JP2019061949A - Electrical storage device, and laser welding method for electrical storage device - Google Patents

Electrical storage device, and laser welding method for electrical storage device Download PDF

Info

Publication number
JP2019061949A
JP2019061949A JP2018136119A JP2018136119A JP2019061949A JP 2019061949 A JP2019061949 A JP 2019061949A JP 2018136119 A JP2018136119 A JP 2018136119A JP 2018136119 A JP2018136119 A JP 2018136119A JP 2019061949 A JP2019061949 A JP 2019061949A
Authority
JP
Japan
Prior art keywords
welding
uncoated
conductive member
laser
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018136119A
Other languages
Japanese (ja)
Inventor
康寿 松浦
Yasuhisa Matsuura
康寿 松浦
木下 恭一
Kyoichi Kinoshita
恭一 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Publication of JP2019061949A publication Critical patent/JP2019061949A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

To provide an electrical storage device which can suppress the occurrence of a break of an uncoated part without a protection plate, and a laser welding method for such an electrical storage device.SOLUTION: A secondary battery comprises: an electrode assembly 12 having a tab group 18 having a plurality of tabs 26 laminated therein; an electrode terminal for providing electricity to the electrode assembly 12 and receiving electricity therefrom; and a conductive member 17 for electrically connecting the electrode assembly 12 with the electrode terminal. It is noted that a direction in which the plurality of tabs 26 are laminated is defined as a lamination direction. The conductive member 17 is disposed on one end side of the tab group 18 in the lamination direction. The secondary battery has an outside welding part 31 to which the plurality of tabs 26 including the tab 26 located at the other end in the lamination direction are laser-welded. The outside welding part 31 has two straight line parts 33. In addition, the secondary battery has an inside welding part 32 to which the conductive member 17 and the tab group 18 are laser-welded. When viewing the tab group 18 from the other end in the lamination direction, the two straight line parts 33 are present in the state of being spaced from each other by a distance of 4.0 mm, and the inside welding part 32 is located between the two straight line parts 33.SELECTED DRAWING: Figure 6

Description

本発明は、未塗工部群を備える電極組立体と、電極組立体と電気を授受する電極端子と、電極組立体と電極端子とを電気的に接続する導電部材とを備えた蓄電装置及び蓄電装置のレーザ溶接方法に関する。   The present invention relates to an electricity storage device including an electrode assembly having an uncoated portion group, an electrode terminal for exchanging electricity with the electrode assembly, and a conductive member for electrically connecting the electrode assembly and the electrode terminal. The present invention relates to a laser welding method of a power storage device.

従来から、EV(Electric Vehicle)やPHV(Plug in Hybrid Vehicle)などの車両には、電動機などへの供給電力を蓄える蓄電装置としてリチウムイオン二次電池などが搭載されている。二次電池は、複数のシート状の正極電極と負極電極とが絶縁された状態で交互に積層された電極組立体と、該電極組立体を収容するケースとを備える。   BACKGROUND Conventionally, in vehicles such as EVs (Electric Vehicles) and PHVs (Plug in Hybrid Vehicles), lithium ion secondary batteries and the like are mounted as power storage devices for storing power supplied to motors and the like. The secondary battery includes an electrode assembly in which a plurality of sheet-like positive electrodes and negative electrodes are alternately stacked in an insulated state, and a case for housing the electrode assembly.

正極電極及び負極電極は、金属箔と、金属箔の両面又は片面に存在する活物質層と、活物質層が存在せず、金属箔が露出する未塗工部とを有する。未塗工部は、例えば、金属箔の一辺から突出したタブである。電極組立体は、各極性のタブが積層された未塗工部群としてのタブ群を備える。二次電池からの電力の取り出しは、電極組立体と電気的に接続された電極端子を通して行われる。電極組立体と電極端子とは、タブ群と電極端子の一部(例えば導電部材)とをレーザ溶接して接合することで電気的に接続されている。   The positive electrode and the negative electrode have a metal foil, an active material layer present on both sides or one side of the metal foil, and an uncoated portion where the active material layer is not present and the metal foil is exposed. The uncoated portion is, for example, a tab protruding from one side of the metal foil. The electrode assembly includes tabs as uncoated portions in which tabs of each polarity are stacked. Power extraction from the secondary battery is performed through an electrode terminal electrically connected to the electrode assembly. The electrode assembly and the electrode terminal are electrically connected by laser welding and joining the tab group and a part of the electrode terminal (for example, a conductive member).

ところで、タブ群と導電部材との溶接において、タブ群を構成するタブの枚数が多くなるほど、全てのタブを一度に溶接する際のタブの積層方向における溶け込み深さが深くなるため、溶接に要するレーザのエネルギーが大きくなる。この場合、タブ群のうちレーザの照射位置に近いタブに破れが生じることがある。これに対し、例えば特許文献1では、保護板と導電部材とでタブ群を挟み込んでレーザ溶接することで、溶接時のタブの破れを抑制している。   By the way, in welding of the tab group and the conductive member, as the number of tabs constituting the tab group increases, the penetration depth in the stacking direction of the tabs when welding all the tabs at one time becomes deeper, so it is necessary for welding The energy of the laser is increased. In this case, a break may occur in the tabs close to the laser irradiation position in the tab group. On the other hand, in Patent Document 1, for example, the tab group is sandwiched between the protective plate and the conductive member and laser welding is performed to suppress breakage of the tab at the time of welding.

特開2016−002566号公報JP, 2016-002566, A

しかしながら、保護板は、タブ群と導電部材を溶接する際に、タブ群に溶接されるため、タブ群と導電部材とを溶接する度に必要になる。また、保護板は、二次電池の部品点数の増加につながる。   However, since the protective plate is welded to the tabs when welding the tabs to the conductive member, the protective plate is required each time the tabs and the conductive member are welded. In addition, the protective plate leads to an increase in the number of parts of the secondary battery.

本発明は、上記課題を解決するためになされたものであり、その目的は、保護板がなく、未塗工部の破れの発生を抑制できる蓄電装置及び蓄電装置のレーザ溶接方法を提供することにある。   The present invention has been made to solve the above-mentioned problems, and an object thereof is to provide a power storage device and a laser welding method of the power storage device which can suppress the occurrence of breakage of an uncoated portion without a protective plate. It is in.

上記問題点を解決するための蓄電装置は、矩形シート状の金属箔と、前記金属箔の少なくとも片面に存在する活物質層と、前記活物質層が存在せず、前記金属箔が露出する未塗工部とを有する正極及び負極の電極が絶縁された状態で積層され、かつ複数枚の前記未塗工部が同じ極性同士で積層された未塗工部群を備える電極組立体と、前記電極組立体と電気を授受する電極端子と、前記電極組立体と前記電極端子とを電気的に接続する導電部材と、を備えた蓄電装置であって、前記未塗工部が積層される方向を積層方向としたとき、前記導電部材は、前記未塗工部群の積層方向の一端側に配置され、前記積層方向の他端に位置する未塗工部を含む複数枚の未塗工部がレーザ溶接された2つの第1溶接部と、前記導電部材と前記未塗工部群とがレーザ溶接された第2溶接部とを備え、前記未塗工部群を積層方向の他端側から見たとき、前記2つの第1溶接部は、0.5mmより大きく4.0mm以下の間隔を空けて存在し、前記第2溶接部は、前記2つの第1溶接部の間に存在することを要旨とする。   The electricity storage device for solving the above problems does not have a rectangular sheet metal foil, an active material layer present on at least one surface of the metal foil, and the metal foil exposed without the active material layer. An electrode assembly comprising an uncoated portion group in which electrodes of a positive electrode and a negative electrode having a coated portion are laminated in an insulated state, and a plurality of the uncoated portions are laminated with the same polarity; A power storage device comprising: an electrode terminal for exchanging electricity with an electrode assembly; and a conductive member for electrically connecting the electrode assembly and the electrode terminal, wherein the direction in which the uncoated portion is laminated And the conductive member is disposed on one end side of the uncoated portion group in the laminating direction, and the plurality of uncoated portions including the uncoated portion positioned at the other end of the laminating direction Are two laser welded first welds, the conductive member and the uncoated portion group And the first two welds are larger than 0.5 mm and not larger than 4.0 mm when the uncoated portion group is viewed from the other end side in the laminating direction. The gutters may be spaced apart, and the second weld may be present between the two first welds.

これによれば、2つの第1溶接部の間隔が0.5mmより大きく4.0mm以下に設定されることで、未塗工部群において2つの第1溶接部の間では、積層方向に隣り合う未塗工部同士は密着した状態となる。このため、第1溶接部の形成された未塗工部群に対し、第2溶接部を形成することで、積層方向に溶融が進みやすくなり、レーザの照射位置に近い未塗工部にレーザのエネルギーが集中することが抑制される。よって、保護板のない構成で未塗工部の破れの発生を抑制できる。   According to this, the interval between the two first welds is set to be larger than 0.5 mm and not more than 4.0 mm, so that in the uncoated portion group, the two first welds are adjacent in the stacking direction. Unmatched uncoated parts are in close contact with each other. Therefore, by forming the second welded portion with respect to the uncoated portion group in which the first welded portion is formed, melting easily proceeds in the laminating direction, and the laser is applied to the uncoated portion close to the laser irradiation position. Concentration of energy is suppressed. Therefore, generation | occurrence | production of the tear of an uncoated part can be suppressed by the structure without a protective plate.

また、上記蓄電装置について、前記積層方向における前記第1溶接部の溶け込み深さは、0.2〜0.3mmであるのが好ましい。
これによれば、十分な枚数の未塗工部を互いに密着させられるため、未塗工部群と導電部材とをレーザ溶接する際の未塗工部の破れの発生をより抑制できる。
In the power storage device, the penetration depth of the first welded portion in the stacking direction is preferably 0.2 to 0.3 mm.
According to this, since a sufficient number of uncoated portions can be brought into close contact with each other, it is possible to further suppress the occurrence of tearing of the uncoated portion when the uncoated portion group and the conductive member are laser welded.

また、上記蓄電装置について、前記第2溶接部は、前記積層方向の他端に位置する未塗工部の表面から前記導電部材側に凹む形状であり、前記未塗工部の表面から凹んだ部分を凹部としたとき、前記積層方向の他端に位置する前記未塗工部の表面での前記第2溶接部の短手方向における前記凹部の寸法は、前記導電部材の前記未塗工部群側の端面での前記第2溶接部の短手方向の寸法の2〜6倍であるのが好ましい。   In the power storage device, the second welded portion is recessed from the surface of the uncoated portion located at the other end in the stacking direction toward the conductive member, and is recessed from the surface of the uncoated portion When the portion is a recess, the dimension of the recess in the short direction of the second welded portion on the surface of the uncoated portion located at the other end of the stacking direction is the uncoated portion of the conductive member It is preferable that it is 2 to 6 times the dimension of the latitudinal direction of the said 2nd welding part in the end surface by the side of a group.

