 a of the lid 14. The insulating cover 50 is attached to the lid terminal assembly W from the other end side in the stacking direction.

絶縁カバー50は、矩形板状のケース側絶縁部51を備える。ケース側絶縁部51は、正極及び負極のタブ群15を積層方向の他端側から覆い、正極及び負極のタブ群15の先端部とケース本体13の内面とを絶縁する。よって、ケース側絶縁部51は、積層方向の他端側において、正極及び負極のタブ群15とケース本体13との間に介在する。   The insulating cover 50 includes a case-side insulating portion 51 having a rectangular plate shape. The case-side insulating portion 51 covers the positive and negative electrode tab groups 15 from the other end side in the stacking direction, and insulates the front ends of the positive and negative electrode tab groups 15 from the inner surface of the case body 13. Therefore, the case-side insulating portion 51 is interposed between the positive and negative electrode tab groups 15 and the case body 13 on the other end side in the stacking direction.

絶縁カバー50は、蓋14の長手方向に延びるケース側絶縁部51の一対の長縁部のうち、蓋14寄りの長縁部から積層方向の一端側に向けて延出した矩形板状の蓋側絶縁部52を備える。蓋側絶縁部52の長手は蓋14の長手方向へ延び、蓋側絶縁部52の短手は積層方向へ延びる。蓋側絶縁部52は、正極の導電部材17の電極接合部17aと蓋14の内面14aとの間、及び負極の導電部材17の電極接合部17aと蓋14の内面14aとの間に介在し、正極及び負極の導電部材17と蓋14とを絶縁する。蓋側絶縁部52は、正極及び負極の導電部材17の電極接合部17aに支持されている。蓋側絶縁部52は、長手方向の両端に積層方向に沿う短縁部52aを備える。一方の短縁部52aは、負極の端子構造16寄りに位置し、他方の短縁部52aは、正極の端子構造16寄りに位置する。   The insulating cover 50 is a rectangular plate-shaped lid extending from one long side near the lid 14 toward one end in the stacking direction, out of a pair of long edges of the case-side insulating portion 51 extending in the longitudinal direction of the lid 14. A side insulating portion 52 is provided. The length of the lid-side insulating portion 52 extends in the longitudinal direction of the lid 14, and the short side of the lid-side insulating portion 52 extends in the stacking direction. The lid-side insulating portion 52 is interposed between the electrode joint portion 17a of the positive electrode conductive member 17 and the inner surface 14a of the lid 14, and between the electrode joint portion 17a of the negative electrode conductive member 17 and the inner surface 14a of the lid 14. Insulating the positive and negative electrode conductive members 17 and the lid 14. The lid-side insulating portion 52 is supported by the electrode joint portion 17a of the positive and negative conductive members 17. The lid-side insulating portion 52 includes short edge portions 52a along the stacking direction at both ends in the longitudinal direction. One short edge portion 52a is located closer to the negative electrode terminal structure 16, and the other short edge portion 52a is located closer to the positive electrode terminal structure 16.

図1に示すように、絶縁カバー50は、ケース側絶縁部51の一対の長縁部のうち、電極組立体12寄りの長縁部の一端部から積層方向の一端側に向けて延出した板状の負極側絶縁部53を備える。負極側絶縁部53は、蓋側絶縁部52の厚さ方向から見て、蓋側絶縁部52の一部と重なる絶縁部材としての矩形状のタブ側絶縁部53aと、蓋側絶縁部52の一方の短縁部52aからはみ出す矩形状の端子側絶縁部53bとを有する。積層方向に沿うタブ側絶縁部53aの寸法は、積層方向に沿う端子側絶縁部53bの寸法よりも短い。   As shown in FIG. 1, the insulating cover 50 extends from one end portion of the long edge portion near the electrode assembly 12 to one end side in the stacking direction of the pair of long edge portions of the case-side insulating portion 51. A plate-like negative electrode side insulating portion 53 is provided. The negative electrode side insulating portion 53 includes a rectangular tab side insulating portion 53 a as an insulating member that overlaps a part of the lid side insulating portion 52, as viewed from the thickness direction of the lid side insulating portion 52, and the lid side insulating portion 52. It has a rectangular terminal-side insulating part 53b that protrudes from one short edge part 52a. The dimension of the tab side insulating part 53a along the stacking direction is shorter than the dimension of the terminal side insulating part 53b along the stacking direction.

図2に示すように、負極のタブ群15は、負極の導電部材17とケース側絶縁部51と負極側絶縁部53のタブ側絶縁部53aとによって囲まれた空間に位置する。負極側絶縁部53のタブ側絶縁部53aは、負極のタブ群15と、電極組立体12のタブ側端面12aとの間に介在し、負極のタブ群15を電極組立体12側から覆う。タブ側絶縁部53aは、負極のタブ群15と電極組立体12とを絶縁する。端子側絶縁部53bは、負極の導電部材17の端子接合部17bと電極組立体12のタブ側端面12aとの間に介在し、負極の導電部材17の端子接合部17bを電極組立体12側から覆う。端子側絶縁部53bは、負極の導電部材17と電極組立体12とを絶縁する。   As shown in FIG. 2, the negative electrode tab group 15 is located in a space surrounded by the negative electrode conductive member 17, the case side insulating part 51, and the tab side insulating part 53 a of the negative electrode side insulating part 53. The tab side insulating portion 53a of the negative electrode side insulating portion 53 is interposed between the negative electrode tab group 15 and the tab side end surface 12a of the electrode assembly 12, and covers the negative electrode tab group 15 from the electrode assembly 12 side. The tab-side insulating portion 53 a insulates the negative electrode tab group 15 from the electrode assembly 12. The terminal-side insulating portion 53b is interposed between the terminal joint portion 17b of the negative electrode conductive member 17 and the tab side end surface 12a of the electrode assembly 12, and the terminal joint portion 17b of the negative electrode conductive member 17 is disposed on the electrode assembly 12 side. Cover from. The terminal-side insulating portion 53 b insulates the negative electrode conductive member 17 from the electrode assembly 12.

図1に示すように、絶縁カバー50は、ケース側絶縁部51の一対の長縁部のうち、電極組立体12寄りの長縁部の他端部から積層方向の一端側に向けて延出した板状の正極側絶縁部54を備える。正極側絶縁部54は、蓋側絶縁部52の厚さ方向から見て、蓋側絶縁部52の一部と重なる絶縁部材としての矩形状のタブ側絶縁部54aと、蓋側絶縁部52の他方の短縁部52aからはみ出す矩形状の端子側絶縁部54bとを有する。積層方向に沿うタブ側絶縁部54aの寸法は、積層方向に沿う端子側絶縁部54bの寸法よりも短い。   As shown in FIG. 1, the insulating cover 50 extends from the other end portion of the long edge portion near the electrode assembly 12 to the one end side in the stacking direction among the pair of long edge portions of the case-side insulating portion 51. The plate-shaped positive electrode side insulating part 54 is provided. The positive electrode side insulating part 54 includes a rectangular tab side insulating part 54 a as an insulating member that overlaps a part of the lid side insulating part 52, as viewed from the thickness direction of the lid side insulating part 52, and the lid side insulating part 52. A rectangular terminal-side insulating portion 54b protruding from the other short edge portion 52a. The dimension of the tab side insulating part 54a along the stacking direction is shorter than the dimension of the terminal side insulating part 54b along the stacking direction.

