JP2020013733A - Power storage device and manufacturing method thereof - Google Patents

Power storage device and manufacturing method thereof Download PDF

Info

Publication number
JP2020013733A
JP2020013733A JP2018136122A JP2018136122A JP2020013733A JP 2020013733 A JP2020013733 A JP 2020013733A JP 2018136122 A JP2018136122 A JP 2018136122A JP 2018136122 A JP2018136122 A JP 2018136122A JP 2020013733 A JP2020013733 A JP 2020013733A
Authority
JP
Japan
Prior art keywords
uncoated
tab
electrode
metal foil
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018136122A
Other languages
Japanese (ja)
Inventor
康寿 松浦
Yasuhisa Matsuura
康寿 松浦
木下 恭一
Kyoichi Kinoshita
恭一 木下
和雄 片山
Kazuo Katayama
和雄 片山
幸一 橋本
Koichi Hashimoto
幸一 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2018136122A priority Critical patent/JP2020013733A/en
Publication of JP2020013733A publication Critical patent/JP2020013733A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a power storage device that can suppress poor connection between uncoated parts and a manufacturing method thereof.SOLUTION: A secondary battery includes: an electrode assembly 12 in which a plurality of positive electrodes 21 and negative electrodes 22 having tabs 26 which are uncoated portions are stacked, and which includes tab groups 15 in which the tabs 26 are stacked; conductive members 16a that are parts of terminal structures 16 that connect the electrode assembly 12 and an external device; and a welded portion A where the tab groups 15 and the conductive members 16a are welded. From among the tabs 26 constituting the tab group 15, a tab 26 farthest from the conductive member 16a is a first tab 26a, and a tab 26 adjacent to the first tab 26a is a second tab 26b. The secondary battery includes a joint B in which the first tab 26a and the second tab 26b are joined by a connection layer 29 made of a low melting point conductive material.SELECTED DRAWING: Figure 4

Description

本発明は、未塗工部群と端子構造とが溶接された溶接部を有する蓄電装置、及び蓄電装置の製造方法に関する。   The present invention relates to a power storage device having a welded portion in which an uncoated portion group and a terminal structure are welded, and a method for manufacturing the power storage device.

従来から、EV(Electric Vehicle)やPHV(Plug in Hybrid Vehicle)などの車両には、電動機などへの供給電力を蓄える蓄電装置としてリチウムイオン二次電池やニッケル水素二次電池などが搭載されている。特許文献1に開示の二次電池は、複数の電極が積層された電極組立体を備える。電極は、金属箔と、金属箔の少なくとも片面に存在する活物質層と、活物質層が存在せず、金属箔が露出した未塗工部(芯体露出部)を有する。電極組立体は、未塗工部が積層された未塗工部群を備える。二次電池は、電極組立体と外部装置とを接続する端子構造(集電用部材)と、未塗工部群と端子構造とが重ねられた状態で溶接された溶接部を備える。   2. Description of the Related Art Conventionally, vehicles such as an EV (Electric Vehicle) and a PHV (Plug in Hybrid Vehicle) are equipped with a lithium ion secondary battery, a nickel hydride secondary battery, or the like as a power storage device for storing power supplied to an electric motor or the like. . The secondary battery disclosed in Patent Literature 1 includes an electrode assembly in which a plurality of electrodes are stacked. The electrode has a metal foil, an active material layer present on at least one surface of the metal foil, and an uncoated portion (core exposed portion) where the active material layer is not present and the metal foil is exposed. The electrode assembly includes an uncoated portion group in which uncoated portions are stacked. The secondary battery includes a terminal structure (a current collecting member) for connecting the electrode assembly and the external device, and a welded portion in which the uncoated portion group and the terminal structure are welded in an overlapping state.

特開2011−76776号公報JP 2011-76776 A

ところで、全ての未塗工部と端子構造とを溶接しようとする場合、未塗工部の枚数を増やす程、溶接部の溶け込み深さを深くする必要がある。溶接部の溶け込み深さは、溶接時の入熱量を増大させることで深くできる。しかしながら、入熱量を増大させ過ぎると、未塗工部群を構成する複数の未塗工部のうち、端子構造とは反対側かつ入熱側に位置する未塗工部が溶断して他の未塗工部から浮き上がり、端子構造から離れた未塗工部と他の未塗工部とが溶接されないことがある。つまり、未塗工部同士の接続不良が発生する。逆に、端子構造から離れた未塗工部が溶断しないように溶接する場合、溶接部の溶け込み深さが不足し、未塗工部群と端子構造とを良好に溶接できず、電極組立体から電気を取り出せなくなってしまう虞がある。   By the way, when all the uncoated portions and the terminal structure are to be welded, the penetration depth of the welded portion needs to be increased as the number of uncoated portions is increased. The penetration depth of the weld can be increased by increasing the heat input during welding. However, if the amount of heat input is excessively increased, among the plurality of uncoated portions constituting the uncoated portion group, the uncoated portion located on the side opposite to the terminal structure and on the heat input side is blown out and the other portions are cut off. In some cases, the uncoated portion that floats up from the uncoated portion and is separated from the terminal structure is not welded to another uncoated portion. That is, poor connection between the uncoated portions occurs. Conversely, when welding so that the uncoated portion away from the terminal structure does not blow out, the penetration depth of the welded portion is insufficient, and the uncoated portion group and the terminal structure cannot be welded well, and the electrode assembly There is a risk that electricity cannot be extracted from the battery.

本発明は、上記課題を解決するためになされたものであり、その目的は、未塗工部同士の接続不良を抑制できる蓄電装置、及び蓄電装置の製造方法を提供することにある。   SUMMARY An advantage of some aspects of the invention is to provide a power storage device capable of suppressing poor connection between uncoated portions and a method for manufacturing the power storage device.

上記問題点を解決するための蓄電装置は、金属箔と、前記金属箔の少なくとも片面に存在する活物質層と、前記活物質層が存在せず、前記金属箔が露出した未塗工部とを有する複数の電極が積層され、かつ前記未塗工部が積層された未塗工部群を備える電極組立体と、前記電極組立体と外部装置とを接続する端子構造と、前記未塗工部群と前記端子構造とが溶接された溶接部と、を備えた蓄電装置であって、前記未塗工部群を構成する未塗工部のうち、前記端子構造から最も離れた未塗工部を第1未塗工部とし、前記第1未塗工部と隣り合う未塗工部を第2未塗工部としたとき、少なくとも前記第1未塗工部と前記第2未塗工部とが、低融点導電材料からなる接続部によって接合された接合部を備えることを要旨とする。   The power storage device for solving the above problems is a metal foil, an active material layer present on at least one side of the metal foil, the active material layer does not exist, the uncoated portion where the metal foil is exposed. An electrode assembly comprising an uncoated part group in which a plurality of electrodes having the following are stacked and the uncoated part is stacked; a terminal structure for connecting the electrode assembly to an external device; and the uncoated part. A power storage device comprising: a welded part in which a group of parts and the terminal structure are welded; and an uncoated part that is the most distant from the terminal structure among uncoated parts constituting the uncoated part group. When a portion is a first uncoated portion and an uncoated portion adjacent to the first uncoated portion is a second uncoated portion, at least the first uncoated portion and the second uncoated portion The gist of the present invention is that the part includes a joint part joined by a connection part made of a low melting point conductive material.

これによれば、第1未塗工部と第2未塗工部との通電経路として、溶接部を通過する経路と、接合部を通過する経路とが存在する。溶接部を形成する際、第1未塗工部は、溶接の熱によって溶断して第2未塗工部から浮き上がることで、第2未塗工部を含む他の未塗工部と溶接されないことがある。この場合、溶接部を通過する経路を介して第1未塗工部と第2未塗工部とを接続できないが、接合部を通過する経路を介して第1未塗工部と第2未塗工部とを接続できる。つまり、溶接の熱によって第1未塗工部が破断したとしても、接合部により第1未塗工部と第2未塗工部との通電経路を確保できる。よって、未塗工部同士の接続不良を抑制できる。   According to this, as a conduction path between the first uncoated part and the second uncoated part, there is a path passing through the welded part and a path passing through the joint part. When forming a welded portion, the first uncoated portion is melted by the heat of welding and rises from the second uncoated portion, so that the first uncoated portion is not welded to another uncoated portion including the second uncoated portion. Sometimes. In this case, the first uncoated portion and the second uncoated portion cannot be connected via the route passing through the welded portion, but the first uncoated portion and the second uncoated portion cannot be connected via the route passing through the joint. Can be connected to the coating unit. In other words, even if the first uncoated portion breaks due to the heat of welding, a conduction path between the first uncoated portion and the second uncoated portion can be secured by the joint. Therefore, poor connection between uncoated portions can be suppressed.

上記蓄電装置について、前記未塗工部に沿い、かつ前記溶接部と前記活物質層とを最短距離で繋いだ経路を仮想経路としたとき、前記接合部は、少なくとも前記仮想経路上に位置するのが好ましい。   Regarding the power storage device, when a path along the uncoated part and connecting the welded part and the active material layer at the shortest distance is a virtual path, the joint part is located at least on the virtual path. Is preferred.

第1未塗工部が溶接時の熱によって溶断し、溶接部を通過する経路を介して第1未塗工部と第2未塗工部とを接続できない場合、第1未塗工部と第2未塗工部とは接合部を通過する経路を介して接続される。このとき、接合部が仮想経路外に位置すると、活物質層から溶接部及び接合部を通過して端子構造まで到達する経路は、第1未塗工部と第2未塗工部との間で接合部に迂回する分だけ、溶接部を通過する経路よりも長くなる。よって、接合部を仮想経路上に配置することで、活物質層と端子構造との間の通電経路が長くなることを抑制できる。その結果、未塗工部群において電気抵抗が増大することを抑制できる。   When the first uncoated portion is melted by heat at the time of welding and cannot be connected to the first uncoated portion and the second uncoated portion via a path passing through the welded portion, the first uncoated portion is connected to the first uncoated portion. The second uncoated portion is connected via a path passing through the joint. At this time, if the joint is located outside the virtual path, the path from the active material layer to the terminal structure through the weld and the joint is between the first uncoated part and the second uncoated part. In this case, the length is longer than the path passing through the welded portion by the amount of detour to the joint. Therefore, by arranging the junction on the virtual path, it is possible to prevent the current path between the active material layer and the terminal structure from being lengthened. As a result, an increase in electric resistance in the uncoated part group can be suppressed.

上記蓄電装置について、前記接続部は、前記未塗工部群を構成する全ての前記未塗工部に存在する接続層であるのが好ましい。
これによれば、接続層が第1未塗工部における第2未塗工部側の面、及び第2未塗工部における第1未塗工部側の面の少なくとも一方のみに存在する場合、接続層を有する未塗工部と接続層を有さない未塗工部とを別に製造する必要がある。これに対し、接続層が全ての未塗工部に存在する場合、未塗工部を同一の製造方法で製造できる。よって、蓄電装置の生産性が向上する。また、第1未塗工部及び第2未塗工部以外の未塗工部同士も接続部によって接合される場合、未塗工部群を流れる電流の断面積が大きくなるため、未塗工部群における電気抵抗を低減できる。
In the above power storage device, it is preferable that the connection portion is a connection layer present in all the uncoated portions constituting the uncoated portion group.
According to this, when the connection layer is present on at least one of the surface on the second uncoated portion side in the first uncoated portion and the surface on the first uncoated portion side in the second uncoated portion. In addition, it is necessary to separately manufacture an uncoated portion having a connection layer and an uncoated portion having no connection layer. On the other hand, when the connection layer exists in all the uncoated portions, the uncoated portion can be manufactured by the same manufacturing method. Therefore, the productivity of the power storage device is improved. Further, when the uncoated portions other than the first uncoated portion and the second uncoated portion are also joined by the connection portion, the cross-sectional area of the current flowing through the uncoated portion group increases, The electric resistance in the group can be reduced.