凹部の寸法が第2溶接部の寸法の2倍未満となるような溶接条件で導電部材と未塗工部群とをレーザ溶接する場合、積層方向の一端に位置する未塗工部と導電部材との接合面積が不足し、十分な接合強度を得られない虞がある。一方、凹部の寸法が第2溶接部の寸法の6倍より大きくなるような溶接条件で導電部材と未塗工部群とをレーザ溶接する場合、レーザの照射位置に近い積層方向の他端側に位置する未塗工部に破れが生じる虞がある。よって、凹部の寸法が第2溶接部の寸法の2〜6倍となるような溶接条件でレーザ溶接を行うことで、溶接時の未塗工部の破れの発生を抑制できるとともに、導電部材と未塗工部群との接合強度を十分得られる。   When laser welding the conductive member and the non-coated portion group under welding conditions such that the dimension of the recess is less than twice the dimension of the second welded portion, the non-coated portion and the conductive member located at one end in the laminating direction There is a possibility that sufficient bonding strength can not be obtained due to lack of bonding area with the above. On the other hand, when the conductive member and the uncoated portion group are laser welded under welding conditions such that the dimension of the recess is larger than six times the dimension of the second welded portion, the other end side in the stacking direction close to the laser irradiation position There is a possibility that a tear may occur in the uncoated portion located in Therefore, by performing laser welding under welding conditions such that the size of the recess is 2 to 6 times as large as the size of the second welded portion, it is possible to suppress the occurrence of breakage of the uncoated portion at the time of welding and Sufficient bonding strength with the uncoated portion group can be obtained.

また、上記蓄電装置について、前記第2溶接部は、前記積層方向の他端に位置する未塗工部の表面から前記導電部材側に凹む形状であり、前記未塗工部の表面から凹んだ部分を凹部としたとき、前記積層方向の他端に位置する前記未塗工部の表面での前記第2溶接部の短手方向における前記凹部の寸法は、前記積層方向における前記第2溶接部の溶け込み深さの10〜50%であるのが好ましい。   In the power storage device, the second welded portion is recessed from the surface of the uncoated portion located at the other end in the stacking direction toward the conductive member, and is recessed from the surface of the uncoated portion When the portion is a recess, the dimension of the recess in the short direction of the second welded portion on the surface of the uncoated portion located at the other end of the stacking direction is the second welded portion in the stacking direction 10 to 50% of the penetration depth of

凹部の寸法が第2溶接部の溶け込み深さの10%未満となるような溶接条件で導電部材と未塗工部群とをレーザ溶接する場合、積層方向の一端に位置する未塗工部と導電部材との接合面積が不足し、十分な接合強度を得られない虞がある。一方、凹部の寸法が内側溶接部の溶け込み深さの50%より大きくなるような溶接条件で導電部材と未塗工部群とをレーザ溶接する場合、レーザの照射位置に近い積層方向の他端側に位置する未塗工部に破れが生じる虞がある。よって、凹部の寸法が第2溶接部の溶け込み深さの10〜50%となるような溶接条件でレーザ溶接を行うことで、溶接時の未塗工部の破れの発生を抑制できるとともに、導電部材と未塗工部群との接合強度を十分得られる。   When laser welding the conductive member and the uncoated portion group under welding conditions such that the dimension of the recess is less than 10% of the penetration depth of the second welded portion, the uncoated portion located at one end in the laminating direction There is a possibility that sufficient bonding strength can not be obtained because the bonding area with the conductive member is insufficient. On the other hand, when the conductive member and the non-coated portion group are laser welded under welding conditions such that the dimension of the recess is greater than 50% of the penetration depth of the inner weld, the other end in the lamination direction closer to the laser irradiation position There is a possibility that a tear may occur in the uncoated portion located on the side. Therefore, while performing the laser welding under the welding conditions such that the dimension of the recess is 10 to 50% of the penetration depth of the second welded portion, it is possible to suppress the occurrence of breakage of the uncoated portion at the time of welding and Sufficient bonding strength between the member and the uncoated portion group can be obtained.

上記問題点を解決するための蓄電装置のレーザ溶接方法は、矩形シート状の金属箔と、前記金属箔の少なくとも片面に存在する活物質層と、前記活物質層が存在せず、前記金属箔が露出する未塗工部とを有する正極及び負極の電極が絶縁された状態で積層され、かつ前記電極の未塗工部が同じ極性同士で積層された未塗工部群を備える電極組立体と、前記電極組立体と電気を授受する電極端子と、前記電極組立体と前記電極端子とを電気的に接続する導電部材と、を備えた蓄電装置の製造のために、前記未塗工部群と前記導電部材とをレーザ溶接する蓄電装置のレーザ溶接方法であって、前記未塗工部が積層される方向を積層方向としたとき、前記導電部材を前記未塗工部群の積層方向の一端側に配置した状態で、前記積層方向の他端側から前記未塗工部群を加圧する加圧工程と、前記積層方向の他端側からレーザを照射し、複数枚の前記未塗工部を溶接して2つの第1溶接部を形成する第1溶接工程と、前記積層方向の他端側からレーザを照射し、前記導電部材と前記未塗工部群とを溶接して第2溶接部を形成する第2溶接工程と、を備え、前記未塗工部群を積層方向の他端側から見たとき、前記2つの第1溶接部は、0.5mmより大きく4.0mm以下の間隔を空けて形成され、前記第2溶接部は、前記2つの第1溶接部の間に形成されることを要旨とする。   In the laser welding method of a storage device for solving the above problems, a metal sheet in the form of a rectangular sheet, an active material layer present on at least one surface of the metal foil, and the active material layer are not present. An electrode assembly comprising an uncoated portion group in which an electrode of a positive electrode and a negative electrode having an uncoated portion exposed is laminated in an insulated state, and the uncoated portion of the electrode is laminated with the same polarity. And a non-coated portion for manufacturing a power storage device including: an electrode terminal for exchanging electricity with the electrode assembly; and a conductive member for electrically connecting the electrode assembly and the electrode terminal. It is a laser welding method of the electrical storage apparatus which carries out the laser welding of the group and the said electroconductive member, Comprising: When the direction in which the said uncoated part is laminated is made into the lamination direction, the said electroconductive member is made into the lamination direction of the said uncoated part group. From the other end side of the stacking direction in the state of being disposed on one end side of the A pressing step of pressing the uncoated portion group, and irradiating a laser from the other end side in the laminating direction to weld a plurality of the uncoated portions to form two first welded portions A welding step, and a second welding step of irradiating a laser from the other end side in the stacking direction to weld the conductive member and the uncoated portion group to form a second welded portion; When the coated portion group is viewed from the other end side in the stacking direction, the two first welded portions are formed at an interval of more than 0.5 mm and 4.0 mm or less, and the second welded portion is formed by It makes it a summary to be formed between two 1st welding parts.

これによれば、未塗工部群を加圧した状態で複数枚の未塗工部を溶接することで、積層方向に隣り合う未塗工部同士を密着させた状態で第1溶接部を形成できる。また、2つの第1溶接部の間隔が0.5mmより大きく4.0mm以下に設定されることで、未塗工部群において2つの第1溶接部の間では、積層方向に隣り合う未塗工部同士は密着した状態となる。このため、第1溶接部の形成された未塗工部群に対し、第2溶接部を形成することで、積層方向に溶融が進みやすくなり、レーザの照射位置に近い未塗工部にレーザのエネルギーが集中することが抑制される。よって、保護板を用いることなく、未塗工部の破れの発生を抑制できる。   According to this, by welding a plurality of uncoated portions in a state where the uncoated portion group is pressurized, the first welded portion is adhered in a state where the uncoated portions adjacent in the stacking direction are in close contact with each other. It can be formed. Further, by setting the distance between the two first welds to be larger than 0.5 mm and 4.0 mm or less, unpainted portions adjacent to each other in the stacking direction may be formed between the two first welds in the uncoated portion group. The working parts are in close contact with each other. Therefore, by forming the second welded portion with respect to the uncoated portion group in which the first welded portion is formed, melting easily proceeds in the laminating direction, and the laser is applied to the uncoated portion close to the laser irradiation position. Concentration of energy is suppressed. Therefore, generation | occurrence | production of the tear of an uncoated part can be suppressed, without using a protective plate.

また、上記蓄電装置のレーザ溶接方法について、前記第1溶接工程において、前記積層方向における第1溶接部の溶け込み深さを0.2〜0.3mmとするのが好ましい。
これによれば、十分な枚数の未塗工部を互いに密着させられるため、未塗工部群と導電部材とをレーザ溶接する際の未塗工部の破れの発生をより抑制できる。
Further, in the laser welding method of the electric storage device, in the first welding step, the penetration depth of the first welded portion in the stacking direction is preferably 0.2 to 0.3 mm.
According to this, since a sufficient number of uncoated portions can be brought into close contact with each other, it is possible to further suppress the occurrence of tearing of the uncoated portion when the uncoated portion group and the conductive member are laser welded.

また、上記蓄電装置のレーザ溶接方法について、前記第1溶接工程において、レーザ溶接は熱伝導方式であるのが好ましい。
熱伝導方式によるレーザ溶接では、キーホール方式によるレーザ溶接に比べてスパッタの発生が抑制される。よって、第1溶接工程において、未塗工部群を加圧する加圧治具にスパッタが付着することを抑制できる。その結果、加圧治具の清掃や交換等の頻度を少なくできる。
Further, in the laser welding method of the power storage device, in the first welding step, it is preferable that the laser welding is a heat conduction method.
In laser welding by the heat conduction method, generation of spatter is suppressed as compared with laser welding by the keyhole method. Therefore, in the first welding step, adhesion of spatter to the pressing jig for pressing the uncoated portion group can be suppressed. As a result, the frequency of cleaning and replacement of the pressing jig can be reduced.

また、上記蓄電装置のレーザ溶接方法について、前記第2溶接工程において、レーザ溶接はキーホール方式であるのが好ましい。
キーホール方式によるレーザ溶接では、熱伝導方式によるレーザ溶接に比べて、溶け込み深さを深くできる。よって、導電部材と複数枚の未塗工部からなる未塗工部群とをレーザ溶接する第2溶接工程に適している。
Further, in the laser welding method of the power storage device, in the second welding step, the laser welding is preferably a keyhole method.
The laser welding by the keyhole method can make the penetration depth deeper than the laser welding by the heat conduction method. Therefore, it is suitable for the 2nd welding process which carries out laser welding of the electric conduction member and the uncoated part group which consists of a plurality of uncoated parts.

