JP2019199692A - Ground improvement structure and excavating method - Google Patents

Ground improvement structure and excavating method Download PDF

Info

Publication number
JP2019199692A
JP2019199692A JP2018093006A JP2018093006A JP2019199692A JP 2019199692 A JP2019199692 A JP 2019199692A JP 2018093006 A JP2018093006 A JP 2018093006A JP 2018093006 A JP2018093006 A JP 2018093006A JP 2019199692 A JP2019199692 A JP 2019199692A
Authority
JP
Japan
Prior art keywords
impermeable layer
artificial
ground
intermediate pile
artificial impermeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018093006A
Other languages
Japanese (ja)
Other versions
JP7017980B2 (en
Inventor
安永 正道
Masamichi Yasunaga
正道 安永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2018093006A priority Critical patent/JP7017980B2/en
Publication of JP2019199692A publication Critical patent/JP2019199692A/en
Application granted granted Critical
Publication of JP7017980B2 publication Critical patent/JP7017980B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Piles And Underground Anchors (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

To provide a ground improvement structure and like capable of reducing bending moment and shearing force created in an artificial impermeable layer.SOLUTION: A ground improvement structure comprises: an earth retaining wall 3 at both sides of an excavated place in the ground 2; an artificial impermeable layer 4 formed through improving the ground 2 between the earth retaining walls 3; an intermediate pile arranged between the earth retaining walls 3 and supporting a strut 7 between the earth retaining walls 3, of which a lower part is buried in the artificial impermeable layer 4. As a lower end of the intermediate pile 5 is placed at a deeper position than the artificial impermeable layer 4, the artificial impermeable layer 4 is anchored in the lower ground 2 with the part of the intermediate pile 5 deeper than the artificial impermeable layer 4 to create resistance force in the artificial impermeable layer 4 against uplifting pressure "a" of subterranean water on the artificial impermeable layer 4.SELECTED DRAWING: Figure 5

Description

本発明は、地盤改良構造および地盤の掘削方法に関する。   The present invention relates to a ground improvement structure and a ground excavation method.

地下構造物の構築時には地盤の掘削を行う。その際、適切な深度に不透水層が有る場合は、不透水層に達する山留壁を構築した後、切梁・腹起しを掛けながら山留壁の内側の地盤を掘削する。山留壁は外側の地盤からの土圧に抵抗するほか、地下水を遮水する遮水壁としても機能する。   The excavation of the ground is performed when the underground structure is constructed. At that time, if there is an impermeable layer at an appropriate depth, build a retaining wall that reaches the impervious layer, and then excavate the ground inside the retaining wall with hanging beams and upsets. In addition to resisting earth pressure from the outside ground, the Yamadome wall also functions as a water barrier for blocking groundwater.

一方、適切な深度に不透水層が無い場合、山留壁の内側の地盤を改良して人工の不透水層(以下、人工不透水層という)を形成することがある(例えば、特許文献1〜6)。   On the other hand, when there is no impermeable layer at an appropriate depth, an artificial impermeable layer (hereinafter referred to as an artificial impermeable layer) may be formed by improving the ground inside the mountain retaining wall (for example, Patent Document 1). ~ 6).

人工不透水層の厚さは、地下水の揚圧力によって人工不透水層に生じる曲げモーメントやせん断力に耐え得るものとする。人工不透水層は山留壁の間に設けられ、山留壁の変形を防止する地中梁としても機能する。   The thickness of the artificial impermeable layer shall be able to withstand the bending moment and shear force generated in the artificial impermeable layer due to the groundwater uplift pressure. The artificial impermeable layer is provided between the retaining walls, and also functions as an underground beam that prevents deformation of the retaining walls.

特開平11-209998号公報JP-A-11-209998 特開平11-247174号公報Japanese Patent Laid-Open No. 11-247174 特開2003-171949号公報JP 2003-171949 A 特開2001-182088号公報Japanese Patent Laid-Open No. 2001-182088 特開2004-27722号公報JP 2004-27722 A 特開2015-229822号公報JP-A-2015-229822

山留壁の離れ(スパン)が大きくなると、地盤改良による人工不透水層のコストアップの問題がある。すなわち、人工不透水層の応力度は両側の山留壁を支点とした単純梁に一様な揚圧力が加わっているものとして求められ、山留壁のスパン(支点間距離)が大きくなると揚圧力によって生じる曲げモーメントやせん断力の最大値が大きくなる。そのため人工不透水層の厚さや強度を大きくする必要があり、コストや工期の面から地盤改良による人工不透水層とは別の方法を採用せざるを得ない場合もある。   When the separation (span) of the retaining wall becomes large, there is a problem of cost increase of the artificial impermeable layer by ground improvement. In other words, the stress level of the artificial impermeable layer is calculated as a uniform beam that is applied to a simple beam with the fulcrum on both sides as the fulcrum. If the span (distance between fulcrum) of the dome wall increases, The maximum value of the bending moment and shear force generated by the pressure increases. Therefore, it is necessary to increase the thickness and strength of the artificial impermeable layer, and there is a case where a method different from the artificial impermeable layer by ground improvement must be adopted from the viewpoint of cost and construction period.

本発明は上記の問題に鑑みてなされたものであり、人工不透水層に生じる曲げモーメントやせん断力を小さくできる地盤改良構造等を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a ground improvement structure or the like that can reduce a bending moment and a shearing force generated in an artificial impermeable layer.

前述した課題を解決するための第1の発明は、地盤の掘削箇所の両側の山留壁と、前記山留壁の間の地盤を改良して形成された人工不透水層と、前記山留壁の間に設けられ、下部が前記人工不透水層に埋設される、前記山留壁との間で切梁を支持するための中間杭と、を有し、前記中間杭には、前記人工不透水層に加わる地下水の揚圧力に対する抵抗力を、前記中間杭の位置で前記人工不透水層に与えるための支点形成機構が設けられることを特徴とする地盤改良構造である。   According to a first aspect of the present invention for solving the aforementioned problems, there are a retaining wall on both sides of a ground excavation site, an artificial impermeable layer formed by improving the ground between the retaining walls, and the retaining wall. An intermediate pile provided between the walls and having a lower portion embedded in the artificial impermeable layer for supporting a cut beam with the mountain retaining wall, and the intermediate pile includes the artificial pile The ground improvement structure is characterized in that a fulcrum formation mechanism is provided to give resistance to the groundwater lifting pressure applied to the impermeable layer to the artificial impermeable layer at the position of the intermediate pile.

本発明では、切梁の支持用の中間杭を利用して、山留壁の間で人工不透水層に地下水の揚圧力に対する抵抗力を与え、地下水の揚圧力に対し人工不透水層を支持する支点を新たに形成することができる。これにより人工不透水層の支点間距離が小さくなり、地下水の揚圧力により人工不透水層に生じる曲げモーメントやせん断力を小さくすることができる。   In the present invention, using an intermediate pile for supporting the beam, the artificial impermeable layer is given resistance to the artificial impermeable layer between the retaining walls, and the artificial impermeable layer is supported against the underground water lifting pressure. A new fulcrum can be formed. As a result, the distance between the fulcrums of the artificial impermeable layer is reduced, and the bending moment and shear force generated in the artificial impermeable layer due to the groundwater uplift pressure can be reduced.