図示しないが、正極のタブ群15は、正極の導電部材17とケース側絶縁部51と正極側絶縁部54のタブ側絶縁部54aとによって囲まれた空間に位置する。正極側絶縁部54のタブ側絶縁部54aは、正極のタブ群15と、電極組立体12のタブ側端面12aとの間に介在し、正極のタブ群15を電極組立体12側から覆う。タブ側絶縁部54aは、正極のタブ群15と電極組立体12とを絶縁する。端子側絶縁部54bは、正極の導電部材17の端子接合部17bと電極組立体12のタブ側端面12aとの間に介在し、正極の導電部材17の端子接合部17bを電極組立体12側から覆う。端子側絶縁部54bは、正極の導電部材17と電極組立体12とを絶縁する。   Although not shown, the positive electrode tab group 15 is located in a space surrounded by the positive electrode conductive member 17, the case side insulating part 51, and the tab side insulating part 54 a of the positive electrode side insulating part 54. The tab-side insulating portion 54a of the positive-side insulating portion 54 is interposed between the positive-electrode tab group 15 and the tab-side end surface 12a of the electrode assembly 12, and covers the positive-electrode tab group 15 from the electrode assembly 12 side. The tab-side insulating portion 54 a insulates the positive electrode tab group 15 from the electrode assembly 12. The terminal-side insulating portion 54b is interposed between the terminal joint portion 17b of the positive electrode conductive member 17 and the tab side end surface 12a of the electrode assembly 12, and the terminal joint portion 17b of the positive electrode conductive member 17 is disposed on the electrode assembly 12 side. Cover from. The terminal-side insulating portion 54 b insulates the positive electrode conductive member 17 from the electrode assembly 12.

次に、二次電池10の製造方法について説明する。二次電池10の製造方法は、蓋端子組立体Wを製造する組付工程と、蓋端子組立体Wに絶縁カバー50を取り付ける取付工程と、絶縁カバー50が取り付けられた蓋端子組立体Wをケース11に収容する収容工程とを備える。   Next, a method for manufacturing the secondary battery 10 will be described. The manufacturing method of the secondary battery 10 includes an assembling process for manufacturing the lid terminal assembly W, an attaching process for attaching the insulating cover 50 to the lid terminal assembly W, and a lid terminal assembly W to which the insulating cover 50 is attached. A housing step of housing in the case 11.

組付工程では、まず、端子構造16と、外側絶縁部材34と、内側絶縁部材35とを蓋14と一体化する接合工程を行う。接合工程では、端子構造16の一部である引出端子31の基部31aと、導電部材17の端子接合部17bと、を接合する。次に、導電部材17上に内側絶縁部材35を配置した後、内側絶縁部材35上に蓋14を配置する。次に、蓋14上に外側絶縁部材34を配置し、外側絶縁部材34上に端子接合部材32を配置する。引出端子31の軸部31bは、内側絶縁部材35、蓋14、外側絶縁部材34、及び端子接合部材32を貫通する。次に、各引出端子31の軸部31bの先端部をかしめて蓋14に固定する。   In the assembly process, first, a joining process for integrating the terminal structure 16, the outer insulating member 34, and the inner insulating member 35 with the lid 14 is performed. In the joining step, the base portion 31 a of the lead terminal 31 that is a part of the terminal structure 16 and the terminal joint portion 17 b of the conductive member 17 are joined. Next, after the inner insulating member 35 is disposed on the conductive member 17, the lid 14 is disposed on the inner insulating member 35. Next, the outer insulating member 34 is disposed on the lid 14, and the terminal bonding member 32 is disposed on the outer insulating member 34. The shaft portion 31 b of the lead terminal 31 passes through the inner insulating member 35, the lid 14, the outer insulating member 34, and the terminal bonding member 32. Next, the tip end portion of the shaft portion 31 b of each extraction terminal 31 is caulked and fixed to the lid 14.

次に、電極組立体12が備える複数のタブ26を集箔してタブ群15を形成する集箔工程を行う。集箔工程では、図示しない作業台に載置された導電部材17上に、電極組立体12の全てのタブ26を配置する。次に、図示しない集箔装置によって、タブ26を挟んで導電部材17の反対側から全てのタブ26を押圧して集箔し、タブ群15を形成する。導電部材17は、タブ群15を構成する複数のタブ26のうち、積層方向の一端に位置するタブ26と対向する。   Next, a foil collecting step of collecting the plurality of tabs 26 included in the electrode assembly 12 to form the tab group 15 is performed. In the foil collecting step, all the tabs 26 of the electrode assembly 12 are arranged on the conductive member 17 placed on a work table (not shown). Next, a tab group 15 is formed by pressing all the tabs 26 from the opposite side of the conductive member 17 with the tabs 26 sandwiched by a foil collecting device (not shown). The conductive member 17 faces the tab 26 positioned at one end in the stacking direction among the plurality of tabs 26 constituting the tab group 15.

次に、図3(a)に示すように、タブ群15上に薄板状の保護部材40を配置する配置工程を行う。なお、上述の接合工程において、端子構造16、外側絶縁部材34、及び内側絶縁部材35は、蓋14と一体化されているが、図3(a)では、蓋14、及び導電部材17以外の蓋14に一体化された部材の図示を省略している。   Next, as shown in FIG. 3A, an arrangement step of arranging a thin plate-like protective member 40 on the tab group 15 is performed. In the above-described joining step, the terminal structure 16, the outer insulating member 34, and the inner insulating member 35 are integrated with the lid 14, but in FIG. 3A, other than the lid 14 and the conductive member 17. Illustration of a member integrated with the lid 14 is omitted.