上記蓄電装置について、前記溶接部は、前記低融点導電材料を含むのが好ましい。
溶接部は、溶融部が凝固することで形成される。溶融部が一種の金属元素のみからなる場合、溶融部(液体)は急激に凝固して溶接部(固体)になるため、凝固時の収縮によって溶接部には引けやボイド等の欠陥が生じることがある。一方、溶融部が一種の金属元素と、その金属元素とは異なる少なくとも一種の金属元素を含む場合、溶融部(液体)から溶接部(固体)に凝固する間に固液共存領域が存在するため、溶融部(液体)は、凝固収縮した部分に供給され、引けやボイド等の欠陥を埋めながら凝固し、溶接部(固体)となる。これにより、溶接部に欠陥が生じ難くなる。また、溶融部の融点は、溶融部が一種の金属元素のみからなる場合よりも、溶融部が二種以上の金属元素を含む場合の方が低くなる。以上のことから、未塗工部の材料である金属元素に加えて低融点導電材料を含むように溶接部を形成することで、未塗工部の材料である金属元素のみの溶接部を形成する場合と比較して、溶接部の欠陥を抑制できるとともに、溶接時の入熱量を増加させなくとも、溶接部の溶け込み深さを深くできる。
In the above power storage device, it is preferable that the welding portion includes the low melting point conductive material.
The weld is formed by solidification of the fusion zone. When the fusion zone consists of only one kind of metal element, the fusion zone (liquid) rapidly solidifies and becomes a weld zone (solid), so shrinkage during solidification may cause defects such as shrinkage and voids in the weld zone. There is. On the other hand, when the molten portion contains one kind of metal element and at least one kind of metal element different from the metal element, a solid-liquid coexistence region exists during solidification from the molten part (liquid) to the welded part (solid). The molten portion (liquid) is supplied to the portion that has solidified and shrunk, and solidifies while filling in defects such as shrinkage and voids, and becomes a welded portion (solid). This makes it difficult for defects to occur in the welded portion. Further, the melting point of the fusion zone is lower when the fusion zone contains two or more metal elements than when the fusion zone consists of only one type of metal element. From the above, by forming the welded portion so as to include the low melting point conductive material in addition to the metal element which is the material of the uncoated portion, a welded portion of only the metal element which is the material of the uncoated portion is formed. As compared with the case where the welding is performed, defects in the welded portion can be suppressed, and the penetration depth of the welded portion can be increased without increasing the heat input during welding.

上記問題点を解決するための蓄電装置の製造方法は、金属箔と、前記金属箔の少なくとも片面に存在する活物質層と、前記活物質層が存在せず、前記金属箔が露出した未塗工部とを有する複数の電極が積層され、かつ前記未塗工部が積層された未塗工部群を備える電極組立体と、前記電極組立体と外部装置とを接続する端子構造と、前記未塗工部群と前記端子構造とが溶接された溶接部と、を備えた蓄電装置の製造方法であって、前記未塗工部群と前記端子構造とを溶接して前記溶接部を形成する溶接工程と、前記未塗工部群を構成する未塗工部のうち、前記端子構造から最も離れた未塗工部を第1未塗工部とし、前記第1未塗工部と隣り合う未塗工部を第2未塗工部としたとき、低融点導電材料からなる接続部によって、前記第1未塗工部と前記第2未塗工部とを接合して接合部を形成する接合工程と、を含み、前記接合部は、前記溶接工程の熱によって前記接続部が溶融することで形成されることを要旨とする。   A method for manufacturing a power storage device for solving the above-described problem includes a metal foil, an active material layer present on at least one surface of the metal foil, and an uncoated metal foil having no active material layer and exposing the metal foil. A plurality of electrodes having a processed part are stacked, and an electrode assembly including an uncoated part group in which the uncoated part is stacked, a terminal structure connecting the electrode assembly and an external device, and A method for manufacturing a power storage device comprising: an uncoated portion group and a welded portion to which the terminal structure is welded, wherein the uncoated portion group and the terminal structure are welded to form the welded portion. Welding step, and among the uncoated parts constituting the uncoated part group, an uncoated part furthest from the terminal structure is defined as a first uncoated part, and is adjacent to the first uncoated part. When the matching uncoated portion is a second uncoated portion, the first uncoated portion is connected by a connecting portion made of a low melting point conductive material. A joining step of joining the second uncoated portion to form a joining portion, wherein the joining portion is formed by melting the connecting portion by heat of the welding process. I do.

これによれば、第1未塗工部と第2未塗工部との通電経路として、溶接部を通過する経路と、接合部を通過する経路とが存在する。溶接部を形成する際、第1未塗工部は、溶接の熱によって溶断して第2未塗工部から浮き上がることで、第2未塗工部を含む他の未塗工部と溶接されないことがある。この場合、溶接部を通過する経路を介して第1未塗工部と第2未塗工部とを接続できないが、接合部を通過する経路を介して第1未塗工部と第2未塗工部とを接続できる。つまり、溶接の熱によって第1未塗工部が破断したとしても、接合部により第1未塗工部と第2未塗工部との通電経路を確保できる。よって、未塗工部同士の接続不良を抑制できる。また、接合部は、溶接工程中に形成されるため、第1未塗工部と第2未塗工部とを接合するための工程を溶接工程とは別に設ける必要が無い。   According to this, as a conduction path between the first uncoated part and the second uncoated part, there is a path passing through the welded part and a path passing through the joint part. When forming a welded portion, the first uncoated portion is melted by the heat of welding and rises from the second uncoated portion, so that the first uncoated portion is not welded to another uncoated portion including the second uncoated portion. Sometimes. In this case, the first uncoated portion and the second uncoated portion cannot be connected via the route passing through the welded portion, but the first uncoated portion and the second uncoated portion cannot be connected via the route passing through the joint. Can be connected to the coating unit. In other words, even if the first uncoated portion breaks due to the heat of welding, a conduction path between the first uncoated portion and the second uncoated portion can be secured by the joint. Therefore, poor connection between uncoated portions can be suppressed. In addition, since the joining portion is formed during the welding process, it is not necessary to provide a process for joining the first uncoated portion and the second uncoated portion separately from the welding process.

また、上記蓄電装置の製造方法は、前記溶接工程において、前記低融点導電材料を含むように前記溶接部を形成するのが好ましい。
溶接部は、溶融部が凝固することで形成される。溶融部が一種の金属元素のみからなる場合、溶融部(液体)は急激に凝固して溶接部(固体)になるため、凝固時の収縮によって溶接部には引けやボイド等の欠陥が生じることがある。一方、溶融部が一種の金属元素と、その金属とは異なる少なくとも一種の金属元素を含む場合、溶融部(液体)から溶接部(固体)に凝固する間に固液共存領域が存在するため、溶融部(液体)は、凝固収縮した部分に供給され、引けやボイド等の欠陥を埋めながら凝固し、溶接部(固体)となる。これにより、溶接部に欠陥が生じ難くなる。また、溶融部の融点は、溶融部が一種の金属元素のみからなる場合よりも、溶融部が二種以上の金属元素を含む場合の方が低くなる。以上のことから、低融点導電材料を含むように溶接部を形成することで、溶接部の欠陥を抑制できるとともに、溶接時の入熱量を増加させなくとも、溶接部の溶け込み深さを深くできる。
In the method for manufacturing a power storage device, it is preferable that, in the welding step, the welding portion is formed so as to include the low-melting-point conductive material.
The weld is formed by solidification of the fusion zone. When the fusion zone consists of only one kind of metal element, the fusion zone (liquid) rapidly solidifies and becomes a weld zone (solid), so shrinkage during solidification may cause defects such as shrinkage and voids in the weld zone. There is. On the other hand, when the molten portion contains one kind of metal element and at least one kind of metal element different from the metal, a solid-liquid coexistence region exists during solidification from the molten portion (liquid) to the welded portion (solid), The molten portion (liquid) is supplied to the portion that has solidified and shrunk, and solidifies while filling in defects such as shrinkage and voids, and becomes a welded portion (solid). This makes it difficult for defects to occur in the welded portion. Further, the melting point of the fusion zone is lower when the fusion zone contains two or more metal elements than when the fusion zone consists of only one type of metal element. From the above, by forming the welded portion so as to include the low melting point conductive material, it is possible to suppress defects in the welded portion, and to increase the penetration depth of the welded portion without increasing the heat input during welding. .

また、上記蓄電装置の製造方法は、前記電極の材料となる電極材料を製造する電極材料製造工程と、前記電極材料を切断して前記電極を形成する切断工程とを有する電極製造工程と、前記電極製造工程によって製造された前記電極を積層して前記電極組立体を製造する積層工程と、を含み、前記電極材料製造工程は、長尺帯状の金属箔材料に活物質合剤を塗工して第1塗工部を形成する第1塗工工程と、前記金属箔材料に低融点導電材料を塗工して第2塗工部を形成する第2塗工工程とを有し、前記切断工程では、前記金属箔材料によって前記金属箔が形成され、前記第1塗工部によって前記活物質層が形成され、前記第2塗工部によって前記未塗工部に前記接続部が形成されるのが好ましい。   The method for manufacturing a power storage device may include an electrode material manufacturing step of manufacturing an electrode material to be a material of the electrode, and an electrode manufacturing step including a cutting step of cutting the electrode material to form the electrode. A laminating step of laminating the electrodes produced by an electrode producing step to produce the electrode assembly, wherein the electrode material producing step comprises applying an active material mixture to a long strip-shaped metal foil material. A first coating step of forming a first coating portion by applying a low melting point conductive material to the metal foil material to form a second coating portion. In the step, the metal foil is formed by the metal foil material, the active material layer is formed by the first coated portion, and the connection portion is formed in the uncoated portion by the second coated portion. Is preferred.

これによれば、電極組立体を構成する全ての電極を同一の製造方法で製造できるとともに、どの未塗工部が第1未塗工部又は第2未塗工部になっても、第1未塗工部と第2未塗工部とを接続部によって接合することができる。よって、蓄電装置の生産性が向上する。また、既存の工程である第1塗工工程に第2塗工工程を追加するだけで未塗工部に接続部を形成できるため、電極の製造工程や製造設備を大幅に変更しなくて済む。   According to this, all the electrodes constituting the electrode assembly can be manufactured by the same manufacturing method, and even if any uncoated part becomes the first uncoated part or the second uncoated part, the first uncoated part becomes the first uncoated part. The uncoated portion and the second uncoated portion can be joined by the connecting portion. Therefore, the productivity of the power storage device is improved. In addition, since the connection portion can be formed in the uncoated portion only by adding the second coating process to the existing first coating process, the electrode manufacturing process and manufacturing equipment do not need to be significantly changed. .

本発明によれば、未塗工部同士の接続不良を抑制できる。   According to the present invention, poor connection between uncoated portions can be suppressed.

第1の実施形態の二次電池の分解斜視図。FIG. 2 is an exploded perspective view of the secondary battery according to the first embodiment. 電極組立体の分解斜視図。FIG. 3 is an exploded perspective view of the electrode assembly. 二次電池の断面図。FIG. 4 is a cross-sectional view of a secondary battery. (a)は接合部及び溶接部を示す断面図、(b)は接合部及び溶接部を示す平面図。(A) is sectional drawing which shows a joining part and a welding part, (b) is a top view which shows a joining part and a welding part. 電極の製造方法を示す平面図。FIG. 4 is a plan view showing a method for manufacturing an electrode. 第2の実施形態の二次電池の断面図。FIG. 6 is a sectional view of a secondary battery according to a second embodiment. 電極組立体の分解斜視図。FIG. 3 is an exploded perspective view of the electrode assembly. 接合部及び溶接部を示す断面図。Sectional drawing which shows a joining part and a welding part. 電極組立体の別例を示す断面図。Sectional drawing which shows another example of an electrode assembly. 接合部の別例を示す断面図。Sectional drawing which shows another example of a joining part.

(第1の実施形態)
以下、蓄電装置及び蓄電装置の製造方法を、二次電池及び二次電池の製造方法に具体化した第1の実施形態を図1〜図5にしたがって説明する。
(First embodiment)
Hereinafter, a first embodiment in which a power storage device and a method for manufacturing the power storage device are embodied as a secondary battery and a method for manufacturing a secondary battery will be described with reference to FIGS. 1 to 5.

図1に示すように、蓄電装置としての二次電池10は、ケース11と、ケース11に収容された電極組立体12とを備える。ケース11は、直方体状のケース本体13と、ケース本体13の開口部13aを閉塞する矩形平板状の蓋14とを有する。ケース11を構成するケース本体13と蓋14は、何れも金属製(例えば、ステンレスやアルミニウム)である。本実施形態の二次電池10は、その外観が角型をなす角型電池である。また、本実施形態の二次電池10は、リチウムイオン電池である。   As shown in FIG. 1, a secondary battery 10 as a power storage device includes a case 11 and an electrode assembly 12 housed in the case 11. The case 11 has a rectangular parallelepiped case body 13 and a rectangular flat lid 14 for closing the opening 13 a of the case body 13. The case body 13 and the lid 14 constituting the case 11 are both made of metal (for example, stainless steel or aluminum). The secondary battery 10 of the present embodiment is a prismatic battery having a rectangular appearance. Further, the secondary battery 10 of the present embodiment is a lithium ion battery.