例えば、前記中間杭の下端は前記人工不透水層より深い位置にあり、前記支点形成機構は、前記中間杭の前記人工不透水層以深の部分である。あるいは、前記支点形成機構は、前記中間杭に接続され、且つ下端が前記人工不透水層より深い位置の地盤に固定されたグラウンドアンカーであってもよい。
支点形成機構としては、アンカーとして機能する中間杭の人工不透水層以深の部分、あるいは人工不透水層より深い位置に固定されたグラウンドアンカーを用いることができ、これにより人工不透水層をその下方の地盤にアンカーして地下水の揚圧力に対する抵抗力を与え、人工不透水層の浮き上がりを防止して人工不透水層に支点を形成することが可能になる。前者の場合、中間杭自体に支点形成機構を持たせるので施工が簡単であり、後者の場合、グラウンドアンカーの緊張力によって高い抵抗力を与えることができる。いずれの場合も支点形成機構以外の構成は従来通りであり、軽微な変更で済みコストの増加を抑制できる。
For example, the lower end of the intermediate pile is at a position deeper than the artificial impermeable layer, and the fulcrum formation mechanism is a portion deeper than the artificial impermeable layer of the intermediate pile. Alternatively, the fulcrum formation mechanism may be a ground anchor connected to the intermediate pile and having a lower end fixed to the ground deeper than the artificial impermeable layer.
As a fulcrum formation mechanism, a portion of the intermediate pile that functions as an anchor can be a part deeper than the artificial impermeable layer, or a ground anchor fixed at a position deeper than the artificial impermeable layer. It is possible to anchor to the ground of the ground to provide resistance against the groundwater uplift pressure, and to prevent the artificial impermeable layer from floating and to form a fulcrum in the artificial impermeable layer. In the former case, since the intermediate pile itself has a fulcrum formation mechanism, the construction is simple, and in the latter case, a high resistance can be given by the tension of the ground anchor. In any case, the configuration other than the fulcrum forming mechanism is the same as the conventional one, and it is possible to suppress the increase in cost by making a minor change.

また、前記支点形成機構は、前記人工不透水層より上方で前記中間杭の周囲に設けられたコンクリートであってもよい。
これにより、中間杭を介して人工不透水層に上方からのコンクリート荷重を与えることで、上記と同じく人工不透水層に支点を形成することが可能になる。この場合、地上部分に支点形成機構を設けることができるので施工も容易である。
Moreover, the concrete provided in the circumference | surroundings of the said intermediate pile above the said artificial impermeable layer may be sufficient as the said fulcrum formation mechanism.
Thereby, it becomes possible to form a fulcrum in an artificial impermeable layer like the above by giving concrete load from the upper part to an artificial impermeable layer via an intermediate pile. In this case, since a fulcrum formation mechanism can be provided in the ground part, construction is also easy.

第2の発明は、地盤の掘削箇所の両側の山留壁、前記山留壁の間の中間杭および人工不透水層を設ける工程(a)と、前記山留壁の間の地盤の掘削と、前記山留壁と前記中間杭の間の切梁の設置を行う工程(b)と、を有し、前記中間杭の下部は前記人工不透水層に埋設され、前記中間杭には、前記人工不透水層に加わる地下水の揚圧力に対する抵抗力を、前記中間杭の位置で前記人工不透水層に与えるための支点形成機構が設けられることを特徴とする掘削方法である。
第2の発明は、第1の発明の地盤改良構造を形成して地盤の掘削を行う掘削方法である。
The second invention includes a step (a) of providing a mountain retaining wall on both sides of a ground excavation site, an intermediate pile between the mountain retaining wall and an artificial impermeable layer, and excavating the ground between the mountain retaining walls; A step (b) of installing a beam between the mountain retaining wall and the intermediate pile, and a lower portion of the intermediate pile is embedded in the artificial impermeable layer, The excavation method is characterized in that a fulcrum formation mechanism is provided for providing the artificial impervious layer with resistance to groundwater lifting pressure applied to the artificial impermeable layer at the position of the intermediate pile.
The second invention is an excavation method for excavating the ground by forming the ground improvement structure of the first invention.

前記支点形成機構は、例えば前記人工不透水層より上方で前記中間杭の周囲に設けられるコンクリートであり、前記コンクリートは、前記工程(b)において上から順に構築される。
これにより、中間杭を介して人工不透水層に上方からのコンクリート荷重を与えることで、人工不透水層に支点を形成することが可能になる。また地上部分で支点形成機構を設けることができるので施工も容易であり、コンクリートを逆巻き工法で施工して地下構造物の本設躯体として利用することで地下構造物の構築にかかる工期の延長も防止できる。
The fulcrum formation mechanism is, for example, concrete provided around the intermediate pile above the artificial impermeable layer, and the concrete is constructed in order from the top in the step (b).
Thereby, it becomes possible to form a fulcrum in an artificial impermeable layer by giving concrete load from the upper part to an artificial impermeable layer via an intermediate pile. In addition, since the fulcrum formation mechanism can be provided on the ground part, construction is easy, and it is possible to prevent the extension of the construction period for construction of the underground structure by constructing the concrete using the reverse winding method and using it as the main structure of the underground structure .

本発明により、人工不透水層に生じる曲げモーメントやせん断力を小さくできる地盤改良構造等を提供することができる。   According to the present invention, it is possible to provide a ground improvement structure or the like that can reduce the bending moment and shear force generated in the artificial impermeable layer.

ポンプ室1を示す図。The figure which shows the pump chamber. ポンプ室1の構築方法について示す図。The figure shown about the construction method of the pump chamber. ポンプ室1の構築方法について示す図。The figure shown about the construction method of the pump chamber. ポンプ室1の構築方法について示す図。The figure shown about the construction method of the pump chamber. 人工不透水層4の支点を示す図。The figure which shows the fulcrum of the artificial impermeable layer. 梁材9を示す図。The figure which shows the beam material 9. FIG. ボックスカルバート10を示す図。The figure which shows the box culvert 10. FIG. ポンプ室1aの構築方法について示す図。The figure shown about the construction method of the pump chamber 1a. ポンプ室1aの構築方法について示す図。The figure shown about the construction method of the pump chamber 1a. ポンプ室1bの構築方法について示す図。The figure shown about the construction method of the pump chamber 1b. ポンプ室1bの構築方法について示す図。The figure shown about the construction method of the pump chamber 1b. ポンプ室1bの構築方法について示す図。The figure shown about the construction method of the pump chamber 1b.

