JP2019200046A5 - - Google Patents

Download PDF

Info

Publication number
JP2019200046A5
JP2019200046A5 JP2019159032A JP2019159032A JP2019200046A5 JP 2019200046 A5 JP2019200046 A5 JP 2019200046A5 JP 2019159032 A JP2019159032 A JP 2019159032A JP 2019159032 A JP2019159032 A JP 2019159032A JP 2019200046 A5 JP2019200046 A5 JP 2019200046A5
Authority
JP
Japan
Prior art keywords
electric component
outdoor
cooling unit
heat
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019159032A
Other languages
English (en)
Other versions
JP6933233B2 (ja
JP2019200046A (ja
Filing date
Publication date
Priority claimed from JP2017154719A external-priority patent/JP6749293B2/ja
Application filed filed Critical
Priority to JP2019159032A priority Critical patent/JP6933233B2/ja
Priority claimed from JP2019159032A external-priority patent/JP6933233B2/ja
Publication of JP2019200046A publication Critical patent/JP2019200046A/ja
Publication of JP2019200046A5 publication Critical patent/JP2019200046A5/ja
Application granted granted Critical
Publication of JP6933233B2 publication Critical patent/JP6933233B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

冷凍装置の室外ユニット
本発明は、冷凍装置の室外ユニットに関する。
従来、冷凍装置の室外ユニットには、ケーシング内において圧縮機が底板上に配置され、空気流を生成するファンが圧縮機よりも高い高さ位置に配置され、上方向に空気を吹き出すものがある。このような室外ユニットでは、例えば特許文献1(特許第5196166号公報)に開示されるように、圧縮機及びファンをはじめとする各機器を制御するための電気部品が、ケーシング内に配置された基板に実装されるのが一般的である。
ここで、基板に実装される電気部品には通電時に発熱する発熱部品が含まれ、係る発熱部品については信頼性を確保するために冷却を行う必要がある。特許文献1では、ファンによって生成される空気流が基板に沿って下方から上方に向かって流れるように構成されており、これにより発熱部品の冷却が行われるように構成されている。
昨今、圧縮機についてはインバータによって容量可変に制御されるのが主流であり、基板に実装される電気部品には、圧縮機のインバータ制御を行うための各種電気部品(例えばパワーデバイスやパワーモジュール等)が含まれるのが一般的である。また、圧縮機以外の機器(例えばファン等)を制御するための電気部品についても、通常、基板に実装される。
ここで、上述のような室外ユニットでは、ファンが圧縮機よりも高い高さ位置に配置されることから、配線の取り回しを容易化するために、ファン制御用の電気部品については、圧縮機制御用の電気部品よりも上方に(すなわちファンに近い位置に)配置されるのが通常である。
しかし、このような配置態様によると、各発熱部品の冷却が十分に行われず信頼性が確保されないケースがあることを、本願発明者は鋭意検討の上に発見した。すなわち、圧縮機制御用の発熱部品については、ファン制御用の発熱部品よりも発熱量が大きいことが通常であり、上述のように下方から上方に向かって流れる空気流によって各発熱部品の冷却が行われる場合、圧縮機制御用の発熱部品と熱交換を行うことで加熱された空気流によってファン制御用の発熱部品の冷却が行われることとなる。このため、ファン制御用の発熱部品と、冷却源である空気流との温度差が十分に確保されず、ファン制御用の発熱部品の冷却が良好に行われない事態となることが考えられ、係る点で信頼性低下を招く。
また、特許文献1のように下方から上方に向かって流れる空気流によって各発熱部品の冷却が行われる場合、ファンに近い位置のほうが(すなわち風下側のほうが)風量が大きくなる傾向があるところ、圧縮機制御用の発熱部品がファン制御用の発熱部品よりも風上側(すなわちファンから遠い位置)に配置されると、発熱量が大きい圧縮機制御用の発熱部品を冷却する空気流の風量が十分に確保されず、圧縮機制御用の発熱部品の冷却についても良好に行われないことも考えられ、係る点でも信頼性低下を招く。
そこで、本発明の課題は、信頼性低下を抑制する冷凍装置の室外ユニットを提供することである。
本発明の第1観点に係る冷凍装置の室外ユニットは、圧縮機と、ファンと、第1電気部品と、第2電気部品と、基板部と、第1冷却器と、第2冷却器と、ケーシングと、を備える。圧縮機は、冷媒を圧縮する。ファンは、圧縮機よりも高い高さ位置に配置される。ファンは、空気流を生成する。第1電気部品は、圧縮機の駆動状態を制御する。第2電気部品は、ファンの駆動状態を制御する。基板部は、第1部分と、第2部分と、を含む。第1部分は、第1電気部品を実装される。第2部分は、第2電気部品を実装される。第1冷却器は、第1部分に隣接する。第1冷却器は、第1電気部品に熱的に接続される。第1冷却器は、第1電気部品を冷却する。第2冷却器は、第2部分に隣接する。第2冷却器は、第2電気部品に熱的に接続される。第2冷却器は、第2電気部品を冷却する。ケーシングは、圧縮機、ファン、基板部を収容する。ケーシングには、吹出口が形成される。吹出口は、上方向に空気流を吹き出すための開口である。空気流は、ケーシング内において下方から上方へ向かって流れ、吹出口から流出する空気の流れである。第1冷却器は、第1放熱フィンを複数含む。第1放熱フィンは、空気流の主たる流路が形成される送風空間に位置する。第1放熱フィンは、空気流と熱交換を行う。第2冷却器は、第2放熱フィンを複数含む。第2放熱フィンは、空気流の主たる流路が形成される送風空間に位置する。第2放熱フィンは、空気流と熱交換を行う。第1電気部品は、ファンよりも低い高さ位置であって、第2電気部品よりも高い高さ位置に配置される。
本発明の第1観点に係る冷凍装置の室外ユニットでは、圧縮機よりも高い高さ位置に配置されるファンは、ケーシング内において下方から上方へ向かって流れ吹出口から流出する空気流を生成し、第1部分に隣接し第1電気部品を冷却する第1冷却器は、空気流の流路上に位置し空気流と熱交換を行う第1放熱フィンを複数含み、第1電気部品は、ファンよりも低い高さ位置であって第2電気部品よりも高い高さ位置に配置される。これにより、圧縮機制御用の第1電気部品及びファン制御用の第2電気部品、双方の冷却が良好に行われることが促進され、信頼性低下が抑制される。
すなわち、下方から上方に向かって流れる空気流を冷却源として第1電気部品及び第2電気部品の冷却が行われる場合に、第1放熱フィンを含む第1冷却器が第1部分(第1電気部品)に隣接しており、第1電気部品がファンよりも低い高さ位置であって第2電気部品よりも高い高さ位置に配置されることで、第2電気部品は、第1電気部品(第1放熱フィン)よりも空気流の風上側に配置されることとなり、第1電気部品よりも先に空気流によって冷却されることとなる。このため、第2電気部品と空気流との温度差が十分に確保されずに第2電気部品の冷却が良好に行われない事態が抑制される。
また、第1電気部品(第1放熱フィン)が第2電気部品よりも風下側(すなわちファンに近い位置)に配置されることとなり、第2電気部品よりも発熱量が大きい第1電気部品を冷却する空気流の風量について十分に確保されることが促進され、第1電気部品の冷却が良好に行われることが促進される。
また、第1電気部品(第1放熱フィン)は、第2電気部品と熱交換を行った後の空気流によって冷却されることとなるが、第2電気部品は、第1電気部品よりも発熱量が小さいことから、第1電気部品と冷却源である空気流との温度差が十分に確保されないことも抑制される。係る点においても、第1電気部品の冷却が良好に行われない事態が抑制される。
よって、信頼性低下が抑制される。
なお、ここでの「第1電気部品」は、例えば、発熱量が第2電気部品と比較して著しく大きいパワーデバイス(IGBT等)やこれを含むパワーモジュールである。また、「第2電気部品」は、例えば、コンデンサや半導体素子等の発熱部品である。
また、ここでの「基板部」は、電気部品を実装される基板を少なくとも1つ含むコンポーネントである。基板部は複数の基板を含んでいてもよい。
また、ここでの「熱的に接続」は、「第1冷却器」と「第1電気部品」とが熱交換可能な態様で配置される限り、必ずしも「第1冷却器」と「第1電気部品」が直接的に当接する場合のみならず、「第1冷却器」及び「第1電気部品」間に熱を通過させる物が介在する場合や、「第1冷却器」と「第1電気部品」との間でクリアランスが形成される場合(すなわち、「第1冷却器」と「第1電気部品」とが離間している場合)が含まれる。
また、ここでの「ケーシング内において下方から上方へ向かって流れ」については、必ずしも空気流が部分的に水平方向に沿って流れることや上方向から下方向に向かって流れることを否定するものではない。すなわち、空気流がケーシング内部で、水平方向に流れた後に吹出口に向かって下方から上方に流れる場合や、上方向から下方向に向かって流れた後に吹出口に向かって下方から上方に流れる場合も、「ケーシング内において下方から上方へ向かって流れ」に含まれる。
本発明の第2観点に係る冷凍装置の室外ユニットは、第1観点に係る冷凍装置の室外ユニットであって、熱交換器と、電気部品ボックスとをさらに備える。熱交換器は、冷媒の放熱器または蒸発器として機能する。電気部品ボックスは、ケーシング内に配置され、基板部を収容する。空気流は、熱交換器を通過した後、ケーシング内において下方から上方へ向かって電気部品ボックスの外側の空間を流れる。
本発明の第3観点に係る冷凍装置の室外ユニットは、第1観点または第2観点に係る冷凍装置の室外ユニットであって、第1冷却器においては、複数の第1放熱フィンが第1のフィンピッチで並んでいる。第2冷却器においては、複数の第2放熱フィンが第2のフィンピッチで並んでいる。第1のフィンピッチは、第2のフィンピッチよりも小さい。
ここで、第1放熱フィンのフィンピッチが第2放熱フィンのフィンピッチよりも小さい場合には、第1冷却器において空気流との熱交換を促進させ冷却性能の向上を図ることが可能となる。一方で、各第1放熱フィンにおいて空気流との熱交換が良好に行われるように、第1冷却器を通過する空気流の風量を第2冷却器よりも大きくする必要がある。すなわち、第1放熱フィンのフィンピッチを小さくする場合には、第1放熱フィンの数を増大させることが可能となり放熱能力向上を図ることが可能となる一方で、複数の第1放熱フィンが高密度に並ぶこととなり各第1放熱フィン間を空気流が良好に通過しにくい事態が懸念される。このため、第1放熱フィンのフィンピッチを小さくする場合には、各第1放熱フィンにおいて空気流との熱交換を十分に行わせるという観点上、第1放熱フィンを通過する空気流に関して、その風量をフィンピッチに応じて増大させ各第1放熱フィン間を良好に通過させる必要がある。
本発明の第3観点に係る冷凍装置の室外ユニットでは、第1冷却器においては第1放熱フィンが、第2冷却器の第2放熱フィンよりも小さいフィンピッチで並ぶところ、係る第1放熱フィンはファンよりも低い高さ位置であって第2放熱フィンよりも高い高さ位置(すなわち第2放熱フィンよりもファンに近い位置)に配置される。これにより、第1冷却器の冷却性能向上が促進される。すなわち、第1冷却器の第1放熱フィンに関して、フィンピッチが第2冷却器の第2放熱フィンのフィンピッチよりも小さく構成されることで、第1放熱フィンの数を増大させることが可能となる一方、第1冷却器の第1放熱フィンを通過する空気流の風量を、第2放熱フィンを通過する空気流の風量よりも大きく確保することが可能となる。その結果、第1放熱フィンを通過する空気流に関して、その風量をフィンピッチに応じて増大させ各第1放熱フィン間を良好に通過させることが可能となって各第1放熱フィン間を空気流が良好に通過しにくい事態が抑制される。よって、第1冷却器の冷却性能向上が促進される。
本発明の第4観点に係る冷凍装置の室外ユニットは、第1観点から第3観点のいずれかに係る冷凍装置の室外ユニットであって、第1電気部品には、パワーデバイス、又はパワーモジュールが含まれる。パワーデバイスは、第2電気部品よりも通電時の発熱量が大きい。パワーモジュールは、パワーデバイスを含む。
本発明の第4観点に係る冷凍装置の室外ユニットでは、第1電気部品がパワーデバイス又はパワーモジュールである場合(すなわち、第1電気部品の発熱量が特に大きい場合)でも、第1電気部品が十分に冷却されることが促進され、信頼性向上が促進される。
なお、ここでの「パワーデバイス」は、例えば電力制御用の半導体素子であり、例えばインバータに含まれるIGBT(Insulated Gate Bipolar Transistor)等である。また、「パワーモジュール」は、例えばパワーデバイスを含むIPM(Intelligent Power Module)である。
本発明の第5観点に係る冷凍装置の室外ユニットは、第1観点から第4観点のいずれかに係る冷凍装置の室外ユニットであって、第1冷却器は、ヒートパイプをさらに含む。ヒートパイプは、冷却材を封入される。冷却材は、第1電気部品と熱交換を行う。ヒートパイプは、第1電気部品及び第1放熱フィンの間に介在する。ヒートパイプは、第1電気部品及び第1放熱フィンに熱的に接続される。
本発明の第5観点に係る冷凍装置の室外ユニットでは、第1電気部品が冷却性能に優れるヒートパイプによって冷却されることで、発熱量が大きい第1電気部品に関してその冷却量が大きく確保され、信頼性向上が特に促進される。
本発明の第6観点に係る冷凍装置の室外ユニットは、第5観点に係る冷凍装置の室外ユニットであって、ヒートパイプは、長手方向が水平方向に沿うように配置される。
これにより、ヒートパイプ内の冷却材が凍結して破壊される事態(凍結パンク)が抑制される。すなわち、ヒートパイプが水平方向に沿って配置されることで、外気温が低い環境下においても冷却材が凍結することが抑制される。よって、ヒートパイプを用いて電気部品の冷却を行う場合において、信頼性低下が抑制される。
なお、ここでの「長手方向が水平方向に沿う」には、ヒートパイプの長手方向が完全に水平方向に一致する場合のみならず、長手方向が水平方向に対して所定角度(例えば30度)の範囲内で傾斜する場合も含む。
本発明の第7観点に係る冷凍装置の室外ユニットは、第1観点から第6観点のいずれかに係る冷凍装置の室外ユニットであって、電気部品ボックスには、排気口が天面に形成される。排気口は、空気を流出させる。排気口は、ファンよりも低い高さ位置であって第1放熱フィンよりも高い高さ位置に配置される。