図2に示すように、電極組立体12は、複数の電極としての正極電極21と、複数の電極としての負極電極22と、複数のセパレータ23とを備える。電極組立体12は、正極電極21と負極電極22との間にセパレータ23を介在させ、かつ相互に絶縁させた状態で積層した層状構造を有する。正極電極21と負極電極22が積層された方向を積層方向とする。   As shown in FIG. 2, the electrode assembly 12 includes a positive electrode 21 as a plurality of electrodes, a negative electrode 22 as a plurality of electrodes, and a plurality of separators 23. The electrode assembly 12 has a layered structure in which a separator 23 is interposed between a positive electrode 21 and a negative electrode 22 and is insulated from each other. The direction in which the positive electrode 21 and the negative electrode 22 are stacked is referred to as a stacking direction.

正極電極21は、矩形シート状の金属箔としての正極金属箔(例えばアルミニウム箔)24と、正極金属箔24の両面に存在する活物質層としての正極活物質層25とを有する。正極電極21は、正極金属箔24の一辺の一部から突出した矩形状の正極のタブ26を有する。正極のタブ26は、正極活物質層25が存在せず、正極金属箔24そのもので構成された未塗工部である。タブ26の長手方向は、正極金属箔24の一辺からの突出方向と一致し、タブ26の短手方向は、正極金属箔24におけるタブ26が突出する一辺に沿う方向と一致する。正極金属箔24の一辺からのタブ26の突出量は、全ての正極電極21でほぼ同じである。   The positive electrode 21 has a positive metal foil (for example, an aluminum foil) 24 as a rectangular sheet-shaped metal foil, and a positive electrode active material layer 25 as an active material layer present on both surfaces of the positive metal foil 24. The positive electrode 21 has a rectangular positive electrode tab 26 protruding from a part of one side of the positive metal foil 24. The tab 26 of the positive electrode has no positive electrode active material layer 25 and is an uncoated portion formed of the positive electrode metal foil 24 itself. The longitudinal direction of the tab 26 coincides with the direction in which the tab 26 protrudes from one side of the positive electrode metal foil 24, and the short direction of the tab 26 coincides with the direction along one side of the positive electrode metal foil 24 from which the tab 26 protrudes. The amount of protrusion of the tab 26 from one side of the positive metal foil 24 is substantially the same for all the positive electrodes 21.

負極電極22は、矩形シート状の金属箔としての負極金属箔(例えば銅箔)27と、負極金属箔27の両面に存在する活物質層としての負極活物質層28とを有する。負極電極22は、負極金属箔27の一辺の一部から突出した矩形状の負極のタブ26を有する。負極のタブ26は、負極活物質層28が存在せず、負極金属箔27そのもので構成された未塗工部である。タブ26の長手方向は、負極金属箔27の一辺からの突出方向と一致し、タブ26の短手方向は、負極金属箔27におけるタブ26が突出する一辺に沿う方向と一致する。負極金属箔27の一辺からのタブ26の突出量は、全ての負極電極22でほぼ同じである。   The negative electrode 22 includes a negative electrode metal foil (for example, copper foil) 27 as a rectangular sheet-shaped metal foil and a negative electrode active material layer 28 as an active material layer present on both surfaces of the negative electrode metal foil 27. The negative electrode 22 has a rectangular negative electrode tab 26 protruding from a part of one side of the negative electrode metal foil 27. The tab 26 of the negative electrode is an uncoated portion formed of the negative electrode metal foil 27 itself without the negative electrode active material layer 28. The longitudinal direction of the tab 26 coincides with the direction in which the tab 26 protrudes from one side of the negative electrode metal foil 27, and the short direction of the tab 26 coincides with the direction along one side of the negative electrode metal foil 27 from which the tab 26 protrudes. The amount of protrusion of the tab 26 from one side of the negative metal foil 27 is substantially the same for all the negative electrodes 22.

各正極電極21及び各負極電極22は、電極組立体12として積層される前の状態において、タブ26の片面に存在する接続部としての接続層29を有する。本実施形態の接続層29は、低融点導電材料としてのロウ材からなる。ロウ材には、例えば、JIS4004、JIS4343、JIS4045等のロウ材が用いられる。接続層29は、タブ26の長手方向の中央、かつタブ26の短手方向全体に位置する。正極のタブ26の長手方向における接続層29の位置は、電極組立体12を構成する全ての正極電極21でほぼ同じであり、負極のタブ26の長手方向における接続層29の位置は、電極組立体12を構成する全ての負極電極22でほぼ同じである。   Each of the positive electrodes 21 and the negative electrodes 22 has a connection layer 29 as a connection part existing on one surface of the tab 26 before being stacked as the electrode assembly 12. The connection layer 29 of the present embodiment is made of a brazing material as a low melting point conductive material. As the brazing material, for example, brazing materials such as JIS4004, JIS4343, and JIS4045 are used. The connection layer 29 is located at the center in the longitudinal direction of the tab 26 and in the entire short direction of the tab 26. The position of the connection layer 29 in the longitudinal direction of the positive electrode tab 26 is substantially the same for all the positive electrodes 21 constituting the electrode assembly 12, and the position of the connection layer 29 in the longitudinal direction of the negative electrode tab 26 is This is substantially the same for all the negative electrodes 22 constituting the solid 12.

図1及び図3に示すように、電極組立体12は、各正極電極21のタブ26が積層された正極の未塗工部群としてのタブ群15と、各負極電極22のタブ26が積層された負極の未塗工部群としてのタブ群15とを有する。電極組立体12は、各タブ群15が折り曲げられた状態でケース11に収容される。タブ群15において、タブ26と接続層29とは交互に積層される。換言すると、接続層29は、隣り合うタブ26同士の間に存在する。後述するが、接続層29は、正極電極21及び負極電極22が電極組立体12として積層された状態では、隣接するタブ26同士が接合された接合部の一部を構成する。   As shown in FIGS. 1 and 3, the electrode assembly 12 includes a tab group 15 as a group of uncoated portions of the positive electrode on which tabs 26 of each positive electrode 21 are laminated, and a tab 26 of each negative electrode 22. And a tab group 15 as a group of uncoated portions of the negative electrode. The electrode assembly 12 is accommodated in the case 11 with the tab groups 15 bent. In the tab group 15, the tabs 26 and the connection layers 29 are alternately stacked. In other words, the connection layer 29 exists between the adjacent tabs 26. As will be described later, when the positive electrode 21 and the negative electrode 22 are stacked as the electrode assembly 12, the connection layer 29 forms a part of a joint portion where the adjacent tabs 26 are joined.

図3に示すように、本実施形態では、各タブ26は、積層方向の一端側に集箔されて積層される。このため、積層方向の一端側に位置する正極電極21のタブ26の先端は、積層方向の他端側に位置する正極電極21のタブ26の先端よりも突出している。同様に、積層方向の一端側に位置する負極電極22のタブ26の先端は、積層方向の他端側に位置する負極電極22のタブ26の先端よりも突出している。よって、各タブ群15の先端側では、タブ26の先端がタブ26の長手方向において段状に並ぶ。また、各接続層29についても、積層方向の一端側に位置する正極電極21のタブ26に存在する接続層29は、積層方向の他端側に位置する正極電極21のタブ26に存在する接続層29よりもタブ群15の先端側に位置する。同様に、積層方向の一端側に位置する負極電極22のタブ26に存在する接続層29は、積層方向の他端側に位置する負極電極22のタブ26に存在する接続層29よりもタブ群15の先端側に位置する。よって、各タブ群15において、接続層29は、タブ26の長手方向において段状に並ぶ。   As shown in FIG. 3, in the present embodiment, the tabs 26 are collected and laminated on one end side in the laminating direction. For this reason, the tip of the tab 26 of the positive electrode 21 located at one end in the stacking direction protrudes from the tip of the tab 26 of the positive electrode 21 located at the other end in the stacking direction. Similarly, the tip of the tab 26 of the negative electrode 22 located at one end in the stacking direction protrudes from the tip of the tab 26 of the negative electrode 22 located at the other end in the stacking direction. Therefore, on the tip end side of each tab group 15, the tips of the tabs 26 are arranged stepwise in the longitudinal direction of the tabs 26. In each connection layer 29, the connection layer 29 existing on the tab 26 of the positive electrode 21 located on one end side in the stacking direction is connected to the connection layer 29 existing on the tab 26 on the other end side in the stacking direction. It is located on the tip side of the tab group 15 with respect to the layer 29. Similarly, the connection layer 29 present on the tab 26 of the negative electrode 22 located on one end side in the stacking direction is a group of tabs smaller than the connection layer 29 existing on the tab 26 of the negative electrode 22 located on the other end side in the stacking direction. 15 is located on the tip side. Therefore, in each tab group 15, the connection layers 29 are arranged stepwise in the longitudinal direction of the tab 26.

図1に示すように、二次電池10は、電極組立体12から電気を取り出すための各極性の端子構造16を備える。本実施形態では、正極の端子構造16は、アルミニウム製であり、負極の端子構造16は、銅製である。正極の端子構造16は、正極のタブ群15と接合された矩形板状の導電部材16aと、導電部材16aに接続された棒状の電極端子16bとを有する。負極の端子構造16は、負極のタブ群15と接合された矩形板状の導電部材16aと、導電部材16aに接続された棒状の電極端子16bとを有する。正極の端子構造16は、正極のタブ群15を介して電極組立体12と電気的に接続され、負極の端子構造16は、負極のタブ群15を介して電極組立体12と電気的に接続されている。また、図3に示すように、各電極端子16bの先端部は、蓋14の貫通孔14aを貫通してケース11外に突出する。各電極端子16bには、蓋14と絶縁するための絶縁リング17がそれぞれ取り付けられている。   As shown in FIG. 1, the secondary battery 10 includes a terminal structure 16 of each polarity for extracting electricity from the electrode assembly 12. In the present embodiment, the positive electrode terminal structure 16 is made of aluminum, and the negative electrode terminal structure 16 is made of copper. The positive electrode terminal structure 16 has a rectangular plate-shaped conductive member 16a joined to the positive electrode tab group 15, and a rod-shaped electrode terminal 16b connected to the conductive member 16a. The negative electrode terminal structure 16 has a rectangular plate-shaped conductive member 16a joined to the negative electrode tab group 15, and a rod-shaped electrode terminal 16b connected to the conductive member 16a. The positive electrode terminal structure 16 is electrically connected to the electrode assembly 12 via the positive electrode tab group 15, and the negative electrode terminal structure 16 is electrically connected to the electrode assembly 12 via the negative electrode tab group 15. Have been. As shown in FIG. 3, the tip of each electrode terminal 16 b protrudes outside the case 11 through the through hole 14 a of the lid 14. An insulating ring 17 for insulating the lid 14 is attached to each of the electrode terminals 16b.

図3、図4(a)、及び図4(b)に示すように、二次電池10は、同じ極性のタブ群15と端子構造16の導電部材16aとが重ねられた状態でレーザ溶接された溶接部Aを備える。なお、図4(a)及び図4(b)では、折り曲げ前のタブ群15を示す。タブ群15を構成する複数のタブ26のうち、積層方向の一端に位置するタブ26は、導電部材16aにおける電極端子16bとは反対側の端面と対向し、積層方向の他端に位置するタブ26は、導電部材16aから最も離れている。溶接部Aは、タブ26の長手方向において段状に並ぶ接続層29よりもタブ群15の先端側に位置する。   As shown in FIGS. 3, 4A and 4B, the secondary battery 10 is laser-welded with the tab group 15 having the same polarity and the conductive member 16a of the terminal structure 16 being overlapped. The welding portion A is provided. FIGS. 4A and 4B show the tab group 15 before bending. Of the plurality of tabs 26 constituting the tab group 15, the tab 26 located at one end in the stacking direction is opposed to the end surface of the conductive member 16a opposite to the electrode terminal 16b, and is located at the other end in the stacking direction. 26 is farthest from the conductive member 16a. The welded portion A is located on the tip end side of the tab group 15 with respect to the connection layers 29 arranged in a stepwise manner in the longitudinal direction of the tab 26.