以下、図面に基づいて本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

[第1の実施形態]
(1.ポンプ室1)
図1は、本発明の実施形態に係る地盤改良構造を利用して構築されるポンプ室1を示す図である。
[First Embodiment]
(1. Pump room 1)
FIG. 1 is a diagram showing a pump chamber 1 constructed using a ground improvement structure according to an embodiment of the present invention.

ポンプ室1は、火力発電所、原子力発電所などで海水を冷却水として使用するために用いられる。海水は、取水口、取水路を通ってポンプ室1に導かれ、循環水ポンプによって発電所のタービン室に供給される。   The pump chamber 1 is used for using seawater as cooling water in a thermal power plant, a nuclear power plant, or the like. Seawater is guided to the pump chamber 1 through the intake port and intake channel, and is supplied to the turbine chamber of the power plant by the circulating water pump.

ポンプ室1は地盤2に構築される地下構造物であり、コンクリートによって形成された底版11と側壁12からなる函状の躯体を有する。側壁12の間の中間部にはコンクリートによる分流壁13が設けられる。   The pump chamber 1 is an underground structure constructed on the ground 2, and has a box-shaped casing made up of a bottom plate 11 and side walls 12 made of concrete. A diversion wall 13 made of concrete is provided in an intermediate portion between the side walls 12.

なお図1の符号4、5、および6はそれぞれ人工不透水層、中間杭の一部、および中間杭の固定部であるが、これらについては後述する。   In addition, although the code | symbol 4, 5, and 6 of FIG. 1 are an artificial impermeable layer, a part of intermediate | middle pile, and the fixing | fixed part of an intermediate | middle pile, these are mentioned later.

(2.ポンプ室1の構築方法)
図2〜図4はポンプ室1の構築方法について示す図である。本実施形態ではポンプ室1の構築に先立って地盤改良構造を形成し、その後地盤2の掘削が行われるが、以下ではその掘削方法についても説明する。
(2. Construction method of pump chamber 1)
2-4 is a figure shown about the construction method of the pump chamber 1. FIG. In this embodiment, the ground improvement structure is formed prior to the construction of the pump chamber 1 and then the ground 2 is excavated. The excavation method will be described below.

すなわち、本実施形態では、ポンプ室1を構築する際、まず図2(a)に示すように山留壁3と中間杭5を地盤2に施工する。   That is, in this embodiment, when constructing the pump chamber 1, first, the mountain retaining wall 3 and the intermediate pile 5 are constructed on the ground 2 as shown in FIG.

山留壁3は地盤2の掘削箇所(ポンプ室1の構築箇所)の両側に設けられる。山留壁3は外側の地盤2からの土圧に抵抗するとともに、地下水の遮水を行う遮水壁としても機能する。山留壁3は特に限定されず、鋼矢板壁、鋼管矢板壁、芯材入りのソイルモルタル壁などを用いることができる。   The mountain retaining wall 3 is provided on both sides of the excavation site of the ground 2 (the construction site of the pump chamber 1). The mountain retaining wall 3 resists earth pressure from the outer ground 2 and also functions as a water shielding wall that shields groundwater. The mountain retaining wall 3 is not particularly limited, and a steel sheet pile wall, a steel pipe sheet pile wall, a soil mortar wall containing a core material, and the like can be used.

中間杭5(中間柱ともいう)は山留壁3の間に打設する鋼製の鉛直材であり、後述する切梁の支持を行うためのものである。本実施形態では中間杭5が山留壁3のスパン中央部で山留壁3の延長方向(図2(a)の紙面法線方向に対応する)に複数本設けられる。中間杭5としては例えばH形鋼を用い、その下端をコンクリート等による固定部6で固定する。中間杭5の施工には既知の工法を用いることができる。   The intermediate pile 5 (also referred to as an intermediate column) is a steel vertical material placed between the mountain retaining walls 3 and is used to support a cut beam described later. In the present embodiment, a plurality of intermediate piles 5 are provided at the center of the span of the retaining wall 3 in the extending direction of the retaining wall 3 (corresponding to the normal direction of the paper surface of FIG. 2A). As the intermediate pile 5, for example, H-shaped steel is used, and its lower end is fixed by a fixing portion 6 made of concrete or the like. A known method can be used for the construction of the intermediate pile 5.

こうして山留壁3と中間杭5を施工した後、図2(b)に示すように山留壁3の間で地盤2の改良を行い、人工不透水層4を形成する。これにより、人工不透水層4を含む地盤改良構造が形成される。   After constructing the mountain retaining wall 3 and the intermediate pile 5 in this way, the ground 2 is improved between the mountain retaining walls 3 as shown in FIG. 2 (b) to form the artificial impermeable layer 4. Thereby, the ground improvement structure including the artificial impermeable layer 4 is formed.

本実施形態では人工不透水層4が山留壁3の底部に当たる深さで形成され、人工不透水層4の下端と山留壁3の下端の位置がほぼ一致する。また中間杭5の下部は人工不透水層4に埋設される。特に本実施形態では、中間杭5の下部が人工不透水層4を貫通してその下端が人工不透水層4より深い位置にある。   In the present embodiment, the artificial impermeable layer 4 is formed to a depth corresponding to the bottom of the mountain retaining wall 3, and the lower end of the artificial impermeable layer 4 and the lower end of the mountain retaining wall 3 substantially coincide with each other. The lower part of the intermediate pile 5 is embedded in the artificial impermeable layer 4. In particular, in this embodiment, the lower part of the intermediate pile 5 penetrates the artificial impermeable layer 4 and the lower end thereof is at a position deeper than the artificial impermeable layer 4.

人工不透水層4の形成方法(地盤2の改良方法)は特に限定されず、例えば既知の噴射混合攪拌工法、機械混合攪拌工法、薬液注入工法などを用い、セメントミルクなどの固化材で地盤2を固化することにより人工不透水層4を形成できる。   The formation method of the artificial water-impermeable layer 4 (the improvement method of the ground 2) is not particularly limited. For example, the ground 2 can be made of a solidified material such as cement milk using a known jet mixing stirring method, mechanical mixing stirring method, chemical injection method, or the like. The artificial impermeable layer 4 can be formed by solidifying.

人工不透水層4を形成した後、図3(a)、(b)に示すように、山留壁3の間の地盤2の掘削と切梁7の設置を繰り返す。切梁7の一端は腹起し70を介して山留壁3に接続し、他端は中間杭5に取り付ける。これにより山留壁3と中間杭5の間で切梁7を支持させる。   After the artificial impermeable layer 4 is formed, the excavation of the ground 2 between the mountain retaining walls 3 and the installation of the cut beams 7 are repeated as shown in FIGS. 3 (a) and 3 (b). One end of the cut beam 7 is erected and connected to the mountain retaining wall 3 via the boss 70, and the other end is attached to the intermediate pile 5. Thereby, the cut beam 7 is supported between the mountain retaining wall 3 and the intermediate pile 5.