図3(b)に示すように、保護部材40は、厚さ方向に貫通する孔41を複数有する矩形板状の薄板である。本実施形態では、正極のタブ群15上に配置される保護部材40の材料は銅(融点:約1085度)であり、負極のタブ群15上に配置される保護部材40の材料はタングステン(融点:約3387度)である。また、本実施形態の保護部材40は、三次元構造をなし、具体的にはエキスパンドメタルである。エキスパンドメタルは、平板状の金属板に複数のスリットを千鳥状に形成するとともに、スリットを利用して金属板を展伸することによって製造される。保護部材40は、短手方向に延びるとともに厚さ方向に山と谷を繰り返す波状部42が、長手方向に複数配列された形状である。なお、ここに記載する三次元構造とは、母材となる板材を変形させて加工し、母材よりも厚みが増した構造を指す。波状部42により、保護部材40は厚さ方向に弾性変形可能である。長手方向に隣り合う波状部42同士において、一方の波状部42の山と他方の波状部42の谷とが接続されているとともに、一方の波状部42の谷と他方の波状部42の山とは離間している。波状部42同士の隙間が保護部材40の孔41である。本実施形態では、保護部材40の開口率は約50%である。   As shown in FIG. 3B, the protective member 40 is a rectangular plate-like thin plate having a plurality of holes 41 penetrating in the thickness direction. In the present embodiment, the material of the protective member 40 disposed on the positive electrode tab group 15 is copper (melting point: about 1085 degrees), and the material of the protective member 40 disposed on the negative electrode tab group 15 is tungsten ( Melting point: about 3387 degrees). Further, the protection member 40 of the present embodiment has a three-dimensional structure, and specifically is an expanded metal. Expanded metal is manufactured by forming a plurality of slits in a staggered pattern on a flat metal plate and expanding the metal plate using the slits. The protection member 40 has a shape in which a plurality of wavy portions 42 extending in the short direction and repeating peaks and valleys in the thickness direction are arranged in the longitudinal direction. In addition, the three-dimensional structure described here refers to a structure in which the thickness of the base material is increased by deforming and processing the base material. The protection member 40 can be elastically deformed in the thickness direction by the wavy portion 42. In the wave portions 42 adjacent to each other in the longitudinal direction, a peak of one wave portion 42 and a valley of the other wave portion 42 are connected, and a valley of one wave portion 42 and a peak of the other wave portion 42 Are separated. A gap between the wavy portions 42 is a hole 41 of the protection member 40. In this embodiment, the opening ratio of the protection member 40 is about 50%.

配置工程では、保護部材40は、短手方向がタブ側端面12aからのタブ群15の突出方向と一致し、厚さ方向がタブ26の積層方向と一致するようにタブ群15上に配置される。すなわち、保護部材40の孔41が貫通する方向、及び保護部材40が弾性変形可能な方向は、タブ26の積層方向と一致する。これにより、タブ群15は、導電部材17と保護部材40との間に位置する。タブ群15を構成する複数のタブ26のうち、積層方向の他端に位置するタブ26は、保護部材40と対向するとともに、保護部材40の波状部42によって遮蔽される部分と、保護部材40の孔41から露出する部分とを含む。また、積層方向の他端に位置するタブ26の一部は、保護部材40の波状部42の谷によって、保護部材40と断続的に接触する。   In the arranging step, the protective member 40 is arranged on the tab group 15 so that the short direction coincides with the protruding direction of the tab group 15 from the tab side end face 12a and the thickness direction coincides with the stacking direction of the tabs 26. The That is, the direction through which the hole 41 of the protection member 40 penetrates and the direction in which the protection member 40 can be elastically deformed coincide with the stacking direction of the tabs 26. Accordingly, the tab group 15 is located between the conductive member 17 and the protection member 40. Of the plurality of tabs 26 constituting the tab group 15, the tab 26 positioned at the other end in the stacking direction is opposed to the protection member 40 and is shielded by the waved portion 42 of the protection member 40, and the protection member 40. Part exposed from the hole 41. Further, a part of the tab 26 located at the other end in the stacking direction intermittently contacts the protective member 40 by the valleys of the wave-like portions 42 of the protective member 40.

次に、保護部材40をタブ群15に向けて押圧しつつ、タブ群15と導電部材17とをレーザ溶接する溶接工程を行う。保護部材40の上方に配置された図示しない押圧装置により、保護部材40の端部はタブ群15に向けて押圧される。すると、保護部材40には、タブ群15より反力が作用する。しかし、保護部材40は、三次元構造をなすため、タブ26の積層方向に対し、十分な剛性を有する。さらに、本実施形態の保護部材40は、エキスパンドメタルであり、タブ群15と断続的に接触する保護部材40の波状部42の谷は、それぞれ弾性変形可能である。よって、タブ群15において溶接部45が形成される部分について、保護部材40全体の波状部42の谷は、タブ群15に接触し、タブ群15を導電部材17に向けて押圧できる。これにより、タブ群15を構成する積層方向に隣り合うタブ26同士、及びタブ群15と導電部材17とは密接する。   Next, a welding process is performed in which the tab group 15 and the conductive member 17 are laser-welded while pressing the protective member 40 toward the tab group 15. The end portion of the protection member 40 is pressed toward the tab group 15 by a pressing device (not shown) disposed above the protection member 40. Then, a reaction force acts on the protection member 40 from the tab group 15. However, since the protection member 40 has a three-dimensional structure, the protection member 40 has sufficient rigidity in the stacking direction of the tabs 26. Furthermore, the protection member 40 of this embodiment is an expanded metal, and the troughs of the wavy portions 42 of the protection member 40 that intermittently contact the tab group 15 can be elastically deformed. Therefore, in the portion where the welded portion 45 is formed in the tab group 15, the valley of the wave-shaped portion 42 of the entire protection member 40 can contact the tab group 15 and press the tab group 15 toward the conductive member 17. Thereby, the tabs 26 adjacent to each other in the stacking direction constituting the tab group 15 and the tab group 15 and the conductive member 17 are in close contact with each other.

そして、タブ26同士、及びタブ群15と導電部材17とを密接させた状態で、タブ群15と導電部材17とを溶接する。溶接は、保護部材40の上方に配置されたレーザ照射装置70によって行われる。レーザ照射装置70は、保護部材40の短手方向に往復移動しつつ、保護部材40の長手方向の一端から他端に向けて移動する。レーザ照射装置70は、移動しながら保護部材40に向けて連続波のレーザを照射する。   The tab group 15 and the conductive member 17 are welded in a state where the tabs 26 and the tab group 15 and the conductive member 17 are in close contact with each other. Welding is performed by a laser irradiation device 70 disposed above the protective member 40. The laser irradiation device 70 moves from one end in the longitudinal direction of the protection member 40 toward the other end while reciprocating in the short direction of the protection member 40. The laser irradiation device 70 irradiates the protective member 40 with a continuous wave laser while moving.