上記問題点を解決するための蓄電装置のレーザ溶接方法は、矩形シート状の金属箔と、前記金属箔の少なくとも片面に存在する活物質層と、前記活物質層が存在せず、前記金属箔が露出する未塗工部とを有する正極及び負極の電極が絶縁された状態で積層され、かつ前記電極の未塗工部が同じ極性同士で積層された未塗工部群を備える電極組立体と、前記電極組立体と電気を授受する電極端子と、前記電極組立体と前記電極端子とを電気的に接続する導電部材と、を備えた蓄電装置の製造のために、前記未塗工部群と前記導電部材とをレーザ溶接する蓄電装置のレーザ溶接方法であって、前記未塗工部が積層される方向を積層方向としたとき、前記導電部材を前記未塗工部群の積層方向の一端側に配置した状態で、前記積層方向の他端側から前記未塗工部群を加圧する加圧工程と、前記加圧工程中に、前記積層方向の他端側からレーザを照射し、複数枚の前記未塗工部を溶接して直線状をなす2つの第1溶接部を形成する第1溶接工程と、前記加圧工程中かつ前記第1溶接工程後に、前記積層方向の他端側からレーザを照射し、前記導電部材と前記未塗工部群とを溶接して第2溶接部を形成する第2溶接工程と、を備え、前記未塗工部群を積層方向の他端側から見たとき、前記2つの第1溶接部は、0.5mmより大きく4.0mm以下の間隔を空けて形成され、前記第2溶接部は、前記2つの第1溶接部の間に形成されることを特徴とする蓄電装置のレーザ溶接方法。   In the laser welding method of a storage device for solving the above problems, a metal sheet in the form of a rectangular sheet, an active material layer present on at least one surface of the metal foil, and the active material layer are not present. An electrode assembly comprising an uncoated portion group in which an electrode of a positive electrode and a negative electrode having an uncoated portion exposed is laminated in an insulated state, and the uncoated portion of the electrode is laminated with the same polarity. And a non-coated portion for manufacturing a power storage device including: an electrode terminal for exchanging electricity with the electrode assembly; and a conductive member for electrically connecting the electrode assembly and the electrode terminal. It is a laser welding method of the electrical storage apparatus which carries out the laser welding of the group and the said electroconductive member, Comprising: When the direction in which the said uncoated part is laminated is made into the lamination direction, the said electroconductive member is made into the lamination direction of the said uncoated part group. From the other end side of the stacking direction in the state of being disposed on one end side of the In the pressing step of pressing the uncoated portion group, and during the pressing step, a laser is irradiated from the other end side in the laminating direction to weld a plurality of the uncoated portions to form a linear shape. During the first welding step of forming two first welded portions, and during the pressing step and after the first welding step, laser is irradiated from the other end side in the laminating direction, and the conductive member and the uncoated portion And a second welding step of forming a second welded portion by welding with a group, and when the uncoated portion group is viewed from the other end side in the stacking direction, the two first welded portions are A laser welding method of a power storage device, which is formed at an interval of more than 5 mm and 4.0 mm or less, and the second welding portion is formed between the two first welding portions.

これによれば、未塗工部群を加圧した状態で複数枚の未塗工部を溶接することで、積層方向に隣り合う未塗工部同士を密着させた状態で第1溶接部を形成できる。また、2つの第1溶接部の間隔が0.5mmより大きく4.0mm以下に設定されることで、未塗工部群において2つの第1溶接部の間では、積層方向に隣り合う未塗工部同士は密着した状態となる。このため、第1溶接部の形成された未塗工部群に対し、第2溶接部を形成することで、積層方向に溶融が進みやすくなり、レーザの照射位置に近い未塗工部にレーザのエネルギーが集中することが抑制される。よって、保護板を用いることなく、未塗工部の破れの発生を抑制できる。   According to this, by welding a plurality of uncoated portions in a state where the uncoated portion group is pressurized, the first welded portion is adhered in a state where the uncoated portions adjacent in the stacking direction are in close contact with each other. It can be formed. Further, by setting the distance between the two first welds to be larger than 0.5 mm and 4.0 mm or less, unpainted portions adjacent to each other in the stacking direction may be formed between the two first welds in the uncoated portion group. The working parts are in close contact with each other. Therefore, by forming the second welded portion with respect to the uncoated portion group in which the first welded portion is formed, melting easily proceeds in the laminating direction, and the laser is applied to the uncoated portion close to the laser irradiation position. Concentration of energy is suppressed. Therefore, generation | occurrence | production of the tear of an uncoated part can be suppressed, without using a protective plate.

また、上記蓄電装置のレーザ溶接方法について、前記第1溶接部は、前記第1溶接部とは異なる方向に延びる接続溶接部と接続されるように形成される。   Further, in the laser welding method of the power storage device, the first welding portion is formed to be connected to a connection welding portion extending in a direction different from the first welding portion.

本発明によれば、保護板がなく、未塗工部の破れの発生を抑制できる。   ADVANTAGE OF THE INVENTION According to this invention, there is no protective plate and it can suppress generation | occurrence | production of the tear of an uncoated part.

実施形態の二次電池の分解斜視図。The disassembled perspective view of the secondary battery of embodiment. 二次電池の部分断面図。FIG. 2 is a partial cross-sectional view of a secondary battery. (a)はタブ群を延ばした状態での溶接部を示す断面図、(b)はタブ群を延ばした状態での溶接部を示す平面図。(A) is sectional drawing which shows the welding part in the state which extended the tab group, (b) is a top view which shows the welding part in the state which extended the tab group. 加圧部材の斜視図。FIG. (a),(b)は溶接方法を示す断面図。(A), (b) is sectional drawing which shows the welding method. (a),(b)は溶接方法を示す平面図。(A), (b) is a top view which shows the welding method. 実施形態及び実験1〜3におけるタブの破れの発生の有無を示す表。The table | surface which shows the presence or absence of generation | occurrence | production of the tab tear in embodiment and experiment 1-3. (a)〜(d)は溶接部の別例を示す平面図。(A)-(d) is a top view which shows another example of a welding part. 内側溶接部の別例を模式的に示す断面図。Sectional drawing which shows typically another example of an inner side welding part. 内側溶接部の別例を模式的に示す断面図。Sectional drawing which shows typically another example of an inner side welding part.

以下、蓄電装置及び蓄電装置の溶接方法を二次電池及び二次電池の溶接方法に具体化した一実施形態を図1〜図7にしたがって説明する。
図1に示すように、蓄電装置としての二次電池10は、ケース11を備える。二次電池10は、ケース11に収容された電極組立体12及び電解液(図示せず)を備える。ケース11は、直方体状のケース本体13と、ケース本体13の開口部13aを閉塞する矩形平板状の蓋14とを有する。ケース11を構成するケース本体13と蓋14は、何れも金属製(例えば、ステンレスやアルミニウム)である。また、本実施形態の二次電池10は、その外観が角型をなす角型電池である。また、本実施形態の二次電池10は、リチウムイオン電池である。
Hereinafter, an embodiment in which a storage device and a method of welding a storage device are embodied in a secondary battery and a method of welding a secondary battery will be described according to FIGS. 1 to 7.
As shown in FIG. 1, a secondary battery 10 as a power storage device includes a case 11. The secondary battery 10 includes an electrode assembly 12 housed in a case 11 and an electrolyte (not shown). The case 11 has a rectangular parallelepiped case body 13 and a rectangular flat lid 14 closing the opening 13 a of the case body 13. The case main body 13 and the lid 14 constituting the case 11 are both made of metal (for example, stainless steel or aluminum). Moreover, the secondary battery 10 of the present embodiment is a square battery whose appearance is square. In addition, the secondary battery 10 of the present embodiment is a lithium ion battery.

二次電池10は、電極組立体12から電気を取り出すための一対の電極端子15を備える。一対の電極端子15のうち、一方の電極端子15は正極の電極端子であり、他方の電極端子15は負極の電極端子である。各電極端子15は、蓋14の貫通孔14aを貫通してケース11外に突出する。各電極端子15には、蓋14と絶縁するためのリング状の絶縁リング16がそれぞれ取り付けられている。各電極端子15は、ケース11内に矩形板状の導電部材17を有する。各電極端子15は、導電部材17と電気的に接続されている。   The secondary battery 10 includes a pair of electrode terminals 15 for extracting electricity from the electrode assembly 12. Of the pair of electrode terminals 15, one electrode terminal 15 is a positive electrode terminal, and the other electrode terminal 15 is a negative electrode terminal. Each electrode terminal 15 penetrates the through hole 14 a of the lid 14 and protrudes out of the case 11. A ring-shaped insulating ring 16 for insulating the lid 14 is attached to each of the electrode terminals 15. Each electrode terminal 15 has a rectangular plate-like conductive member 17 in the case 11. Each electrode terminal 15 is electrically connected to the conductive member 17.

図2に示すように、電極組立体12は、複数枚(例えば60枚)のシート状の正極の電極としての正極電極21と、複数枚(例えば61枚)のシート状の負極の電極としての負極電極22とを備える。電極組立体12は、正極電極21と負極電極22との間にセパレータ23を介在させて絶縁させた状態で交互に積層した層状構造を備える。なお、図3以降では、正極電極21、負極電極22、セパレータ23の枚数を省略した電極組立体12を図示している。   As shown in FIG. 2, the electrode assembly 12 includes a positive electrode 21 as a plurality of (for example, 60) sheet-like positive electrodes and a plurality of (for example, 61) sheet-like negative electrodes. And a negative electrode 22. The electrode assembly 12 has a layered structure which is alternately stacked in a state in which the separator 23 is interposed between the positive electrode 21 and the negative electrode 22 for insulation. In FIG. 3 and the subsequent figures, the electrode assembly 12 in which the numbers of the positive electrode 21, the negative electrode 22, and the separator 23 are omitted is illustrated.

正極電極21及び負極電極22は、矩形シート状の金属箔24を備える。正極電極21の金属箔24は、例えばアルミニウム箔であり、負極電極22の金属箔24は、例えば銅箔である。金属箔24の厚みは、約10μmである。正極電極21及び負極電極22は、金属箔24の両面に存在する活物質層25を備える。活物質層25は、極性に応じた活物質、導電材、及びバインダを含む。正極電極21及び負極電極22は、一対の長辺に沿う縁部のうち一方の縁部の一部から突出した矩形状のタブ26を備える。本実施形態では、タブ26の長手方向は、縁部からのタブ26の突出方向と一致する。タブ26は、活物質層25が存在せず、金属箔24が露出する未塗工部である。よって、タブ26の厚みは、金属箔24の厚みと同じく約10μmである。   The positive electrode 21 and the negative electrode 22 are provided with a metal sheet 24 in the form of a rectangular sheet. The metal foil 24 of the positive electrode 21 is, for example, an aluminum foil, and the metal foil 24 of the negative electrode 22 is, for example, a copper foil. The thickness of the metal foil 24 is about 10 μm. The positive electrode 21 and the negative electrode 22 have active material layers 25 present on both sides of the metal foil 24. The active material layer 25 contains an active material, a conductive material, and a binder according to the polarity. The positive electrode 21 and the negative electrode 22 have rectangular tabs 26 protruding from a part of one of the edges along the pair of long sides. In the present embodiment, the longitudinal direction of the tab 26 coincides with the projecting direction of the tab 26 from the edge. The tab 26 is an uncoated portion where the active material layer 25 does not exist and the metal foil 24 is exposed. Thus, the thickness of the tab 26 is about 10 μm, the same as the thickness of the metal foil 24.