こうして山留壁3の間の地盤2を図4(a)に示すように床付け位置まで掘削した後、図4(b)に示すようにポンプ室1の構築を行う。ポンプ室1の構築時、中間杭5と切梁7は適当な時点で撤去する。例えば切梁7はポンプ室1の底版11と側壁12を下から順に構築するのに応じて下段から順に撤去し、側壁12を頂部まで構築した後中間杭5を底版11上で切断して撤去し、その後分流壁13を構築する。   After excavating the ground 2 between the mountain retaining walls 3 to the flooring position as shown in FIG. 4 (a), the pump chamber 1 is constructed as shown in FIG. 4 (b). When the pump chamber 1 is constructed, the intermediate pile 5 and the cut beam 7 are removed at an appropriate time. For example, the beam 7 is removed from the bottom in order as the bottom plate 11 and the side wall 12 of the pump chamber 1 are constructed in order from the bottom. After the side wall 12 is constructed to the top, the intermediate pile 5 is cut on the bottom plate 11 and removed. Then, the flow dividing wall 13 is constructed.

なお、本実施形態では山留壁3もポンプ室1の構築時に撤去するが、山留壁3を残置する場合もある。また本実施形態では掘削時の床付け位置(ポンプ室1の底版11の下面位置に対応する)を人工不透水層4の上面としているが、それより高い位置でもよい。その場合はポンプ室1の底版11と人工不透水層4の間に地盤2が介在する。またポンプ室1の外面の位置は山留壁3の内面の位置に対応しているが、ポンプ室1の外面の位置はそれより内側でも良い。   In this embodiment, the mountain retaining wall 3 is also removed when the pump chamber 1 is constructed, but the mountain retaining wall 3 may be left behind. In the present embodiment, the flooring position during excavation (corresponding to the lower surface position of the bottom plate 11 of the pump chamber 1) is the upper surface of the artificial impermeable layer 4, but a higher position may be used. In that case, the ground 2 is interposed between the bottom plate 11 of the pump chamber 1 and the artificial impermeable layer 4. Moreover, although the position of the outer surface of the pump chamber 1 corresponds to the position of the inner surface of the mountain retaining wall 3, the position of the outer surface of the pump chamber 1 may be inside.

本実施形態では中間杭5の下端が人工不透水層4より深い位置にあり、中間杭5の人工不透水層4以深の部分(支点形成機構)によって人工不透水層4をその下方の地盤2にアンカーし、地下水の揚圧力に対する抵抗力を中間杭5の位置で人工不透水層4に与えて人工不透水層4の浮き上がりを防止する。   In this embodiment, the lower end of the intermediate pile 5 is located deeper than the artificial impermeable layer 4, and the artificial impermeable layer 4 is grounded below the artificial impermeable layer 4 by a portion (fulcrum formation mechanism) deeper than the artificial impermeable layer 4 of the intermediate pile 5. The artificial impervious layer 4 is prevented from being lifted by giving a resistance force against the groundwater lifting pressure to the artificial impermeable layer 4 at the position of the intermediate pile 5.

これにより、図5に示すように、地下水の揚圧力aに対し人工不透水層4を支持する支点(図中▽で示す)を、山留壁3の位置に加えて中間杭5の位置で新たに形成することができる。   As a result, as shown in FIG. 5, a fulcrum (indicated by ▽ in the figure) that supports the artificial impermeable layer 4 with respect to the groundwater lifting pressure a is added at the position of the intermediate pile 5 in addition to the position of the mountain retaining wall 3. Newly formed.

従来の構造では人工不透水層4の支点が山留壁3の位置のみであり、支点間距離が山留壁3の離れ(スパン)となっていたのが、中間杭5の位置に揚圧力aに抵抗する支点が新たに追加されることにより支点間距離が従来の1/2となる。そのため、揚圧力aによって人工不透水層4に生じる曲げモーメントとせん断力の最大値はそれぞれ従来の1/4、1/2となる。中間杭5の根入れ長や固定部6の仕様は、支点としての効果が得られるように設定される。また、人工不透水層4の上面に当たる位置で中間杭5の周囲にプレート(不図示)を設け、これにより人工不透水層4を抑えて人工不透水層4の浮き上がりを防止することも可能である。   In the conventional structure, the fulcrum of the artificial impermeable layer 4 is only the position of the retaining wall 3, and the distance between the fulcrum is the separation (span) of the retaining wall 3. By newly adding a fulcrum that resists a, the distance between the fulcrums becomes 1/2 of the conventional distance. For this reason, the maximum values of the bending moment and the shearing force generated in the artificial impermeable layer 4 by the lifting pressure a are 1/4 and 1/2 of the conventional values, respectively. The length of the intermediate pile 5 and the specification of the fixed portion 6 are set so that the effect as a fulcrum is obtained. It is also possible to provide a plate (not shown) around the intermediate pile 5 at a position corresponding to the upper surface of the artificial impermeable layer 4, thereby suppressing the artificial impermeable layer 4 and preventing the artificial impermeable layer 4 from rising. is there.

以上説明したように、本実施形態によれば、切梁7の支持用の中間杭5を利用して、山留壁3の間で人工不透水層4に地下水の揚圧力aに対する抵抗力を与え、揚圧力aに対し人工不透水層4を支持する支点を新たに形成することができる。これにより人工不透水層4の支点間距離が小さくなり、地下水の揚圧力aにより人工不透水層4に生じる曲げモーメントやせん断力を小さくすることができる。   As described above, according to the present embodiment, the resistance against the groundwater uplift a is applied to the artificial impermeable layer 4 between the mountain retaining walls 3 using the intermediate pile 5 for supporting the cut beam 7. The fulcrum which supports the artificial impermeable layer 4 with respect to the lifting pressure a can be newly formed. Thereby, the distance between the fulcrums of the artificial impermeable layer 4 is reduced, and the bending moment and shear force generated in the artificial impermeable layer 4 due to the groundwater lift pressure a can be reduced.

そのため、人工不透水層4を薄くしたり強度を抑えたりすることができ、人工不透水層4の形成にかかるコストや工期を抑えることができる。例えば本実施形態のように地下水の揚圧力aにより人工不透水層4に生じるせん断力の最大値を従来の1/2とできる場合、人工不透水層4の厚さは従来の1/2とすることが可能である。また本実施形態では山留壁3と人工不透水層4の下端の位置をほぼ一致させるので、人工不透水層4を薄くする結果、山留壁3の深度も小さくすることができる。   Therefore, the artificial impermeable layer 4 can be made thin or the strength can be suppressed, and the cost and construction period for forming the artificial impermeable layer 4 can be suppressed. For example, when the maximum value of the shear force generated in the artificial impermeable layer 4 by the groundwater lifting pressure a can be ½ of the conventional value as in this embodiment, the thickness of the artificial impermeable layer 4 is 1/2 of the conventional value. Is possible. Moreover, in this embodiment, since the position of the lower end of the mountain retaining wall 3 and the artificial impermeable layer 4 is made to correspond substantially, as a result of making the artificial impermeable layer 4 thin, the depth of the mountain retaining wall 3 can also be reduced.