レーザ照射装置70が保護部材40の上方を移動しながらレーザを照射することにより、レーザは、保護部材40の孔41を跨いで連続的に照射される。このため、保護部材40において孔41が存在しない部分では、タブ群15は保護部材40に遮蔽されるため、レーザはタブ群15まで到達し難い。一方、保護部材40において孔41が存在する部分では、レーザは、保護部材40の孔41を通過した後、タブ群15まで到達する。よって、タブ群15には、レーザが照射される部分と照射されない部分とが交互に現れる。タブ群15に照射されたレーザのスポット径は、保護部材40の孔41を通過することにより、照射直後の径よりも小さくなっている。   When the laser irradiation device 70 irradiates the laser while moving over the protection member 40, the laser is continuously irradiated across the hole 41 of the protection member 40. For this reason, since the tab group 15 is shielded by the protection member 40 at a portion where the hole 41 does not exist in the protection member 40, the laser hardly reaches the tab group 15. On the other hand, in the portion where the hole 41 exists in the protection member 40, the laser reaches the tab group 15 after passing through the hole 41 of the protection member 40. Therefore, in the tab group 15, the portions irradiated with the laser and the portions not irradiated with the laser appear alternately. The spot diameter of the laser irradiated on the tab group 15 passes through the hole 41 of the protective member 40 and is smaller than the diameter immediately after irradiation.

図4に示すように、タブ群15においてレーザが照射された部分とその周辺では、タブ群15の溶融が急激に進むとともに、金属蒸気の反跳力により溶融した金属が押し広げられることでキーホールHが形成される。レーザは、形成されたキーホールH内に侵入するとともにキーホールH内で多重反射する。これにより、キーホールHの深さが更に深くなる。そして、キーホールHの最深部が導電部材17まで到達すると、タブ群15と導電部材17とが溶接されて溶接部45が形成される。その後、溶接部45が凝固する際に、溶融した金属の表面張力によりキーホールHは埋められる。なお、溶接時にはスパッタSが発生するが、発生したスパッタSの一部は、保護部材40に付着する。   As shown in FIG. 4, in the tab group 15 where the laser is irradiated and in the vicinity thereof, the melting of the tab group 15 proceeds rapidly, and the molten metal is pushed and spread by the recoil force of the metal vapor. A hole H is formed. The laser penetrates into the formed keyhole H and undergoes multiple reflections within the keyhole H. Thereby, the depth of the keyhole H becomes deeper. When the deepest portion of the keyhole H reaches the conductive member 17, the tab group 15 and the conductive member 17 are welded to form a welded portion 45. Thereafter, when the weld 45 is solidified, the keyhole H is filled with the surface tension of the molten metal. Note that spatter S is generated during welding, but part of the generated spatter S adheres to the protective member 40.

図4及び図5に示すように、キーホールHが形成された部分での溶接部45の溶け込み深さは、キーホールH周辺での溶接部45の溶け込み深さよりも深い。上述したように、保護部材40の複数の孔41を跨ぐようにレーザ照射装置70を移動させてレーザを照射するため、保護部材40の長手方向に沿って溶接部45を深さ方向に切断した断面には、溶接部45の溶け込み深さが深い部分と、溶接部45の溶け込み深さが浅い部分とが交互に現れる。その結果、図5に示すように、溶接部45は、溶融後に凝固した部分がレーザ照射装置70の移動方向、すなわち保護部材40の長手方向に幾重にも重なった金属組織を呈する。   As shown in FIGS. 4 and 5, the penetration depth of the welded portion 45 in the portion where the keyhole H is formed is deeper than the penetration depth of the welded portion 45 around the keyhole H. As described above, in order to irradiate the laser by moving the laser irradiation device 70 so as to straddle the plurality of holes 41 of the protection member 40, the weld 45 is cut in the depth direction along the longitudinal direction of the protection member 40. In the cross section, portions where the weld portion 45 has a deep penetration depth and portions where the weld portion 45 has a shallow penetration depth appear alternately. As a result, as shown in FIG. 5, the welded portion 45 exhibits a metal structure in which the solidified portion after melting overlaps the moving direction of the laser irradiation device 70, that is, the longitudinal direction of the protective member 40.

なお、上述したように、保護部材40の材料の融点は、タブ群15の材料の融点よりも高い。このため、溶接工程では、キーホールHの最深部が導電部材17に達するようにレーザの照射条件を設定しても、保護部材40はほとんど溶融しない。言い換えれば、レーザの照射条件は、レーザが照射された箇所の温度がタブ26及び導電部材17の融点を超え、かつ保護部材40の融点を超えないように設定される。なお、レーザの照射条件とは、レーザの出力、スポット径、導電部材17の厚さ方向における焦点の位置、レーザ照射装置70の移動速度などを指す。また、保護部材40とタブ群15とは、波状部42の谷で接触しているため、接触面積が小さい。よって、溶接工程を行っても、保護部材40はタブ群15に溶接されない。溶接工程後、保護部材40を除去する除去工程を行う。これにより、蓋端子組立体Wが完成する。なお、除去された保護部材40は、付着したスパッタS等が除去された後、他の二次電池10を製造する際に溶接工程に用いられる。   As described above, the melting point of the material of the protection member 40 is higher than the melting point of the material of the tab group 15. For this reason, in the welding process, even if the laser irradiation conditions are set so that the deepest part of the keyhole H reaches the conductive member 17, the protective member 40 hardly melts. In other words, the laser irradiation conditions are set such that the temperature of the portion irradiated with the laser exceeds the melting point of the tab 26 and the conductive member 17 and does not exceed the melting point of the protective member 40. The laser irradiation conditions refer to laser output, spot diameter, focal position in the thickness direction of the conductive member 17, moving speed of the laser irradiation device 70, and the like. Moreover, since the protection member 40 and the tab group 15 are in contact with each other at the valleys of the wavy portions 42, the contact area is small. Therefore, even if a welding process is performed, the protection member 40 is not welded to the tab group 15. After the welding process, a removing process for removing the protective member 40 is performed. Thereby, the lid terminal assembly W is completed. The removed protective member 40 is used in a welding process when another secondary battery 10 is manufactured after the adhering spatter S or the like is removed.

取付工程では、蓋端子組立体Wに対し、積層方向の他端側から一端側に向けて絶縁カバー50を取り付ける。絶縁カバー50のケース側絶縁部51は、タブ群15の先端部を積層方向の他端側から覆う。蓋側絶縁部52は、蓋14の内面14aと、正極及び負極の導電部材17の電極接合部17aとの間に配置される。負極側絶縁部53のタブ側絶縁部53aは、負極のタブ群15と電極組立体12のタブ側端面12aとの間に配置され、端子側絶縁部53bは、負極の導電部材17の端子接合部17bと、電極組立体12のタブ側端面12aとの間に配置される。正極側絶縁部54のタブ側絶縁部54aは、正極のタブ群15と電極組立体12のタブ側端面12aとの間に配置され、端子側絶縁部54bは、正極の導電部材17の端子接合部17bと、電極組立体12のタブ側端面12aとの間に配置される。   In the attaching step, the insulating cover 50 is attached to the lid terminal assembly W from the other end side in the stacking direction toward the one end side. The case side insulating portion 51 of the insulating cover 50 covers the tip end portion of the tab group 15 from the other end side in the stacking direction. The lid-side insulating portion 52 is disposed between the inner surface 14a of the lid 14 and the electrode joint portion 17a of the positive and negative electrode conductive members 17. The tab side insulating portion 53a of the negative electrode side insulating portion 53 is disposed between the negative electrode tab group 15 and the tab side end surface 12a of the electrode assembly 12, and the terminal side insulating portion 53b is a terminal joint of the negative electrode conductive member 17. It arrange | positions between the part 17b and the tab side end surface 12a of the electrode assembly 12. FIG. The tab-side insulating portion 54 a of the positive-side insulating portion 54 is disposed between the positive-electrode tab group 15 and the tab-side end surface 12 a of the electrode assembly 12, and the terminal-side insulating portion 54 b is connected to the terminal of the positive-electrode conductive member 17. It arrange | positions between the part 17b and the tab side end surface 12a of the electrode assembly 12. FIG.