二次電池10は、タブ群15において隣り合うタブ26同士が接続層29によって接合された複数の接合部Bを備える。タブ群15を構成する複数のタブ26のうち、導電部材16aから最も離れたタブ26を第1未塗工部としての第1タブ26aとし、第1タブ26aと隣り合うタブ26を第2未塗工部としての第2タブ26bとする。複数の接合部Bのうち、第1タブ26aと第2タブ26bとが第2タブ26bの接続層29によって接合された接合部Bを他端側接合部B1とする。また、図4(b)に示すように、正極の第1タブ26aに沿い、かつ溶接部Aと正極活物質層25とを最短距離で繋いだ経路を仮想経路Rとする。同様に、負極の第1タブ26aに沿い、かつ溶接部Aと負極活物質層28とを最短距離で繋いだ経路を仮想経路Rとする。他端側接合部B1は、仮想経路R上に位置する。第1タブ26aと第2タブ26bとの通電経路としては、溶接部Aを通過する経路と、他端側接合部B1を通過する経路とが存在する。   The secondary battery 10 includes a plurality of joints B in which adjacent tabs 26 in the tab group 15 are joined by a connection layer 29. Of the plurality of tabs 26 constituting the tab group 15, the tab 26 farthest from the conductive member 16a is a first tab 26a as a first uncoated portion, and the tab 26 adjacent to the first tab 26a is a second tab 26a. The second tab 26b is used as a coating part. Among the plurality of joints B, the joint B in which the first tab 26a and the second tab 26b are joined by the connection layer 29 of the second tab 26b is referred to as the other end joint B1. In addition, as shown in FIG. 4B, a path along the first tab 26 a of the positive electrode and connecting the welded portion A and the positive electrode active material layer 25 at the shortest distance is defined as a virtual path R. Similarly, a path along the first tab 26a of the negative electrode and connecting the welded portion A and the negative electrode active material layer 28 at the shortest distance is defined as a virtual path R. The other end side joining portion B1 is located on the virtual route R. The current path between the first tab 26a and the second tab 26b includes a path passing through the welded portion A and a path passing through the other end side joint portion B1.

次に、第1の実施形態の二次電池10の製造方法について説明する。
二次電池10の製造方法は、正極電極21及び負極電極22の材料となる電極材料40を製造する電極材料製造工程と、電極材料40を切断し、正極電極21及び負極電極22を形成する切断工程とを含む電極製造工程を有する。なお、正極電極21を製造するための電極製造工程について詳述するが、負極電極22の製造についても同様に行われる。
Next, a method for manufacturing the secondary battery 10 of the first embodiment will be described.
The method of manufacturing the secondary battery 10 includes an electrode material manufacturing step of manufacturing an electrode material 40 to be a material of the positive electrode 21 and the negative electrode 22, and a cutting step of cutting the electrode material 40 to form the positive electrode 21 and the negative electrode 22. And an electrode manufacturing step. Although the electrode manufacturing process for manufacturing the positive electrode 21 will be described in detail, the manufacturing of the negative electrode 22 is performed in the same manner.

図5に示すように、電極材料製造工程は、正極金属箔24を形成し得る長尺帯状の金属箔材料41に正極の活物質合剤を塗工し、正極活物質層25を形成し得る第1塗工部42を形成する第1塗工工程を有する。第1塗工部42は、金属箔材料41の両面に形成されるとともに、金属箔材料41の長手方向全体に亘って形成される。また、第1塗工部42は、金属箔材料41の短手方向の一端側に一定幅で形成される。金属箔材料41には、第1塗工部42が形成されず、金属箔材料41の露出した露出部41aが存在する。   As shown in FIG. 5, in the electrode material manufacturing process, a positive electrode active material mixture is applied to a long strip-shaped metal foil material 41 that can form the positive electrode metal foil 24, and the positive electrode active material layer 25 can be formed. A first coating step for forming the first coating section 42 is provided. The first coating portion 42 is formed on both surfaces of the metal foil material 41 and is formed over the entire length of the metal foil material 41. Further, the first coating portion 42 is formed with a constant width on one end side in the short direction of the metal foil material 41. The metal foil material 41 does not have the first coating portion 42, and has an exposed portion 41a where the metal foil material 41 is exposed.

また、電極材料製造工程は、金属箔材料41の露出部41aにロウ材を塗工し、接続層29を形成し得る第2塗工部43を形成する第2塗工工程を有する。第2塗工部43は、金属箔材料41の露出部41aの片面に形成されるとともに、金属箔材料41の長手方向全体に亘って形成される。また、第2塗工部43は、露出部41aの短手方向の中央付近に一定幅に形成される。これにより、電極材料40が完成する。   The electrode material manufacturing step includes a second coating step of coating a brazing material on the exposed portion 41 a of the metal foil material 41 to form a second coating portion 43 on which the connection layer 29 can be formed. The second coating portion 43 is formed on one surface of the exposed portion 41 a of the metal foil material 41 and is formed over the entire length of the metal foil material 41 in the longitudinal direction. Further, the second coating portion 43 is formed to have a constant width near the center in the short direction of the exposed portion 41a. Thereby, the electrode material 40 is completed.

切断工程では、電極材料40を、図5に二点鎖線で示す正極電極21の形状に沿って切断する。これにより、金属箔材料41から正極金属箔24から形成されるとともに、露出部41aからタブ26が形成される。また、第1塗工部42から正極活物質層25が形成されるとともに、第2塗工部43から接続層29が形成される。よって、正極電極21が形成される。   In the cutting step, the electrode material 40 is cut along the shape of the positive electrode 21 shown by a two-dot chain line in FIG. Thereby, the tab 26 is formed from the exposed portion 41a while being formed from the positive metal foil 24 from the metal foil material 41. In addition, the positive electrode active material layer 25 is formed from the first coating unit 42, and the connection layer 29 is formed from the second coating unit 43. Thus, the positive electrode 21 is formed.

なお、電極材料製造工程は、前述の工程の他に、正極活物質層25における活物質の密度を上げるためのプレス工程や、第1塗工部42において活物質合剤に残留する溶媒を除去するための乾燥工程を含んでいてもよい。プレス工程や乾燥工程は、二次電池の製造工程として公知であるため、詳細な説明は省略する。   In addition to the above-described steps, the electrode material manufacturing step includes a pressing step for increasing the density of the active material in the positive electrode active material layer 25, and removal of the solvent remaining in the active material mixture in the first coating unit 42. May be included. The pressing step and the drying step are known as the manufacturing steps of the secondary battery, and thus detailed description is omitted.

また、二次電池10の製造方法は、電極組立体12を形成する積層工程と、タブ26を集箔してタブ群15を形成する集箔工程と、タブ群15と導電部材16aとを溶接して溶接部Aを形成する溶接工程と、接続層29によってタブ26同士を接合して接合部Bを形成する接合工程と、電極組立体12をケース11に収容する収容工程とを含む。   The method of manufacturing the secondary battery 10 includes a laminating step of forming the electrode assembly 12, a foil collecting step of forming the tab group 15 by collecting the tabs 26, and welding the tab group 15 and the conductive member 16a. And a joining step of joining the tabs 26 together by the connection layer 29 to form the joint B, and an accommodation step of accommodating the electrode assembly 12 in the case 11.

積層工程では、正極電極21と負極電極22との間にセパレータ23を介在させ、かつ相互に絶縁させた状態で積層する。これにより、電極組立体12が形成される。集箔工程では、端子構造16の導電部材16a上に電極組立体12の全てのタブ26を配置し、タブ26を挟んで導電部材16aの反対側から全てのタブ26を押圧する。これにより、全てのタブ26が積層方向の一端側に集箔され、タブ群15が形成されるとともに、タブ群15を構成する複数のタブ26のうち、積層方向の一端に位置するタブ26が導電部材16aと対向する。また、接続層29は、タブ26同士の間に位置する。   In the laminating step, lamination is performed with the separator 23 interposed between the positive electrode 21 and the negative electrode 22 and insulated from each other. Thereby, the electrode assembly 12 is formed. In the foil collecting step, all the tabs 26 of the electrode assembly 12 are arranged on the conductive member 16a of the terminal structure 16, and all the tabs 26 are pressed from the opposite side of the conductive member 16a across the tab 26. Thereby, all the tabs 26 are collected on one end side in the stacking direction, and the tab group 15 is formed. Of the plurality of tabs 26 constituting the tab group 15, the tab 26 located at one end in the stacking direction is formed. It faces the conductive member 16a. The connection layer 29 is located between the tabs 26.

溶接工程では、まず、タブ群15の上方に配置された図示しない治具によって、タブ群15を導電部材16aに向けて押圧する。なお、タブ群15において押圧される部分は、後に溶接部Aとなる部分を囲む部分であり、タブ群15において溶接部Aとなる部分は押圧されず、露出している。これにより、タブ26と接続層29とが密接するとともに、積層方向の一端に位置するタブ26と導電部材16aとが密接する。次に、治具によりタブ群15を押圧した状態で、図示しないレーザ照射装置によって、タブ群15の第1タブ26a側からタブ群15と導電部材16aに向けてレーザを照射する。本実施形態のレーザ照射装置は、レーザを照射しながら導電部材16aの長手方向の一端から他端に向けて移動する。   In the welding step, first, the tab group 15 is pressed toward the conductive member 16a by a jig (not shown) arranged above the tab group 15. The portion pressed in the tab group 15 is a portion surrounding the portion to be the welded portion A later, and the portion to be the welded portion A in the tab group 15 is not pressed and is exposed. As a result, the tab 26 and the connection layer 29 come into close contact, and the tab 26 located at one end in the stacking direction and the conductive member 16a come into close contact. Next, in a state where the tab group 15 is pressed by the jig, laser is irradiated from the first tab 26a side of the tab group 15 toward the tab group 15 and the conductive member 16a by a laser irradiation device (not shown). The laser irradiation device of the present embodiment moves from one end in the longitudinal direction of the conductive member 16a to the other end while irradiating the laser.

タブ群15においてレーザが照射された部分とその周辺では、タブ群15の溶融が急激に進むとともに、金属蒸気の反跳力により溶融した金属が押し広げられることでキーホールが形成される。レーザは、形成されたキーホール内に侵入するとともにキーホール内で多重反射する。これにより、キーホールの深さは更に深くなる。そして、キーホールの最深部が導電部材16aまで到達すると、タブ群15及び導電部材16aが溶融した溶融部が形成される。レーザの通過後、溶融部が凝固することで、タブ群15と導電部材16aとが溶接された溶接部Aが形成される。なお、レーザの照射により形成されたキーホールは、溶融部が凝固して溶接部Aとなる前に、溶融した金属の表面張力によって埋められる。また、本実施形態では、レーザの照射条件は、レーザが導電部材16aを貫通しないような条件に設定される。レーザの照射条件とは、レーザの出力、スポット径、導電部材16aの厚さ方向における焦点の位置、レーザ照射装置の移動速度などを指す。   In the portion of the tab group 15 where the laser is irradiated and in the vicinity thereof, the melting of the tab group 15 rapidly progresses, and the molten metal is pushed out by the recoil of the metal vapor to form a keyhole. The laser penetrates into the formed keyhole and undergoes multiple reflections within the keyhole. Thereby, the depth of the keyhole is further increased. Then, when the deepest part of the keyhole reaches the conductive member 16a, a fused portion where the tab group 15 and the conductive member 16a are melted is formed. After the laser beam passes, the molten portion solidifies, thereby forming a welded portion A in which the tab group 15 and the conductive member 16a are welded. The keyhole formed by the laser irradiation is filled by the surface tension of the molten metal before the molten portion solidifies to become the welded portion A. In the present embodiment, the laser irradiation condition is set to a condition that the laser does not penetrate the conductive member 16a. The laser irradiation conditions refer to the output of the laser, the spot diameter, the position of the focal point in the thickness direction of the conductive member 16a, the moving speed of the laser irradiation device, and the like.

溶接工程において、タブ26同士の間に位置する接続層29には、レーザは直接作用しないが、レーザ溶接により生じる熱は、レーザが照射された部分から熱伝導によってタブ26全体に伝わる。このレーザ溶接に起因し、熱伝導によりタブ26全体伝わる熱によって、接続層29は溶融し、溶融した接続層29によって、タブ26同士は接合される。つまり、接合工程は溶接工程中に行われる。詳しくは、第1タブ26aと第2タブ26bとの間に位置する接続層29と、第1タブ26aとが接合されることにより、第1タブ26aと第2タブ26bとが接続層29によって接合される。他のタブ26についても同様に接合される。これにより、タブ26同士が接続層29によって接合された接合部Bが形成される。   In the welding process, the laser does not directly act on the connection layer 29 located between the tabs 26, but heat generated by laser welding is transmitted to the entire tab 26 by heat conduction from a portion irradiated with the laser. Due to the laser welding, the connection layer 29 is melted by heat transmitted through the entire tab 26 by heat conduction, and the tabs 26 are joined to each other by the melted connection layer 29. That is, the joining process is performed during the welding process. Specifically, the first tab 26a is joined to the connection layer 29 located between the first tab 26a and the second tab 26b, so that the first tab 26a and the second tab 26b are joined by the connection layer 29. Joined. The other tabs 26 are similarly joined. As a result, a joint B in which the tabs 26 are joined by the connection layer 29 is formed.