電極組立体12は、各正極電極21のタブ26が正極電極21、負極電極22、及びセパレータ23が積層される方向の一端に集箔されて積層された未塗工部群としてのタブ群18を備える。同様に、電極組立体12は、各負極電極22のタブ26が正極電極21、負極電極22、及びセパレータ23が積層される方向の一端に集箔されて積層された未塗工部群としてのタブ群18を備える。タブ26が積層される方向を積層方向とする。各タブ群18は、電極組立体12において蓋14と対向している端面12aに存在する。図1及び図2に示すように、電極組立体12は、タブ26の突出方向におけるタブ群18の基端部及び先端部が折り曲げられた状態でケース11に収容される。導電部材17は、タブ群18の積層方向の一端面と蓋14の内面との間に位置する。なお、図3以降では、説明の便宜上、タブ群18を折り曲げずに延ばした状態で図示している。   The electrode assembly 12 is a tab group 18 as an uncoated portion group in which the tab 26 of each positive electrode 21 is collected at one end in the direction in which the positive electrode 21, the negative electrode 22, and the separator 23 are stacked. Equipped with Similarly, in the electrode assembly 12, the tab 26 of each negative electrode 22 is collected at one end in the direction in which the positive electrode 21, the negative electrode 22, and the separator 23 are stacked, and then stacked. A tab group 18 is provided. The direction in which the tabs 26 are stacked is referred to as the stacking direction. Each tab group 18 is present on the end face 12 a facing the lid 14 in the electrode assembly 12. As shown in FIGS. 1 and 2, the electrode assembly 12 is accommodated in the case 11 in a state where the proximal end and the distal end of the tab group 18 in the projecting direction of the tab 26 are bent. The conductive member 17 is located between one end face of the tab group 18 in the stacking direction and the inner surface of the lid 14. In FIG. 3 and later, for convenience of explanation, the tab group 18 is illustrated in a state of being extended without being bent.

図3(a)及び図3(b)に示すように、二次電池10は、外側溶接部31と内側溶接部32とを備える。図3(a)に示すように、外側溶接部31は、積層方向の他端に位置するタブ26を含む複数枚のタブ26がレーザ溶接されて形成される。内側溶接部32は、タブ群18を構成する全てのタブ26と導電部材17とがレーザ溶接されて形成される。   As shown in FIGS. 3A and 3B, the secondary battery 10 includes an outer welding portion 31 and an inner welding portion 32. As shown in FIG. 3A, the outer welding portion 31 is formed by laser welding a plurality of tabs 26 including the tabs 26 located at the other end in the stacking direction. The inner welding portion 32 is formed by laser welding all the tabs 26 constituting the tab group 18 and the conductive member 17.

図3(b)に示すように、タブ群18を積層方向の他端側から見たとき、外側溶接部31はトラック形状である。外側溶接部31は、2つの第1溶接部としての直線部33と、直線部33に繋がる接続溶接部としての2つの弧部34とから構成されている。一方の直線部33の一端部は、一方の弧部34の一端部に繋がっており、一方の直線部33の他端部は、他方の弧部34の一端部に繋がっている。また、他方の直線部33の一端部は、一方の弧部34の他端部に繋がっており、他方の直線部33の他端部は、他方の弧部34の他端部に繋がっている。直線部33の長手方向は、タブ26の短手方向に延びる。弧部34は、直線部33とは異なる方向に延びる。   As shown in FIG. 3B, when the tab group 18 is viewed from the other end side in the stacking direction, the outer welding portion 31 has a track shape. The outer welding portion 31 is composed of two linear portions 33 as first welding portions and two arc portions 34 as connection welding portions connected to the linear portions 33. One end of one linear portion 33 is connected to one end of one arc 34, and the other end of one linear portion 33 is connected to one end of the other arc 34. Further, one end of the other linear portion 33 is connected to the other end of one arc 34 and the other end of the other linear portion 33 is connected to the other end of the other arc 34 . The longitudinal direction of the straight portion 33 extends in the lateral direction of the tab 26. The arc 34 extends in a direction different from that of the straight portion 33.

本実施形態では、直線部33及び弧部34の短手方向の寸法はそれぞれ約1.0mmである。弧部34の短手方向とは、弧部34の内周と外周とを繋ぐ方向である。外側溶接部31の長手方向の寸法Aは18.0mmである。ここで、外側溶接部31の長手方向の寸法Aとは、一方の弧部34の短手方向の端のうち他方の弧部34に近い方の端A1と、他方の弧部34の短手方向の端のうち一方の弧部34に近い方の端A2との最長距離を指す。2つの直線部33は、4.0mmの間隔Bを空けて存在する。ここで、2つの直線部33の間隔Bとは、一方の直線部33の内縁B1と、他方の直線部33の内縁B2との距離を指す。積層方向における直線部33及び弧部34の溶け込み深さはそれぞれ、約0.2mmである。すなわち、外側溶接部31では、積層方向の他端側の約20枚のタブ26が溶接されている。   In the present embodiment, the dimensions of the straight portion 33 and the arc portion 34 in the lateral direction are each about 1.0 mm. The short side direction of the arc portion 34 is a direction connecting the inner periphery and the outer periphery of the arc portion 34. The dimension A in the longitudinal direction of the outer welding portion 31 is 18.0 mm. Here, the dimension A in the longitudinal direction of the outer welding portion 31 refers to the end A1 of the ends in the short direction of one arc 34 and the other end A1 closer to the other arc 34 and the short side of the other arc 34 It refers to the longest distance to the end A2 closer to one of the arcs 34 of the direction ends. The two straight portions 33 are present at an interval B of 4.0 mm. Here, the distance B between the two straight portions 33 refers to the distance between the inner edge B1 of one straight portion 33 and the inner edge B2 of the other straight portion 33. The penetration depths of the straight portion 33 and the arc portion 34 in the stacking direction are each about 0.2 mm. That is, in the outer welding portion 31, about 20 tabs 26 on the other end side in the stacking direction are welded.

タブ群18を積層方向の他端側から見たとき、第2溶接部としての内側溶接部32は直線状であり、外側溶接部31の内側に存在する。内側溶接部32の長手方向は、タブ26の短手方向に延び、内側溶接部32の短手方向は、タブ26の長手方向に延びる。タブ26の長手方向において、内側溶接部32は、外側溶接部31の一方の直線部33と他方の直線部33の中間に存在する。本実施形態では、内側溶接部32の長手方向の寸法は14.0mmであり、内側溶接部32の短手方向の寸法は1.0mmである。タブ26の長手方向において、内側溶接部32は、外側溶接部31の2つの直線部33それぞれと離間している。すなわち、タブ26の長手方向において、内側溶接部32と外側溶接部31の各直線部33との間には隙間が存在している。   When the tab group 18 is viewed from the other end side in the stacking direction, the inner welding portion 32 as the second welding portion is linear and exists inside the outer welding portion 31. The longitudinal direction of the inner weld 32 extends in the lateral direction of the tab 26, and the lateral direction of the inner weld 32 extends in the longitudinal direction of the tab 26. In the longitudinal direction of the tab 26, the inner welding portion 32 exists between one straight portion 33 of the outer welding portion 31 and the other straight portion 33. In the present embodiment, the longitudinal dimension of the inner weld 32 is 14.0 mm, and the lateral dimension of the inner weld 32 is 1.0 mm. In the longitudinal direction of the tab 26, the inner welding portion 32 is separated from each of the two straight portions 33 of the outer welding portion 31. That is, in the longitudinal direction of the tab 26, a gap is present between the inner welding portion 32 and the straight portions 33 of the outer welding portion 31.

次に、外側溶接部31及び内側溶接部32を形成するための溶接方法について説明する。
溶接方法は、集箔工程、加圧工程、第1溶接工程、及び第2溶接工程を備える。
Next, a welding method for forming the outer welding portion 31 and the inner welding portion 32 will be described.
The welding method includes a foil collecting step, a pressing step, a first welding step, and a second welding step.

集箔工程は、電極組立体12が備える複数枚のタブ26を集箔してタブ群18を形成する工程である。まず、図示しない作業台に載置された導電部材17上に、電極組立体12の全てのタブ26を配置する。次に、図示しない集箔装置によって、タブ26を挟んだ導電部材17の反対側から全てのタブ26を押圧して集箔し、タブ群18を形成する。これにより、導電部材17は、タブ群18の積層方向の一端側に配置された状態となる。   The foil collecting step is a step of collecting the plurality of tabs 26 provided in the electrode assembly 12 to form the tab group 18. First, all the tabs 26 of the electrode assembly 12 are disposed on the conductive member 17 placed on a work table (not shown). Next, all the tabs 26 are pressed from the opposite side of the conductive member 17 sandwiching the tabs 26 with a foil collector (not shown) to form the tab group 18. Thus, the conductive member 17 is disposed at one end side of the tab group 18 in the stacking direction.

加圧工程は、タブ群18を積層方向の他端側から加圧する工程である。加圧工程には、加圧治具50が用いられる。
図4に示すように、加圧治具50は、筒状の第1加圧治具51及び柱状の第2加圧治具52を備える。第1加圧治具51は、内周面によって形成される貫通孔51aを有する。第1加圧治具51の形状は、貫通孔51aが貫通する方向から見た平面視でトラック形状であり、第2加圧治具52の形状は、第2加圧治具52の軸線が延びる方向から見た平面視で楕円形状である。第2加圧治具52は、第1加圧治具51の貫通孔51aに挿通可能である。
The pressing step is a step of pressing the tab group 18 from the other end side in the stacking direction. A pressing jig 50 is used in the pressing step.
As shown in FIG. 4, the pressing jig 50 includes a cylindrical first pressing jig 51 and a columnar second pressing jig 52. The first pressing jig 51 has a through hole 51 a formed by the inner circumferential surface. The shape of the first pressure jig 51 is a track shape in a plan view as viewed from the direction in which the through hole 51 a penetrates, and the shape of the second pressure jig 52 is the axial line of the second pressure jig 52. It has an elliptical shape in plan view seen from the extending direction. The second pressing jig 52 can be inserted into the through hole 51 a of the first pressing jig 51.

第1加圧治具51は、平面視直線状の2つの第1基部53と、第1基部53に繋がる平面視弧状の2つの第2基部54とから構成されている。一方の第1基部53の一端部は、一方の第2基部54の一端部に繋がっており、一方の第1基部53の他端部は、他方の第2基部54の一端部に繋がっている。また、他方の第1基部53の一端部は、一方の第2基部54の他端部に繋がっており、他方の第1基部53の他端部は、他方の第2基部54の他端部に繋がっている。第1加圧治具51は、第1基部53及び第2基部54の底面から突出する第1加圧部55を備える。第1加圧部55は、平面視直線状の第1基部53に沿って存在する直線状加圧部55aと、平面視弧状の第2基部54に沿って存在する弧状加圧部55bとを備える。つまり、第1加圧部55の平面視形状はトラック形状である。   The first pressing jig 51 is configured of two linear first base portions 53 in a plan view, and two circular second base portions 54 in a plan view connected to the first base 53. One end of one first base 53 is connected to one end of one second base 54, and the other end of one first base 53 is connected to one end of the other second base 54. . Further, one end of the other first base 53 is connected to the other end of one second base 54, and the other end of the other first base 53 is the other end of the other second base 54. Connected to The first pressing jig 51 includes a first pressing unit 55 that protrudes from the bottom surface of the first base 53 and the second base 54. The first pressurizing unit 55 includes a linear pressurizing unit 55a existing along the first base 53 in a linear shape in plan view, and an arc-shaped pressurizing unit 55b existing along a second base 54 in an arc shape in plan view. Prepare. That is, the plan view shape of the first pressing portion 55 is a track shape.