収容工程では、絶縁カバー50が取り付けられた蓋端子組立体Wをケース11に収容する。電極組立体12及び絶縁カバー50がケース本体13に収容されると、絶縁カバー50のケース側絶縁部51は、タブ群15の先端部とケース本体13の内面との間に位置する。そして、ケース本体13と蓋14とが溶接により接合され、二次電池10が完成する。   In the housing step, the lid terminal assembly W to which the insulating cover 50 is attached is housed in the case 11. When the electrode assembly 12 and the insulating cover 50 are accommodated in the case main body 13, the case-side insulating portion 51 of the insulating cover 50 is positioned between the tip end portion of the tab group 15 and the inner surface of the case main body 13. And the case main body 13 and the lid | cover 14 are joined by welding, and the secondary battery 10 is completed.

本実施形態の作用及び効果について説明する。
(1)溶接工程では、孔41を複数有する保護部材40が用いられる。これにより、レーザ照射装置70から照射されたレーザは、孔41を通過してタブ群15まで到達する。タブ群15は、保護部材40の孔41から露出した部分から溶融し始めるため、保護部材40を溶融させることなく溶接部45を形成できる。よって、孔の無い保護部材を用いる場合と比較して、溶接工程に要する時間を短縮できる。
The operation and effect of this embodiment will be described.
(1) In the welding process, the protection member 40 having a plurality of holes 41 is used. Thereby, the laser irradiated from the laser irradiation device 70 passes through the hole 41 and reaches the tab group 15. Since the tab group 15 starts to melt from the portion exposed from the hole 41 of the protection member 40, the welded portion 45 can be formed without melting the protection member 40. Therefore, the time required for the welding process can be shortened as compared with the case where a protective member without holes is used.

また、保護部材40を用いずに溶接を行う場合、従来では、タブ群15における溶接部45が形成される部分よりも外側の部分を治具等により押圧しつつレーザを照射していた。このとき、タブ群15において、治具が押圧する部分は、レーザが照射される部分の近傍であるのが好ましい。しかしながら、溶接部45は、面状に形成されるため、部位によっては、治具とレーザ照射装置とが干渉する等の要因により、治具が押圧する部分をレーザが照射される部分に近付けられないことがある。この場合、溶接部が形成される部分全体に亘ってタブの浮き上がりが規制されるようにタブ群を押圧するのが困難であった。   Further, when welding is performed without using the protection member 40, conventionally, laser irradiation is performed while pressing a portion outside the portion of the tab group 15 where the welded portion 45 is formed with a jig or the like. At this time, in the tab group 15, the portion pressed by the jig is preferably in the vicinity of the portion irradiated with the laser. However, since the welded portion 45 is formed in a planar shape, the portion pressed by the jig may be brought closer to the portion irradiated with the laser depending on factors such as interference between the jig and the laser irradiation device. There may not be. In this case, it has been difficult to press the tab group so that the lifting of the tab is restricted over the entire portion where the weld is formed.

保護部材40を用いた場合、孔41が形成されていない部分は孔41と隣接しているため、孔41が形成されていない部分全体によって、タブ群15におけるレーザが照射される部分の近傍を押圧することができる。よって、保護部材40を用いることにより、タブ群15における溶接部45が形成される部分全体に亘って、タブ26の浮き上がりを規制できる。その結果、タブ26同士の溶接不良を抑制できる。また、保護部材40において孔41が形成されていない部分を溶融させる必要が無いため、タブ群15を押圧するための十分な強度を保護部材40に持たせるために、保護部材40の厚みを厚くできる。よって、保護部材40により、タブ群15を導電部材17に向けて十分押圧できる。その結果、タブ群15と導電部材17との溶接不良を抑制できる。   When the protective member 40 is used, the portion where the hole 41 is not formed is adjacent to the hole 41, so that the entire portion where the hole 41 is not formed is near the portion irradiated with the laser in the tab group 15. Can be pressed. Therefore, by using the protection member 40, the tab 26 can be prevented from being lifted over the entire portion of the tab group 15 where the welded portion 45 is formed. As a result, poor welding between the tabs 26 can be suppressed. Further, since it is not necessary to melt a portion of the protective member 40 where the hole 41 is not formed, the protective member 40 is made thick in order to give the protective member 40 sufficient strength to press the tab group 15. it can. Therefore, the tab group 15 can be sufficiently pressed toward the conductive member 17 by the protective member 40. As a result, poor welding between the tab group 15 and the conductive member 17 can be suppressed.

(2)保護部材40は、三次元構造をなす。タブ26の積層方向に対する保護部材40の剛性は、三次元構造となるように加工される前の板材を保護部材40とする場合よりも、三次元構造となるように加工された後の板材を保護部材40とした場合の方が高い。よって、保護部材40をタブ群15に向けて押圧した際の保護部材40の変形を抑制できる。   (2) The protection member 40 has a three-dimensional structure. The rigidity of the protection member 40 with respect to the stacking direction of the tabs 26 is such that the plate material after being processed to have a three-dimensional structure is used as compared to the case where the protection member 40 is a plate material before being processed to have a three-dimensional structure. The case where it is set as the protection member 40 is higher. Therefore, deformation of the protection member 40 when the protection member 40 is pressed toward the tab group 15 can be suppressed.