収容工程では、タブ群15を折り曲げ、電極組立体12をケース本体13に挿入する。次に、各端子構造16の電極端子16bを蓋14の貫通孔14aに挿通し、ケース本体13の開口部13aを蓋14によって閉塞する。そして、ケース本体13と蓋14とを溶接により接合する。これにより、二次電池10が完成する。   In the accommodation step, the tab group 15 is bent, and the electrode assembly 12 is inserted into the case body 13. Next, the electrode terminals 16 b of each terminal structure 16 are inserted into the through holes 14 a of the lid 14, and the opening 13 a of the case body 13 is closed by the lid 14. Then, the case body 13 and the lid 14 are joined by welding. Thereby, the secondary battery 10 is completed.

第1の実施形態の作用及び効果について説明する。
(1−1)第1タブ26aと第2タブ26bとの通電経路としては、溶接部Aを通過する経路と、接合部Bを通過する経路とが存在する。溶接部Aを形成する際に、第1タブ26aは、溶接の熱によって溶断して第2タブ26bから浮き上がることで、第2タブ26bを含む他のタブ26と溶接されないことがある。この場合、溶接部Aを通過する経路を介して第1タブ26aと第2タブ26bとを接続できないが、接合部Bを通過する経路を介して第1タブ26aと第2タブ26bとを接続できる。つまり、溶接時の熱によって第1タブ26aが破断したとしても、接合部Bにより第1タブ26aと第2タブ26bとの通電経路を確保できる。よって、タブ26同士の接続不良を抑制できる。その結果、全ての正極電極21及び負極電極22と端子構造16とが電気的に接続され、二次電池10の出力低下を抑制できる。また、接合部Bは、溶接部Aを形成する際の熱によって接続層29が溶融することで形成される。このため、第1タブ26aと第2タブ26bとを接合するための工程を溶接工程とは別に設ける必要が無い。
The operation and effect of the first embodiment will be described.
(1-1) As a conduction path between the first tab 26a and the second tab 26b, there is a path that passes through the welded portion A and a path that passes through the joint portion B. When forming the welded portion A, the first tab 26a may not be welded to other tabs 26 including the second tab 26b by being blown out by the heat of welding and rising from the second tab 26b. In this case, the first tab 26a and the second tab 26b cannot be connected via a path passing through the welded portion A, but the first tab 26a and the second tab 26b are connected via a path passing through the joint B. it can. That is, even if the first tab 26a is broken by the heat at the time of welding, the conduction path between the first tab 26a and the second tab 26b can be secured by the joint B. Therefore, poor connection between the tabs 26 can be suppressed. As a result, all of the positive electrode 21 and the negative electrode 22 are electrically connected to the terminal structure 16, and a decrease in the output of the secondary battery 10 can be suppressed. Further, the joint portion B is formed by melting the connection layer 29 by heat when forming the weld portion A. Therefore, there is no need to provide a step for joining the first tab 26a and the second tab 26b separately from the welding step.

(1−2)第1タブ26aが溶接時の熱によって溶断することで、溶接部Aを通過する経路を介して第1タブ26aと第2タブ26bとを接続できない場合、第1タブ26aと第2タブ26bとは接合部Bを通過する経路を介して接続される。このとき、接合部Bが仮想経路R外に位置すると、正極活物質層25又は負極活物質層28から溶接部A及び接合部Bを通過して導電部材16aまで到達する経路は、第1タブ26aと第2タブ26bとの間で接合部Bに迂回する分だけ、溶接部Aを通過する経路よりも長くなる。よって、接合部Bを仮想経路R上に配置することで、正極活物質層25又は負極活物質層28と導電部材16aとの間の通電経路が長くなることを抑制できる。その結果、タブ群15において電気抵抗が増大することを抑制できる。   (1-2) When the first tab 26a cannot be connected to the second tab 26b via the path passing through the welded portion A due to the fusing of the first tab 26a by heat during welding, The second tab 26b is connected to the second tab 26b via a path passing through the joint B. At this time, when the joining portion B is located outside the virtual route R, the route from the positive electrode active material layer 25 or the negative electrode active material layer 28 to the conductive member 16a through the welding portion A and the joining portion B is the first tab. The length of the detour to the joint B between the second tab 26a and the second tab 26b is longer than the path passing through the weld A. Therefore, by disposing the joint portion B on the virtual path R, it is possible to prevent the energization path between the positive electrode active material layer 25 or the negative electrode active material layer 28 and the conductive member 16a from being lengthened. As a result, an increase in electric resistance in the tab group 15 can be suppressed.

(1−3)例えば、接続層29が第2タブ26bにおける第1タブ26a側の面のみに存在する場合、接続層29を有する正極電極21又は負極電極22と、接続層29を有さない正極電極21又は負極電極22とで別に製造する必要がある。これに対し、本実施形態のように、接続層29が全てのタブ26に存在する場合、電極組立体12を構成する全ての正極電極21又は負極電極22を同一の製造方法で製造できる。また、どのタブ26が第1タブ26a又は第2タブ26bになっても、第1タブ26aと第2タブ26bとを接合することができる。よって、二次電池10の生産性が向上する。   (1-3) For example, when the connection layer 29 exists only on the surface of the second tab 26b on the side of the first tab 26a, the positive electrode 21 or the negative electrode 22 having the connection layer 29 and the connection layer 29 are not provided. It is necessary to manufacture the positive electrode 21 or the negative electrode 22 separately. On the other hand, when the connection layers 29 are present on all the tabs 26 as in the present embodiment, all the positive electrodes 21 or the negative electrodes 22 constituting the electrode assembly 12 can be manufactured by the same manufacturing method. Also, whichever tab 26 becomes the first tab 26a or the second tab 26b, the first tab 26a and the second tab 26b can be joined. Therefore, the productivity of the secondary battery 10 is improved.

また、第1タブ26a及び第2タブ26b以外のタブ26同士も接続層29によって接合される場合、タブ群15を流れる電流の断面積が大きくなるため、タブ群15における電気抵抗を低減できる。   Further, when the tabs 26 other than the first tab 26a and the second tab 26b are also joined to each other by the connection layer 29, the cross-sectional area of the current flowing through the tab group 15 increases, so that the electric resistance in the tab group 15 can be reduced.

さらに、本実施形態の二次電池10の製造方法では、既存の工程である第1塗工工程に第2塗工工程を追加することでタブ26に接続層29を形成するため、電極の製造工程や製造設備を大幅に変更せずに済む。   Further, in the method for manufacturing the secondary battery 10 of the present embodiment, the connection layer 29 is formed on the tab 26 by adding the second coating process to the existing first coating process, so The process and manufacturing equipment do not need to be changed significantly.

(第2の実施形態)
以下、蓄電装置及び蓄電装置の製造方法を、二次電池及び二次電池の製造方法に具体化した第2の実施形態を図6〜図8にしたがって説明する。なお、第1の実施形態と同様の構成については説明を省略するとともに同じ符号を付す。
(Second embodiment)
Hereinafter, a second embodiment in which a power storage device and a method for manufacturing the power storage device are embodied as a secondary battery and a method for manufacturing a secondary battery will be described with reference to FIGS. 6 to 8. In addition, about the structure similar to 1st Embodiment, description is abbreviate | omitted and the same code | symbol is attached.

図7に示すように、電極組立体12は、帯状のセパレータ23と、帯状の正極電極21と、帯状のセパレータ23と、帯状の負極電極22とがこの順に積層され、巻回された巻回型の電極組立体である。電極組立体12は、正極電極21、負極電極22、及びセパレータ23が積層された層状構造を有する。   As shown in FIG. 7, the electrode assembly 12 includes a strip-shaped separator 23, a strip-shaped positive electrode 21, a strip-shaped separator 23, and a strip-shaped negative electrode 22, which are stacked in this order and wound. FIG. The electrode assembly 12 has a layered structure in which a positive electrode 21, a negative electrode 22, and a separator 23 are stacked.

正極電極21は、帯状の正極金属箔24と、正極金属箔24の両面に存在する正極活物質層25と、正極金属箔24の短手方向の一端側に存在する未塗工部30とを有する。未塗工部30は、正極活物質層25が存在せず、正極金属箔24そのもので構成されている。また、負極電極22は、帯状の負極金属箔27と、負極金属箔27の両面に存在する負極活物質層28と、負極金属箔27の短手方向の一端側に存在する未塗工部30とを有する。未塗工部30は、負極活物質層28が存在せず、負極金属箔27そのもので構成されている。未塗工部30は、正極電極21及び負極電極22の長手方向全体に亘って存在する。正極電極21及び負極電極22は、電極組立体12として巻回される前の状態において、未塗工部30の片面に帯状に存在する接続部としての接続層29を有する。本実施形態の接続層29は、低融点導電材料としてのロウ材からなる。   The positive electrode 21 includes a strip-shaped positive metal foil 24, a positive electrode active material layer 25 existing on both surfaces of the positive metal foil 24, and an uncoated portion 30 existing on one end in the short direction of the positive metal foil 24. Have. The uncoated portion 30 does not have the positive electrode active material layer 25 and is composed of the positive electrode metal foil 24 itself. Further, the negative electrode 22 includes a strip-shaped negative electrode metal foil 27, a negative electrode active material layer 28 present on both surfaces of the negative electrode metal foil 27, and an uncoated portion 30 existing on one end side in the short direction of the negative electrode metal foil 27. And The uncoated portion 30 does not have the negative electrode active material layer 28 and is constituted by the negative electrode metal foil 27 itself. The uncoated portion 30 exists over the entire length of the positive electrode 21 and the negative electrode 22 in the longitudinal direction. Before being wound as the electrode assembly 12, the positive electrode 21 and the negative electrode 22 each have a connection layer 29 as a connection portion existing in a band shape on one surface of the uncoated portion 30. The connection layer 29 of the present embodiment is made of a brazing material as a low melting point conductive material.

図6に示すように、電極組立体12は、巻回軸線の一端側に正極の未塗工部30が積層された正極の未塗工部群31を備えるとともに、巻回軸線の他端側に負極の未塗工部30が積層された負極の未塗工部群31を備える。図8に示すように、未塗工部群31は、未塗工部30と接続層29とが交互に積層された層状構造をなす。換言すると、未塗工部30同士の間には接続層29が存在する。後述するが、接続層29は、正極電極21及び負極電極22が電極組立体12として巻回された状態では、隣接する未塗工部30同士が接合された接合部の一部を構成する。   As shown in FIG. 6, the electrode assembly 12 includes a positive electrode uncoated portion group 31 in which a positive electrode uncoated portion 30 is laminated on one end of the winding axis, and the other end of the winding axis. A negative electrode uncoated portion group 31 in which a negative electrode uncoated portion 30 is laminated. As shown in FIG. 8, the uncoated portion group 31 has a layered structure in which the uncoated portions 30 and the connection layers 29 are alternately stacked. In other words, the connection layer 29 exists between the uncoated portions 30. As will be described later, when the positive electrode 21 and the negative electrode 22 are wound as the electrode assembly 12, the connection layer 29 forms a part of a joining portion where the adjacent uncoated portions 30 are joined.

図6に示すように、二次電池10は、電極組立体12から電気を取り出すための各極性の端子構造16を備える。各端子構造16は、導電部材16aと、導電部材16aから突出する電極端子16bと、電極端子16bから電極組立体12側に延出する延出部16cと、延出部16cの先端部に位置する矩形板状の接続片16dを有する。   As shown in FIG. 6, the secondary battery 10 includes a terminal structure 16 of each polarity for extracting electricity from the electrode assembly 12. Each of the terminal structures 16 includes a conductive member 16a, an electrode terminal 16b protruding from the conductive member 16a, an extension 16c extending from the electrode terminal 16b toward the electrode assembly 12, and a tip end of the extension 16c. The connection piece 16d has a rectangular plate shape.

図8に示すように、二次電池10は、同じ極性の未塗工部群31と端子構造16の接続片16dとが重ねられた状態でレーザ溶接された溶接部Aを備える。未塗工部群31において最外周に位置する未塗工部30の一部が端子構造16の接続片16dと対向する。本実施形態の溶接部Aは、未塗工部群31において接続層29が位置する部分にも形成される。よって、溶接部Aは、ロウ材を含む。   As shown in FIG. 8, the secondary battery 10 includes a welded portion A that is laser-welded in a state where the uncoated portion group 31 having the same polarity and the connection piece 16 d of the terminal structure 16 are overlapped. A part of the outermost uncoated portion 30 of the uncoated portion group 31 faces the connection piece 16 d of the terminal structure 16. The welded portion A of the present embodiment is also formed in a portion where the connection layer 29 is located in the uncoated portion group 31. Therefore, the welded portion A includes the brazing material.