また本実施形態では、中間杭5の人工不透水層4以深の部分をアンカーとして用い、これにより人工不透水層4をその下方の地盤2にアンカーして地下水の揚圧力aに対する抵抗力を与え、人工不透水層4の浮き上がりを防止して人工不透水層4に支点を形成する。この場合、中間杭5自体に支点形成機構を持たせるので施工が簡単である。またその他の構成については従来通りであり、軽微な変更で済むのでコストの増加を抑制できる。   Moreover, in this embodiment, the part deeper than the artificial impermeable layer 4 of the intermediate pile 5 is used as an anchor, and thereby the artificial impermeable layer 4 is anchored to the ground 2 below to provide resistance to the groundwater lifting pressure a. Then, the artificial impermeable layer 4 is prevented from floating and a fulcrum is formed on the artificial impermeable layer 4. In this case, since the intermediate pile 5 itself has a fulcrum formation mechanism, the construction is simple. In addition, other configurations are the same as in the past, and minor changes can be made, so that an increase in cost can be suppressed.

しかしながら、本発明はこれに限らない。例えば中間杭5は切梁7の座屈防止の目的もあることから、山留壁3のスパンが大きい場合には山留壁3の間に複数本の中間杭5が配置される場合もある。例えば山留壁3のスパンを3分割するように中間杭5を2本配置する場合、地下水の揚圧力aにより人工不透水層4に生じる曲げモーメントとせん断力の最大値はそれぞれ従来の1/9、1/3となる。   However, the present invention is not limited to this. For example, since the intermediate pile 5 has the purpose of preventing buckling of the cut beam 7, when the span of the retaining wall 3 is large, a plurality of intermediate piles 5 may be arranged between the retaining walls 3. . For example, when two intermediate piles 5 are arranged so that the span of the mountain retaining wall 3 is divided into three, the maximum bending moment and shear force generated in the artificial impermeable layer 4 due to the groundwater uplift pressure a are respectively 1 / 9, 1/3.

また、山留壁3の間の中間杭を全て支点として機能させる必要は無く、一部のみ支点として機能させてもよい。例えば山留壁3の間に3本の中間杭を設ける場合、中央の中間杭5のみ本実施形態の構成を有するものとできる。   Moreover, it is not necessary to make all the intermediate piles between the mountain retaining walls 3 function as fulcrums, and only a part may function as fulcrums. For example, when three intermediate piles are provided between the mountain retaining walls 3, only the middle intermediate pile 5 can have the configuration of the present embodiment.

また、図6に示すように山留壁3の延長方向に隣り合う中間杭5同士を梁材9によって接続することも可能であり、これにより支点としての効果をより高めることができる。梁材9は例えば山留壁3の間の地盤2の表面近傍に設け、当該地盤2の掘削に応じて下方に付け替えてゆき、床付け位置まで掘削した時点で床付け位置の表面近傍に配置されるようにする。   Moreover, as shown in FIG. 6, it is also possible to connect the intermediate piles 5 adjacent to each other in the extending direction of the mountain retaining wall 3 by the beam material 9, thereby further enhancing the effect as a fulcrum. For example, the beam member 9 is provided near the surface of the ground 2 between the mountain retaining walls 3 and is changed downward according to the excavation of the ground 2 and is disposed near the surface of the flooring position when the flooring is excavated. To be.

また、本実施形態はポンプ室1の例を挙げて説明したが、これに限ることはなく、ポンプ室1の上流側に設けられる取水ピット、またタービン室から放出された海水を放水路に放水する放水ピットなどにも適用できる。また分流壁13は省略される場合もある。   Moreover, although this embodiment demonstrated and demonstrated the example of the pump chamber 1, it does not restrict to this, The water intake pit provided in the upstream of the pump chamber 1, and the seawater discharge | released from the turbine chamber are discharged into a discharge channel It can also be applied to water discharge pits. Further, the flow dividing wall 13 may be omitted.

さらに、本実施形態はその他の地下構造物の構築時にも適用可能であり、例えば図7のような道路トンネルなどのボックスカルバート10の構築時にも適用できる。図7のボックスカルバート10は底版110、側壁120、中壁(あるいは柱)130、頂版140を有する。図7は2連形式のボックスカルバート10の例であるが、4連形式のボックスカルバートや中壁130の無い1連形式のボックスカルバートなどにも同様に適用できる。ボックスカルバート10の構築方法は前記と略同様である。ただし、頂版140を構築した後、その上部は埋戻土で埋め戻される。   Further, the present embodiment can be applied to the construction of other underground structures, and can be applied to the construction of a box culvert 10 such as a road tunnel as shown in FIG. The box culvert 10 in FIG. 7 has a bottom plate 110, a side wall 120, a middle wall (or column) 130, and a top plate 140. FIG. 7 shows an example of a double box culvert 10, but the present invention can be similarly applied to a quadruple box culvert or a single box culvert having no inner wall 130. The construction method of the box culvert 10 is substantially the same as described above. However, after the top plate 140 is constructed, the upper part thereof is backfilled with backfill.

以下、支点形成機構が異なる本発明の別の例を第2、第3の実施形態として説明する。第2、第3の実施形態は第1の実施形態と異なる構成について主に説明し、同様の構成については図等で同じ符号を付すなどして説明を省略する。また、第1の実施形態も含め、各実施形態で説明する構成は互いに組み合わせて用いることも可能である。   Hereinafter, another example of the present invention having different fulcrum forming mechanisms will be described as second and third embodiments. In the second and third embodiments, the configuration different from that of the first embodiment will be mainly described, and the description of the same configuration will be omitted by attaching the same reference numerals in the drawings and the like. In addition, the configurations described in each embodiment including the first embodiment can be used in combination with each other.

[第2の実施形態]
第2の実施形態は、支点形成機構としてグラウンドアンカーを用いる点で第1の実施形態と異なる。
[Second Embodiment]
The second embodiment is different from the first embodiment in that a ground anchor is used as a fulcrum formation mechanism.

すなわち、第2の実施形態では、図8(a)に示すように山留壁3および中間杭5の打設とグラウンドアンカー8の設置を行い、中間杭5にグラウンドアンカー8を接続する。グラウンドアンカー8は中間杭5に対応する平面位置に設けられ、その下端はコンクリート等の固定部6aで固定される。グラウンドアンカー8の施工方法は特に限定されず、既知の工法を利用可能である。   That is, in the second embodiment, as shown in FIG. 8A, the mountain retaining wall 3 and the intermediate pile 5 are placed and the ground anchor 8 is installed, and the ground anchor 8 is connected to the intermediate pile 5. The ground anchor 8 is provided at a planar position corresponding to the intermediate pile 5, and the lower end thereof is fixed by a fixing portion 6a such as concrete. The construction method of the ground anchor 8 is not particularly limited, and a known construction method can be used.