本発明の第7観点に係る冷凍装置の室外ユニットでは、電気部品ボックスの排気口がファンよりも低い高さ位置であって第1放熱フィンよりも高い高さ位置に配置される(すなわち、電気部品ボックスの排気口が第1放熱フィンよりも風下側に配置される)ことで、第1放熱フィンと熱交換を行う空気流が、電気部品ボックスの排気口から流出する排気によって加熱されることが抑制される。その結果、電気部品ボックスから流出する排気を原因として第1放熱フィンと空気流との温度差が小さくなることが抑制され、第1電気部品の冷却量低下が抑制される。
本発明の第8観点に係る冷凍装置の室外ユニットは、第7観点に係る冷凍装置の室外ユニットであって、電気部品ボックスの上方には、カバー部が、排気口から間隔をおいて配置される。カバー部は、排気口への液体の浸入を妨げる。
これにより、排気口を介した電気部品ボックスへの液体の浸入が確実に抑制され、各電気部品に関して短絡や腐食等に対する信頼性が向上する。
本発明の第9観点に係る冷凍装置の室外ユニットは、第1観点から第8観点のいずれかに係る冷凍装置の室外ユニットであって、基板部は、第1基板と、第2基板と、を含む。第1部分は、第1基板に配置される。第2部分は、第2基板に配置される。
本発明の第9観点に係る冷凍装置の室外ユニットでは、第1部分が第1基板に配置され第2部分が第2基板に配置される場合(すなわち、第1電気部品と第2電気部品とが別の基板に実装される場合)においても、信頼性低下が抑制される。
本発明の第10観点に係る冷凍装置の室外ユニットは、第1観点から第9観点のいずれかに係る冷凍装置の室外ユニットであって、第1放熱フィンは、第2放熱フィンよりも高い高さ位置に配置される。
これにより、発熱量が大きい第1電気部品の冷却性能が確保されつつ第2電気部品の冷却が促進される。すなわち、第2放熱フィンによって第2電気部品と空気流との熱交換が促進され、第2電気部品の冷却量が増大する。また、第2放熱フィンが第1放熱フィンの風下側に配置される場合には、第2放熱フィンと空気流との温度差が大きく確保されないこととなり第2電気部品が十分に冷却されないケースが想定されるところ、第2放熱フィンが第1放熱フィンの風上側に配置されることで、係る事態が抑制されている。一方、第2電気部品は第1電気部品よりも発熱量が小さいことが通常であることから、第1放熱フィンが第2放熱フィンの風下側に配置された場合(すなわち、第2放熱フィンと熱交換を行った後の空気流によって第1放熱フィンが冷却される場合)であっても、第1放熱フィンと空気流との温度差が十分に確保され、第1電気部品が十分に冷却されうる。よって、信頼性低下がさらに抑制される。
なお、ここでの「熱的に接続」は、「第2冷却器」と「第2電気部品」とが熱交換可能な態様で配置される限り、必ずしも「第2冷却器」と「第2電気部品」が直接的に当接する場合のみならず、「第2冷却器」及び「第2電気部品」間に熱を通過させる物が介在する場合や、「第2冷却器」と「第2電気部品」との間でクリアランスが形成される場合(すなわち、「第2冷却器」と「第2電気部品」とが離間している場合)が含まれる。
本発明の第1観点に係る冷凍装置の室外ユニットでは、下方から上方に向かって流れる空気流を冷却源として第1電気部品及び第2電気部品の冷却が行われる場合に、第1放熱フィンを含む第1冷却器が第1部分(第1電気部品)に隣接しており、第1電気部品がファンよりも低い高さ位置であって第2電気部品よりも高い高さ位置に配置されることで、第2電気部品は、第1電気部品(第1放熱フィン)よりも空気流の風上側に配置されることとなり、第1電気部品よりも先に空気流によって冷却されることとなる。このため、第2電気部品と空気流との温度差が十分に確保されずに第2電気部品の冷却が良好に行われない事態が抑制される。
また、第1電気部品(第1放熱フィン)が第2電気部品よりも風下側(すなわちファンに近い位置)に配置されることとなり、第2電気部品よりも発熱量が大きい第1電気部品を冷却する空気流の風量について十分に確保されることが促進され、第1電気部品の冷却が良好に行われることが促進される。
また、第1電気部品は、第2電気部品と熱交換を行った後の空気流によって冷却されることとなるが、第2電気部品は、第1電気部品よりも発熱量が小さいことから、第1電気部品と冷却源である空気流との温度差が十分に確保されないことも抑制される。係る点においても、第1電気部品の冷却が良好に行われない事態が抑制される。
よって、信頼性低下が抑制される。
本発明の第2観点に係る冷凍装置の室外ユニットでは、信頼性低下がさらに抑制される。
本発明の第3観点に係る冷凍装置の室外ユニットでは、第1冷却器の冷却性能向上が促進される。
本発明の第4観点に係る冷凍装置の室外ユニットでは、第1電気部品がパワーデバイス又はパワーモジュールである場合(すなわち、第1電気部品の発熱量が特に大きい場合)でも、信頼性向上が促進される。
本発明の第5観点に係る冷凍装置の室外ユニットでは、信頼性向上が特に促進される。
本発明の第6観点に係る冷凍装置の室外ユニットでは、ヒートパイプを用いて電気部品の冷却を行う場合において、信頼性低下が抑制される。
本発明の第7観点に係る冷凍装置の室外ユニットでは、第1電気部品の冷却量低下が抑制される。
本発明の第8観点に係る冷凍装置の室外ユニットでは、排気口を介した電気部品ボックスへの液体の浸入が確実に抑制され、各電気部品に関して短絡や腐食等に対する信頼性が向上する。
本発明の第9観点に係る冷凍装置の室外ユニットでは、第1部分が第1基板に配置され第2部分が第2基板に配置される場合(すなわち、第1電気部品と第2電気部品とが別の基板に実装される場合)においても、信頼性低下が抑制される。
本発明の第10観点に係る冷凍装置の室外ユニットでは、信頼性低下がさらに抑制される。
本発明の一実施形態に係る室外ユニットを有する空調システムの概略構成図。 正面側から見た室外ユニットの斜視図。 背面側から見た室外ユニットの斜視図。 室外ユニットの概略分解図。 2つのファンモジュールを有する室外ユニットの一例の斜視図。 底フレーム上に配置される機器の配置態様と、室外空気流の流れ方向とを模式的に示した図。 第1前面パネルを取り外された状態における室外ユニットの正面側の拡大図。 室外ユニットケーシング内における室外空気流の流れる態様を模式的に示した図。 (前面カバーを取り外した状態の)電装品箱の正面図。 図9に示される電装品箱の背面図。 図9に示される電装品箱の右側面図。 鉛直板(制御基板)を取り外した状態の電装品箱の正面図。 図12に示される電装品箱の正面斜視図。 本体フレームの正面斜視図。 図14とは異なる方向から見た本体フレームの正面斜視図。 天面カバーを取り外した状態の電装品箱の上面図。 天面カバーの斜視図。 図17とは異なる方向から見た天面カバーの斜視図。 第1側面カバーの斜視図。 図19とは異なる方向から見た第1側面カバーの斜視図。 第1冷却ユニットの斜視図。 図21のA部分の拡大図。 第2冷却ユニットの斜視図。 図23のB部分の拡大図。 本体フレームに対して、圧縮機制御基板、ファン制御基板、第1冷却ユニット及び第2冷却ユニットを固定する態様を示した模式図。 第1冷却ユニットに対して固定された状態における高発熱電気部品(パワーモジュール)を正面側から見た斜視図。 本体フレームに対して固定された状態における第1冷却ユニットの正面図。 設置状態における第1冷却ユニット及び第2冷却ユニットを背面側から見た斜視図。 圧縮機制御基板(高発熱電気部品)、第1冷却ユニット(第1冷却ユニットフィン)、ファン制御基板(ファン制御用電気部品)、及び第2冷却ユニット(第2冷却ユニットフィン)の設置位置と、室外空気流の空気流路との関係を示した模式図。
以下、図面を参照しながら、本発明の一実施形態に係る室外ユニット10について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではなく、発明の要旨を逸脱しない範囲で適宜変更が可能である。また、以下の説明において、「上」、「下」、「左」、「右」、「前」、「後」、「前面」、「背面」は、特にことわりのない限り、図2―29に示される方向を意味している(但し、以下の実施例における左右及び/又は前後については適宜反転させてもよい)。
本発明の一実施形態に係る室外ユニット10は、空調システム100(冷凍装置)に適用されている。
(1)空調システム100
図1は、本発明の一実施形態に係る室外ユニット10を有する空調システム100の概略構成図である。空調システム100は、蒸気圧縮式の冷凍サイクルによって、対象空間(居住空間や貯蔵庫内等の被空調空間)の冷却又は加熱等の空調を行うシステムである。空調システム100は、主として、室外ユニット10と、複数(ここでは2台)の室内ユニット30(30a、30b)と、液側連絡配管L1及びガス側連絡配管G1と、を有している。
空調システム100では、室外ユニット10と室内ユニット30とが、液側連絡配管L1及びガス側連絡配管G1を介して接続されることで、冷媒回路RCが構成されている。空調システム100では、冷媒回路RC内において、冷媒が、圧縮され、冷却又は凝縮され、減圧され、加熱又は蒸発された後に、再び圧縮される、という冷凍サイクルが行われる。
(1−1)室外ユニット10
室外ユニット10は、室外空間に設置される。室外空間は、空気調和が行われる対象空間外の空間であり、例えば建物の屋上等の屋外や、地下空間等である。室外ユニット10は、液側連絡配管L1及びガス側連絡配管G1を介して各室内ユニット30と接続されており、冷媒回路RCの一部(室外側回路RC1)を構成している。室外ユニット10は、室外側回路RC1を構成する機器として、主としてアキュームレータ11、圧縮機12、油分離器13、四路切換弁14、室外熱交換器15、及び室外膨張弁16等を有している。これらの機器(11−16)は、冷媒配管によって接続されている。
アキュームレータ11は、圧縮機12に液冷媒が過度に吸入されることを抑制すべく、冷媒を貯留して気液分離する容器である。
圧縮機12は、冷凍サイクルにおける低圧の冷媒を高圧になるまで圧縮する機器である。本実施形態では、圧縮機12は、ロータリ式やスクロール式等の容積式の圧縮要素が圧縮機モータM12によって回転駆動される密閉式構造を有している。また、ここでは、圧縮機モータM12は、インバータにより運転周波数の制御が可能であり、これにより、圧縮機12の容量制御が可能になっている。圧縮機12の発停並びに運転容量は、室外ユニット制御部20によって制御される。
油分離器13は、圧縮機12から吐出される冷媒に相溶した冷凍機油を分離して圧縮機12へ戻す容器である。
四路切換弁14は、冷媒回路RCにおける冷媒の流れを切り換えるための流路切換弁である。
室外熱交換器15は、冷媒の凝縮器(又は放熱器)又は蒸発器として機能する熱交換器である。
室外膨張弁16は、開度制御が可能な電動弁であり、開度に応じて流入する冷媒を減圧する又は流量調節する。
また、室外ユニット10は、室外空気流AFを生成する室外ファン18(特許請求の範囲記載の「ファン」に相当)を有している。室外空気流AF(特許請求の範囲記載の「空気流」に相当)は、室外ユニット10外から室外ユニット10内へ流入して室外熱交換器15を通過する空気の流れである。室外空気流AFは、室外熱交換器15を流れる冷媒の冷却源又は加熱源であり、室外熱交換器15を通過する際に室外熱交換器15内の冷媒と熱交換を行う。室外ファン18は、室外ファンモータM18を含み、室外ファンモータM18に連動して駆動する。室外ファン18の発停は、室外ユニット制御部20によって適宜制御される。なお、本実施形態において、室外ファン18(室外ファンモータM18)は、インバータ制御されない。
また、室外ユニット10には、冷媒回路RC内の冷媒の状態(主に圧力又は温度)を検出するための複数の室外側センサ(図示省略)が配置されている。室外側センサは、圧力センサや、サーミスタ又は熱電対等の温度センサである。室外側センサには、例えば、圧縮機12の吸入側における冷媒の圧力である吸入圧力を検出する吸入圧力センサ、圧縮機12の吐出側における冷媒の圧力である吐出圧力を検出する吐出圧力センサ、及び室外熱交換器15における冷媒の温度を検出する温度センサ等が含まれる。
また、室外ユニット10は、室外ユニット10に含まれる各機器の動作・状態を制御する室外ユニット制御部20を有している。室外ユニット制御部20は、CPUやメモリ等を有するマイクロコンピュータや、各種電気部品(例えばコンデンサ、半導体素子及びコイル部品等)を含んでいる。室外ユニット制御部20は、室外ユニット10に含まれる各機器(12、14、16、18等)や室外側センサと電気的に接続されており、互いに信号の入出力を行う。また、室外ユニット制御部20は、各室内ユニット30の室内ユニット制御部35やリモコン(図示省略)と制御信号等の送受信を行う。室外ユニット制御部20は、後述の電装品箱50に収容されている。
室外ユニット10の構造の詳細については、後述する。
(1−2)室内ユニット30
室内ユニット30は、室内(居室や天井裏空間等)に設置されており、冷媒回路RCの一部(室内側回路RC2)を構成している。室内ユニット30は、室内側回路RC2を構成する機器として、主として、室内膨張弁31及び室内熱交換器32等を有している。
室内膨張弁31は、開度制御が可能な電動弁であり、開度に応じて流入する冷媒を減圧する又は流量調節する。
室内熱交換器32は、冷媒の蒸発器又は凝縮器(又は放熱器)として機能する熱交換器である。
また、室内ユニット30は、対象空間内の空気を吸入し、室内熱交換器32を通過させ冷媒と熱交換させた後に、対象空間に再び送るための室内ファン33を有している。室内ファン33は、駆動源である室内ファンモータを含む。室内ファン33は、駆動時に、室内空気流を生成する。室内空気流は、対象空間から室内ユニット30内へ流入して室内熱交換器32を通過して対象空間へ吹き出される空気の流れである。室内空気流は、室内熱交換器32を流れる冷媒の加熱源又は冷却源であり、室内熱交換器32を通過する際に室内熱交換器32内の冷媒と熱交換を行う。
また、室内ユニット30は、室内ユニット30に含まれる機器(35等)の動作・状態を制御する室内ユニット制御部35を有している。室内ユニット制御部35は、CPUやメモリ等を含むマイクロコンピュータや、各種電気部品を有している。
(1−3)液側連絡配管L1、ガス側連絡配管G1
液側連絡配管L1及びガス側連絡配管G1は、室外ユニット10及び各室内ユニット30を接続する冷媒連絡配管であり、現地にて施工される。液側連絡配管L1及びガス側連絡配管G1の配管長や配管径については、設計仕様や設置環境に応じて適宜選定される。
(2)冷媒回路RCにおける冷媒の流れ
以下、冷媒回路RCにおける冷媒の流れについて説明する。空調システム100では、主として、正サイクル運転と逆サイクル運転が行われる。ここでの冷凍サイクルにおける低圧は、圧縮機12の吸入される冷媒の圧力(吸入圧力)であり、冷凍サイクルにおける高圧は、圧縮機12から吐出される冷媒の圧力(吐出圧力)である。
(2−1)正サイクル運転時の冷媒の流れ
正サイクル運転(冷房運転等)時には、四路切換弁14が正サイクル状態(図1の四路切換弁14の実線で示される状態)に制御される。正サイクル運転が開始されると、室外側回路RC1内において、冷媒が圧縮機12に吸入されて圧縮された後に吐出される。圧縮機12では、運転中の室内ユニット30で要求される熱負荷に応じた容量制御が行われる。具体的には、吸入圧力の目標値が室内ユニット30で要求される熱負荷に応じて設定され、吸入圧力が目標値になるように圧縮機12の運転周波数が制御される。圧縮機12から吐出されたガス冷媒は、室外熱交換器15に流入する。