二次電池10は、未塗工部群31において隣り合う未塗工部30同士が接続層29によって接合された複数の接合部Bを備える。未塗工部30において、最外周に位置するとともに接続片16dから最も離れた部分を第1未塗工部30aとし、第1未塗工部30aと隣り合うとともに第1未塗工部30aよりも内周側に位置する部分を第2未塗工部30bとする。複数の接合部Bのうち、第1未塗工部30aと第2未塗工部30bとが接続層29によって接合された接合部Bを外側接合部B1とする。第1未塗工部30aと第2未塗工部30bの通電経路としては、溶接部Aを通過する経路と、外側接合部B1を通過する経路とが存在する。   The secondary battery 10 includes a plurality of joints B in which the adjacent uncoated portions 30 in the uncoated portion group 31 are joined by the connection layer 29. In the uncoated portion 30, a portion located at the outermost periphery and farthest from the connection piece 16d is defined as a first uncoated portion 30a, and is adjacent to the first uncoated portion 30a and is located at the first uncoated portion 30a. The portion located on the inner peripheral side is also referred to as a second uncoated portion 30b. Out of the plurality of joints B, a joint B in which the first uncoated portion 30a and the second uncoated portion 30b are joined by the connection layer 29 is referred to as an outer joint B1. As the energization paths of the first uncoated portion 30a and the second uncoated portion 30b, there are a route passing through the welded portion A and a route passing through the outer joint portion B1.

次に、第2の実施形態の二次電池10の製造方法について説明する。
二次電池10の製造方法は、正極電極21及び負極電極22を製造する電極製造工程を含む。なお、第1の実施形態の電極製造工程から切断工程を省略すれば第2の実施形態の電極製造工程となるため、電極製造工程に関する説明は省略する。電極材料工程により、金属箔材料41から正極金属箔24が形成され、露出部41aから未塗工部30が形成される。また、第1塗工部42から正極活物質層25が形成されるとともに、第2塗工部43から接続層29が形成される。よって、正極電極21が形成される。
Next, a method for manufacturing the secondary battery 10 of the second embodiment will be described.
The method for manufacturing the secondary battery 10 includes an electrode manufacturing process for manufacturing the positive electrode 21 and the negative electrode 22. If the cutting process is omitted from the electrode manufacturing process of the first embodiment, the process will be the electrode manufacturing process of the second embodiment, and the description of the electrode manufacturing process will be omitted. In the electrode material process, the positive metal foil 24 is formed from the metal foil material 41, and the uncoated portion 30 is formed from the exposed portion 41a. In addition, the positive electrode active material layer 25 is formed from the first coating unit 42, and the connection layer 29 is formed from the second coating unit 43. Thus, the positive electrode 21 is formed.

また、二次電池10の製造方法は、電極組立体12を形成する積層工程と、未塗工部30を集箔して未塗工部群31を形成する集箔工程と、未塗工部群31と接続片16dとを溶接して溶接部Aを形成する溶接工程と、接続層29によって未塗工部30同士を接合して接合部Bを形成する接合工程と、電極組立体12をケース11に収容する収容工程とを含む。なお、収容工程は、第1の実施形態とほぼ同様の方法で行われるため、説明を省略する。   The method of manufacturing the secondary battery 10 includes a laminating step of forming the electrode assembly 12, a foil collecting step of collecting the uncoated portions 30 to form the uncoated portion group 31, A welding step of welding the group 31 and the connecting piece 16d to form a welded portion A, a joining process of joining the uncoated portions 30 together by the connecting layer 29 to form a joined portion B, and a process of joining the electrode assembly 12 And a housing step of housing the case 11. Note that the accommodating step is performed by a method substantially similar to that of the first embodiment, and a description thereof will be omitted.

積層工程では、セパレータ23と、正極電極21と、セパレータ23と、負極電極22とをこの順に積層し巻回する。このとき、正極電極21の未塗工部30は、セパレータ23の短手方向の一端からはみ出すように配置され、負極電極22の未塗工部30は、セパレータ23の短手方向の他端からはみ出すように配置される。これにより、電極組立体12が形成される。   In the laminating step, the separator 23, the positive electrode 21, the separator 23, and the negative electrode 22 are laminated and wound in this order. At this time, the uncoated portion 30 of the positive electrode 21 is disposed so as to protrude from one end of the separator 23 in the short direction, and the uncoated portion 30 of the negative electrode 22 is positioned from the other end of the separator 23 in the short direction. It is arranged to protrude. Thereby, the electrode assembly 12 is formed.

集箔工程では、端子構造16の接続片16dに巻回された未塗工部30を重ね、未塗工部30を挟んで接続片16dの反対側から未塗工部30を押圧する。これにより、巻回された未塗工部30が接続片16d寄りに集箔され、未塗工部群31が形成されるとともに、未塗工部30のうち最外周に位置する部分の一部が接続片16dと対向する。また、未塗工部群31には、未塗工部30と接続層29とが交互に積層された層状構造が形成され、接続層29は、未塗工部30同士の間に位置する。   In the foil collecting step, the uncoated portion 30 wound around the connection piece 16d of the terminal structure 16 is overlapped, and the uncoated portion 30 is pressed from the opposite side of the connection piece 16d with the uncoated portion 30 interposed therebetween. Thereby, the wound uncoated portion 30 is collected near the connection piece 16d to form the uncoated portion group 31, and a part of the outermost portion of the uncoated portion 30 Faces the connection piece 16d. The uncoated portion group 31 has a layered structure in which the uncoated portions 30 and the connection layers 29 are alternately laminated, and the connection layer 29 is located between the uncoated portions 30.

溶接工程では、まず、未塗工部群31側に配置された図示しない治具によって、未塗工部群31を端子構造16の接続片16dに向けて押圧する。なお、未塗工部群31において押圧される部分は、後に溶接部Aとなる部分を囲む部分であり、未塗工部群31において溶接部Aとなる部分は押圧されず、露出している。これにより、未塗工部30と接続層29とが密接するとともに、未塗工部群31において最外周に位置する未塗工部30と接続片16dとが密接する。   In the welding step, first, the uncoated part group 31 is pressed toward the connection piece 16 d of the terminal structure 16 by a jig (not shown) arranged on the uncoated part group 31 side. The portion to be pressed in the uncoated portion group 31 is a portion surrounding the portion to be the welded portion A later, and the portion to be the welded portion A in the uncoated portion group 31 is not pressed and is exposed. . Thus, the uncoated portion 30 and the connection layer 29 are in close contact with each other, and the outermost uncoated portion 30 in the uncoated portion group 31 and the connection piece 16d are in close contact with each other.

次に、治具により未塗工部群31を押圧した状態で、図示しないレーザ照射装置によって、タブ群15の第1未塗工部30a側から未塗工部群31と接続片16dに向けてレーザを照射する。本実施形態のレーザ照射装置は、レーザを照射しながら接続片16dの長手方向の一端から他端に向けて移動する。これにより、未塗工部群31と、接続層29と、接続片16dとが溶融した溶融部が形成される。レーザの通過後、溶融部が凝固することで、未塗工部群31と接続片16dとが溶接された溶接部Aが形成される。溶接部Aには、未塗工部30及び接続片16dの材料の他に、接続層29の材料であるロウ材が含まれる。   Next, in a state where the uncoated portion group 31 is pressed by the jig, the uncoated portion group 31 and the connection piece 16d are directed from the first uncoated portion 30a side of the tab group 15 by a laser irradiation device (not shown). To irradiate the laser. The laser irradiation device of the present embodiment moves from one end in the longitudinal direction of the connection piece 16d to the other end while irradiating the laser. As a result, a fused portion in which the uncoated portion group 31, the connection layer 29, and the connection piece 16d are melted is formed. After the laser beam passes, the melted portion solidifies to form a welded portion A in which the uncoated portion group 31 and the connection piece 16d are welded. The welded portion A includes a brazing material, which is a material of the connection layer 29, in addition to the material of the uncoated portion 30 and the connection piece 16d.

溶接工程では、未塗工部30同士の間に位置する接続層29には、レーザは直接作用しないが、レーザ溶接により生じる熱は、レーザが照射された部分から熱伝導によって未塗工部30全体に伝わる。このレーザ溶接に起因し、熱伝導により未塗工部30全体に伝わる熱によって、接続層29は溶融し、溶融した接続層29によって、未塗工部30同士は接合される。つまり、接合工程は溶接工程中に行われる。詳しくは、溶融した接続層29と第2未塗工部30bとが接合されることにより、第1未塗工部30aと第2未塗工部30bとが接続層29を介して接合される。未塗工部30の他の部分についても同様に接合される。これにより、未塗工部30同士が接続層29によって接合された接合部Bが形成される。   In the welding process, the laser does not directly act on the connection layer 29 located between the uncoated portions 30, but the heat generated by the laser welding causes the uncoated portion 30 by heat conduction from the portion irradiated with the laser. It is transmitted throughout. The connection layer 29 is melted by heat transmitted to the entire uncoated portion 30 by heat conduction due to the laser welding, and the uncoated portions 30 are joined to each other by the melted connection layer 29. That is, the joining process is performed during the welding process. Specifically, the first uncoated portion 30a and the second uncoated portion 30b are joined via the connection layer 29 by joining the fused connection layer 29 and the second uncoated portion 30b. . The other parts of the uncoated part 30 are similarly joined. As a result, a joint portion B in which the uncoated portions 30 are joined to each other by the connection layer 29 is formed.

第2の実施形態の作用及び効果について説明する。
(2−1)第1未塗工部30aと第2未塗工部30bとの通電経路としては、溶接部Aを通過する経路と、接合部Bを通過する経路とが存在する。溶接部Aを形成する際に、第1未塗工部30aは、溶接の熱によって溶断して第2未塗工部30bから浮き上がることで、第2未塗工部30bを含む他の未塗工部30と溶接されないことがある。この場合、溶接部Aを通過する経路を介して第1未塗工部30aと第2未塗工部30bとを接続できないが、接合部Bを通過する経路を介して第1未塗工部30aと第2未塗工部30bとを接続できる。つまり、溶接の熱によって第1未塗工部30aが破断したとしても、接合部Bにより第1未塗工部30aと第2未塗工部30bとの通電経路を確保できる。よって、未塗工部30同士の接続不良を抑制できる。その結果、第1未塗工部30aが溶断しても、第1未塗工部30aと端子構造16の接続片16dの間の通電経路が長くなることが抑制され、未塗工部群31における電気抵抗の増加を抑制できる。
The operation and effect of the second embodiment will be described.
(2-1) As a conduction path between the first uncoated portion 30a and the second uncoated portion 30b, there are a route passing through the welded portion A and a route passing through the joint portion B. When forming the welded portion A, the first uncoated portion 30a is melted off by the heat of welding and rises from the second uncoated portion 30b, thereby forming another uncoated portion including the second uncoated portion 30b. It may not be welded to the engineered part 30. In this case, the first uncoated portion 30a and the second uncoated portion 30b cannot be connected via a path passing through the welded portion A, but the first uncoated portion 30a is not connected via a route passing through the joint B. 30a and the 2nd uncoated part 30b can be connected. In other words, even if the first uncoated portion 30a is broken by the heat of welding, the joining portion B can secure a conduction path between the first uncoated portion 30a and the second uncoated portion 30b. Therefore, poor connection between the uncoated portions 30 can be suppressed. As a result, even if the first uncoated portion 30a is blown out, the length of the conduction path between the first uncoated portion 30a and the connection piece 16d of the terminal structure 16 is suppressed, and the uncoated portion group 31 is suppressed. Can be suppressed from increasing in electric resistance.

(2−2)接続層29は、未塗工部30の長手方向全体に亘って存在する。このため、未塗工部30のどの部分が第1未塗工部30a又は第2未塗工部30bになっても、第1未塗工部30aと第2未塗工部30bとを接続層29によって接合することができる。よって、接続層29が第1未塗工部30aと第2未塗工部30bとの間に位置するように、金属箔材料41に対する第2塗工部43の形成位置を調整する必要が無いため、二次電池10の生産性が向上する。また、本実施形態の二次電池10の製造方法では、既存の工程である第1塗工工程に第2塗工工程を追加することにより未塗工部30に接続層29を形成するため、電極の製造工程や製造設備を大幅に変更せずに済む。   (2-2) The connection layer 29 is present over the entire uncoated portion 30 in the longitudinal direction. Therefore, no matter which part of the uncoated part 30 becomes the first uncoated part 30a or the second uncoated part 30b, the first uncoated part 30a and the second uncoated part 30b are connected. It can be joined by layer 29. Therefore, it is not necessary to adjust the formation position of the second coated portion 43 with respect to the metal foil material 41 so that the connection layer 29 is located between the first uncoated portion 30a and the second uncoated portion 30b. Therefore, the productivity of the secondary battery 10 improves. In the method for manufacturing the secondary battery 10 of the present embodiment, the connection layer 29 is formed on the uncoated portion 30 by adding the second coating process to the existing first coating process. The electrode manufacturing process and manufacturing equipment need not be changed significantly.