(3)レーザ照射装置70は、保護部材40の複数の孔41を跨ぐように保護部材40の長手方向に移動しつつ、連続波のレーザを照射する。このため、タブ群15には、パルス溶接した場合と同様に、レーザが照射される部分と照射されない部分とが交互に現れる。よって、保護部材40の孔41の配置を変更するだけで、パルス溶接におけるパルス電流とベース電流の周期(周波数)の調整に相当する操作が可能になる。特に、溶接工程に要する時間を短縮するために高速で溶接を行う場合、レーザ照射装置70の移動速度を速めるとともに、パルス電流とベース電流の周期を短くする必要がある。しかしながら、パルス電流とベース電流の周期を短くしようとすると、パルス溶接では、レーザ照射装置が周期に追従することが困難になる。これに対し、本実施形態では、レーザ照射装置70の移動方向において、保護部材40の孔41同士の間隔を短くするだけで、パルス電流とベース電流の周期を短くすることができる。   (3) The laser irradiation device 70 irradiates a continuous wave laser while moving in the longitudinal direction of the protection member 40 so as to straddle the plurality of holes 41 of the protection member 40. For this reason, in the tab group 15, as in the case of pulse welding, portions that are irradiated with laser and portions that are not irradiated appear alternately. Therefore, an operation corresponding to adjustment of the cycle (frequency) of the pulse current and the base current in pulse welding can be performed only by changing the arrangement of the holes 41 of the protection member 40. In particular, when welding is performed at a high speed in order to shorten the time required for the welding process, it is necessary to increase the moving speed of the laser irradiation device 70 and shorten the cycle of the pulse current and the base current. However, if it is attempted to shorten the cycle of the pulse current and the base current, it becomes difficult for the laser irradiation apparatus to follow the cycle in pulse welding. On the other hand, in the present embodiment, the period of the pulse current and the base current can be shortened only by shortening the interval between the holes 41 of the protection member 40 in the moving direction of the laser irradiation device 70.

(4)タブ群15と導電部材17とはキーホール溶接によって溶接される。キーホール溶接では、キーホールH内でレーザが多重反射を繰り返すため、レーザのエネルギーがタブ群15及び導電部材17に効率良く吸収される。よって、熱伝導型溶接と比較して、溶接部45の溶け込み深さを確保するのに必要なレーザのエネルギーを低減できる。その結果、タブ群15を構成する複数のタブ26のうち、積層方向の一端側に位置するタブ26が溶断することを抑制できる。   (4) The tab group 15 and the conductive member 17 are welded by keyhole welding. In keyhole welding, the laser repeats multiple reflections in the keyhole H, so that the energy of the laser is efficiently absorbed by the tab group 15 and the conductive member 17. Therefore, compared with heat conduction type welding, the energy of the laser necessary for ensuring the penetration depth of the welded portion 45 can be reduced. As a result, it is possible to suppress the fusing of the tab 26 located on one end side in the stacking direction among the plurality of tabs 26 constituting the tab group 15.

(5)溶接工程において発生したスパッタSが飛散し、電極組立体12等に付着すると、スパッタSが二次電池10における異物となるため好ましくない。これに対し、本実施形態では、保護部材40が溶接部45の上方に配置されている。このため、発生したスパッタSの一部が保護部材40に付着することで、スパッタSの飛散を抑制できる。その結果、二次電池10における異物の発生を抑制できる。   (5) If spatter S generated in the welding process scatters and adheres to the electrode assembly 12 or the like, the spatter S becomes a foreign matter in the secondary battery 10, which is not preferable. On the other hand, in this embodiment, the protective member 40 is disposed above the welded portion 45. For this reason, scattering of the sputter | spatter S can be suppressed because a part of generated sputter | spatter S adheres to the protection member 40. FIG. As a result, the generation of foreign matter in the secondary battery 10 can be suppressed.

(6)溶接工程において、金属蒸気は、タブ群15の表面から噴出しようとする。これに対し、本実施形態では、保護部材40が溶接部45の上方に配置されているため、保護部材40により、金属蒸気の噴出は規制される。溶融した金属は、噴出が規制された金属蒸気の分だけ、導電部材17側に更に押し広げられる。このため、溶接部45の溶け込み深さをより深くすることができる。よって、溶接部45の溶け込み深さを確保するのに必要なレーザのエネルギーを低減できる。その結果、タブ群15を構成する複数のタブ26のうち、積層方向の一端側に位置するタブ26が溶断することを抑制できる。   (6) In the welding process, the metal vapor tends to be ejected from the surface of the tab group 15. On the other hand, in this embodiment, since the protection member 40 is arrange | positioned above the welding part 45, the ejection of a metal vapor is controlled by the protection member 40. FIG. The molten metal is further expanded toward the conductive member 17 by the amount of metal vapor whose ejection is restricted. For this reason, the penetration depth of the welding part 45 can be made deeper. Therefore, it is possible to reduce the laser energy necessary to ensure the penetration depth of the weld 45. As a result, it is possible to suppress the fusing of the tab 26 located on one end side in the stacking direction among the plurality of tabs 26 constituting the tab group 15.

(7)二次電池10の製造方法は、溶接工程後に、保護部材40を除去する除去工程を含む。このため、保護部材40を繰り返し使用することができる。
(8)保護部材40は、複数のスリットを形成した金属板を展伸することによって製造されるエキスパンドメタルである。このため、例えば、複数の貫通孔が形成された波状の板状部材を保護部材とする場合と比較して、保護部材40のコストを下げることができる。また、エキスパンドメタルの山と谷がレーザの照射方向に対して傾斜しているため、レーザ光は保護部材40で反射するとともに保護部材40にレーザ光が吸収されることが抑制される。よって、保護部材40は溶融され難く、保護部材40を繰り返し使用することができる。
(7) The manufacturing method of the secondary battery 10 includes a removal step of removing the protective member 40 after the welding step. For this reason, the protection member 40 can be used repeatedly.
(8) The protection member 40 is an expanded metal manufactured by extending a metal plate having a plurality of slits. For this reason, for example, the cost of the protection member 40 can be reduced compared with the case where the wave-like plate-shaped member in which the several through-hole was formed is used as a protection member. Moreover, since the peaks and valleys of the expanded metal are inclined with respect to the laser irradiation direction, the laser light is reflected by the protective member 40 and the laser light is suppressed from being absorbed by the protective member 40. Therefore, the protection member 40 is not easily melted, and the protection member 40 can be used repeatedly.

本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
○正極電極21において、正極活物質層25は正極金属箔24の片面に存在してもよい。同様に、負極電極22において、負極活物質層28は負極金属箔27の片面に存在してもよい。
This embodiment can be implemented with the following modifications. The present embodiment and the following modifications can be implemented in combination with each other within a technically consistent range.
In the positive electrode 21, the positive electrode active material layer 25 may exist on one side of the positive electrode metal foil 24. Similarly, in the negative electrode 22, the negative electrode active material layer 28 may exist on one side of the negative electrode metal foil 27.

○ 端子構造16は、引出端子31と、端子接合部材32と、外部接続端子33と、導電部材17とを全て備える構造でなくてもよい。端子構造16は、例えば、引出端子31、端子接合部材32、及び外部接続端子33を、蓋14を貫通する棒状の端子に変更してもよい。端子の一端は、導電部材17と接合されるとともに、端子の他端は、ケース11の外部に突出する。この場合、端子の外周面と蓋14の貫通孔の内周面との間に絶縁性のリング部材を配置し、端子と蓋14とを絶縁する。なお、棒状の端子が十分な断面積を有する場合には、導電部材17を省略し、タブ群15を端子の端面に直接溶接してもよい。   The terminal structure 16 may not have a structure including all the lead terminals 31, the terminal joining members 32, the external connection terminals 33, and the conductive members 17. In the terminal structure 16, for example, the lead terminal 31, the terminal joining member 32, and the external connection terminal 33 may be changed to rod-like terminals that penetrate the lid 14. One end of the terminal is joined to the conductive member 17, and the other end of the terminal protrudes outside the case 11. In this case, an insulating ring member is disposed between the outer peripheral surface of the terminal and the inner peripheral surface of the through hole of the lid 14 to insulate the terminal and the lid 14. When the rod-shaped terminal has a sufficient cross-sectional area, the conductive member 17 may be omitted and the tab group 15 may be directly welded to the end face of the terminal.