室外熱交換器15に流入したガス冷媒は、室外熱交換器15において、室外ファン18によって送られる室外空気流AFと熱交換を行って放熱して凝縮する。室外熱交換器15から流出した冷媒は、室外膨張弁16を通過して室外膨張弁16の開度に応じて減圧又は流量調整された後、室外側回路RC1から流出する。室外側回路RC1から流出した冷媒は、液側連絡配管L1を経て運転中の室内ユニット30の室内側回路RC2に流入する。
運転中の室内ユニット30の室内側回路RC2に流入した冷媒は、室内膨張弁31に流入し、室内膨張弁31の開度に応じて冷凍サイクルにおける低圧になるまで減圧された後、室内熱交換器32に流入する。室内熱交換器32に流入した冷媒は、室内ファン33によって送られる室内空気流と熱交換を行って蒸発し、ガス冷媒になり、室内熱交換器32から流出する。室内熱交換器32から流出したガス冷媒は、室内側回路RC2から流出する。
室内側回路RC2から流出した冷媒は、ガス側連絡配管G1を経て、室外側回路RC1に流入する。室外側回路RC1に流入した冷媒は、アキュームレータ11に流入する。アキュームレータ11に流入した冷媒は、一時的に溜められた後、再び圧縮機12に吸入される。
(2−2)逆サイクル運転時の冷媒の流れ
逆サイクル運転(暖房運転等)時には、四路切換弁14が逆サイクル状態(図1の四路切換弁14の破線で示される状態)に制御される。逆サイクル運転が開始されると、室外側回路RC1内において、冷媒が圧縮機12に吸入されて圧縮された後に吐出される。圧縮機12では、正サイクル運転同様、運転中の室内ユニット30で要求される熱負荷に応じた容量制御が行われる。圧縮機12から吐出されたガス冷媒は、室外側回路RC1から流出し、ガス側連絡配管G1を経て運転中の室内ユニット30の室内側回路RC2に流入する。
室内側回路RC2に流入した冷媒は、室内熱交換器32に流入して、室内ファン33によって送られる室内空気流と熱交換を行って凝縮する。室内熱交換器32から流出した冷媒は、室内膨張弁31に流入し、室内膨張弁31の開度に応じて冷凍サイクルにおける低圧になるまで減圧された後、室内側回路RC2から流出する。
室内側回路RC2から流出した冷媒は、液側連絡配管L1を経て室外側回路RC1に流入する。室外側回路RC1に流入した冷媒は、室外熱交換器15の液側出入口に流入する。
室外熱交換器15に流入した冷媒は、室外熱交換器15において、室外ファン18によって送られる室外空気流AFと熱交換を行って蒸発する。室外熱交換器15のガス側出入口から流出した冷媒は、アキュームレータ11に流入する。アキュームレータ11に流入した冷媒は、一時的に溜められた後、再び圧縮機12に吸入される。
(3)室外ユニット10の詳細
図2は、正面側から見た室外ユニット10の斜視図である。図3は、背面側から見た室外ユニット10の斜視図である。図4は、室外ユニット10の概略分解図である。
(3−1)室外ユニットケーシング40
室外ユニット10は、外郭を構成し、各機器(11、12、13、14、15、16、20等)を収容する室外ユニットケーシング40を有している。室外ユニットケーシング40(特許請求の範囲記載の「ケーシング」に相当)は、複数の板金部材が組み上げられることによって、略直方体形状に形成されている。室外ユニットケーシング40の左側面、右側面及び背面の大部分は開口であり、係る開口が室外空気流AFを吸い込むための吸気口401として機能する。
室外ユニットケーシング40は、主として、一対の据付脚41と、底フレーム43と、複数(ここでは4本)の支柱45と、前面パネル47と、ファンモジュール49と、を有している。
据付脚41は、左右方向に延び、底フレーム43を下方から支持する板金部材である。室外ユニットケーシング40では、前端付近及び後端付近において据付脚41が配置されている。
底フレーム43は、室外ユニットケーシング40の底面部分を構成する板金部材である。底フレーム43は、一対の据付脚41上に配置される。底フレーム43は、平面視において略長方形状を呈している。
支柱45は、底フレーム43の角部分から鉛直方向に延びる。図2―4では、底フレーム43の4つの角部分のそれぞれから、支柱45が鉛直方向に延びる様子が示されている。
前面パネル47は、室外ユニットケーシング40の正面部分を構成する板金部材である。より詳細には、前面パネル47は、第1前面パネル47a及び第2前面パネル47bを含む。第1前面パネル47aは、室外ユニットケーシング40の正面左側部分を構成する。第2前面パネル47bは、室外ユニットケーシング40の正面右側部分を構成する。第1前面パネル47a及び第2前面パネル47bは、室外ユニットケーシング40に位置決めされた後、支柱45に対してビスで締結されることで個別に固定されている。
ファンモジュール49は、各支柱45の上端近傍に取り付けられている。ファンモジュール49は、室外ユニットケーシング40の前面、背面、左側面及び右側面の支柱45よりも上側の部分と、室外ユニットケーシング40の天面と、を構成している。ファンモジュール49は、室外ファン18やベルマウス491を含む。より詳細には、ファンモジュール49は、上面及び下面が開口した略直方体形状の箱体に、室外ファン18やベルマウス491が収容された集合体である。ファンモジュール49において、室外ファン18は、回転軸が鉛直方向に延びるような姿勢で配置されている。ファンモジュール49の上面部分は、開放しており、室外ユニットケーシング40から室外空気流AFを吹き出させる吹出口402として機能する。吹出口402には、格子状のグリル492が設けられている。
なお、図2−4においては、室外ユニット10が1つのファンモジュール49を有する例について示されているが、室外ユニット10は複数のファンモジュール49を有していてもよい。例えば、図5に示される室外ユニット10´のように、2つのファンモジュール49を有していてもよい。図5に示される室外ユニット10´では、2つのファンモジュール49が左右に並んで配置される様子が示されている。室外ユニット10´は、1つのファンモジュール49を有する室外ユニット10よりも寸法が大きい室外ユニットケーシング40´を有しており、前面パネル47を左右に1つずつ有している。また、図示は省略するが、室外ユニット10´では、室外ユニットケーシング40´の寸法に応じて、室外ユニット10よりも室外熱交換器15の寸法が大きく構成される。
(3−2)底フレーム43上に配置される機器
図6は、底フレーム43上に配置される機器の配置態様と、室外空気流AFの流れ方向とを模式的に示した図である。図6に示されるように、底フレーム43上には、アキュームレータ11、圧縮機12、油分離器13及び室外熱交換器15を含む各種機器が、所定位置に配置されている。また、底フレーム43上には、室外ユニット制御部20を収容する電装品箱50が配置されている。
室外熱交換器15は、室外ユニットケーシング40の左側面、右側面及び背面に沿って配置される熱交換面151(図4参照)を有している。熱交換面151は、吸気口401と略同一の高さ寸法を有している。室外ユニットケーシング40の背面及び左側面及び右側面の大部分は吸気口401であり、係る吸気口401から室外熱交換器15の熱交換面151が露出している。換言すると、室外ユニットケーシング40の背面、左側面及び右側面は、実質的に室外熱交換器15の熱交換面151によって形成されているともいえる。室外熱交換器15は、3つの熱交換面151を有しており、これに関連して平面視において左右に湾曲部分を有しており(正面方向に開いた)略U字形状を呈している。
アキュームレータ11は、室外熱交換器15の右側の湾曲部分の左前方において、圧縮機12の右後方に配置されている。
圧縮機12は、室外熱交換器15の右側端部の左側において、アキュームレータ11の左前方に配置されている。圧縮機12は、室外ユニットケーシング40の正面右側部分に位置している。圧縮機12は、ファンモジュール49(室外ファン18)の下方に位置している。換言すると、室外ファン18は、圧縮機12よりも高い高さ位置に配置されている。
油分離器13は、アキュームレータ11の左側に配置されている。
電装品箱50(特許請求の範囲記載の「電気部品ボックス」に相当)は、室外熱交換器15の左側端部の右側において、圧縮機12の左側に配置されている(図2及び図4−6を参照)。電装品箱50は、室外ユニットケーシング40の正面左側部分に位置している。図7は、第1前面パネル47aを取り外された状態における室外ユニット10の正面側の拡大図である。図7に示されるように、電装品箱50は、第1前面パネル47aを取り外された状態において正面側に露出する。これにより、第2前面パネル47bを取り外すことなく第1前面パネル47aを取り外すだけで、電装品箱50にアクセスできるようになっている。電装品箱50は、前面部分を構成する前面カバー51を有している。電装品箱50の詳細については後述する。
(3−3)室外ユニットケーシング40内における室外空気流AFの流れ
図8は、室外ユニットケーシング40内における室外空気流AFの流れる態様を模式的に示した図である。図6及び図8に示されるように、室外空気流AFは、室外ユニットケーシング40の左側面、右側面及び背面に形成された吸気口401から室外ユニットケーシング40内に流入し、室外熱交換器15(熱交換面151)を通過した後、主として下方から上方に向かって流れ、吹出口402から流出する。すなわち、室外空気流AFは、吸気口401を介して室外ユニットケーシング40内に水平方向に沿って流入し、室外熱交換器15を通過した後、上方向に転回して吹出口402に向かって下方から上方に向かって流れる。
なお、以下の説明において、室外ユニットケーシング40内において室外空気流AFの主たる流路が形成される空間(図6では、室外熱交換器15及び前面パネル47で囲われる空間)を「送風空間S1」と称する。
(4)電装品箱50の詳細
図9は、(前面カバー51を取り外した状態の)電装品箱50の正面図である。図10は、図9に示される電装品箱50の背面図である。図11は、図9に示される電装品箱50の右側面図である。
(4―1)電装品箱50内に形成される空間及び電装品箱50内に配置される機器
電装品箱50は、幅方向(ここでは左右方向)及び奥行き方向(ここでは前後方向)の寸法よりも高さ方向(ここでは上下方向)の寸法が大きい略直方体状の金属製の箱である。電装品箱50内の空間(以下、「内部空間SP」と称する)には、室外ユニット制御部20を構成する各種部品が収容されている。
内部空間SPには、下部空間SP1と、下部空間SP1の上方に位置する上部空間SP2と、が含まれている。なお、下部空間SP1と上部空間SP2とは仕切られることなく連通しており、両者の間に明確な境界はない。
下部空間SP1は、内部空間SPの下端(電装品箱50の底面部分)から、所定の高さ寸法(内部空間SPの高さ寸法の略3分の2程度の寸法)を占める空間である。下部空間SP1には、端子台60やリアクタ61等の電気部品が配置されている。
上部空間SP2は、下部空間SP1の上端から内部空間SPの上端(電装品箱50の天面部分)までを占める空間である。上部空間SP2には、上部空間SP2を奥行き方向(前後)に2つの空間に仕切る鉛直板501が配置されている。鉛直板501は、鉛直方向に延びる板金である。鉛直板501は、上部空間SP2を、前側上部空間SP2aと、前側上部空間SP2aの背面側に位置する後側上部空間SP2bと、に仕切る。前側上部空間SP2aと、後側上部空間SP2bと、は電装品箱50の奥行き方向に並ぶ。
前側上部空間SP2aには、CPUや各種メモリ等を含むマイクロコンピュータや通信モジュールを実装された複数(ここでは2つ)の制御基板71が収容されている。各制御基板71は、鉛直板501の前面部分に固定されている。各制御基板71は、その主面が正面方向に面する姿勢(すなわち厚み方向が前後方向に延びる姿勢)で固定されている。
図12は、鉛直板501(制御基板71)を取り外した状態の電装品箱50の正面図である。図13は、図12に示される電装品箱50の正面斜視図である。
後側上部空間SP2bには、室外ユニット10に配置されるアクチュエータの駆動状態を制御するための各種電気部品を実装された基板ユニット75(特許請求の範囲記載の「基板部」に相当)が収容されている。具体的に、基板ユニット75は、圧縮機12をインバータ制御するための電気部品(以下、「圧縮機制御用電気部品63」と称する)を実装される圧縮機制御用電気部品実装部分75a(特許請求の範囲記載の「第1部分」に相当)と、室外ファン18の駆動状態を制御するための電気部品(以下、「ファン制御用電気部品66」と称する)を実装されるファン制御用電気部品実装部分75b(特許請求の範囲記載の「第2部分」に相当)と、を含む。
本実施形態において、圧縮機制御用電気部品63については、基板ユニット75の一部である圧縮機制御基板76(特許請求の範囲記載の「第1基板」に相当)に実装されている。すなわち、本実施形態では、圧縮機制御用電気部品実装部分75aは、圧縮機制御基板76に配置されている。また、ファン制御用電気部品66については、基板ユニット75の一部であるファン制御基板77(特許請求の範囲記載の「第2基板」に相当)に実装されている。すなわち、本実施形態では、ファン制御用電気部品実装部分75bは、ファン制御基板77に配置されている。
圧縮機制御用電気部品63は、通電時に発熱する電気部品を含み、例えば、圧縮機制御基板76の前側主面に実装される平滑コンデンサやダイオードブリッジ等である。また、圧縮機制御用電気部品63には、通電時における発熱量が他の電気部品と比べて著しく大きい電気部品(以下、「高発熱電気部品65」と称する)が含まれる。高発熱電気部品65(特許請求の範囲記載の「第1電気部品」に相当)には、インバータを構成する各種電気部品(例えば、IGBT等のスイッチング素子を含むパワーデバイス)が含まれる。より詳細には、圧縮機制御基板76(圧縮機制御用電気部品実装部分75a)においては、複数(6つ)のパワーデバイスが一体に構成されたパワーモジュールが高発熱電気部品65として実装されている(図25―26参照)。高発熱電気部品65(パワーモジュール)は、圧縮機制御基板76の後側主面に実装されている。なお、パワーモジュールは、通電時における発熱量が他の電気部品と比べて特に大きい。パワーモジュールは、例えば複数のパワーデバイスを含むIPMである。高発熱電気部品65は、電装品箱50が室外ユニットケーシング40内に設置された状態において、室外ファン18よりも低い高さ位置であってファン制御用電気部品66よりも高い高さ位置に配置される。
また、ファン制御用電気部品66(特許請求の範囲記載の「第2電気部品」に相当)は、通電時に発熱する電気部品を含み、例えばコンデンサ、ダイオード、及びリレー等のスイッチである。なお、図12及び図13においては、室外ユニット10において室外ファン18が2つ配置される場合(例えば図5に示される室外ユニット10´)を想定して、室外ファン18と1対1に対応するファン制御基板77(ファン制御用電気部品実装部分75b)が、後側上部空間SP2bにおいて左右に2つ並べられている。ファン制御用電気部品66の通電時における発熱量は、高発熱電気部品65と比較して小さい。
後側上部空間SP2bには、圧縮機制御基板76に実装された圧縮機制御用電気部品63(主に高発熱電気部品65)を冷却するための第1冷却ユニット80が、圧縮機制御基板76の背面側に配置されている。第1冷却ユニット80の詳細については後述する。