その後、図8(b)に示すように人工不透水層4を形成し、グラウンドアンカー8の頂部を中間杭5の頂部に固定し、その後緊張する。本実施形態でも中間杭5の下部は人工不透水層4に埋設されるが、当該下部は人工不透水層4を貫通しない。その代わり、グラウンドアンカー8の下端が人工不透水層4より深い位置の地盤2に固定される。   Thereafter, as shown in FIG. 8B, the artificial impermeable layer 4 is formed, and the top portion of the ground anchor 8 is fixed to the top portion of the intermediate pile 5, and then it is strained. Even in this embodiment, the lower portion of the intermediate pile 5 is embedded in the artificial impermeable layer 4, but the lower portion does not penetrate the artificial impermeable layer 4. Instead, the lower end of the ground anchor 8 is fixed to the ground 2 at a position deeper than the artificial impermeable layer 4.

以下、第1の実施形態と同様、山留壁3の間の地盤2の掘削と切梁7の設置を繰り返し、図9(a)に示すように山留壁3の内側の地盤2を床付け位置まで掘削した後、図9(b)に示すようにポンプ室1aが構築される。   Thereafter, similarly to the first embodiment, the excavation of the ground 2 between the retaining walls 3 and the installation of the cut beams 7 are repeated, and the ground 2 inside the retaining walls 3 is floored as shown in FIG. After excavating to the attachment position, the pump chamber 1a is constructed as shown in FIG. 9 (b).

本実施形態では、グラウンドアンカー8と中間杭5により人工不透水層4をその下方の地盤2にアンカーすることで、第1の実施形態と同様、人工不透水層4に地下水の揚圧力aに対する抵抗力を与え、揚圧力aに対し人工不透水層4を支持する支点を中間杭5の位置で新たに形成することができる。これにより、第2の実施形態でも第1の実施形態と同様の効果が得られる。グラウンドアンカー8の仕様は、支点としての効果が得られるように設定される。   In the present embodiment, the artificial impermeable layer 4 is anchored to the lower ground 2 by the ground anchor 8 and the intermediate pile 5, and the artificial impermeable layer 4 is subjected to the groundwater lifting pressure a as in the first embodiment. A fulcrum that gives resistance and supports the artificial impermeable layer 4 against the lifting pressure a can be newly formed at the position of the intermediate pile 5. Thereby, also in 2nd Embodiment, the effect similar to 1st Embodiment is acquired. The specification of the ground anchor 8 is set so as to obtain an effect as a fulcrum.

さらに本実施形態ではグラウンドアンカー8の緊張力によって高い抵抗力を与えることができる。またグラウンドアンカー8以外の構成については従来通りであるので、軽微な変更で済みコストの増加を抑制できる。   Furthermore, in this embodiment, a high resistance can be given by the tension of the ground anchor 8. Further, since the configuration other than the ground anchor 8 is the same as the conventional configuration, a slight change can be made and an increase in cost can be suppressed.

[第3の実施形態]
第3の実施形態は、支点形成機構として中間杭5の周囲にコンクリートを巻き立てる点で第1の実施形態と異なる。
[Third Embodiment]
The third embodiment differs from the first embodiment in that concrete is wound up around the intermediate pile 5 as a fulcrum formation mechanism.

第3の実施形態では、まず図10(a)に示すように山留壁3、中間杭5、および人工不透水層4の施工を行う。その方法は第1の実施形態と同様であり、中間杭5の下部も人工不透水層4に埋設されるが、当該下部は人工不透水層4を貫通せず、中間杭5の下端が人工不透水層4内で固定部6により固定される。   In the third embodiment, first, as shown in FIG. 10A, the mountain retaining wall 3, the intermediate pile 5, and the artificial impermeable layer 4 are constructed. The method is the same as in the first embodiment, and the lower part of the intermediate pile 5 is also embedded in the artificial impermeable layer 4, but the lower part does not penetrate the artificial impermeable layer 4, and the lower end of the intermediate pile 5 is artificial. The impermeable layer 4 is fixed by the fixing portion 6.

その後、図10(b)に示すように山留壁3の間の地盤2の掘削と分流壁13のコンクリートの打設を行う。ここでは中間杭5を支持部材として中間杭5を巻き込むように分流壁13のコンクリートを打設し、その後図11(a)に示すように切梁7の設置を行う。切梁7は分流壁13のコンクリートの外面に固定する。以下、山留壁3の間の地盤2の掘削と分流壁13のコンクリートの打設、および切梁7の設置を上から順に行う。これにより図11(b)に示すように山留壁3の間の地盤2が床付け位置まで掘削されるとともに、分流壁13が逆巻き工法で構築される。   Then, as shown in FIG.10 (b), excavation of the ground 2 between the mountain retaining walls 3 and concrete placement of the flow dividing wall 13 are performed. Here, the concrete of the flow dividing wall 13 is driven so that the intermediate pile 5 can be wound up using the intermediate pile 5 as a supporting member, and then the cut beam 7 is installed as shown in FIG. The beam 7 is fixed to the concrete outer surface of the flow dividing wall 13. Hereinafter, excavation of the ground 2 between the mountain retaining walls 3, placement of the concrete of the flow dividing wall 13, and installation of the beam 7 are performed in order from the top. As a result, as shown in FIG. 11B, the ground 2 between the mountain retaining walls 3 is excavated to the flooring position, and the flow dividing wall 13 is constructed by the reverse winding method.

その後、図12に示すようにポンプ室1bが構築される。本実施形態では本設の分流壁13が先行して構築されるので、ここではポンプ室1bの底版11と側壁12のみ構築すればよい。また第1の実施形態と異なり、中間杭5は撤去せず残置される。   Thereafter, a pump chamber 1b is constructed as shown in FIG. In this embodiment, since the main branch wall 13 is constructed in advance, only the bottom plate 11 and the side wall 12 of the pump chamber 1b may be constructed here. Moreover, unlike the first embodiment, the intermediate pile 5 is left without being removed.

本実施形態では、分流壁13の位置に中間杭5を設置し、人工不透水層4より上方にある分流壁13のコンクリートを逆巻き工法で中間杭5の周囲に打設することで、中間杭5を介して人工不透水層4に上方からのコンクリート荷重を与える。これにより、第1の実施形態と同様、人工不透水層4に地下水の揚圧力aに対する抵抗力を与え、中間杭5の位置で人工不透水層4に支点を形成することが可能になり、第1の実施形態と同様の効果が得られる。分流壁13のコンクリートの重量は、支点としての効果が得られるように設定される。   In this embodiment, the intermediate pile 5 is installed at the position of the flow dividing wall 13, and the concrete of the flow dividing wall 13 located above the artificial impermeable layer 4 is driven around the intermediate pile 5 by the reverse winding method. A concrete load from above is applied to the artificial impermeable layer 4 through 5. Thereby, like the first embodiment, it is possible to give the artificial impermeable layer 4 a resistance against the groundwater lifting pressure a, and to form a fulcrum in the artificial impermeable layer 4 at the position of the intermediate pile 5, The same effect as in the first embodiment can be obtained. The weight of the concrete of the flow dividing wall 13 is set so that the effect as a fulcrum can be obtained.