○ 保護部材40の材料は、適宜変更してもよい。例えば、正極のタブ群15上に配置される保護部材40の材料は、ニッケル(融点:約1455度)でもよいし、不変鋼(融点:約1426度)でもよい。ニッケルは、エキスパンド加工に伴って著しく硬化するため、保護部材40をタブ群15に向けて押圧した際の保護部材40の変形を抑制できる。不変鋼は、所定の組成割合を有するFe−Ni系合金(特開昭59−173241号公報、及び特開2010−260072号公報参照)であり、線膨張係数が1×10−6/℃と小さいため、レーザ溶接時の保護部材40の膨張を抑えられる。よって、タブ群15に対して保護部材40を精度良く位置決めできる。 (Circle) you may change the material of the protection member 40 suitably. For example, the material of the protective member 40 disposed on the positive electrode tab group 15 may be nickel (melting point: about 1455 degrees) or invariant steel (melting point: about 1426 degrees). Since nickel hardens significantly with the expanding process, the deformation of the protective member 40 when the protective member 40 is pressed toward the tab group 15 can be suppressed. The invariant steel is an Fe—Ni alloy having a predetermined composition ratio (see Japanese Patent Laid-Open Nos. 59-173241 and 2010-260072), and has a linear expansion coefficient of 1 × 10 −6 / ° C. Since it is small, expansion of the protection member 40 during laser welding can be suppressed. Therefore, the protection member 40 can be accurately positioned with respect to the tab group 15.

○ 保護部材40は、三次元構造をなしていなくてもよい。つまり、三次元構造となるような加工が施されていない平板を保護部材40としてもよい。
○ 三次元構造をなす保護部材40は、必ずしもエキスパンドメタルでなくてもよい。三次元構造をなす保護部材40は、例えば、タブ26の積層方向に貫通する複数の貫通孔を形成した波状の板状部材でもよいし、平面状の網状部材を凹凸にプレスした板状部材でもよい。
○ The protection member 40 may not have a three-dimensional structure. That is, a flat plate that has not been processed to have a three-dimensional structure may be used as the protection member 40.
The protective member 40 having a three-dimensional structure is not necessarily an expanded metal. The protective member 40 having a three-dimensional structure may be, for example, a wavy plate-like member having a plurality of through holes penetrating in the stacking direction of the tabs 26, or a plate-like member obtained by pressing a planar net-like member into irregularities. Good.

○ 保護部材40の開口率は、適宜変更してよい。保護部材40の開口率が高いほど、溶接部45が形成される範囲が大きくなる。一方、保護部材40の開口率が低いほど、スパッタSの飛散を規制できる。   (Circle) you may change the aperture ratio of the protection member 40 suitably. The higher the opening ratio of the protection member 40, the larger the range in which the weld 45 is formed. On the other hand, the lower the aperture ratio of the protective member 40, the more the spatter S can be scattered.

○ 図6に示すように、溶接部45は、タブ群15と導電部材17と保護部材40とが溶接されて形成されてもよい。この場合、溶接工程において、保護部材40をタブ群15及び導電部材17と溶接するとともに、除去工程を省略する。また、取付工程において蓋端子組立体Wに絶縁カバー50を取り付ける際に、タブ側絶縁部53a,54aは、保護部材40と電極組立体12のタブ側端面12aとの間に挿入される。このとき、タブ側絶縁部53a,54aは、保護部材40に接触することがあるが、保護部材40はタブ26の積層方向に弾性変形するため、絶縁カバー50の取り付けは妨げられない。   As shown in FIG. 6, the welded portion 45 may be formed by welding the tab group 15, the conductive member 17, and the protective member 40. In this case, in the welding process, the protective member 40 is welded to the tab group 15 and the conductive member 17 and the removal process is omitted. Further, when the insulating cover 50 is attached to the lid terminal assembly W in the attaching step, the tab side insulating portions 53 a and 54 a are inserted between the protection member 40 and the tab side end surface 12 a of the electrode assembly 12. At this time, the tab-side insulating portions 53a and 54a may come into contact with the protective member 40. However, since the protective member 40 is elastically deformed in the stacking direction of the tabs 26, attachment of the insulating cover 50 is not hindered.

○ 押圧装置が保護部材40を押圧する位置は、保護部材40の端部に限定されず、レーザが照射されない位置であれば適宜変更してよい。
○ レーザ照射装置70は、保護部材40の複数の孔41を跨ぐように移動するのであれば、保護部材40の短手方向に往復移動しなくてもよい。この場合、溶接部45は、ライン状に形成される。
The position where the pressing device presses the protection member 40 is not limited to the end of the protection member 40, and may be changed as appropriate as long as the laser is not irradiated.
The laser irradiation device 70 does not have to reciprocate in the short direction of the protection member 40 as long as it moves across the plurality of holes 41 of the protection member 40. In this case, the welded portion 45 is formed in a line shape.

○ 二次電池10は、リチウムイオン二次電池でもよいし、他の二次電池であってもよい。要は、正極用の活物質と負極用の活物質との間をイオンが移動するとともに電荷の授受を行うものであればよい。   The secondary battery 10 may be a lithium ion secondary battery or another secondary battery. In short, any ion may be used as long as ions move between the active material for the positive electrode and the active material for the negative electrode and charge is transferred.

○ 蓄電装置は、例えばキャパシタなど、二次電池以外の蓄電装置にも適用可能である。   The power storage device can also be applied to power storage devices other than secondary batteries, such as capacitors.

10…蓄電装置としての二次電池、12…電極組立体、12a…タブ側端面、15…タブ群、16…端子構造、17…導電部材、21…電極としての正極電極、22…電極としての負極電極、26…タブ、31…引出端子、40…保護部材、41…孔、45…溶接部、53a,54a…絶縁部材としてのタブ側絶縁部、70…レーザ照射装置。   DESCRIPTION OF SYMBOLS 10 ... Secondary battery as power storage device, 12 ... Electrode assembly, 12a ... Tab side end surface, 15 ... Tab group, 16 ... Terminal structure, 17 ... Conductive member, 21 ... Positive electrode as electrode, 22 ... As electrode Negative electrode, 26 ... tab, 31 ... lead terminal, 40 ... protective member, 41 ... hole, 45 ... welded part, 53a, 54a ... tab side insulating part as insulating member, 70 ... laser irradiation device.