また、後側上部空間SP2bには、ファン制御基板77に実装されたファン制御用電気部品66を冷却するための第2冷却ユニット85が配置されている。より具体的には、後側上部空間SP2bには、ファン制御基板77と同数(ここでは2つ)の第2冷却ユニット85が配置されている。第2冷却ユニット85はいずれかのファン制御基板77と1対1に対応しており、対応するファン制御基板77の背面側に配置されている。第2冷却ユニット85の詳細については後述する。
(4―2)電装品箱50の構成態様
電装品箱50は、構成部材として、前面カバー51(図7参照)と、本体フレーム52(図14−15参照)と、天面カバー53(図17−18参照)と、を有している。
(4―2−1)前面カバー51
前面カバー51は、電装品箱50の正面部分を構成する略長方形状の板状部材である。前面カバー51は、電装品箱50の幅寸法及び高さ寸法と略同一の幅寸法及び高さ寸法を有する。
(4―2−2)本体フレーム52
図14は、本体フレーム52の正面斜視図である。図15は、図14とは異なる方向から見た本体フレーム52の正面斜視図である。図16は、天面カバー53を取り外した状態の電装品箱50の上面図である。
本体フレーム52は、電装品箱50の本体部分を構成する金属製の筐体である。本体フレーム52は、電装品箱50の背面部分を構成する背面部521と、電装品箱50の左側面部分を構成する左側面部522と、電装品箱50の右側面部分を構成する右側面部523と、電装品箱50の天面部分を構成する天面部524と、有している。
背面部521は、前面カバー51と略同一の寸法の略長方形状を呈している。左側面部522は、略長方形状を呈しており、背面部521の左側端部から前方に延びている。右側面部523は、略長方形状を呈しており、背面部521の右側端部から前方に延びている。天面部524は、略長方形状を呈しており、背面部521、左側面部522及び右側面部523の上端部分に接続されている。背面部521、左側面部522及び右側面部523の下端部分は、本体フレーム52が、室外ユニットケーシング40の底フレーム43上で倒立可能なように、水平方向に折り曲げられ底フレーム43に沿って延びている。
本体フレーム52(背面部521)には、複数の開口が形成されている。具体的には、本体フレーム52には、第1冷却ユニット80に含まれる放熱フィン(後述の第1冷却ユニットフィン81)を送風空間S1に露出させるための第1開口52aが形成されている。第1開口52aは、第1冷却ユニット80及び圧縮機制御基板76の設置位置に対応する位置に形成されている。
また、本体フレーム52(背面部521)には、第2冷却ユニット85に含まれる放熱フィン(後述の第2冷却ユニットフィン86)を送風空間S1に露出させるための第2開口52bが、第2冷却ユニット85と同数(ここでは2つ)形成されている。第2開口52bは、いずれかの第2冷却ユニット85と1対1に対応しており、対応する第2冷却ユニット85に含まれる放熱フィンを露出させる。第2開口52bは、第1開口52aの下方において、対応する第2冷却ユニット85及びファン制御基板77の設置位置に対応する位置に形成されている。
また、本体フレーム52(右側面部523)には、制御基板71、圧縮機制御基板76及びファン制御基板77に実装される電気部品に接続される電気配線(強電配線及び弱電配線)を、電装品箱50内に引き込むための第3開口52cが形成されている。第3開口52cは、上部空間SP2に対応する位置において、右側面部523の一部が略U字状に切り欠かれることで形成されている。
また、本体フレーム52(右側面部523)には、圧縮機12に接続される電力線を電装品箱50内に引き込むための第4開口52dが形成されている。第4開口52dは、第3開口52cの上方において、右側面部523の一部が略O字状に打ち抜かれることで形成されている。
また、本体フレーム52(天面部524)には、電装品箱50内の空気を排出する「排気口」として機能する複数の第5開口52eが形成されている。本実施形態において、第5開口52eは、左右方向に延びるスリットである。天面部524においては、奥行き方向(前後方向)に並ぶ複数の第5開口52eが、幅方向(左右方向)に2列に並ぶように形成されている(図16参照)。電装品箱50が室外ユニットケーシング40内に設置状態において、第5開口52eは、室外ファン18よりも低い高さ位置であって、第1冷却ユニット80の放熱フィン(後述の第1冷却ユニットフィン81)よりも高い高さ位置に位置する。各第5開口52eにはバーリング加工が施されており、各第5開口52eの縁部分(第5開口縁部52e1)は上方向に立ち上がっている(図16参照)。係る第5開口縁部52e1により、天面部524の上面に液体が付着した場合であっても、第5開口52eを介して液体が内部空間SPに流入することが抑制されている。
また、本体フレーム52(背面部521)には、メンテナンス時等にサービスマンが圧縮機12にアクセスするための第6開口52fが、下端付近に形成されている。
(4―2−3)天面カバー53
図17は、天面カバー53の斜視図である。図18は、図17とは異なる方向から見た天面カバー53の斜視図である。
天面カバー53(特許請求の範囲記載の「カバー部」に相当)は、本体フレーム52の天面部524に形成された第5開口52eを介して液体が内部空間SPに流入することを抑制するべく、本体フレーム52の上端部分を上方から覆う板金部材である。天面カバー53は、第5開口52eから上方に間隔を置いて配置される。天面カバー53は、上カバー部531と、左側方カバー部532と、右側方カバー部533と、を有している。
上カバー部531は、本体フレーム52の天面部524(第5開口52e)を上方から覆う部分である。上カバー部531は、平面視において略長方形状を呈しており、本体フレーム52の天面部524よりも大きい面積を有している。
左側方カバー部532は、本体フレーム52の左側面部522の上端付近部分を外側から覆う。左側方カバー部532は、上カバー部531の左端部から下方へ延びる部分である。
右側方カバー部533は、本体フレーム52の右側面部523の上端付近部分を外側から覆う。右側方カバー部533は、上カバー部531の右端部から下方へ延びる部分である。右側方カバー部533には、第4開口52dに重畳する位置に開口53aが形成されている。
(5)第1側面カバー54及び第2側面カバー55
電装品箱50には、右側面部523に形成された第3開口52c及び第4開口52dから内部空間SPへの液体の浸入を抑制する第1側面カバー54及び第2側面カバー55が配置されている。
(5−1)第1側面カバー54
図19は、第1側面カバー54の斜視図である。図20は、図19とは異なる方向から見た第1側面カバー54の斜視図である。
第1側面カバー54は、本体フレーム52の右側面部523に形成される第3開口52cを介して液体が内部空間SPに流入することを抑制するべく、本体フレーム52の第3開口52cを外側から(上方及び側方から)覆う板金部材である。第1側面カバー54は、右側部541と、前側部542と、後側部543と、上部544と、を有している。
右側部541は、第3開口52cを右方から覆う部分である。右側部541は、略長方形状を呈している。
前側部542は、第3開口52cを前方から覆う部分である。前側部542は、略長方形状を呈している。
後側部543は、第3開口52cを後方から覆う部分である。後側部543は、略長方形状を呈している。
上部544は、第3開口52cを上方から覆う部分である。上部544は、略長方形状を呈している。
第1側面カバー54は、底部分が抜けており開放している。すなわち、第1側面カバー54には、下方に開放する開放部分54aが形成されている。開放部分54aは、第3開口52cを介して内部空間SPに引き込まれる電気配線を通すための開口として機能する。
(5−2)第2側面カバー55
第2側面カバー55は、本体フレーム52の右側面部523に形成される第4開口52dを介して液体が内部空間SPに流入することを抑制するべく、本体フレーム52の第4開口52dを外側から(上方及び側方から)覆うカバーである。第2側面カバー55は、一般に普及している汎用品である。第2側面カバー55には、圧縮機12に接続される電力線を通すための開口が複数(ここでは3つ)形成されている。
(6)第1冷却ユニット80及び第2冷却ユニット85
電装品箱50には、内部空間SPに配置される発熱部品を冷却するための第1冷却ユニット80及び第2冷却ユニット85が配置されている。
(6−1)第1冷却ユニット80
図21は、第1冷却ユニット80の斜視図である。図22は、図21のA部分の拡大図である。
第1冷却ユニット80(特許請求の範囲記載の「第1冷却器」に相当)は、圧縮機制御基板76に実装された圧縮機制御用電気部品63(主に高発熱電気部品65)を冷却するためのユニットである。第1冷却ユニット80は、設置状態において、高発熱電気部品65と熱的に接続される。第1冷却ユニット80は、室外空気流AFと熱交換を行う複数の第1冷却ユニットフィン81と、第1冷却ユニット本体部82と、複数(ここでは3本)のヒートパイプ83を有している。
第1冷却ユニットフィン81(特許請求の範囲記載の「第1放熱フィン」に相当)は、金属製の板状フィンである。第1冷却ユニット80では、多数の第1冷却ユニットフィン81が、所定の長さ(第1フィンピッチP1)以上の間隔を置いて幅方向(左右方向)に並べられている(図22参照)。すなわち、各第1冷却ユニットフィン81は、隣り合う他の第1冷却ユニットフィン81と、少なくとも第1フィンピッチP1を置いて配置されている。各第1冷却ユニットフィン81の前側端部は、第1冷却ユニット本体部82に接続されている。第1冷却ユニットフィン81は、設置状態において、室外空気流AFの流路上に位置する。
第1冷却ユニット本体部82は、金属製の厚肉の板状部材である。第1冷却ユニット本体部82は、第1冷却ユニットフィン81とヒートパイプ83との間に介在し、両者を熱的に接続する。第1冷却ユニット本体部82は、フィン保持部821と、ヒートパイプ保持部822と、を有している。なお、フィン保持部821と、ヒートパイプ保持部822と、は一体に構成されている。
フィン保持部821は、第1冷却ユニット本体部82の背面部分を構成する板状の部分であり、第1冷却ユニットフィン81とヒートパイプ83との間に介在する。フィン保持部821は、第1冷却ユニットフィン81とヒートパイプ83とを熱的に接続する。フィン保持部821は、各第1冷却ユニットフィン81の前側端部に接続されており、各第1冷却ユニットフィン81を保持する。フィン保持部821は、第1冷却ユニットフィン81よりも高さ方向の寸法が大きい。また、フィン保持部821は、正面又は背面から見た場合(前後方向から見た場合)に、第1開口52aの面積以上の面積を有している。これに関連して、フィン保持部821は、設置状態において、第1開口52aを塞いで内部空間SPと電装品箱50外の空間とを仕切る。
ヒートパイプ保持部822は、第1冷却ユニット本体部82の前面部分を構成する部分である。ヒートパイプ保持部822は、設置状態において高発熱電気部品65とヒートパイプ83との間に介在し、両者を熱的に接続する。ヒートパイプ保持部822は、フィン保持部821よりも厚みが大きい。ヒートパイプ保持部822には、ヒートパイプ83を水平方向(ここでは左右方向)に挿入するためのヒートパイプ挿入孔82aが複数(ヒートパイプ83と同数)形成されている。ヒートパイプ保持部822は、フィン保持部821よりも高さ方向の寸法が小さい。ヒートパイプ保持部822は、正面方向に面する前面部822aを有しており、前面部822aにおいて高発熱電気部品65に当接する。
ヒートパイプ83は、高発熱電気部品65の冷却を行う冷却材を封入される金属管(例えば銅管)である。ヒートパイプ83に封入され高発熱電気部品65と熱交換を行う冷却材は、設計仕様や設置環境に応じて選定され、例えば水である。ヒートパイプ83は、対応するヒートパイプ挿入孔82aに挿入される。すなわち、ヒートパイプ83は、第1冷却ユニット本体部82(ヒートパイプ保持部822)に内蔵されている。なお、ヒートパイプ83とヒートパイプ保持部822のヒートパイプ挿入孔82aを形成する縁部分との当接面積を大きくして、ヒートパイプ83と電気部品との熱交換量を増大させるべく、ヒートパイプ保持部822はヒートパイプ83をヒートパイプ挿入孔82aに挿入された後にかしめられる。
ヒートパイプ83を内蔵された第1冷却ユニット本体部82は、設置状態において、高発熱電気部品65と第1冷却ユニットフィン81との間に介在する。すなわち、ヒートパイプ83は高発熱電気部品65と第1冷却ユニットフィン81との間に介在し、高発熱電気部品65及び第1冷却ユニットフィン81の双方に熱的に接続される。ヒートパイプ83は、設置状態において、長手方向が水平方向に沿うような姿勢で配置される。なお、ここでの「長手方向が水平方向に沿う」には、ヒートパイプ83の長手方向が完全に水平方向に一致する場合のみならず、長手方向が水平方向に対して所定角度(例えば30度)の範囲内で傾斜する場合も含む。
(6―2)第2冷却ユニット85
図23は、第2冷却ユニット85の斜視図である。図24は、図23のB部分の拡大図である。
第2冷却ユニット85(特許請求の範囲記載の「第2冷却器」に相当)は、ファン制御基板77に実装されたファン制御用電気部品66を冷却するためのユニットである。第2冷却ユニット85は、設置状態において、ファン制御用電気部品66と熱的に接続される。第2冷却ユニット85は、室外空気流AFと熱交換を行う複数の第2冷却ユニットフィン86と、第2冷却ユニット本体部87と、を有している。
第2冷却ユニットフィン86(特許請求の範囲記載の「第2放熱フィン」に相当)は、金属製の板状フィンである。第2冷却ユニット85では、多数の第2冷却ユニットフィン86が、所定の長さ(第2フィンピッチP2)以上の間隔を置いて幅方向(左右方向)に並べられている(図24参照)。すなわち、各第2冷却ユニットフィン86は、隣り合う他の第2冷却ユニットフィン86と、少なくとも第2フィンピッチP2の間隔を置いて配置されている。各第2冷却ユニットフィン86の前側端部は、第2冷却ユニット本体部87に接続されている。第2冷却ユニットフィン86は、設置状態において、室外空気流AFの流路上に位置する。
なお、第2フィンピッチP2は、第1フィンピッチP1よりも大きい。本実施形態では、第2フィンピッチP2は、第1フィンピッチP1の2倍以上に設定される。すなわち、第2冷却ユニット85では、第1冷却ユニット80よりも、放熱フィン(第2冷却ユニットフィン86)が配置される密度が小さい。これに関連して、第2冷却ユニット85では、第1冷却ユニット80よりも、放熱フィンの数が少ない。換言すると、第1冷却ユニット80では、第2冷却ユニット85よりも小さいフィンピッチ(第1フィンピッチP1)で放熱フィンが並べられ、これに関連して第2冷却ユニット85よりも多くの放熱フィン(第1冷却ユニットフィン81)が高密度で配置されている。
第2冷却ユニット本体部87は、金属製の板状部材である。第2冷却ユニット本体部87は、各第2冷却ユニットフィン86の前側端部に接続されており、各第2冷却ユニットフィン86を保持する。第2冷却ユニット本体部87は、第2冷却ユニットフィン86よりも高さ方向の寸法が大きい。また、第2冷却ユニット本体部87は、正面又は背面から見た場合(前後方向から見た場合)に、第2開口52bの面積以上の面積を有している。これに関連して、第2冷却ユニット本体部87は、設置状態において、第2開口52bを塞いで内部空間SPと電装品箱50外の空間とを仕切る。第2冷却ユニット本体部87は、設置状態において、正面部分で、ファン制御基板77に実装されたファン制御用電気部品66に当接して熱的に接続される。