本実施形態では、第1加圧治具51の長手方向の寸法Cは20.0mmよりも僅かに大きい。ここで、第2基部54の内周と外周とを繋ぐ方向を第2基部54の短手方向とする。第1加圧治具51の長手方向の寸法Cとは、一方の第2基部54の短手方向の端のうち他方の第2基部54に近い方の端C1と、他方の第2基部54の短手方向の端のうち一方の第2基部54に近い方の端C2との最長距離を指す。また、2つの第1基部53の間隔Dは、6.0mmよりも僅かに大きい。ここで、2つの第1基部53の間隔Dとは、一方の第1基部53の内縁D1と、他方の第1基部53の内縁D2との距離を指す。   In the present embodiment, the dimension C in the longitudinal direction of the first pressing jig 51 is slightly larger than 20.0 mm. Here, the direction in which the inner periphery and the outer periphery of the second base 54 are connected is taken as the short direction of the second base 54. The dimension C in the longitudinal direction of the first pressing jig 51 is an end C 1 of the ends in the short side direction of one second base 54 and the end C 1 closer to the other second base 54 and the other second base 54 Point at the longest distance to the end C2 closer to the second base 54 in one of the latitudinal ends of the Also, the distance D between the two first bases 53 is slightly larger than 6.0 mm. Here, the distance D between the two first bases 53 refers to the distance between the inner edge D1 of one first base 53 and the inner edge D2 of the other first base 53.

第2加圧治具52は、基部56と、基部56の底面から突出する第2加圧部57を備える。第2加圧部57の平面視形状は、楕円形状である。第2加圧治具52の長手方向の寸法Eは、18.0mmよりも僅かに小さく、第2加圧治具52の短手方向の寸法Fは、4.0mmよりも僅かに小さい。   The second pressing jig 52 includes a base 56 and a second pressing unit 57 projecting from the bottom of the base 56. The plan view shape of the second pressing portion 57 is an elliptical shape. The longitudinal dimension E of the second pressing jig 52 is slightly smaller than 18.0 mm, and the transverse dimension F of the second pressing jig 52 is slightly smaller than 4.0 mm.

加圧工程では、タブ群18において積層方向の他端に位置するタブ26の上に第1加圧治具51及び第2加圧治具52を配置する。そして、図示しないプレス装置によって、第1加圧治具51及び第2加圧治具52を加圧することで、第1加圧部55及び第2加圧部57は、タブ群18を積層方向の他端側から加圧する。これにより、積層方向に隣り合うタブ26同士は密着した状態となる。   In the pressing step, the first pressing jig 51 and the second pressing jig 52 are disposed on the tab 26 positioned at the other end of the tab group 18 in the stacking direction. Then, by pressing the first pressing jig 51 and the second pressing jig 52 with a pressing device (not shown), the first pressing unit 55 and the second pressing unit 57 stack the tab group 18 in the stacking direction. Apply pressure from the other end of the As a result, the tabs 26 adjacent in the stacking direction are in close contact with each other.

図5(a)及び図6(a)に示すように、第1溶接工程は、外側溶接部31を形成する工程である。本実施形態の第1溶接工程は、熱伝導方式のレーザ溶接によって行われる。図示しないレーザ照射装置によって、タブ群18を加圧している第1加圧治具51と第2加圧治具52との間からレーザを照射する。つまり、タブ群18の積層方向の他端側からレーザを照射する。これにより、積層方向の他端に位置するタブ26を含む複数枚のタブ26が溶接され、外側溶接部31が形成される。第1溶接工程のレーザのエネルギーは、積層方向における外側溶接部31の溶け込み深さが0.2mmとなる大きさ(例えば、900W)に設定されている。また、本実施形態では、レーザの照射方向は、積層方向に対して15度傾斜させている。第1溶接工程の後、第2加圧治具52を取り除く。第2加圧治具52を取り除いた状態では、外側溶接部31の内側には、溶接されていない状態のタブ26の一部が存在する。なお、第1加圧治具51は、タブ群18を積層方向の他端側から加圧し続ける。   As shown in FIGS. 5 (a) and 6 (a), the first welding step is a step of forming the outer welding portion 31. As shown in FIG. The first welding process of the present embodiment is performed by heat conduction laser welding. The laser irradiation device (not shown) irradiates the laser from between the first pressing jig 51 and the second pressing jig 52 which pressurize the tab group 18. That is, the laser is irradiated from the other end side of the tab group 18 in the stacking direction. As a result, the plurality of tabs 26 including the tabs 26 located at the other end in the stacking direction are welded, and the outer welding portion 31 is formed. The energy of the laser in the first welding step is set to a size (for example, 900 W) in which the penetration depth of the outer welding portion 31 in the stacking direction is 0.2 mm. Further, in the present embodiment, the irradiation direction of the laser is inclined by 15 degrees with respect to the stacking direction. After the first welding process, the second pressing jig 52 is removed. When the second pressing jig 52 is removed, a part of the tab 26 in a non-welded state is present inside the outer welding portion 31. The first pressing jig 51 keeps pressing the tab group 18 from the other end side in the stacking direction.

図5(b)及び図6(b)に示すように、第2溶接工程は、内側溶接部32を形成する工程である。本実施形態の第2溶接工程は、キーホール方式のレーザ溶接によって行われる。図示しないレーザ照射装置によって、第1加圧治具51の内側にレーザを照射する。つまり、タブ群18の積層方向の他端側からレーザを照射する。これにより、導電部材17とタブ群18とが溶接され、内側溶接部32が形成される。第2溶接工程のレーザのエネルギーは、導電部材17とタブ群18を構成する全てのタブ26とが溶接される大きさ(例えば、1200W)に設定されている。また、本実施形態では、レーザの照射方向は、積層方向に対して15度傾斜させている。第2溶接工程の後、第1加圧治具51を取り除く。   As shown in FIG. 5 (b) and FIG. 6 (b), the second welding step is a step of forming the inner welding portion 32. The second welding process of the present embodiment is performed by keyhole laser welding. The inside of the first pressure jig 51 is irradiated with a laser by a laser irradiation device (not shown). That is, the laser is irradiated from the other end side of the tab group 18 in the stacking direction. Thereby, the conductive member 17 and the tab group 18 are welded to form the inner welding portion 32. The energy of the laser in the second welding step is set to a size (for example, 1200 W) at which the conductive member 17 and all the tabs 26 constituting the tab group 18 are welded. Further, in the present embodiment, the irradiation direction of the laser is inclined by 15 degrees with respect to the stacking direction. After the second welding process, the first pressing jig 51 is removed.

次に、本実施形態の作用について説明する。
外側溶接部31が形成されていない状態で内側溶接部32を形成する場合、積層方向に隣り合うタブ26同士が密着していない可能性が高く、積層方向の他端側、すなわちレーザの照射位置に近い側に位置するタブ26にレーザのエネルギーが集中しやすい。このため、積層方向の他端側に位置するタブ26の面方向に沿って溶融が進みやすく、タブ26に破れが生じることがある。これに対し、2つの直線部33の間隔Bが4.0mmとなるように、外側溶接部31によって複数枚のタブ26を接合しておくことで、タブ群18において外側溶接部31の2つの直線部33の間では、積層方向に隣り合うタブ26同士が密着した状態となる。このため、内側溶接部32の形成時に、積層方向に溶融が進みやすくなり、タブ26の破れの発生が抑制される。
Next, the operation of the present embodiment will be described.
When the inner welding portion 32 is formed in a state where the outer welding portion 31 is not formed, there is a high possibility that the tabs 26 adjacent to each other in the stacking direction are not in close contact with each other. The energy of the laser tends to be concentrated on the tab 26 located on the near side. Therefore, melting may easily proceed along the surface direction of the tab 26 located on the other end side in the stacking direction, and the tab 26 may be broken. On the other hand, by joining the plurality of tabs 26 by the outer welding portion 31 so that the distance B between the two straight portions 33 is 4.0 mm, the two outer welding portions 31 in the tab group 18 are formed. Between the straight portions 33, the tabs 26 adjacent in the stacking direction are in close contact with each other. For this reason, at the time of formation of the inner side welding part 32, melting advances easily in the lamination direction, and generation | occurrence | production of the tear of the tab 26 is suppressed.

ところで、上記の実施例では、外側溶接部31の長手方向の寸法Aを18.0mmとし、2つの直線部33の間隔Bを4.0mmとしていたが、寸法Aや間隔Bを変更してもタブ26の破れの発生を抑制できるか否かを確かめるべく、実験1〜実験3を行った。なお、実験1〜3では、外側溶接部31の長手方向の寸法A、及び2つの直線部33の間隔B以外の条件を上記の実施例と同一にしている。   By the way, although the dimension A of the longitudinal direction of the outer side welding part 31 was 18.0 mm and the space | interval B of the two linear parts 33 was 4.0 mm in said Example, even if it changes the dimension A or the space | interval B Experiments 1 to 3 were conducted to confirm whether or not the occurrence of breakage of the tab 26 could be suppressed. In Experiments 1 to 3, conditions other than the dimension A in the longitudinal direction of the outer welding portion 31 and the distance B between the two straight portions 33 are the same as those in the above-described embodiment.

図7の表に示すように、実験1では、外側溶接部31の長手方向の寸法Aを3.0mmとし、2つの直線部33の間隔Bを2.0mmとした。実験2では、外側溶接部31の長手方向の寸法Aを5.0mmとし、2つの直線部33の間隔Bを実施例と同じ4.0mmとした。実験3では、外側溶接部31の長手方向の寸法Aを7.0mmとし、2つの直線部33の間隔Bを6.0mmとした。その結果、実験1及び実験2では、第2溶接工程でのタブ26の破れが発生せず、実験3では、第2溶接工程でタブ26の破れが発生した。   As shown in the table of FIG. 7, in Experiment 1, the dimension A in the longitudinal direction of the outer welding portion 31 was 3.0 mm, and the distance B between the two straight portions 33 was 2.0 mm. In Experiment 2, the dimension A in the longitudinal direction of the outer welding portion 31 was 5.0 mm, and the distance B between the two straight portions 33 was 4.0 mm as in the example. In Experiment 3, the dimension A in the longitudinal direction of the outer welding portion 31 was 7.0 mm, and the distance B between the two straight portions 33 was 6.0 mm. As a result, in Experiment 1 and Experiment 2, breakage of the tab 26 in the second welding process did not occur, and in Experiment 3, breakage of the tab 26 occurred in the second welding process.