また、本実施形態では地上部分で支点形成機構を設けることができるので施工も容易であり、コンクリートを逆巻き工法で施工しポンプ室1bの本設の分流壁13として利用することでポンプ室1bの構築にかかる工期の延長も防止できる。さらに、中間杭5や分流壁13の仕様に大きな変更は無く、コストの増加も抑制できる。   Moreover, in this embodiment, since a fulcrum formation mechanism can be provided in a ground part, construction is also easy, and concrete is constructed by the reverse winding method and used as the main branch wall 13 of the pump chamber 1b. It can also prevent the construction period from being extended. Furthermore, there is no big change in the specifications of the intermediate pile 5 and the flow dividing wall 13, and an increase in cost can be suppressed.

以上、添付図面を参照して、本発明の好適な実施形態について説明したが、本発明は係る例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea disclosed in the present application, and these are naturally within the technical scope of the present invention. Understood.

1、1a、1b:ポンプ室
2:地盤
3:山留壁
4:人工不透水層
5:中間杭
6、6a:固定部
7:切梁
8:グラウンドアンカー
9:梁材
10:ボックスカルバート
11、110:底版
12、120:側壁
13:分流壁
130:中壁
140:頂版
DESCRIPTION OF SYMBOLS 1, 1a, 1b: Pump room 2: Ground 3: Mountain retaining wall 4: Artificial impermeable layer 5: Intermediate pile 6, 6a: Fixed part 7: Cut beam 8: Ground anchor 9: Beam material 10: Box culvert 11, 110: Bottom plate 12, 120: Side wall 13: Split wall 130: Middle wall 140: Top plate

Claims (6)

地盤の掘削箇所の両側の山留壁と、
前記山留壁の間の地盤を改良して形成された人工不透水層と、
前記山留壁の間に設けられ、下部が前記人工不透水層に埋設される、前記山留壁との間で切梁を支持するための中間杭と、
を有し、
前記中間杭には、前記人工不透水層に加わる地下水の揚圧力に対する抵抗力を、前記中間杭の位置で前記人工不透水層に与えるための支点形成機構が設けられることを特徴とする地盤改良構造。
Mountain retaining walls on both sides of the excavation point of the ground,
An artificial impermeable layer formed by improving the ground between the mountain retaining walls;
An intermediate pile for supporting a beam between the mountain retaining wall, provided between the mountain retaining walls, and a lower part embedded in the artificial impermeable layer,
Have
The ground improvement, wherein the intermediate pile is provided with a fulcrum forming mechanism for giving the artificial impervious layer resistance to groundwater lifting pressure applied to the artificial impermeable layer at the position of the intermediate pile. Construction.
前記中間杭の下端は前記人工不透水層より深い位置にあり、
前記支点形成機構は、前記中間杭の前記人工不透水層以深の部分であることを特徴とする請求項1記載の地盤改良構造。
The lower end of the intermediate pile is deeper than the artificial impermeable layer,
The ground improvement structure according to claim 1, wherein the fulcrum formation mechanism is a portion deeper than the artificial impermeable layer of the intermediate pile.
前記支点形成機構は、前記中間杭に接続され、且つ下端が前記人工不透水層より深い位置の地盤に固定されたグラウンドアンカーであることを特徴とする請求項1記載の地盤改良構造。   The ground improvement structure according to claim 1, wherein the fulcrum formation mechanism is a ground anchor connected to the intermediate pile and having a lower end fixed to a ground deeper than the artificial impermeable layer. 前記支点形成機構は、前記人工不透水層より上方で前記中間杭の周囲に設けられたコンクリートであることを特徴とする請求項1記載の地盤改良構造。   The ground improvement structure according to claim 1, wherein the fulcrum formation mechanism is concrete provided around the intermediate pile above the artificial impermeable layer. 地盤の掘削箇所の両側の山留壁、前記山留壁の間の中間杭および人工不透水層を設ける工程(a)と、
前記山留壁の間の地盤の掘削と、前記山留壁と前記中間杭の間の切梁の設置を行う工程(b)と、
を有し、
前記中間杭の下部は前記人工不透水層に埋設され、
前記中間杭には、前記人工不透水層に加わる地下水の揚圧力に対する抵抗力を、前記中間杭の位置で前記人工不透水層に与えるための支点形成機構が設けられることを特徴とする掘削方法。
A step (a) of providing a mountain retaining wall on both sides of a ground excavation site, an intermediate pile between the mountain retaining wall and an artificial impermeable layer;
(B) performing excavation of the ground between the mountain retaining walls, and installing a beam between the mountain retaining wall and the intermediate pile;
Have
The lower part of the intermediate pile is embedded in the artificial impermeable layer,
The intermediate pile is provided with a fulcrum formation mechanism for providing the artificial impervious layer with resistance to groundwater lifting pressure applied to the artificial impervious layer at the position of the intermediate pile. .
前記支点形成機構は、前記人工不透水層より上方で前記中間杭の周囲に設けられるコンクリートであり、
前記コンクリートは、前記工程(b)において上から順に構築されることを特徴とする請求項5記載の掘削方法。
The fulcrum formation mechanism is concrete provided around the intermediate pile above the artificial impermeable layer,
The excavation method according to claim 5, wherein the concrete is constructed in order from the top in the step (b).
JP2018093006A 2018-05-14 2018-05-14 Ground improvement structure and excavation method Active JP7017980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018093006A JP7017980B2 (en) 2018-05-14 2018-05-14 Ground improvement structure and excavation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018093006A JP7017980B2 (en) 2018-05-14 2018-05-14 Ground improvement structure and excavation method

Publications (2)

Publication Number Publication Date
JP2019199692A true JP2019199692A (en) 2019-11-21
JP7017980B2 JP7017980B2 (en) 2022-02-09

Family

ID=68611848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018093006A Active JP7017980B2 (en) 2018-05-14 2018-05-14 Ground improvement structure and excavation method

Country Status (1)

Country Link
JP (1) JP7017980B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111560964A (en) * 2020-05-29 2020-08-21 北京市地质工程公司 Construction method of rear anti-seepage system of foundation pit
CN112177008A (en) * 2020-09-07 2021-01-05 中国一冶集团有限公司 Construction method for deep foundation pit excavation
CN113293773A (en) * 2021-06-30 2021-08-24 中铁二十三局集团第二工程有限公司 Foundation pit supporting system and construction method thereof
CN113373936A (en) * 2021-06-10 2021-09-10 浙江鹏盛建设集团有限公司 Assembly type structure and construction method thereof
CN114457850A (en) * 2022-03-11 2022-05-10 浙江交工集团股份有限公司 Construction method of anti-floating system for crossing existing subway intersection section on open trench tunnel
CN115288157A (en) * 2022-08-30 2022-11-04 中国一冶集团有限公司 Foundation pit bottom plate support replacing device and method