なお、第2冷却ユニット85は、第1冷却ユニット80のようにヒートパイプを有しておらず、放熱フィンの数についても少ないことから、冷却能力については第1冷却ユニット80よりも小さい。
(7)電装品箱50の組立て態様
図25は、本体フレーム52に対して、圧縮機制御基板76、ファン制御基板77、第1冷却ユニット80及び第2冷却ユニット85を固定する態様を示した模式図である。
(7−1)圧縮機制御基板76及び第1冷却ユニット80の取付け態様
まず、第1冷却ユニット80(具体的には、ヒートパイプ保持部822の前面部822a)に対して、高発熱電気部品65(パワーモジュール)がビス止めされ固定される。この際、高発熱電気部品65は、ヒートパイプ83との熱交換が促進されるように、前面部822aに対して密着するように固定される。その後、第1冷却ユニット80に固定された状態の高発熱電気部品65は、圧縮機制御基板76の背面側に実装される。
その後、圧縮機制御基板76、及び高発熱電気部品65を固定された第1冷却ユニット80が、第1取付具57に対して個別にビス止めされことで固定される。
第1取付具57は、本体フレーム52に対して、第1冷却ユニット80及び圧縮機制御基板76を固定するための板金であり、本体フレーム52(背面部521)の第1開口52aの周囲部分にビス止めされる。第1取付具57は、中央に大きな開口(各第1冷却ユニットフィン81を通すための開口)が形成された略長方形状を呈している。
なお、圧縮機制御基板76及び第1冷却ユニット80の取付態様は必ずしもこれに限定されず、適宜変更が可能である。例えば、本体フレーム52に対して、第1取付具57を介して第1冷却ユニット80が固定された後に、第1冷却ユニット80又は第1取付具57に対して高発熱電気部品65及び圧縮機制御基板76がビス止めされてもよい。
図26は、第1冷却ユニット80に対して固定された状態における高発熱電気部品65(パワーモジュール)を正面側から見た斜視図である。図27は、本体フレーム52に対して固定された状態における第1冷却ユニット80の正面図である。図28は、設置状態における第1冷却ユニット80及び第2冷却ユニット85を背面側から見た斜視図である。
図28に示されるように、各第1冷却ユニットフィン81は、設置状態において、室外空気流AFと熱交換可能なように、第1開口52aから背面側に延びて電装品箱50外の空間(送風空間S1)に突出している。また、第1冷却ユニット本体部82(フィン保持部821)は、第1開口52aを塞いで内部空間SPと電装品箱50外の空間とを仕切っている。また、第1冷却ユニット80のヒートパイプ83は、電装品箱50内においてヒートパイプ保持部822内に収容されており、設置状態において電装品箱50外の空間(主に送風空間S1)から遮蔽される。第1冷却ユニット80は、設置状態において、圧縮機制御基板76(圧縮機制御用電気部品実装部分75a)に隣接している。これに関連して、ヒートパイプ83は、高発熱電気部品65に熱交換可能な態様で隣接している。
(7−2)ファン制御基板77及び第2冷却ユニット85の取付け態様
まず第2冷却ユニット85(具体的には、第2冷却ユニット本体部87)に対して、ファン制御基板77がビス止めされ固定される。この際、ファン制御基板77は、ファン制御用電気部品66の冷却が促進されるように、ファン制御用電気部品66が第2冷却ユニット本体部87に対して密着するように固定される。
その後、第2冷却ユニット85及びファン制御基板77が、第2取付具58に対して、個別にビス止めされことで、固定される。
第2取付具58は、本体フレーム52に対して、第2冷却ユニット85及びファン制御基板77を固定するための板金であり、本体フレーム52(背面部521)の第2開口52bの周囲部分にビス止めされる。第2取付具58は、中央に大きな開口(各第2冷却ユニットフィン86を通すための開口)が形成された略長方形状を呈している。
なお、ファン制御基板77及び第2冷却ユニット85の取付態様は必ずしもこれに限定されず、適宜変更が可能である。例えば、本体フレーム52に対して、第2取付具58を介して第2冷却ユニット85が固定された後に、第2冷却ユニット85又は第2取付具58に対してファン制御基板77がビス止めされてもよい。
図28に示されるように、各第2冷却ユニットフィン86は、設置状態において、室外空気流AFと熱交換可能なように第2開口52bから背面側に延びて電装品箱50外の空間(送風空間S1)に突出している。また、第2冷却ユニット本体部87は、第2開口52bを塞いで内部空間SPと電装品箱50外の空間とを仕切っている。第2冷却ユニット85は、設置状態において、対応するファン制御基板77に隣接している。
(8)圧縮機制御用電気部品63及びファン制御用電気部品66の冷却態様
図29は、圧縮機制御基板76(高発熱電気部品65)、第1冷却ユニット80(第1冷却ユニットフィン81)、ファン制御基板77(ファン制御用電気部品66)、及び第2冷却ユニット85(第2冷却ユニットフィン86)の設置位置と、室外空気流AFの空気流路との関係を示した模式図である。
上述のように、室外空気流AFは、室外ユニットケーシング40の左側面、右側面及び背面に形成された吸気口401から室外ユニットケーシング40内に流入し、室外熱交換器15(熱交換面151)を通過した後、主として下方から上方に向かって流れる。図29に示されるように、第1冷却ユニット80は圧縮機制御基板76(高発熱電気部品65に隣接して配置され、第1冷却ユニットフィン81は室外空気流AFの流路上に配置されている。また、第2冷却ユニット85はファン制御基板77(ファン制御用電気部品66)に隣接して配置され、第2冷却ユニットフィン86は室外空気流AFの流路上に配置されている。
室外ユニット10では、運転中、圧縮機制御基板76に実装された高発熱電気部品65が、第1冷却ユニット80のヒートパイプ83内の冷却材と熱交換を行うことによって冷却される。高発熱電気部品65と熱交換を行うことで加熱されたヒートパイプ83内の冷却材の熱は、第1冷却ユニットフィン81に伝達され、室外空気流AFに対して放熱される。すなわち、高発熱電気部品65を冷却するヒートパイプ83は、第1冷却ユニットフィン81を介して室外空気流AFと熱交換を行うことで冷却される。つまり、高発熱電気部品65は、ヒートパイプ83及び第1冷却ユニットフィン81を介して室外空気流AFと熱交換を行うことで冷却される。
また、ファン制御基板77に実装されたファン制御用電気部品66は、第2冷却ユニット85の第2冷却ユニットフィン86を介して室外空気流AFと熱交換を行うことで冷却される。
ここで、図29に示されるように、第1冷却ユニットフィン81は、室外ファン18よりも低い高さ位置であって、第2冷却ユニットフィン86よりも高い高さ位置に配置されている。すなわち、第1冷却ユニットフィン81は、第2冷却ユニットフィン86よりも室外空気流AFの風下側に位置している。これに関連して、第1冷却ユニット80は、第2冷却ユニットフィン86と熱交換を行った後の室外空気流AFと熱交換を行う。換言すると、第2冷却ユニットフィン86は、第1冷却ユニット80と熱交換を行う前の室外空気流AFと熱交換を行う。
また、第1冷却ユニットフィン81は、第2冷却ユニットフィン86よりも室外ファン18に近い高さ位置に位置している。これに関連して、第1冷却ユニット80の周囲を通過する室外空気流AFの風量は、第2冷却ユニットフィン86の周囲を通過する室外空気流AFの風量よりも大きい。
また、ヒートパイプ83は、第1冷却ユニット本体部82(フィン保持部821及びヒートパイプ保持部822)によって、送風空間S1と仕切られており、室外空気流AFに対して遮蔽されている。これに関連して、ヒートパイプ83の耐候性が高められている。
(9)特徴
(9−1)
昨今、冷凍装置において圧縮機についてはインバータによって容量可変に制御されるのが主流であり、室外ユニット内に配置される基板には、圧縮機のインバータ制御を行うための各種電気部品(例えばパワーデバイスやパワーモジュール等)が実装されるのが一般的である。また、圧縮機以外の機器(例えば室外ファン等)を制御するための電気部品についても、通常、基板に実装される。この点については、上記実施形態における室外ユニット10でも同様である。
ここで、上記実施形態に係る室外ユニット10では、圧縮機12が室外ユニットケーシング40内において底フレーム43上に配置され、下方から上方に向かって流れる室外空気流AFを生成する室外ファン18が圧縮機12よりも高い高さ位置に配置され、上方向に空気を吹き出されるように構成されている。また、室外ユニット10では、図29に示されるように、室外空気流AFが、基板ユニット75に隣接する第1冷却ユニットフィン81及び第2冷却ユニットフィン86に沿って下方から上方に向かって流れるように構成されており、これにより電装品箱50内の電気部品(圧縮機制御用電気部品63及びファン制御用電気部品66)の冷却が行われるように構成されている。
従来、このような室外ユニットでは、室外ファンが圧縮機よりも高い高さ位置に配置されることから、配線の取り回しを容易化するために、ファン制御用電気部品については、圧縮機制御用電気部品よりも上方に(すなわち室外ファンに近い位置に)配置されるのが通常である。
しかし、このような配置態様によると、各発熱部品の冷却が十分に行われず信頼性が確保されないケースがあることを、本願発明者は鋭意検討の上に発見した。すなわち、係る配置態様による場合、ファン制御用電気部品よりも発熱量が著しく大きい圧縮機制御用電気部品(特に高発熱電気部品)と熱交換を行うことで加熱された室外空気流によってファン制御用電気部品の冷却が行われることとなる。このため、ファン制御用電気部品と、冷却源である室外空気流との温度差が十分に確保されず、ファン制御用電気部品の冷却が良好に行われない事態となることが考えられ、係る点で信頼性低下を招く。
また、上記実施形態に係る室外ユニット10のように、下方から上方に向かって流れる室外空気流によって各発熱部品の冷却が行われる場合、室外ファンに近い位置のほうが(すなわち風下側のほうが)風量が大きくなる傾向があるところ、圧縮機制御用電気部品(高発熱電気部品)がファン制御用電気部品よりも風上側(すなわち室外ファンから遠い位置)に配置されると、発熱量が大きい高発熱電気部品を冷却する室外空気流の風量が十分に確保されず、高発熱電気部品の冷却についても良好に行われないことも考えられ、係る点でも信頼性低下を招く。
この点、上記実施形態に係る室外ユニット10では、圧縮機制御用電気部品実装部分75aに隣接し高発熱電気部品65を冷却する第1冷却ユニット80は、室外空気流AFの流路上に位置し室外空気流AFと熱交換を行う第1冷却ユニットフィン81を複数含み、高発熱電気部品65は、室外ファン18よりも低い高さ位置であってファン制御用電気部品66よりも高い高さ位置に配置される。これにより、圧縮機制御用の高発熱電気部品65及び室外ファン18制御用のファン制御用電気部品66、双方の冷却が良好に行われることが促進され、信頼性低下が抑制されるようになっている。
すなわち、下方から上方に向かって流れる室外空気流AFを冷却源として高発熱電気部品65及びファン制御用電気部品66の冷却が行われる場合に、第1冷却ユニットフィン81を含む第1冷却ユニット80が圧縮機制御用電気部品実装部分75a(高発熱電気部品65)に隣接しており、高発熱電気部品65が室外ファン18よりも低い高さ位置であってファン制御用電気部品66よりも高い高さ位置に配置されることで、ファン制御用電気部品66は、高発熱電気部品65(第1冷却ユニットフィン81)よりも室外空気流AFの風上側に配置されることとなり、高発熱電気部品65(第1冷却ユニットフィン81)よりも先に室外空気流AFによって冷却されるようになっている。このため、ファン制御用電気部品66と室外空気流AFとの温度差が十分に確保されずにファン制御用電気部品66の冷却が良好に行われない事態が抑制されている。
また、高発熱電気部品65(第1冷却ユニットフィン81)がファン制御用電気部品66よりも風下側(すなわち室外ファン18に近い位置)に配置されることとなり、ファン制御用電気部品66よりも発熱量が大きい高発熱電気部品65を冷却する室外空気流AFの風量が十分に確保されることが促進され、高発熱電気部品65の冷却が良好に行われることが促進されている。
また、高発熱電気部品65(第1冷却ユニットフィン81)は、ファン制御用電気部品66と熱交換を行った後の室外空気流AFによって冷却されることとなるが、ファン制御用電気部品66は、高発熱電気部品65よりも発熱量が小さいことから、高発熱電気部品65と冷却源である室外空気流AFとの温度差が十分に確保されないことも抑制されている。係る点においても、高発熱電気部品65の冷却が良好に行われない事態が抑制されている。
(9−2)
上記実施形態に係る室外ユニット10では、ファン制御用電気部品66に熱的に接続されファン制御用電気部品66を冷却する第2冷却ユニット85は、第2冷却ユニットフィン86を複数含み、第1冷却ユニットフィン81は、第2冷却ユニットフィン86よりも高い高さ位置に配置される。
これにより、発熱量が大きい高発熱電気部品65の冷却性能が確保されつつファン制御用電気部品66の冷却が促進されるようになっている。すなわち、第2冷却ユニットフィン86によってファン制御用電気部品66と室外空気流AFとの熱交換が促進され、ファン制御用電気部品66の冷却量が増大するようになっている。また、第2冷却ユニットフィン86が第1冷却ユニットフィン81の風下側に配置される場合には、第2冷却ユニットフィン86と室外空気流AFとの温度差が大きく確保されないこととなりファン制御用電気部品66が十分に冷却されないケースが想定されるところ、第2冷却ユニットフィン86が第1冷却ユニットフィン81の風上側に配置されることで、係る事態が抑制されている。
一方、ファン制御用電気部品66は高発熱電気部品65よりも発熱量が小さいことから、第1冷却ユニットフィン81が第2冷却ユニットフィン86の風下側に配置された場合(すなわち、第2冷却ユニットフィン86と熱交換を行った後の室外空気流AFによって第1冷却ユニットフィン81が冷却される場合)であっても、第1冷却ユニットフィン81と室外空気流AFとの温度差が十分に確保され、高発熱電気部品65が十分に冷却されうるようになっている。
(9−3)
上記実施形態に係る室外ユニット10では、第1冷却ユニット80においては、複数の第1冷却ユニットフィン81が第1フィンピッチP1で並んでいる。第2冷却ユニット85においては、複数の第2冷却ユニットフィン86が第2フィンピッチP2で並んでいる。第1フィンピッチP1は、第2フィンピッチP2よりも小さい。
ここで、第1冷却ユニットフィン81のフィンピッチ(第1フィンピッチP1)が第2冷却ユニットフィン86のフィンピッチ(第2フィンピッチP2)よりも小さい場合には、第1冷却ユニット80において室外空気流AFとの熱交換を促進させ冷却性能の向上を図ることが可能となる一方で、各第1冷却ユニットフィン81において室外空気流AFとの熱交換が良好に行われるように、第1冷却ユニット80を通過する室外空気流AFの風量を第2冷却ユニット85よりも大きくする必要がある。すなわち、第1冷却ユニットフィン81のフィンピッチ(第1フィンピッチP1)を小さくする場合には、第1冷却ユニットフィン81の数を増大させることが可能となり放熱能力向上を図ることが可能となる一方で、複数の第1冷却ユニットフィン81が高密度に並ぶこととなり各第1冷却ユニットフィン81間を室外空気流AFが良好に通過しにくい事態が懸念される。このため、第1冷却ユニットフィン81のフィンピッチ(第1フィンピッチP1)を小さくする場合には、各第1冷却ユニットフィン81において室外空気流AFとの熱交換を十分に行わせるという観点上、第1冷却ユニットフィン81を通過する室外空気流AFに関して、その風量をフィンピッチ(第1フィンピッチP1)に応じて増大させ各第1冷却ユニットフィン81間を良好に通過させる必要がある。