上記実施形態及び実験2から、2つの直線部33の間隔Bが4.0mmであれば、外側溶接部31の長手方向の寸法Aは、第2溶接工程で発生し得るタブ26の破れには影響しないことが分かる。また、実験1〜実験3から、2つの直線部33の間隔Bが6.0mmを超えると、第2溶接工程でタブ26の破れが発生し、間隔Bが4.0mm以下であると、第2溶接工程でタブ26の破れが発生しないことが分かる。2つの直線部33の間隔Bが大きいほど、直線部33の間に存在するタブ26の一部の長さは長くなる。このため、2つの直線部33の間に存在するタブ26の一部について、積層方向に隣り合うもの同士の密着度が下がる。一方、2つの直線部33の間隔Bが小さいほど、2つの直線部33の間に存在するタブ26の一部の長さは短くなる。このため、2つの直線部33の間に存在するタブ26は、積層方向に隣り合うもの同士で密着しやすくなる。よって、第2溶接工程でのタブ26の破れの発生が抑制される。   From the embodiment and the experiment 2, if the distance B between the two straight portions 33 is 4.0 mm, the dimension A in the longitudinal direction of the outer welding portion 31 is for the breakage of the tab 26 which may occur in the second welding step. It turns out that it does not affect. Also, from Experiment 1 to Experiment 3, if the distance B between the two straight portions 33 exceeds 6.0 mm, the tab 26 is broken in the second welding step, and if the distance B is 4.0 mm or less, 2. It can be seen that the tab 26 does not break in the welding process. As the distance B between the two straight portions 33 is larger, the length of a part of the tab 26 existing between the straight portions 33 is longer. For this reason, with respect to a part of the tab 26 existing between the two straight portions 33, the degree of adhesion between adjacent ones in the stacking direction decreases. On the other hand, as the distance B between the two straight portions 33 is smaller, the length of a part of the tab 26 existing between the two straight portions 33 is shorter. For this reason, the tabs 26 existing between the two straight portions 33 are easily in close contact with each other in the stacking direction. Thus, the occurrence of breakage of the tab 26 in the second welding step is suppressed.

次に、本実施形態の効果を記載する。
(1)第1加圧治具51及び第2加圧治具52によって、タブ群18を加圧した状態で複数枚のタブ26を溶接することで、積層方向に隣り合うタブ26同士を密着させた状態で外側溶接部31を形成できる。また、2つの直線部33の間隔Bが0.5mmより大きく4.0mm以下に設定されることで、タブ群18において2つの直線部33の間では、積層方向に隣り合うタブ26同士は密着した状態となる。このため、直線部33の形成されたタブ群18に対し、内側溶接部32を形成することで、積層方向に溶融が進みやすくなり、レーザの照射位置に近いタブ26にレーザのエネルギーが集中することが抑制される。よって、保護板を用いることなく、未塗工部としてのタブ26の破れの発生を抑制できる。
Next, the effects of the present embodiment will be described.
(1) The plurality of tabs 26 are welded in a state where the tab group 18 is pressurized by the first pressing jig 51 and the second pressing jig 52, so that the adjacent tabs 26 in the stacking direction are in close contact with each other. The outer welding portion 31 can be formed in a state where it is allowed to move. Further, by setting the distance B between the two linear portions 33 to be larger than 0.5 mm and 4.0 mm or less, the tabs 26 adjacent to each other in the stacking direction in the tab group 18 are closely attached to each other. It will be in a state of Therefore, by forming the inner welding portion 32 with respect to the tab group 18 in which the linear portion 33 is formed, melting easily proceeds in the stacking direction, and the energy of the laser is concentrated on the tab 26 close to the laser irradiation position. Is suppressed. Therefore, generation | occurrence | production of the tear of the tab 26 as an uncoated part can be suppressed, without using a protective plate.

(2)積層方向における外側溶接部31の溶け込み深さは、約0.2mmである。すなわち、タブ群18を構成する約60枚のタブ26のうち、積層方向の他端側の約20枚のタブ26を互いに密着させられる。このため、タブ群18と導電部材17とをレーザ溶接する際のタブ26の破れの発生をより抑制できる。   (2) The penetration depth of the outer welding portion 31 in the stacking direction is about 0.2 mm. That is, among the approximately 60 tabs 26 constituting the tab group 18, approximately 20 tabs 26 on the other end side in the stacking direction can be brought into close contact with each other. Therefore, it is possible to further suppress the occurrence of breakage of the tab 26 when the tab group 18 and the conductive member 17 are laser-welded.

(3)第1溶接工程は、熱伝導方式のレーザ溶接によって行われる。熱伝導方式によるレーザ溶接では、キーホール方式によるレーザ溶接に比べてスパッタの発生が抑制される。よって、第1溶接工程において、タブ群18を加圧する加圧治具50にスパッタが付着することを抑制できる。その結果、加圧治具50の清掃や交換等の頻度を少なくできる。   (3) The first welding step is performed by heat conduction laser welding. In laser welding by the heat conduction method, generation of spatter is suppressed as compared with laser welding by the keyhole method. Therefore, in the first welding step, adhesion of spatter to the pressing jig 50 for pressing the tab group 18 can be suppressed. As a result, the frequency of cleaning and replacement of the pressing jig 50 can be reduced.

(4)第2溶接工程は、キーホール方式のレーザ溶接によって行われる。キーホール方式によるレーザ溶接では、熱伝導方式によるレーザ溶接に比べて、溶け込み深さを深くできる。よって、導電部材17と複数枚のタブ26からなるタブ群18とをレーザ溶接する第2溶接工程に適している。   (4) The second welding process is performed by keyhole laser welding. The laser welding by the keyhole method can make the penetration depth deeper than the laser welding by the heat conduction method. Therefore, it is suitable for the 2nd welding process which carries out laser welding of the conductive member 17 and the tab group 18 which consists of a plurality of tabs 26.

なお、上記実施形態は、以下のように変更してもよい。
○ 電極組立体12は、巻回型の電極組立体でもよい。図示しないが、巻回型の電極組立体は、長尺帯状の正極電極と長尺帯状の負極電極とが絶縁された状態で巻回された層状構造を有する。正極電極及び負極電極はそれぞれ、一対の長辺に沿う縁部のうち一方の縁部に活物質層が存在せず、金属箔が露出した帯状の未塗工部を備える。電極組立体は、帯状の未塗工部が同じ極性同士で積層された未塗工部群を備える。正極の未塗工部群は、巻回軸線の一端に存在し、負極の未塗工部群は、巻回軸線の他端に存在する。なお、巻回型の電極組立体では、帯状の未塗工部が積層される層数を未塗工部の枚数とする。
The above embodiment may be modified as follows.
The electrode assembly 12 may be a wound electrode assembly. Although not shown, the wound electrode assembly has a layered structure in which a long strip-like positive electrode and a long strip-like negative electrode are insulated and wound. The positive electrode and the negative electrode each have a strip-like uncoated portion in which the metal foil is exposed without an active material layer present at one of the edges along the pair of long sides. The electrode assembly includes an uncoated portion group in which strip-shaped uncoated portions are stacked with the same polarity. The uncoated portion group of the positive electrode is present at one end of the winding axis, and the uncoated portion group of the negative electrode is present at the other end of the winding axis. In the winding type electrode assembly, the number of layers on which the band-shaped uncoated portion is stacked is taken as the number of uncoated portions.

○ 正極電極21及び負極電極22において、活物質層25は金属箔24の片面に存在してもよい。
○ 正極電極21及び負極電極22の未塗工部は、タブ26に限定されない。例えば、未塗工部は、タブ26の他に、タブ26が突出する縁部に沿って存在してもよい。また、未塗工部は、タブ26を備えず、金属箔24の縁部に沿って存在する構成にしてもよい。
In the positive electrode 21 and the negative electrode 22, the active material layer 25 may be present on one side of the metal foil 24.
The uncoated portions of the positive electrode 21 and the negative electrode 22 are not limited to the tab 26. For example, the uncoated portion may be present along the projecting edge of the tab 26 in addition to the tab 26. In addition, the uncoated portion may be configured not to include the tab 26 and to be present along the edge of the metal foil 24.

○ 積層方向における外側溶接部31の直線部33の溶け込み深さは、タブ群18を構成するタブ26の枚数やタブ26の厚みに応じて適宜変更してよい。例えば、タブ群18を構成するタブ26の枚数が60〜90枚程度であり、各タブ26の厚みが約10μmである場合、溶け込み深さは0.2〜0.3mm程度であるのが好ましい。   The penetration depth of the straight portion 33 of the outer welding portion 31 in the stacking direction may be appropriately changed in accordance with the number of tabs 26 constituting the tab group 18 and the thickness of the tabs 26. For example, in the case where the number of tabs 26 constituting the tab group 18 is about 60 to 90 and the thickness of each tab 26 is about 10 μm, the penetration depth is preferably about 0.2 to 0.3 mm .

○ 外側溶接部31の直線部33及び内側溶接部32の長手方向は、タブ26の長手方向に延び、外側溶接部31の直線部33及び内側溶接部32の短手方向は、タブ26の短手方向に延びていてもよい。   ○ The longitudinal direction of the straight portion 33 and the inner welding portion 32 of the outer welding portion 31 extends in the longitudinal direction of the tab 26, and the short direction of the straight portion 33 of the outer welding portion 31 and the inner welding portion 32 is the short of the tab 26 It may extend in the hand direction.

○ 外側溶接部31の長手方向の寸法Aは、適宜変更してよい。
○ 内側溶接部32の長手方向の寸法は、内側溶接部32が外側溶接部31の2つの直線部33の間に存在できる範囲で適宜変更してよい。
The dimension A in the longitudinal direction of the outer welding portion 31 may be changed as appropriate.
The dimension in the longitudinal direction of the inner welding portion 32 may be changed as appropriate as long as the inner welding portion 32 can exist between the two straight portions 33 of the outer welding portion 31.

○ 外側溶接部31の直線部33の短手方向の寸法、及び内側溶接部32の短手方向の寸法はそれぞれ、0.5〜1.0mmの範囲で適宜変更してよい。
○ 外側溶接部31の2つの第1溶接部としての直線部33の間隔Bは、0.5mmより大きく4.0mm以下の範囲で変更してよい。
The dimension in the lateral direction of the straight portion 33 of the outer welding portion 31 and the dimension in the lateral direction of the inner welding portion 32 may be appropriately changed in the range of 0.5 to 1.0 mm.
The distance B between the straight portions 33 as the two first welded portions of the outer welding portion 31 may be changed in the range of more than 0.5 mm and 4.0 mm or less.

○ 外側溶接部31の形状は適宜変更してよい。
例えば、図8(a)に示すように、直線部33に繋がる接続溶接部としての弧部34を直線状に変更してもよい。図8(b)に示すように、外側溶接部31は、2つの第1溶接部としての直線部33から構成されていてもよい。つまり、弧部34を省略してもよい。図8(c)に示すように、外側溶接部31の2つの第1溶接部としての直線部33は、点線状であってもよい。図8(d)に示すように、外側溶接部31の2つの第1溶接部としての直線部33の長手方向は、タブ26の長手方向に延び、内側溶接部32の長手方向は、タブ26の短手方向に延びていてもよい。ただし、各例において、2つの直線部33の間隔Bは4.0mm以下とする。
The shape of the outer welding portion 31 may be changed as appropriate.
For example, as shown to Fig.8 (a), you may change the arc part 34 as a connection welding part connected with the linear part 33 into linear form. As shown in FIG. 8 (b), the outer welding portion 31 may be configured from straight portions 33 as two first welding portions. That is, the arc 34 may be omitted. As shown in FIG. 8C, the straight portions 33 as the two first welding portions of the outer welding portion 31 may have a dotted line shape. As shown in FIG. 8 (d), the longitudinal direction of the straight portions 33 as the two first welds of the outer weld 31 extends in the longitudinal direction of the tab 26, and the longitudinal direction of the inner weld 32 is the tab 26. It may extend in the short direction of However, in each example, the distance B between the two straight portions 33 is 4.0 mm or less.