Claims (5)

複数の電極が積層され、かつ前記電極の一縁部から突出したタブが積層されたタブ群を有する電極組立体と、
前記電極組立体と外部装置とを接続する端子構造と、
前記タブ群と前記端子構造とが重ねられた状態でレーザ溶接された溶接部と、
を備えた蓄電装置の製造方法であって、
前記タブ群を構成する前記タブが積層された方向をタブの積層方向としたとき、前記タブの積層方向に貫通する孔を複数有する保護部材が用いられ、
前記端子構造と前記保護部材との間に前記タブ群を配置する配置工程と、
前記保護部材を前記タブ群に向けて押圧しつつ前記溶接部を形成する溶接工程と、
を含み、
前記溶接工程において、レーザ照射装置により、前記保護部材側から前記タブ群に向けてレーザを照射するとともに、前記レーザ照射装置を前記複数の孔を跨ぐように移動させることを特徴とする蓄電装置の製造方法。
An electrode assembly having a tab group in which a plurality of electrodes are stacked and a tab protruding from one edge of the electrode is stacked;
A terminal structure for connecting the electrode assembly and an external device;
A welded portion laser-welded in a state where the tab group and the terminal structure are overlapped;
A method of manufacturing a power storage device comprising:
When the direction in which the tabs constituting the tab group are stacked is a tab stacking direction, a protective member having a plurality of holes penetrating in the tab stacking direction is used.
An arrangement step of arranging the tab group between the terminal structure and the protective member;
A welding step of forming the welded portion while pressing the protective member toward the tab group;
Including
In the welding process, the laser irradiation device irradiates the laser from the protection member side toward the tab group and moves the laser irradiation device so as to straddle the plurality of holes. Production method.
前記端子構造は、前記溶接部が形成される板状の導電部材と、前記導電部材に接続され、前記蓄電装置の内外を接続する引出端子とを備え、
前記保護部材は、三次元構造をなす請求項1に記載の蓄電装置の製造方法。
The terminal structure includes a plate-like conductive member on which the welded portion is formed, and a lead terminal connected to the conductive member and connecting the inside and outside of the power storage device,
The method for manufacturing a power storage device according to claim 1, wherein the protective member has a three-dimensional structure.
前記溶接工程後に、前記保護部材を除去する除去工程を含む請求項1又は請求項2に記載の蓄電装置の製造方法。   The manufacturing method of the electrical storage apparatus of Claim 1 or Claim 2 including the removal process which removes the said protection member after the said welding process. 前記溶接工程において、前記保護部材は、前記タブ群及び前記端子構造とともに溶接され、
前記タブ群に溶接された前記保護部材と、前記タブ群を有する前記電極組立体のタブ側端面との間に絶縁部材を挿入する取付工程を有し、
前記取付工程において、前記絶縁部材が前記保護部材に接触した際に、前記保護部材は前記タブの積層方向に弾性変形する請求項2に記載の蓄電装置の製造方法。
In the welding step, the protective member is welded together with the tab group and the terminal structure,
An attachment step of inserting an insulating member between the protective member welded to the tab group and a tab side end surface of the electrode assembly having the tab group;
3. The method for manufacturing a power storage device according to claim 2, wherein, in the attaching step, when the insulating member comes into contact with the protective member, the protective member elastically deforms in a stacking direction of the tabs.
前記保護部材には、エキスパンドメタルが用いられる請求項1〜請求項4の何れか一項に記載の蓄電装置の製造方法。
The manufacturing method of the electrical storage apparatus as described in any one of Claims 1-4 in which an expanded metal is used for the said protection member.
JP2018101528A 2018-05-28 2018-05-28 Manufacturing method of power storage device Pending JP2019207767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018101528A JP2019207767A (en) 2018-05-28 2018-05-28 Manufacturing method of power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018101528A JP2019207767A (en) 2018-05-28 2018-05-28 Manufacturing method of power storage device

Publications (1)

Publication Number Publication Date
JP2019207767A true JP2019207767A (en) 2019-12-05

Family

ID=68768601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018101528A Pending JP2019207767A (en) 2018-05-28 2018-05-28 Manufacturing method of power storage device

Country Status (1)

Country Link
JP (1) JP2019207767A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020087802A (en) * 2018-11-29 2020-06-04 プライムアースEvエナジー株式会社 Secondary battery and manufacturing method thereof
EP4362151A1 (en) 2022-10-04 2024-05-01 Prime Planet Energy & Solutions, Inc. Battery cell and method of manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020087802A (en) * 2018-11-29 2020-06-04 プライムアースEvエナジー株式会社 Secondary battery and manufacturing method thereof
JP7019548B2 (en) 2018-11-29 2022-02-15 プライムアースEvエナジー株式会社 Method of manufacturing secondary batteries and secondary batteries
EP4362151A1 (en) 2022-10-04 2024-05-01 Prime Planet Energy & Solutions, Inc. Battery cell and method of manufacturing same

Similar Documents

Publication Publication Date Title
JP4401065B2 (en) Secondary battery and manufacturing method thereof
JP5965396B2 (en) Battery negative terminal and battery negative terminal manufacturing method
US20090223940A1 (en) Different metallic thin plates welding method, bimetallic thin plates jointing element, electric device, and electric device assembly
US20090104525A1 (en) Secondary battery and manufacturing method thereof
KR20110035854A (en) Conducting block for resistance welding, manufacturing method of sealed battery using the conducting block and sealed battery
KR102151933B1 (en) Electric power storage device and method of manufacturing the same
CN107665968B (en) Secondary battery, method for manufacturing same, and assembled battery using same
JP2015099681A (en) Sealed battery
JP2017216148A (en) Power storage element, power storage device, and method of manufacturing power storage element
WO2014027606A1 (en) Electrical storage device
JP2015176701A (en) Power storage device and method for manufacturing power storage device
JP2019067570A (en) Welding jig and formation method of weld zone
JP2019207767A (en) Manufacturing method of power storage device
JP5962280B2 (en) Electrode manufacturing method
JP2019145271A (en) Power storage device and manufacturing method of power storage device
JP2019140068A (en) Power storage device, method of manufacturing power storage device, and device of manufacturing power storage device
JP2020013733A (en) Power storage device and manufacturing method thereof
JP2020013745A (en) Manufacturing method of power storage device
JP2020004643A (en) Power storage device
JP6007502B2 (en) Method for manufacturing power storage element
JP2019061949A (en) Electrical storage device, and laser welding method for electrical storage device
JP2019145272A (en) Power storage device and manufacturing method of power storage device
JP2007242362A (en) Sealed battery and its manufacturing method
JP2020013706A (en) Power storage device and manufacturing method thereof
JP2019207768A (en) Power storage device, and manufacturing method of power storage device