上記実施形態に係る室外ユニット10では、第1冷却ユニット80において第1冷却ユニットフィン81が、第2冷却ユニット85の第2冷却ユニットフィン86よりも小さいフィンピッチ(第1フィンピッチP1)で並ぶところ、第1冷却ユニットフィン81は室外ファン18よりも低い高さ位置であって第2冷却ユニットフィン86よりも高い高さ位置(すなわち第2冷却ユニットフィン86よりも室外ファン18に近い位置)に配置されている。これにより、第1冷却ユニット80の冷却性能向上が促進されている。
すなわち、第1冷却ユニット80の第1冷却ユニットフィン81に関して、フィンピッチ(第1フィンピッチP1)が第2冷却ユニット85の第2冷却ユニットフィン86のフィンピッチ(第2フィンピッチP2)よりも小さく構成されることで、第1冷却ユニットフィン81の数を増大させることが可能となる一方、第1冷却ユニット80の第1冷却ユニットフィン81を通過する室外空気流AFの風量を、第2冷却ユニットフィン86を通過する室外空気流AFの風量よりも大きく確保することが可能となっている。その結果、第1冷却ユニットフィン81を通過する室外空気流AFに関して、その風量をフィンピッチ(第1フィンピッチP1)に応じて増大させ各第1冷却ユニットフィン81間を良好に通過させることが可能となっており、各第1冷却ユニットフィン81間を室外空気流AFが良好に通過しにくい事態が抑制されている。よって、第1冷却ユニット80の冷却性能向上が促進されている。
(9−4)
上記実施形態に係る室外ユニット10では、高発熱電気部品65には、ファン制御用電気部品66よりも通電時の発熱量が大きいパワーデバイス・パワーモジュールが含まれるが、このように高発熱電気部品65の発熱量が特に大きい場合でも、高発熱電気部品65が十分に冷却されることが促進されており、信頼性向上が促進されている。
(9−5)
上記実施形態に係る室外ユニット10では、第1冷却ユニット80には、高発熱電気部品65と熱交換を行う冷却材を封入されるヒートパイプ83が含まれ、ヒートパイプ83は、高発熱電気部品65及び第1冷却ユニットフィン81の間に介在し、高発熱電気部品65及び第1冷却ユニットフィン81に熱的に接続されている。このように室外ユニット10では、高発熱電気部品65が冷却性能に優れるヒートパイプ83によって冷却されることで、発熱量が大きい高発熱電気部品65に関してその冷却量が大きく確保され、信頼性向上が特に促進されている。
(9−6)
上記実施形態に係る室外ユニット10では、ヒートパイプ83は、長手方向が水平方向に沿うように配置されている。これにより、ヒートパイプ83内の冷却材が凍結して破壊される事態(凍結パンク)が抑制されている。すなわち、ヒートパイプ83が水平方向に沿って配置されることで、外気温が低い環境下においても冷却材が凍結することが抑制されている。よって、ヒートパイプ83を用いて電気部品の冷却を行う場合において、信頼性低下が抑制されている。
(9−7)
上記実施形態に係る室外ユニット10では、電装品箱50の第5開口52eが室外ファン18よりも低い高さ位置であって第1冷却ユニットフィン81よりも高い高さ位置に配置されている(すなわち、電装品箱50の第5開口52eが第1冷却ユニットフィン81よりも風下側に配置されている)ことで、第1冷却ユニットフィン81と熱交換を行う室外空気流AFが、電装品箱50の第5開口52eから流出する排気によって加熱されることが抑制されている。その結果、電装品箱50から流出する排気を原因として第1冷却ユニットフィン81と室外空気流AFとの温度差が小さくなることが抑制され、高発熱電気部品65の冷却量低下が抑制されている。
(9−8)
上記実施形態に係る室外ユニット10では、電装品箱50の上方には、第5開口52eへの液体の浸入を妨げる天面カバー53が、第5開口52eから間隔をおいて配置されている。これにより、第5開口52eを介した電装品箱50への液体の浸入が確実に抑制されており、各電気部品に関して短絡や腐食等に対する信頼性が向上している。
(9−9)
上記実施形態に係る室外ユニット10では、基板ユニット75は圧縮機制御基板76とファン制御基板77とを含み、圧縮機制御用電気部品実装部分75aは圧縮機制御基板76に配置され、ファン制御用電気部品実装部分75bはファン制御基板77に配置されている。室外ユニット10では、このように高発熱電気部品65とファン制御用電気部品66とが別の基板に実装される場合においても、信頼性低下が抑制されている。
(10)変形例
上記実施形態は、以下の変形例に示すように適宜変形が可能である。なお、各変形例は、矛盾が生じない範囲で他の変形例と組み合わせて適用されてもよい。
(10−1)変形例1
上記実施形態では、2つの室外ファン18を有する室外ユニット10´を想定して、電装品箱50内でファン制御基板77(ファン制御用電気部品66)が左右に2つ配置される場合について説明した。しかし、例えば図2−図4に示されるように、室外ファン18を1つのみ有する室外ユニット10においては、ファン制御基板77が1つのみ配置されればよい。すなわち、図12や図25等で示される2つのファン制御基板77のうち、一方については適宜省略されてもよい。係る場合、省略されるファン制御基板77に対応する第2冷却ユニット85についても省略される。
(10−2)変形例2
上記実施形態では、基板ユニット75は、圧縮機制御基板76とファン制御基板77とを含み、圧縮機制御用電気部品実装部分75aは圧縮機制御基板76に配置され、ファン制御用電気部品実装部分75bはファン制御基板77に配置されていた。すなわち、上記実施形態では、高発熱電気部品65が圧縮機制御基板76に実装され、ファン制御用電気部品66がファン制御基板77に実装されており、高発熱電気部品65とファン制御用電気部品66とは異なる基板に実装されていた。
しかし、必ずしもこれに限定されず、高発熱電気部品65とファン制御用電気部品66とは同一の基板に実装されてもよい(すなわち、圧縮機制御用電気部品実装部分75a及びファン制御用電気部品実装部分75bは同一の基板に配置されてもよい)。
係る場合でも、圧縮機制御用電気部品実装部分75aに隣接する第1冷却ユニット80(第1冷却ユニットフィン81)が、上記実施形態のように、ファン制御用電気部品実装部分75bに隣接する第2冷却ユニット85(第2冷却ユニットフィン86)よりも、風下側に配置されるとともに室外ファン18に近い高さ位置に配置される限り、上記実施形態と同様の作用効果が実現可能である。すなわち、基板ユニット75は、必ずしも複数の基板を有している必要はない。
(10−3)変形例3
上記実施形態では、高発熱電気部品65(パワーモジュール)が、第1冷却ユニット80(具体的には、ヒートパイプ保持部822の前面部822a)に密着するように固定される場合について説明した。高発熱電気部品65とヒートパイプ83との熱交換を促進させるうえでは、係る固定態様が選択されることが好ましい。
しかし、信頼性の観点から必要な冷却量を確保できるのであれば、高発熱電気部品65は、必ずしも第1冷却ユニット80に密着するように固定される必要はない。すなわち、高発熱電気部品65は、第1冷却ユニット80に部分的に当接していればよい。また、高発熱電気部品65は、第1冷却ユニット80と熱的に接続され必要な冷却量を確保される限り、第1冷却ユニット80との間に介在する物を介して第1冷却ユニット80と熱的に接続されてもよいし、第1冷却ユニット80と離間して配置され第1冷却ユニット80からの冷輻射によって冷却されるように配置されてもよい。
(10−4)変形例4
上記実施形態に係る室外ユニット10では、高発熱電気部品65は、室外ファン18よりも低い高さ位置であってファン制御用電気部品66よりも高い高さ位置に配置されていた。この点、「圧縮機制御用の高発熱電気部品65及び室外ファン18制御用のファン制御用電気部品66、双方の冷却が良好に行われることが促進され、信頼性低下が抑制される」という効果が実現される限り、高発熱電気部品65は、その全てがファン制御用電気部品66よりも高い高さ位置に配置される必要は必ずしもない。すなわち、上記(9−1)で記載した作用効果に矛盾が生じない限り、高発熱電気部品65は、水平方向から見た場合に、ファン制御用電気部品66と部分的に重畳していてもよい。
また、同様に、高発熱電気部品65は、その全てが室外ファン18よりも低い高さ位置に配置される必要は必ずしもない。すなわち、上記(9−1)で記載した作用効果に矛盾が生じない限り、高発熱電気部品65は、水平方向から見た場合に、室外ファン18と部分的に重畳していてもよい。
(10−5)変形例5
上記実施形態では、第1冷却ユニット80のヒートパイプ83は、長手方向が水平方向に沿うように配置されていた。この点、ヒートパイプ83の凍結パンクを抑制するという観点によれば、ヒートパイプ83は、係る態様で配置されることが好ましい。しかし、凍結パンクに対する信頼性が確保されるのであれば、ヒートパイプ83は、必ずしも係る態様で配置される必要はなく、長手方向が水平方向に交差するように配置されてもよいし、長手方向が鉛直方向に沿うように配置されてもよい。
(10−6)変形例6
上記実施形態では、高発熱電気部品65を冷却する第1冷却ユニット80は、ヒートパイプ83を有していた。この点、発熱量が大きい高発熱電気部品65に関して冷却量を大きく確保するという観点によれば、第1冷却ユニット80は、上記実施形態のようにヒートパイプ83によって高発熱電気部品65を冷却することが好ましい。しかし、信頼性確保の観点から、高発熱電気部品65に関して必要な冷却量が確保されるのであれば、必ずしも第1冷却ユニット80はヒートパイプ83を有している必要はない。
(10−7)変形例7
上記実施形態では、第2フィンピッチP2が第1フィンピッチP1の2倍以上大きい場合について説明した。しかし、必ずしもこれに限定されず、第1フィンピッチP1及び第2フィンピッチP2の割合については、上記(9−1)に記載の作用効果に矛盾が生じない限り、設計仕様や設置環境に応じて適宜変更が可能である。例えば、第2フィンピッチP2は、第1フィンピッチP1の1.5倍以上の値に設定されてもよい。また、第2フィンピッチP2は、第1フィンピッチP1の同一以下に設定されてもよい。
(10−8)変形例8
上記実施形態では、電装品箱50の上方には、第5開口52eへの液体の浸入を妨げる天面カバー53が、第5開口52eから間隔をおいて配置されていた。この点、第5開口52eを介した電装品箱50への液体の浸入を抑制するという観点によれば、係る天面カバー53が上記実施形態における態様で配置されることが好ましい。しかし、高発熱電気部品65並びにファン制御用電気部品66の冷却を促進させるという効果を実現するうえで、必ずしも係る天面カバー53は必要ではない。電装品箱50への液体の浸入に対する信頼性が確保されるのであれば、係る天面カバー53については省略可能である。
(10−9)変形例9
上記実施形態では、室外ファン18は、室外ユニットケーシング40の上端付近に配置された。しかし、室外ユニットケーシング40内において下方から上方へ流れる室外空気流AFを生成可能であり、上記(9−1)に記載の作用効果に矛盾が生じない限り、室外ファン18の設置位置については適宜変更が可能である。例えば、室外ファン18は、室外ユニットケーシング40の中段の高さ位置付近に配置されてもよい。
(10−10)変形例10
上記実施形態では、高発熱電気部品65が、複数のパワーデバイスを含むパワーモジュールである場合について説明した。しかし、高発熱電気部品65は、必ずしもこれに限定されず、通電時に発熱する電気部品である限り、他の電気部品であってもよい。
(10−11)変形例11
上記実施形態における冷媒回路RCの構成態様は、必ずしも図1に示す態様に限定されず、設計仕様や設置環境に応じて適宜変更が可能である。例えば、必ずしも必要ではない場合には、アキュームレータ11や室外膨張弁16については、適宜省略が可能である。また、冷媒回路RCには、図1に示されない機器(例えばレシーバ等)が新たに追加されてもよい。
(10−12)変形例12
上記実施形態では、本発明が、1台の室外ユニット10に対して2台の室内ユニット30が連絡配管(L1、G1)で並列に接続された空調システム100に適用される例について説明した。しかし、本発明が適用される空調システムの構成態様は、必ずしも係る態様には限定されない。すなわち、本発明が適用される空調システムに関して、室外ユニット10及び/又は室内ユニット30の台数及びその接続態様については、設置環境や設計仕様に応じて適宜変更が可能である。
(10−13)変形例13
上記実施形態において本発明は、空調システム100に適用されていた。しかし、これに限定されず、本発明は、冷媒回路を有する他の冷凍装置(例えば給湯器やヒートポンプチラー等)にも適用可能である。
本発明は、冷凍装置の室外ユニットに室内可能である。
10、10´:室外ユニット
12 :圧縮機
15 :室外熱交換器
18 :室外ファン(ファン)
20 :室外ユニット制御部
30 :室内ユニット
40、40´:室外ユニットケーシング(ケーシング)
41 :据付脚
43 :底フレーム
45 :支柱
47 :前面パネル
47a :第1前面パネル
47b :第2前面パネル
49 :ファンモジュール
50 :電装品箱(電気部品ボックス)
51 :前面カバー
52 :本体フレーム
52a :第1開口
52b :第2開口
52c :第3開口
52d :第4開口
52e :第5開口(排気口)
52f :第6開口
53 :天面カバー(カバー部)
54 :第1側面カバー
55 :第2側面カバー
57 :第1取付具
58 :第2取付具
63 :圧縮機制御用電気部品
65 :高発熱電気部品(第1電気部品)
66 :ファン制御用電気部品(第2電気部品)
71 :制御基板
75 :基板ユニット(基板部)
75a :圧縮機制御用電気部品実装部分(第1部分)
75b :ファン制御用電気部品実装部分(第2部分)
76 :圧縮機制御基板(第1基板)
77 :ファン制御基板(第2基板)
80 :第1冷却ユニット(第1冷却器)
81 :第1冷却ユニットフィン(第1放熱フィン)
82 :第1冷却ユニット本体部
82a :ヒートパイプ挿入孔
83 :ヒートパイプ
85 :第2冷却ユニット(第2冷却器)
86 :第2冷却ユニットフィン(第2放熱フィン)
87 :第2冷却ユニット本体部
100 :空調システム(冷凍装置)
401 :吸気口
402 :吹出口
501 :鉛直板
521 :背面部
522 :左側面部
523 :右側面部
524 :天面部
531 :上カバー部
532 :左側方カバー部
533 :右側方カバー部
541 :右側部
542 :前側部
543 :後側部
544 :上部
821 :フィン保持部
822 :ヒートパイプ保持部
822a :前面部
AF :室外空気流(空気流)
M12 :圧縮機モータ
M18 :室外ファンモータ
P1 :第1フィンピッチ
P2 :第2フィンピッチ
RC :冷媒回路
SP :内部空間
SP1 :下部空間
SP2 :上部空間
SP2a :前側上部空間
SP2b :後側上部空間
特許第5196166号公報