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5091113A (en) * 1973-12-15 1975-07-21
JPH04272388A (en) * 1991-02-27 1992-09-29 Maeda Corp Bottom water cut-off method of vertical shaft
JPH06158671A (en) * 1992-11-19 1994-06-07 Taisei Corp Method for preventing floating of underground structure
JPH11181806A (en) * 1997-12-19 1999-07-06 Japan Railway Constr Pub Corp Heaving preventing method and construction of underground building
JPH11209998A (en) * 1998-01-26 1999-08-03 Takenaka Komuten Co Ltd Impermeable construction method of underground structure by self-standing type double impermeable walls
JPH11247174A (en) * 1998-02-27 1999-09-14 Takenaka Komuten Co Ltd Groundwater collecting method in underground water isolation method
JP2000017676A (en) * 1998-07-03 2000-01-18 Maeda Corp Ground stabilizing construction method
JP2000144742A (en) * 1998-11-06 2000-05-26 Ohbayashi Corp Artesian countermeasure method in ground excavation work
JP2001182088A (en) * 1999-12-28 2001-07-03 Zenitaka Corp Heaving prevention device
JP2003171949A (en) * 2001-12-04 2003-06-20 Tobishima Corp Excavating bottom surface-stabilizing construction method and underground building construction method
JP2004027722A (en) * 2002-06-27 2004-01-29 Zenitaka Corp Bottom ground reinforcing device and bottom ground reinforcing method
JP2004285678A (en) * 2003-03-20 2004-10-14 Fujita Corp Method and structure for suppressing buoyancy of structure
JP2006002439A (en) * 2004-06-17 2006-01-05 Yoshinori Suzuki Heaving prevention method
JP2010133159A (en) * 2008-12-05 2010-06-17 Tobishima Corp Heave preventive pile
JP2010185239A (en) * 2009-02-13 2010-08-26 Penta Ocean Construction Co Ltd Earth retaining wall and construction method thereof
JP2015229822A (en) * 2014-06-03 2015-12-21 大成建設株式会社 Earth retaining structure and construction method for the same

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5091113A (en) * 1973-12-15 1975-07-21
JPH04272388A (en) * 1991-02-27 1992-09-29 Maeda Corp Bottom water cut-off method of vertical shaft
JPH06158671A (en) * 1992-11-19 1994-06-07 Taisei Corp Method for preventing floating of underground structure
JPH11181806A (en) * 1997-12-19 1999-07-06 Japan Railway Constr Pub Corp Heaving preventing method and construction of underground building
JPH11209998A (en) * 1998-01-26 1999-08-03 Takenaka Komuten Co Ltd Impermeable construction method of underground structure by self-standing type double impermeable walls
JPH11247174A (en) * 1998-02-27 1999-09-14 Takenaka Komuten Co Ltd Groundwater collecting method in underground water isolation method
JP2000017676A (en) * 1998-07-03 2000-01-18 Maeda Corp Ground stabilizing construction method
JP2000144742A (en) * 1998-11-06 2000-05-26 Ohbayashi Corp Artesian countermeasure method in ground excavation work
JP2001182088A (en) * 1999-12-28 2001-07-03 Zenitaka Corp Heaving prevention device
JP2003171949A (en) * 2001-12-04 2003-06-20 Tobishima Corp Excavating bottom surface-stabilizing construction method and underground building construction method
JP2004027722A (en) * 2002-06-27 2004-01-29 Zenitaka Corp Bottom ground reinforcing device and bottom ground reinforcing method
JP2004285678A (en) * 2003-03-20 2004-10-14 Fujita Corp Method and structure for suppressing buoyancy of structure
JP2006002439A (en) * 2004-06-17 2006-01-05 Yoshinori Suzuki Heaving prevention method
JP2010133159A (en) * 2008-12-05 2010-06-17 Tobishima Corp Heave preventive pile
JP2010185239A (en) * 2009-02-13 2010-08-26 Penta Ocean Construction Co Ltd Earth retaining wall and construction method thereof
JP2015229822A (en) * 2014-06-03 2015-12-21 大成建設株式会社 Earth retaining structure and construction method for the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111560964A (en) * 2020-05-29 2020-08-21 北京市地质工程公司 Construction method of rear anti-seepage system of foundation pit
CN111560964B (en) * 2020-05-29 2020-12-22 北京市地质工程公司 Construction method of rear anti-seepage system of foundation pit
CN112177008A (en) * 2020-09-07 2021-01-05 中国一冶集团有限公司 Construction method for deep foundation pit excavation
CN113373936A (en) * 2021-06-10 2021-09-10 浙江鹏盛建设集团有限公司 Assembly type structure and construction method thereof
CN113293773A (en) * 2021-06-30 2021-08-24 中铁二十三局集团第二工程有限公司 Foundation pit supporting system and construction method thereof
CN114457850A (en) * 2022-03-11 2022-05-10 浙江交工集团股份有限公司 Construction method of anti-floating system for crossing existing subway intersection section on open trench tunnel
CN115288157A (en) * 2022-08-30 2022-11-04 中国一冶集团有限公司 Foundation pit bottom plate support replacing device and method
CN115288157B (en) * 2022-08-30 2023-07-18 中国一冶集团有限公司 Foundation pit bottom plate support changing device and method

Also Published As

Publication number Publication date
JP7017980B2 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
JP2019199692A (en) Ground improvement structure and excavating method
CN105155554B (en) A kind of deep basal pit of arching system
JP2010121404A (en) Construction method of multiple tunnel and structure of multiple tunnel
JP5976373B2 (en) Pile foundation reinforcement structure and reinforcement method
JP2007162266A (en) Two-step earth retaining wall and its construction method
KR102223856B1 (en) Foundation structure of waste landfill site and construction method thereof
JP2007211408A (en) Seismic strengthening construction method for existing concrete bridge pier
JP3761323B2 (en) How to rebuild a building
JP2000352296A (en) Method o constructing passage just under underground structure
JP4226954B2 (en) Underpinning method and viaduct
JP6326294B2 (en) Construction method of earth retaining structure
JP4440799B2 (en) Ground excavation method
JP2001303883A (en) Excavation method using earth retaining structure composed of ring beam, inverted lining wall and rock bolt
JP2011236705A (en) Foundation structure of structure and method of constructing the same
KR102337545B1 (en) Underground retaining wall using concrete pile and soil retaining plate
JP2017214722A (en) Construction method of base structure, and base structure
JP7075280B2 (en) Ground improvement structure and excavation method
JP4475116B2 (en) Vertical shaft structure and its construction method
CN208309592U (en) Foundation pit supporting structure
JP4900091B2 (en) Embankment structure, embankment method
JP3886275B2 (en) Underground tank structure
JP6534026B2 (en) Seismic isolation building and its construction method
JPH1077644A (en) Earthquake resisting pile foundation construction method
KR102174966B1 (en) Foundation structure of air dome in waste landfill site and construction method thereof
JP3005609B2 (en) Construction method for high strength steel continuous walls

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220128

R150 Certificate of patent or registration of utility model

Ref document number: 7017980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150