○ 図9及び図10に示すように、内側溶接部32は、積層方向の他端に位置するタブ26の表面から導電部材17側に凹んだ形状であってもよい。積層方向の他端に位置するタブ26の表面から内側溶接部32が凹んだ部分を凹部32aとする。   As shown in FIGS. 9 and 10, the inner welding portion 32 may be recessed toward the conductive member 17 from the surface of the tab 26 located at the other end in the stacking direction. A portion in which the inner welding portion 32 is recessed from the surface of the tab 26 located at the other end in the stacking direction is referred to as a recess 32 a.

図9に示すように、積層方向の他端に位置するタブ26の表面での内側溶接部32の短手方向における凹部32aの寸法Wは、導電部材17のタブ群18側の端面17aでの内側溶接部32の短手方向の寸法Xの2〜6倍であるのが好ましい。   As shown in FIG. 9, the dimension W of the recess 32 a in the short direction of the inner welded portion 32 on the surface of the tab 26 located at the other end in the stacking direction is the end face 17 a on the tab group 18 side of the conductive member 17. It is preferable that it is 2 to 6 times the dimension X of the width direction of the inner side welding part 32. As shown in FIG.

凹部32aの寸法Wが内側溶接部32の寸法Xの2倍未満となるような溶接条件で導電部材17とタブ群18とをレーザ溶接する場合、積層方向の一端に位置するタブ26と導電部材17との接合面積が不足し、十分な接合強度を得られない虞がある。一方、凹部32aの寸法Wが内側溶接部32の寸法Xの6倍より大きくなるような溶接条件で導電部材17とタブ群18とをレーザ溶接する場合、タブ群18を構成する複数のタブ26のうち、レーザの照射位置に近い積層方向の他端側に位置するタブ26に破れが生じる虞がある。よって、積層方向の他端に位置するタブ26の表面での内側溶接部32の短手方向における凹部32aの寸法Wが、内側溶接部32の短手方向の寸法Xの2〜6倍となるような溶接条件でレーザ溶接を行うことで、溶接時のタブ26の破れの発生を抑制できるとともに、導電部材17とタブ群18との接合強度を十分得られる。   When laser welding the conductive member 17 and the tab group 18 under welding conditions such that the dimension W of the recess 32a is less than twice the dimension X of the inner welding portion 32, the tab 26 and the conductive member located at one end in the stacking direction There is a possibility that a sufficient bonding strength can not be obtained because the bonding area with 17 is insufficient. On the other hand, when the conductive member 17 and the tab group 18 are laser welded under the welding condition that the dimension W of the recess 32 a is larger than six times the dimension X of the inner welding portion 32, the plurality of tabs 26 constituting the tab group 18 Among them, there is a possibility that the tab 26 located on the other end side in the stacking direction near the irradiation position of the laser may be broken. Therefore, the dimension W of the recess 32 a in the short direction of the inner welding portion 32 on the surface of the tab 26 located at the other end of the stacking direction is 2 to 6 times the dimension X of the short direction of the inner welding portion 32 By performing laser welding under such welding conditions, generation of breakage of the tab 26 at the time of welding can be suppressed, and sufficient bonding strength between the conductive member 17 and the tab group 18 can be obtained.

図10に示すように、積層方向の他端に位置するタブ26の表面での内側溶接部32の短手方向における凹部32aの寸法Wは、内側溶接部32の断面での積層方向における溶け込み深さYの10〜50%であるのが好ましい。   As shown in FIG. 10, the dimension W of the recess 32a in the short direction of the inner welding portion 32 on the surface of the tab 26 located at the other end of the stacking direction is the penetration depth in the lamination direction in the cross section of the inner welding portion 32. It is preferable that it is 10 to 50% of Y.

凹部32aの寸法Wが内側溶接部32の溶け込み深さYの10%未満となるような溶接条件で導電部材17とタブ群18とをレーザ溶接する場合、積層方向の一端に位置するタブ26と導電部材17との接合面積が不足し、十分な接合強度を得られない虞がある。一方、凹部32aの寸法Wが内側溶接部32の溶け込み深さYの50%より大きくなるような溶接条件で導電部材17とタブ群18とをレーザ溶接する場合、タブ群18を構成する複数のタブ26のうち、レーザの照射位置に近い積層方向の他端側に位置するタブ26に破れが生じる虞がある。よって、積層方向の他端に位置するタブ26の表面での内側溶接部32の短手方向における凹部32aの寸法Wが、内側溶接部32の溶け込み深さYの10〜50%となるような溶接条件でレーザ溶接を行うことで、溶接時のタブ26の破れの発生を抑制できるとともに、導電部材17とタブ群18との接合強度を十分得られる。   When laser welding the conductive member 17 and the tab group 18 under welding conditions such that the dimension W of the recess 32a is less than 10% of the penetration depth Y of the inner welding portion 32, the tab 26 located at one end in the stacking direction The bonding area with the conductive member 17 is insufficient, and there is a possibility that sufficient bonding strength can not be obtained. On the other hand, when the conductive member 17 and the tab group 18 are laser welded under the welding condition such that the dimension W of the recess 32 a is larger than 50% of the penetration depth Y of the inner welding portion 32, a plurality of tabs constituting the tab group 18 Among the tabs 26, the tab 26 located on the other end side in the stacking direction near the irradiation position of the laser may be broken. Therefore, the dimension W of the recess 32 a in the short direction of the inner welding portion 32 on the surface of the tab 26 positioned at the other end of the stacking direction is 10 to 50% of the penetration depth Y of the inner welding portion 32 By performing the laser welding under the welding conditions, it is possible to suppress the occurrence of breakage of the tab 26 at the time of welding and to obtain sufficient bonding strength between the conductive member 17 and the tab group 18.

○ 第1溶接工程におけるレーザ溶接は、熱伝導方式に限定されない。例えば、キーホール方式であってもよい。
○ 第2溶接工程におけるレーザ溶接は、キーホール方式に限定されない。例えば、熱伝導方式であってもよい。
The laser welding in the first welding process is not limited to the heat conduction method. For example, a keyhole system may be used.
The laser welding in the second welding process is not limited to the keyhole system. For example, a heat conduction system may be used.

○ 蓄電装置は、例えばキャパシタなど、二次電池以外の蓄電装置にも適用可能である。
○ 二次電池10は、リチウムイオン二次電池以外の他の二次電池であってもよい。要は、正極用の活物質と負極用の活物質との間をイオンが移動するとともに電荷の教授を行うものであればよい。
The power storage device is also applicable to power storage devices other than secondary batteries, such as capacitors.
The secondary battery 10 may be another secondary battery other than a lithium ion secondary battery. The point is that the ions move between the active material for the positive electrode and the active material for the negative electrode and the charge is taught.

10…蓄電装置としての二次電池、12…電極組立体、15…電極端子、17…導電部材、17a…端面、18…未塗工部群としてのタブ群、21…電極としての正極電極、22…電極としての負極電極、24…金属箔、25…活物質層、26…未塗工部としてのタブ、32…第2溶接部としての内側溶接部、32a…凹部、33…第1溶接部としての直線部、34…接続溶接部としての弧部、W…寸法、X…寸法、Y…溶け込み深さ。
DESCRIPTION OF SYMBOLS 10 ... Secondary battery as an electrical storage apparatus, 12 ... Electrode assembly, 15 ... Electrode terminal, 17 ... Conducting member, 17a ... End surface, 18 ... Tab group as an uncoated part group, 21 ... Positive electrode as an electrode, 22: negative electrode as electrode, 24: metal foil, 25: active material layer, 26: tab as uncoated part, 32: inner welding part as second welded part, 32a: concave part, 33: first welding Straight part as a part, 34 ... arc part as a connection weld part, W ... dimension, X ... dimension, Y ... penetration depth.

Claims (10)