Claims (10)

  1. 冷媒を圧縮する圧縮機(12)と、
    前記圧縮機よりも高い高さ位置に配置され、空気流(AF)を生成するファン(18)と、
    前記圧縮機の駆動状態を制御する第1電気部品(65)と、
    前記ファンの駆動状態を制御する第2電気部品(66)と、
    前記第1電気部品を実装される第1部分(75a)と、前記第2電気部品を実装される第2部分(75b)と、を含む基板部(75)と、
    前記第1部分に隣接し、前記第1電気部品に熱的に接続され、前記第1電気部品を冷却する第1冷却器(80)と、
    前記第2部分に隣接し、前記第2電気部品に熱的に接続され、前記第2電気部品を冷却する第2冷却器(85)と、
    前記圧縮機、前記ファン及び前記基板部を収容し、上方向に前記空気流を吹き出すための吹出口(402)が形成されたケーシング(40、40´)と、
    を備え、
    前記空気流は、前記ケーシング内において下方から上方へ向かって流れ前記吹出口から流出する空気の流れであり、
    前記第1冷却器は、前記空気流の主たる流路が形成される送風空間(S1)に位置し前記空気流と熱交換を行う第1放熱フィン(81)を複数含み、
    前記第2冷却器は、前記空気流の主たる流路が形成される送風空間(S1)に位置し前記空気流と熱交換を行う第2放熱フィン(86)を複数含み、
    前記第1電気部品は、前記ファンよりも低い高さ位置であって前記第2電気部品よりも高い高さ位置に配置される、
    冷凍装置の室外ユニット(10、10´)。
  2. 前記冷媒の放熱器または蒸発器として機能する熱交換器(15)と、
    前記ケーシング内に配置され、前記基板部を収容する電気部品ボックス(50)と、
    をさらに備え、
    前記空気流は、前記熱交換器を通過した後、前記ケーシング内において下方から上方へ向かって前記電気部品ボックスの外側の空間を流れる、
    請求項1に記載の冷凍装置の室外ユニット(10、10´)。
  3. 前記第1冷却器においては、複数の前記第1放熱フィンが第1のフィンピッチ(P1)で並んでおり、
    前記第2冷却器においては、複数の前記第2放熱フィンが第2のフィンピッチ(P2)で並んでおり、
    前記第1のフィンピッチは、前記第2のフィンピッチよりも小さい、
    請求項1又は請求項2に記載の冷凍装置の室外ユニット(10、10´)。
  4. 前記第1電気部品には、前記第2電気部品よりも通電時の発熱量が大きいパワーデバイス、又は前記パワーデバイスを含むパワーモジュールが含まれる、
    請求項1から3のいずれか1項に記載の冷凍装置の室外ユニット(10、10´)。
  5. 前記第1冷却器は、前記第1電気部品と熱交換を行う冷却材を封入されたヒートパイプ(83)をさらに含み、
    前記ヒートパイプは、前記第1電気部品及び前記第1放熱フィンの間に介在して、前記第1電気部品及び前記第1放熱フィンに熱的に接続される、
    請求項1から4のいずれか1項に記載の冷凍装置の室外ユニット(10、10´)。
  6. 前記ヒートパイプは、長手方向が水平方向に沿うように配置される、
    請求項5に記載の冷凍装置の室外ユニット(10、10´)。
  7. 前記電気部品ボックスには、空気を流出させる排気口(52e)が天面に形成され、
    前記排気口は、前記ファンよりも低い高さ位置であって前記第1放熱フィンよりも高い高さ位置に配置される、
    請求項1から6のいずれか1項に記載の冷凍装置の室外ユニット(10、10´)。
  8. 前記電気部品ボックスの上方には、前記排気口への液体の浸入を妨げるカバー部(53)が、前記排気口から間隔をおいて配置される、
    請求項7に記載の冷凍装置の室外ユニット(10、10´)。
  9. 前記基板部は、第1基板(76)と、第2基板(77)と、を含み、
    前記第1部分は、前記第1基板に配置され、
    前記第2部分は、前記第2基板に配置される、
    請求項1から8のいずれか1項に記載の冷凍装置の室外ユニット(10、10´)。
  10. 前記第1放熱フィンは、前記第2放熱フィンよりも高い高さ位置に配置される、
    請求項1から9のいずれか1項に記載の冷凍装置の室外ユニット(10、10´)。
JP2019159032A 2017-08-09 2019-08-30 冷凍装置の室外ユニット Active JP6933233B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019159032A JP6933233B2 (ja) 2017-08-09 2019-08-30 冷凍装置の室外ユニット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017154719A JP6749293B2 (ja) 2017-08-09 2017-08-09 冷凍装置の室外ユニット
JP2019159032A JP6933233B2 (ja) 2017-08-09 2019-08-30 冷凍装置の室外ユニット