(2−3)溶接部Aは、溶融部が凝固することで形成される。溶融部が一種の金属元素のみからなる場合、溶融部(液体)は急激に凝固して溶接部A(固体)になるため、凝固時の収縮によって溶接部Aには引けやボイド等の欠陥が生じることがある。一方、溶融部が一種の金属元素と、その金属元素とは異なる少なくとも一種の元素を含む場合、溶融部(液体)から溶接部A(固体)に凝固する間に固液共存領域が存在するため、溶融部(液体)は、凝固収縮した部分に供給され、引けやボイド等の欠陥を埋めながら凝固し、溶接部A(固体)となる。これにより、溶接部Aに欠陥が生じ難くなる。また、溶融部の融点は、溶融部が一種の金属元素のみからなる場合よりも、溶融部が二種以上の金属元素を含む場合の方が低くなる。以上のことから、未塗工部30の材料である金属元素に加えてロウ材を含むように溶接部Aを形成することで、未塗工部30の材料である金属元素のみの溶接部Aを形成する場合と比較して、溶接部Aの欠陥を抑制できるとともに、溶接時の入熱量を増加させなくとも、溶接部Aの溶け込み深さを深くできる。   (2-3) The welded portion A is formed by solidification of the molten portion. When the molten portion is composed of only one kind of metal element, the molten portion (liquid) rapidly solidifies and becomes a welded portion A (solid). Therefore, shrinkage during solidification causes defects such as shrinkage and voids in the welded portion A. May occur. On the other hand, when the molten portion contains a metal element and at least one element different from the metal element, a solid-liquid coexistence region exists during solidification from the molten portion (liquid) to the welded portion A (solid). The molten portion (liquid) is supplied to the portion that has solidified and shrunk, and solidifies while filling in defects such as shrinkage and voids, and becomes a welded portion A (solid). Thereby, a defect is less likely to occur in the welded portion A. Further, the melting point of the fusion zone is lower when the fusion zone contains two or more metal elements than when the fusion zone consists of only one type of metal element. From the above, by forming the welded portion A so as to include the brazing material in addition to the metal element as the material of the uncoated portion 30, the welded portion A containing only the metal element as the material of the uncoated portion 30 is formed. As compared with the case of forming a weld, the defect of the welded portion A can be suppressed, and the penetration depth of the welded portion A can be increased without increasing the heat input during welding.

第1及び第2の実施形態は、以下のように変更して実施することができる。本実施形態及び変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
○ 第1及び第2の実施形態において、正極電極21において、正極活物質層25は正極金属箔24の片面に存在してもよい。同様に、負極電極22において、負極活物質層28は負極金属箔27の片面に存在してもよい。
The first and second embodiments can be modified and implemented as follows. The present embodiment and the modifications can be implemented in combination with each other within a technically consistent range.
In the first and second embodiments, in the positive electrode 21, the positive electrode active material layer 25 may exist on one surface of the positive electrode metal foil 24. Similarly, in the negative electrode 22, the negative electrode active material layer 28 may be present on one surface of the negative electrode metal foil 27.

○ 第1の実施形態において、接続層29は、タブ26の両面に存在してもよい。同様に、第2の実施形態において、接続層29は、未塗工部30の両面に存在してもよい。
○ 第2の実施形態において、端子構造16の接続片16dは、電極組立体12の巻回軸となるように電極組立体12に挿入され、未塗工部群31と溶接されてもよい。
In the first embodiment, the connection layers 29 may be present on both sides of the tab 26. Similarly, in the second embodiment, the connection layers 29 may be present on both surfaces of the uncoated portion 30.
In the second embodiment, the connection piece 16d of the terminal structure 16 may be inserted into the electrode assembly 12 so as to be a winding axis of the electrode assembly 12, and may be welded to the uncoated portion group 31.

○ 第1及び第2の実施形態において、溶接部Aを形成する方法は、レーザ溶接に限定されない。例えば、超音波溶接や抵抗溶接によって溶接部Aを形成してもよい。
○ 第1及び第2の実施形態において、端子構造16の材料は、アルミニウム及び銅に限定されない。端子構造16の材料は、例えば、ニッケルやステンレスなど、高い導電性と高い強度とを有する材料であればよい。
In the first and second embodiments, the method of forming the welded portion A is not limited to laser welding. For example, the welded portion A may be formed by ultrasonic welding or resistance welding.
In the first and second embodiments, the material of the terminal structure 16 is not limited to aluminum and copper. The material of the terminal structure 16 may be any material having high conductivity and high strength, such as nickel and stainless steel.

○ 第1及び第2の実施形態において、接続層29の材料である低融点導電材料は、ロウ材に限定されない。低融点導電材料は、2種類以上の元素からなるとともに、状態図において固液共存領域を有する材料であれば、適宜変更してよい。   In the first and second embodiments, the low melting point conductive material that is the material of the connection layer 29 is not limited to the brazing material. The low-melting-point conductive material may be appropriately changed as long as it is made of two or more elements and has a solid-liquid coexistence region in the phase diagram.

低融点導電材料は、例えば、弗化アルミニウムカリウム系の非腐食性弗化物フラックスとケイ素粉末の混合物であってもよい。非腐食性フラックスには、例えば、NOCOLOK(登録商標)を用いることができる。また、低融点導電材料は、例えば、アルミニウム、ニッケル、ステンレスなどに他の材料が加えられた複合化材料であってもよい。複合化に際して銀やカーボンなどの導電性ペーストを用いることで高い導電性を得ることができる。なお、低融点導電材料の融点は、タブ26や未塗工部30の材料の融点よりも低くなくてもよい。例えば、タブ26上に低融点導電材料としてのケイ素粉末を配置してもよい。この場合、溶接の熱によってケイ素が拡散することでタブ26の融点が下がり、タブ26同士が接合される。低融点導電材料には、導電フィラーなど導電助剤を混合することが好ましい。   The low-melting-point conductive material may be, for example, a mixture of a non-corrosive fluoride flux based on aluminum potassium fluoride and silicon powder. As the non-corrosive flux, for example, NOCOLOK (registered trademark) can be used. In addition, the low-melting-point conductive material may be, for example, a composite material in which another material is added to aluminum, nickel, stainless steel, or the like. High conductivity can be obtained by using a conductive paste such as silver or carbon at the time of compounding. Note that the melting point of the low melting point conductive material does not need to be lower than the melting points of the materials of the tab 26 and the uncoated portion 30. For example, a silicon powder as a low melting point conductive material may be arranged on the tab 26. In this case, the melting point of the tab 26 is lowered by the diffusion of silicon due to the heat of welding, and the tabs 26 are joined to each other. It is preferable to mix a conductive aid such as a conductive filler with the low melting point conductive material.

○ 第1の実施形態において、図9に示すように、複数のタブ26が積層方向の中央に集箔されることでタブ群15が形成されてもよい。この場合、積層方向の中央に位置する正極電極21のタブ26の先端は、積層方向の端に位置する正極電極21のタブ26の先端よりも突出している。同様に、積層方向の中央に位置する負極電極22のタブ26の先端は、積層方向の端に位置する負極電極22のタブ26の先端よりも突出している。よって、タブ群15の先端側では、タブ26の先端は、積層方向の中央に頂点が位置するような山状に並ぶ。   In the first embodiment, as shown in FIG. 9, the tab group 15 may be formed by collecting a plurality of tabs 26 at the center in the stacking direction. In this case, the tip of the tab 26 of the positive electrode 21 located at the center in the stacking direction projects more than the tip of the tab 26 of the positive electrode 21 located at the end in the stacking direction. Similarly, the tip of the tab 26 of the negative electrode 22 located at the center in the stacking direction projects more than the tip of the tab 26 of the negative electrode 22 located at the end in the stacking direction. Therefore, on the tip side of the tab group 15, the tips of the tabs 26 are arranged in a mountain shape such that the apex is located at the center in the stacking direction.

また、接続層29についても、積層方向の中央に位置する正極電極21のタブ26に存在する接続層29は、積層方向の端に位置する正極電極21のタブ26に存在する接続層29よりもタブ群15の先端側に位置する。同様に、積層方向の中央に位置する負極電極22のタブ26に存在する接続層29は、積層方向の端に位置する負極電極22のタブ26に存在する接続層29よりもタブ群15の先端側に位置する。よって、タブ群15において、接続層29は、積層方向の中央に頂点が位置するような山状に並ぶ。   Also, regarding the connection layer 29, the connection layer 29 existing on the tab 26 of the positive electrode 21 located at the center in the stacking direction is higher than the connection layer 29 existing on the tab 26 of the positive electrode 21 located at the end in the stacking direction. It is located on the tip side of the tab group 15. Similarly, the connection layer 29 present on the tab 26 of the negative electrode 22 located at the center in the stacking direction is more distal than the connection layer 29 existing on the tab 26 of the negative electrode 22 located at the end in the stacking direction. Located on the side. Therefore, in the tab group 15, the connection layers 29 are arranged in a mountain shape such that the apex is located at the center in the stacking direction.

このような場合であっても、二次電池10は、タブ群15と導電部材16aとが溶接された溶接部Aと、タブ26同士が接続層29によって接合された接合部Bとを備える。なお、溶接部Aは、図9に示すように、山状に並ぶ接続層29と重ならない位置に形成されてもよいし、図示しないが、山状に並ぶ接続層29の一部と重なる位置に形成されてもよい。ただし、接続層29は、第1タブ26aと第2タブ26bとの間、又は第1未塗工部30aと第2未塗工部30bとの間に位置する接続層29全体とは重ならないものとする。溶接部Aが山状に並ぶ接続層29の一部と重なる位置に形成される場合、溶接部Aにはロウ材が含まれる。   Even in such a case, the secondary battery 10 includes a welded portion A in which the tab group 15 and the conductive member 16a are welded, and a joint B in which the tabs 26 are joined by the connection layer 29. The welded portion A may be formed at a position that does not overlap with the connection layers 29 arranged in a mountain shape, as shown in FIG. 9, or not shown, but may be formed at a position that overlaps a part of the connection layers 29 arranged in a mountain shape. May be formed. However, the connection layer 29 does not overlap with the entire connection layer 29 located between the first tab 26a and the second tab 26b or between the first uncoated portion 30a and the second uncoated portion 30b. Shall be. When the welded portion A is formed at a position overlapping with a part of the connection layer 29 arranged in a mountain shape, the welded portion A includes a brazing material.

○ 第1の実施形態において、接合部Bは、溶接部Aの周辺に位置していればよい。接合部Bは、例えば、タブ群15をタブ26の積層方向から見たとき、溶接部Aを取り囲むように位置していてもよい。   In the first embodiment, the joint B may be located around the weld A. For example, the joint portion B may be located so as to surround the welded portion A when the tab group 15 is viewed from the direction in which the tabs 26 are stacked.

○ 第1及び第2の実施形態において、タブ26同士又は未塗工部30同士を接合するための接続部の形成方法は、適宜変更してよい。例えば、タブ26または未塗工部30に低融点導電材料をスクリーン印刷したり噴射したりして、接続層29を形成してもよい。また、例えば、タブ26または未塗工部30を低融点導電材料に浸漬して接続層29を形成してもよい。また、例えば、タブ26同士又は未塗工部30同士の間に、シート状の低融点導電材料を配置してもよい。   In the first and second embodiments, the method of forming the connection portion for joining the tabs 26 or the uncoated portions 30 may be appropriately changed. For example, the connection layer 29 may be formed by screen printing or spraying a low melting point conductive material on the tab 26 or the uncoated portion 30. Further, for example, the connection layer 29 may be formed by immersing the tab 26 or the uncoated portion 30 in a low-melting-point conductive material. Further, for example, a sheet-like low melting point conductive material may be arranged between the tabs 26 or between the uncoated portions 30.

○ 第1の実施形態において、第1タブ26aと第2タブ26bとが接続層29によって接合されていれば、他のタブ26同士は、接続層29によって接合されなくてもよい。図10に示すように、タブ群15を構成する複数のタブ26のうち、第1タブ26a寄りの3分の1程度のタブ26同士が接続層29によって接合されるのが好ましい。この場合、溶接時の熱によって第1タブ26aが溶断する前に、第1タブ26aと第2タブ26bとが接続層29によって接合されるため、第1タブ26aが第2タブ26bから浮き上がることを抑制できる。   In the first embodiment, if the first tab 26a and the second tab 26b are joined by the connection layer 29, the other tabs 26 may not be joined by the connection layer 29. As shown in FIG. 10, it is preferable that, of the plurality of tabs 26 constituting the tab group 15, about one third of the tabs 26 near the first tab 26 a are joined by the connection layer 29. In this case, the first tab 26a and the second tab 26b are joined by the connection layer 29 before the first tab 26a is blown out by heat during welding, so that the first tab 26a rises from the second tab 26b. Can be suppressed.