矩形シート状の金属箔と、前記金属箔の少なくとも片面に存在する活物質層と、前記活物質層が存在せず、前記金属箔が露出する未塗工部とを有する正極及び負極の電極が絶縁された状態で積層され、かつ複数枚の前記未塗工部が同じ極性同士で積層された未塗工部群を備える電極組立体と、
前記電極組立体と電気を授受する電極端子と、
前記電極組立体と前記電極端子とを電気的に接続する導電部材と、
を備えた蓄電装置であって、
前記未塗工部が積層される方向を積層方向としたとき、前記導電部材は、前記未塗工部群の積層方向の一端側に配置され、
前記積層方向の他端に位置する未塗工部を含む複数枚の未塗工部がレーザ溶接された2つの第1溶接部と、
前記導電部材と前記未塗工部群とがレーザ溶接された第2溶接部とを備え、
前記未塗工部群を積層方向の他端側から見たとき、前記2つの第1溶接部は、0.5mmより大きく4.0mm以下の間隔を空けて存在し、前記第2溶接部は、前記2つの第1溶接部の間に存在することを特徴とする蓄電装置。
An electrode of a positive electrode and a negative electrode having a rectangular sheet metal foil, an active material layer present on at least one surface of the metal foil, and an uncoated portion where the active material layer does not exist and the metal foil is exposed An electrode assembly comprising an uncoated portion group in which the plurality of uncoated portions are stacked in the same polarity and stacked in an insulated state;
An electrode terminal for exchanging electricity with the electrode assembly;
A conductive member for electrically connecting the electrode assembly and the electrode terminal;
A storage device comprising
The conductive member is disposed at one end side in the stacking direction of the group of uncoated portions, where the direction in which the uncoated portion is stacked is the stacking direction.
Two first welds where a plurality of uncoated parts including the uncoated part located at the other end of the laminating direction are laser-welded;
And a second welding portion in which the conductive member and the uncoated portion group are laser-welded.
When the uncoated portion group is viewed from the other end side in the stacking direction, the two first welded portions are present at an interval of more than 0.5 mm and 4.0 mm or less, and the second welded portion is A storage device characterized by existing between the two first welds.
前記積層方向における前記第1溶接部の溶け込み深さは、0.2〜0.3mmである請求項1に記載の蓄電装置。   The power storage device according to claim 1, wherein a penetration depth of the first welding portion in the stacking direction is 0.2 to 0.3 mm. 前記第2溶接部は、前記積層方向の他端に位置する未塗工部の表面から前記導電部材側に凹む形状であり、前記未塗工部の表面から凹んだ部分を凹部としたとき、
前記積層方向の他端に位置する前記未塗工部の表面での前記第2溶接部の短手方向における前記凹部の寸法は、前記導電部材の前記未塗工部群側の端面での前記第2溶接部の短手方向の寸法の2〜6倍である請求項1又は請求項2に記載の蓄電装置。
The second welded portion has a shape which is recessed from the surface of the uncoated portion located at the other end in the laminating direction toward the conductive member, and when the portion recessed from the surface of the uncoated portion is a recessed portion,
The dimension of the recess in the short direction of the second welded portion on the surface of the uncoated portion located at the other end of the stacking direction is the dimension at the end face of the conductive member on the uncoated portion group side The power storage device according to claim 1, wherein the size is 2 to 6 times the dimension of the second welding portion in the short direction.
前記第2溶接部は、前記積層方向の他端に位置する未塗工部の表面から前記導電部材側に凹む形状であり、前記未塗工部の表面から凹んだ部分を凹部としたとき、
前記積層方向の他端に位置する前記未塗工部の表面での前記第2溶接部の短手方向における前記凹部の寸法は、前記積層方向における前記第2溶接部の溶け込み深さの10〜50%である請求項1又は請求項2に記載の蓄電装置。
The second welded portion has a shape which is recessed from the surface of the uncoated portion located at the other end in the laminating direction toward the conductive member, and when the portion recessed from the surface of the uncoated portion is a recessed portion,
The dimension of the recess in the lateral direction of the second welded portion on the surface of the uncoated portion located at the other end of the laminating direction is 10 to 10 times the penetration depth of the second welded portion in the laminating direction. The power storage device according to claim 1, which is 50%.
矩形シート状の金属箔と、前記金属箔の少なくとも片面に存在する活物質層と、前記活物質層が存在せず、前記金属箔が露出する未塗工部とを有する正極及び負極の電極が絶縁された状態で積層され、かつ前記電極の未塗工部が同じ極性同士で積層された未塗工部群を備える電極組立体と、前記電極組立体と電気を授受する電極端子と、前記電極組立体と前記電極端子とを電気的に接続する導電部材と、を備えた蓄電装置の製造のために、前記未塗工部群と前記導電部材とをレーザ溶接する蓄電装置のレーザ溶接方法であって、
前記未塗工部が積層される方向を積層方向としたとき、
前記導電部材を前記未塗工部群の積層方向の一端側に配置した状態で、前記積層方向の他端側から前記未塗工部群を加圧する加圧工程と、
前記積層方向の他端側からレーザを照射し、複数枚の前記未塗工部を溶接して2つの第1溶接部を形成する第1溶接工程と、
前記積層方向の他端側からレーザを照射し、前記導電部材と前記未塗工部群とを溶接して第2溶接部を形成する第2溶接工程と、
を備え、
前記未塗工部群を積層方向の他端側から見たとき、前記2つの第1溶接部は、0.5mmより大きく4.0mm以下の間隔を空けて形成され、前記第2溶接部は、前記2つの第1溶接部の間に形成されることを特徴とする蓄電装置のレーザ溶接方法。
An electrode of a positive electrode and a negative electrode having a rectangular sheet metal foil, an active material layer present on at least one surface of the metal foil, and an uncoated portion where the active material layer does not exist and the metal foil is exposed An electrode assembly comprising an uncoated portion group in which the uncoated portions of the electrode are stacked in the same polarity and stacked in an insulated state, an electrode terminal for exchanging electricity with the electrode assembly, A laser welding method of an electric storage device for laser welding the uncoated portion group and the conductive member for manufacturing an electric storage device comprising an electrode assembly and a conductive member electrically connecting the electrode terminal. And
When the direction in which the uncoated portion is stacked is the stacking direction,
A pressing step of pressing the non-coated portion group from the other end side in the stacking direction while the conductive member is disposed at one end side in the stacking direction of the non-coated portion group;
A first welding step of irradiating a laser from the other end side in the stacking direction and welding a plurality of uncoated portions to form two first welded portions;
A second welding step of irradiating a laser from the other end side in the stacking direction to weld the conductive member and the uncoated portion group to form a second welded portion;
Equipped with
When the non-coated portion group is viewed from the other end side in the stacking direction, the two first welded portions are formed at an interval of more than 0.5 mm and 4.0 mm or less, and the second welded portion is A laser welding method of a power storage device, characterized in that it is formed between the two first welds.
前記第1溶接工程において、前記積層方向における第1溶接部の溶け込み深さを0.2〜0.3mmとする請求項5に記載の蓄電装置のレーザ溶接方法。   The laser welding method for a power storage device according to claim 5, wherein a penetration depth of the first welding portion in the stacking direction is 0.2 to 0.3 mm in the first welding step. 前記第1溶接工程において、レーザ溶接は熱伝導方式である請求項5又は請求項6に記載の蓄電装置のレーザ溶接方法。   The laser welding method according to claim 5 or 6, wherein the laser welding is a heat conduction system in the first welding step. 前記第2溶接工程において、レーザ溶接はキーホール方式である請求項5〜請求項7の何れか一項に記載の蓄電装置のレーザ溶接方法。   The laser welding method according to any one of claims 5 to 7, wherein the laser welding is a keyhole system in the second welding step. 矩形シート状の金属箔と、前記金属箔の少なくとも片面に存在する活物質層と、前記活物質層が存在せず、前記金属箔が露出する未塗工部とを有する正極及び負極の電極が絶縁された状態で積層され、かつ前記電極の未塗工部が同じ極性同士で積層された未塗工部群を備える電極組立体と、前記電極組立体と電気を授受する電極端子と、前記電極組立体と前記電極端子とを電気的に接続する導電部材と、を備えた蓄電装置の製造のために、前記未塗工部群と前記導電部材とをレーザ溶接する蓄電装置のレーザ溶接方法であって、
前記未塗工部が積層される方向を積層方向としたとき、
前記導電部材を前記未塗工部群の積層方向の一端側に配置した状態で、前記積層方向の他端側から前記未塗工部群を加圧する加圧工程と、
前記加圧工程中に、前記積層方向の他端側からレーザを照射し、複数枚の前記未塗工部を溶接して直線状をなす2つの第1溶接部を形成する第1溶接工程と、
前記加圧工程中かつ前記第1溶接工程後に、前記積層方向の他端側からレーザを照射し、前記導電部材と前記未塗工部群とを溶接して第2溶接部を形成する第2溶接工程と、
を備え、
前記未塗工部群を積層方向の他端側から見たとき、前記2つの第1溶接部は、0.5mmより大きく4.0mm以下の間隔を空けて形成され、前記第2溶接部は、前記2つの第1溶接部の間に形成されることを特徴とする蓄電装置のレーザ溶接方法。
An electrode of a positive electrode and a negative electrode having a rectangular sheet metal foil, an active material layer present on at least one surface of the metal foil, and an uncoated portion where the active material layer does not exist and the metal foil is exposed An electrode assembly comprising an uncoated portion group in which the uncoated portions of the electrode are stacked in the same polarity and stacked in an insulated state, an electrode terminal for exchanging electricity with the electrode assembly, A laser welding method of an electric storage device for laser welding the uncoated portion group and the conductive member for manufacturing an electric storage device comprising an electrode assembly and a conductive member electrically connecting the electrode terminal. And
When the direction in which the uncoated portion is stacked is the stacking direction,
A pressing step of pressing the non-coated portion group from the other end side in the stacking direction while the conductive member is disposed at one end side in the stacking direction of the non-coated portion group;
A first welding step of irradiating a laser from the other end side in the laminating direction during the pressing step to weld a plurality of uncoated portions to form two first welded portions in a linear shape; ,
During the pressurizing step and after the first welding step, a laser is irradiated from the other end side in the laminating direction to weld the conductive member and the uncoated portion group to form a second welded portion Welding process,
Equipped with
When the uncoated portion group is viewed from the other end side in the stacking direction, the two first welded portions are formed at an interval of more than 0.5 mm and 4.0 mm or less, and the second welded portion A laser welding method of a power storage device, characterized in that it is formed between the two first welds.
前記第1溶接部は、前記第1溶接部とは異なる方向に延びる接続溶接部と繋がるように形成される請求項9に記載の蓄電装置のレーザ溶接方法。
The method according to claim 9, wherein the first welding portion is formed to be connected to a connection welding portion extending in a direction different from the first welding portion.
JP2018136119A 2017-09-27 2018-07-19 Electrical storage device, and laser welding method for electrical storage device Pending JP2019061949A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017186644 2017-09-27
JP2017186644 2017-09-27

Publications (1)

Publication Number Publication Date
JP2019061949A true JP2019061949A (en) 2019-04-18

Family

ID=66176730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018136119A Pending JP2019061949A (en) 2017-09-27 2018-07-19 Electrical storage device, and laser welding method for electrical storage device

Country Status (1)

Country Link
JP (1) JP2019061949A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023130229A1 (en) * 2022-01-04 2023-07-13 宁德新能源科技有限公司 Electrode assembly, battery and electronic apparatus
KR20230110186A (en) 2022-01-14 2023-07-21 프라임 플래닛 에너지 앤드 솔루션즈 가부시키가이샤 Secondary battery and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023130229A1 (en) * 2022-01-04 2023-07-13 宁德新能源科技有限公司 Electrode assembly, battery and electronic apparatus
KR20230110186A (en) 2022-01-14 2023-07-21 프라임 플래닛 에너지 앤드 솔루션즈 가부시키가이샤 Secondary battery and method of manufacturing the same
EP4224502A2 (en) 2022-01-14 2023-08-09 Prime Planet Energy & Solutions, Inc. Method of laser welding tabs and current collector of a secondary battery

Similar Documents

Publication Publication Date Title
JP6274034B2 (en) Power storage device
KR20110022508A (en) Rechargeable battery improved safety of penetration and collapse
WO2012165567A1 (en) Negative electrode terminal for battery and method for producing negative electrode terminal for battery
JP2010016043A (en) Electric storage device
KR102151933B1 (en) Electric power storage device and method of manufacturing the same
JP2018107030A (en) Power storage device and manufacturing method of power storage device
JP2015176701A (en) Power storage device and method for manufacturing power storage device
JP2018200841A (en) Manufacturing method of power storage device, and power storage device
JP2019067570A (en) Welding jig and formation method of weld zone
JP2014182993A (en) Power storage device
CN110800130A (en) Electricity storage device
JP6088254B2 (en) Manufacturing method of laminated metal foil and manufacturing method of sealed battery including the same
JP2019061949A (en) Electrical storage device, and laser welding method for electrical storage device
WO2014112141A1 (en) Method for manufacturing stacked metal foil, method for manufacturing sealed cell including said method, and sealed cell
JP2014112492A (en) Power storage device
JP2014000594A (en) Method of manufacturing laminated aluminum material, method of manufacturing sealed battery including the same and sealed battery
JP5962280B2 (en) Electrode manufacturing method
JP2019003837A (en) Electrode assembly
JP2020013745A (en) Manufacturing method of power storage device
JP2019207767A (en) Manufacturing method of power storage device
JP2020004643A (en) Power storage device
JP2019145271A (en) Power storage device and manufacturing method of power storage device
JP2014056672A (en) Power storage device and manufacturing method of power storage device
JP2019207768A (en) Power storage device, and manufacturing method of power storage device
JP2020013706A (en) Power storage device and manufacturing method thereof