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017154719A Division JP6749293B2 (ja) 2017-08-09 2017-08-09 冷凍装置の室外ユニット

Publications (3)

Publication Number Publication Date
JP2019200046A JP2019200046A (ja) 2019-11-21
JP2019200046A5 true JP2019200046A5 (ja) 2020-04-23
JP6933233B2 JP6933233B2 (ja) 2021-09-08

Family

ID=68612447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019159032A Active JP6933233B2 (ja) 2017-08-09 2019-08-30 冷凍装置の室外ユニット

Country Status (1)

Country Link
JP (1) JP6933233B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022054235A1 (ja) * 2020-09-11 2022-03-17
KR102550794B1 (ko) * 2021-08-30 2023-07-04 엘지전자 주식회사 공기 조화기의 실외기
CN114216360A (zh) * 2021-12-16 2022-03-22 珠海格力电器股份有限公司 一种散热器及具有其的空调

Similar Documents

Publication Publication Date Title
JP3821153B2 (ja) 空気調和装置の室外ユニット
JP6749293B2 (ja) 冷凍装置の室外ユニット
CN110785613B (zh) 制冷机室外单元
JP6593402B2 (ja) 冷凍装置の室外ユニット
JP6933233B2 (ja) 冷凍装置の室外ユニット
EP1862743B1 (en) Outdoor unit of air conditioner
JP2019200046A5 (ja)
JP2013011392A (ja) 空気調和装置
JP2006214633A (ja) 空気調和装置の室外ユニット
JP2006214632A (ja) 空気調和装置の室外ユニット
JP5640791B2 (ja) 冷凍装置の室外ユニット
CN116997752A (zh) 电气安装件单元以及冷冻装置的室外单元
JP2003097881A (ja) コンテナ用冷凍装置
JP7365372B2 (ja) 電装品ユニットおよび冷凍装置の室外ユニット
US20240003555A1 (en) Electric component unit, and outdoor unit of refrigeration apparatus
CN214148169U (zh) 空调器室外机