○ 第2の実施形態において、第1未塗工部30aと第2未塗工部30bとが接続層29によって接合されていれば、他の未塗工部30同士は、接続層29によって接合されなくてもよい。未塗工部群31を構成する複数の未塗工部30のうち、第1未塗工部30a寄りの3分の1程度のタブ26同士が接続層29によって接合されるのが好ましい。この場合、溶接時の熱によって第1未塗工部30aが溶断する前に、第1未塗工部30aと第2未塗工部30bとが接続層29によって接合されるため、第1未塗工部30aが第2未塗工部30bから浮き上がることを抑制できる。   In the second embodiment, if the first uncoated portion 30a and the second uncoated portion 30b are joined by the connection layer 29, the other uncoated portions 30 are joined by the connection layer 29. It does not have to be done. Of the plurality of uncoated portions 30 constituting the uncoated portion group 31, it is preferable that approximately one third of the tabs 26 near the first uncoated portion 30 a be joined by the connection layer 29. In this case, the first uncoated portion 30a and the second uncoated portion 30b are joined by the connection layer 29 before the first uncoated portion 30a is blown out by heat during welding. It is possible to prevent the coated portion 30a from rising from the second uncoated portion 30b.

○ 二次電池10は、リチウムイオン二次電池でもよいし、他の二次電池であってもよい。要は、正極用の活物質と負極用の活物質との間をイオンが移動するとともに電荷の授受を行うものであればよい。   The secondary battery 10 may be a lithium ion secondary battery or another secondary battery. In short, any material may be used as long as ions move between the positive electrode active material and the negative electrode active material and transfer charges.

○ 蓄電装置は、例えばキャパシタなど、二次電池以外の蓄電装置にも適用可能である。   The power storage device can be applied to a power storage device other than a secondary battery, such as a capacitor.

10…蓄電装置としての二次電池、12…電極組立体、15…未塗工部群としてのタブ群、16…端子構造、21…電極としての正極電極、22…電極としての負極電極、24…金属箔としての正極金属箔、25…活物質層としての正極活物質層、26…未塗工部としてのタブ、26a…第1未塗工部としての第1タブ、26b…第2未塗工部としての第2タブ、29…接続部としての接続層、30…未塗工部、30a…第1未塗工部、30b…第2未塗工部、31…未塗工部群、40…電極材料、41…金属箔材料、42…第1塗工部、43…第2塗工部、A…溶接部、B…接合部、R…仮想経路。
DESCRIPTION OF SYMBOLS 10 ... Secondary battery as a power storage device, 12 ... Electrode assembly, 15 ... Tab group as an uncoated part group, 16 ... Terminal structure, 21 ... Positive electrode as an electrode, 22 ... Negative electrode as an electrode, 24 ... Positive electrode metal foil as metal foil, 25 ... Positive electrode active material layer as active material layer, 26 ... Tab as uncoated part, 26a ... First tab as first uncoated part, 26b ... 2nd tab as a coating part, 29 ... connection layer as a connection part, 30 ... uncoated part, 30a ... first uncoated part, 30b ... second uncoated part, 31 ... uncoated part group , 40 ... electrode material, 41 ... metal foil material, 42 ... first coating part, 43 ... second coating part, A ... welding part, B ... joining part, R ... virtual path.

Claims (7)

金属箔と、前記金属箔の少なくとも片面に存在する活物質層と、前記活物質層が存在せず、前記金属箔が露出した未塗工部とを有する複数の電極が積層され、かつ前記未塗工部が積層された未塗工部群を備える電極組立体と、
前記電極組立体と外部装置とを接続する端子構造と、
前記未塗工部群と前記端子構造とが溶接された溶接部と、
を備えた蓄電装置であって、
前記未塗工部群を構成する未塗工部のうち、前記端子構造から最も離れた未塗工部を第1未塗工部とし、前記第1未塗工部と隣り合う未塗工部を第2未塗工部としたとき、
少なくとも前記第1未塗工部と前記第2未塗工部とが、低融点導電材料からなる接続部によって接合された接合部を備えることを特徴とする蓄電装置。
A plurality of electrodes having a metal foil, an active material layer present on at least one surface of the metal foil, and an uncoated portion where the active material layer is not present and the metal foil is exposed are stacked, and An electrode assembly including an uncoated part group in which a coating part is laminated,
A terminal structure for connecting the electrode assembly and an external device,
A welded portion where the uncoated portion group and the terminal structure are welded,
A power storage device comprising:
Among the uncoated parts constituting the uncoated part group, the uncoated part furthest from the terminal structure is defined as a first uncoated part, and the uncoated part adjacent to the first uncoated part Is the second uncoated part,
At least the first uncoated portion and the second uncoated portion include a joint portion joined by a joint portion made of a low-melting-point conductive material.
前記未塗工部に沿い、かつ前記溶接部と前記活物質層とを最短距離で繋いだ経路を仮想経路としたとき、
前記接合部は、少なくとも前記仮想経路上に位置する請求項1に記載の蓄電装置。
Along the uncoated portion, and when a route connecting the welded portion and the active material layer at the shortest distance is a virtual route,
The power storage device according to claim 1, wherein the junction is located at least on the virtual path.
前記接続部は、前記未塗工部群を構成する全ての前記未塗工部に存在する接続層である請求項1又は請求項2に記載の蓄電装置。   The power storage device according to claim 1, wherein the connection portion is a connection layer existing in all of the uncoated portions constituting the uncoated portion group. 4. 前記溶接部は、前記低融点導電材料を含む請求項1〜請求項3の何れか一項に記載の蓄電装置。   The power storage device according to any one of claims 1 to 3, wherein the welded portion includes the low melting point conductive material. 金属箔と、前記金属箔の少なくとも片面に存在する活物質層と、前記活物質層が存在せず、前記金属箔が露出した未塗工部とを有する複数の電極が積層され、かつ前記未塗工部が積層された未塗工部群を備える電極組立体と、
前記電極組立体と外部装置とを接続する端子構造と、
前記未塗工部群と前記端子構造とが溶接された溶接部と、
を備えた蓄電装置の製造方法であって、
前記未塗工部群と前記端子構造とを溶接して前記溶接部を形成する溶接工程と、
前記未塗工部群を構成する未塗工部のうち、前記端子構造から最も離れた未塗工部を第1未塗工部とし、前記第1未塗工部と隣り合う未塗工部を第2未塗工部としたとき、
低融点導電材料からなる接続部によって、前記第1未塗工部と前記第2未塗工部とを接合して接合部を形成する接合工程と、
を含み、
前記接合部は、前記溶接工程の熱によって前記接続部が溶融することで形成されることを特徴とする蓄電装置の製造方法。
A plurality of electrodes having a metal foil, an active material layer present on at least one surface of the metal foil, and an uncoated portion where the active material layer is not present and the metal foil is exposed are stacked, and An electrode assembly including an uncoated part group in which a coating part is laminated,
A terminal structure for connecting the electrode assembly and an external device,
A welded portion where the uncoated portion group and the terminal structure are welded,
A method for manufacturing a power storage device comprising:
A welding step of welding the uncoated part group and the terminal structure to form the welded part,
Among the uncoated parts constituting the uncoated part group, the uncoated part furthest from the terminal structure is defined as a first uncoated part, and the uncoated part adjacent to the first uncoated part Is the second uncoated part,
A joining step of joining the first uncoated portion and the second uncoated portion by a connecting portion made of a low melting point conductive material to form a joining portion;
Including
The method for manufacturing a power storage device, wherein the joining portion is formed by melting the connecting portion by heat of the welding process.
前記溶接工程において、前記低融点導電材料を含むように前記溶接部を形成する請求項5に記載の蓄電装置の製造方法。   The method for manufacturing a power storage device according to claim 5, wherein in the welding step, the welding portion is formed so as to include the low-melting-point conductive material. 前記電極の材料となる電極材料を製造する電極材料製造工程と、前記電極材料を切断して前記電極を形成する切断工程とを有する電極製造工程と、
前記電極製造工程によって製造された前記電極を積層して前記電極組立体を製造する積層工程と、
を含み、
前記電極材料製造工程は、長尺帯状の金属箔材料に活物質合剤を塗工して第1塗工部を形成する第1塗工工程と、前記金属箔材料に低融点導電材料を塗工して第2塗工部を形成する第2塗工工程とを有し、
前記切断工程では、前記金属箔材料によって前記金属箔が形成され、前記第1塗工部によって前記活物質層が形成され、前記第2塗工部によって前記未塗工部に前記接続部が形成される請求項5又は請求項6に記載の蓄電装置の製造方法。
An electrode material manufacturing step of manufacturing an electrode material to be a material of the electrode, and an electrode manufacturing step including a cutting step of cutting the electrode material to form the electrode,
A laminating step of laminating the electrodes produced by the electrode producing step to produce the electrode assembly,
Including
The electrode material manufacturing step includes a first coating step of coating a long strip-shaped metal foil material with an active material mixture to form a first coating portion, and coating a low melting point conductive material on the metal foil material. And a second coating step of forming a second coating portion by processing
In the cutting step, the metal foil is formed by the metal foil material, the active material layer is formed by the first coated portion, and the connection portion is formed in the uncoated portion by the second coated portion. The method for manufacturing a power storage device according to claim 5, wherein
JP2018136122A 2018-07-19 2018-07-19 Power storage device and manufacturing method thereof Pending JP2020013733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018136122A JP2020013733A (en) 2018-07-19 2018-07-19 Power storage device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018136122A JP2020013733A (en) 2018-07-19 2018-07-19 Power storage device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2020013733A true JP2020013733A (en) 2020-01-23

Family

ID=69170775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018136122A Pending JP2020013733A (en) 2018-07-19 2018-07-19 Power storage device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2020013733A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113023A1 (en) * 2020-11-26 2022-06-02 Manz Italy S.R.L. Assembling method and apparatus to assemble a power storage device using impulsive welding action
EP4131510A4 (en) * 2021-03-23 2024-03-27 Contemporary Amperex Technology Co Ltd Electrode assembly, battery cell, battery, and power consuming device
WO2024062522A1 (en) * 2022-09-20 2024-03-28 株式会社 東芝 Secondary battery and method for manufacturing secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113023A1 (en) * 2020-11-26 2022-06-02 Manz Italy S.R.L. Assembling method and apparatus to assemble a power storage device using impulsive welding action
EP4131510A4 (en) * 2021-03-23 2024-03-27 Contemporary Amperex Technology Co Ltd Electrode assembly, battery cell, battery, and power consuming device
WO2024062522A1 (en) * 2022-09-20 2024-03-28 株式会社 東芝 Secondary battery and method for manufacturing secondary battery

Similar Documents

Publication Publication Date Title
CN110800131B (en) Battery and method for manufacturing same
JP4444989B2 (en) Lithium ion secondary battery
JP6238105B2 (en) Apparatus housing and method for manufacturing apparatus casing
JP2015099681A (en) Sealed battery
JP2017010743A (en) Secondary battery and assembled battery using the same
JP2020013733A (en) Power storage device and manufacturing method thereof
KR20190016691A (en) Cell module and its manufacturing method
JP6593304B2 (en) Electric storage device and method for manufacturing electric storage device
WO2019177081A1 (en) Manufacturing method for sealed battery, and sealed battery
WO2015129154A1 (en) Battery and production method for battery
WO2013191218A1 (en) Process for producing stacked aluminum material, process for producing sealed battery containing same, and sealed battery
CN114223088A (en) Secondary battery and method for manufacturing same
JP6579023B2 (en) Manufacturing method of secondary battery
JP6613813B2 (en) Method for manufacturing electrode assembly and electrode assembly
JP2020004643A (en) Power storage device
JP2020013745A (en) Manufacturing method of power storage device
JP7100803B2 (en) Batteries and battery manufacturing methods
JP2017134910A (en) Method of manufacturing secondary battery
JP2018073767A (en) Manufacturing method of secondary battery
JP6493188B2 (en) Battery manufacturing method
JP2015109140A (en) Manufacturing method of sealed battery
JP2020013706A (en) Power storage device and manufacturing method thereof
CN105960722B (en) Electrical storage device and electrical storage device manufacturing method
JP5699895B2 (en) Secondary battery
JP2015115223A (en) Method of manufacturing sealed battery