JP2019196518A - Manufacturing method of carburized component - Google Patents

Manufacturing method of carburized component Download PDF

Info

Publication number
JP2019196518A
JP2019196518A JP2018090570A JP2018090570A JP2019196518A JP 2019196518 A JP2019196518 A JP 2019196518A JP 2018090570 A JP2018090570 A JP 2018090570A JP 2018090570 A JP2018090570 A JP 2018090570A JP 2019196518 A JP2019196518 A JP 2019196518A
Authority
JP
Japan
Prior art keywords
refractory metal
clamping member
manufacturing
metal part
sandwiching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018090570A
Other languages
Japanese (ja)
Other versions
JP7095385B2 (en
Inventor
裕也 久野
Hironari Kuno
裕也 久野
雄一郎 徳田
yuichiro Tokuda
雄一郎 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018090570A priority Critical patent/JP7095385B2/en
Publication of JP2019196518A publication Critical patent/JP2019196518A/en
Application granted granted Critical
Publication of JP7095385B2 publication Critical patent/JP7095385B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To suppress as much as possible deformation caused by a carburization treatment, when manufacturing a carburized component by carburizing a high-melting metal component.SOLUTION: A method for manufacturing a carburized component by carburizing a high-melting metal component (20) includes following procedures. The high-melting metal component is held between a first holding member (21) and a second holding member (22) which are both rigid bodies, and either or both of which have a function as a carbon supply source. Hereby, a laminate (S) of the first holding member, the high-melting metal component and the second holding member is formed. Subsequently, the laminate is subjected to a carburization treatment, while being heated.SELECTED DRAWING: Figure 2

Description

本発明は、高融点金属部品を浸炭することにより浸炭部品を製造する方法に関する。   The present invention relates to a method of manufacturing a carburized part by carburizing a refractory metal part.

タンタル等の高融点金属によって形成された部品に対しては、例えば、耐久性向上等のために、浸炭処理が施されることがある。浸炭処理の際には、当該部品に、高温(例えば2000℃以上の温度)が長時間加えられる。このため、加熱温度が融点よりも低温であっても、当該部品が、所望の寸法あるいは形状から乖離する程度に変形してしまう懸念がある。   For parts formed of a refractory metal such as tantalum, for example, carburizing treatment may be performed to improve durability. During the carburizing process, a high temperature (for example, a temperature of 2000 ° C. or higher) is applied to the part for a long time. For this reason, even if the heating temperature is lower than the melting point, there is a concern that the component is deformed to a degree that deviates from a desired size or shape.

この点、例えば、特許文献1は、平面部を有するタンタル部材の浸炭処理方法を開示する。かかる方法は、以下の工程を有する。(1)先端部がテーパー状に形成された複数の支持棒によって平面部を支持することにより、タンタル部材を、炭素源が存在するチャンバー内に配置する工程。(2)チャンバー内を減圧し加熱することにより、炭素源からの炭素をタンタル部材の表面から浸透させて浸炭処理を施す工程。   In this regard, for example, Patent Document 1 discloses a carburizing method for a tantalum member having a flat portion. Such a method includes the following steps. (1) The process which arrange | positions a tantalum member in the chamber in which a carbon source exists by supporting a plane part with the some support rod in which the front-end | tip part was formed in the taper shape. (2) A step of subjecting the carbon from the carbon source to infiltrate from the surface of the tantalum member and subjecting it to carburizing treatment by reducing the pressure in the chamber and heating.

特開2010−280948号公報JP 2010-280948 A

高融点金属部品を浸炭することにより浸炭部品を製造するに際しては、特許文献1にも記載されている通り、浸炭処理による変形を可及的に抑制することが求められている。本発明は、上記に例示した事情等に鑑みてなされたものである。   When manufacturing a carburized part by carburizing a refractory metal part, as described in Patent Document 1, it is required to suppress deformation due to carburization as much as possible. The present invention has been made in view of the circumstances exemplified above.

請求項1に記載の、浸炭部品(10)の製造方法は、高融点金属部品(20)を浸炭することにより前記浸炭部品を製造する方法である。
かかる製造方法は、以下の処理を含む。
ともに剛体である第一挟持部材(21)と第二挟持部材(22)との間に前記高融点金属部品を挟持することで、前記第一挟持部材と前記高融点金属部品と前記第二挟持部材との積層体(S)を形成し、
前記積層体を加熱しつつ浸炭処理する。
The manufacturing method of the carburized component (10) according to claim 1 is a method of manufacturing the carburized component by carburizing the refractory metal component (20).
Such a manufacturing method includes the following processes.
By sandwiching the refractory metal part between the first clamping member (21) and the second clamping member (22), both of which are rigid bodies, the first clamping member, the refractory metal part, and the second clamping Forming a laminate (S) with the member,
The laminated body is carburized while being heated.

かかる製造方法においては、浸炭処理中に、前記高融点金属部品は、ともに剛体である前記第一挟持部材と前記第二挟持部材との間で挟持される。したがって、浸炭処理中における、加熱による前記高融点金属部品の変形が、可及的に抑制され得る。   In such a manufacturing method, the refractory metal parts are sandwiched between the first sandwiching member and the second sandwiching member, both of which are rigid bodies, during the carburizing process. Therefore, deformation of the refractory metal part due to heating during the carburizing process can be suppressed as much as possible.

なお、出願書類中の各欄において、各要素に括弧付きの参照符号が付されている場合、かかる参照符号は、単に、同要素と後述する実施形態に記載の具体的構成との対応関係の一例を示すものである。よって、本発明は、かかる参照符号の記載によって、何ら限定されるものではない。   In each column of the application document, when each element is given a reference numeral in parentheses, the reference numeral simply indicates a correspondence relationship between the element and a specific configuration described in an embodiment described later. An example is shown. Therefore, the present invention is not limited by the description of the reference symbols.

第一実施形態に係る浸炭部品の概略構成を示す側断面図である。It is a sectional side view which shows schematic structure of the carburized component which concerns on 1st embodiment. 図1に示された浸炭部品の製造方法の概略を示す側断面図である。It is a sectional side view which shows the outline of the manufacturing method of the carburized component shown by FIG. 第二実施形態に係る浸炭部品の概略構成を示す側断面図である。It is a sectional side view which shows schematic structure of the carburized component which concerns on 2nd embodiment. 図3に示された浸炭部品の製造方法の概略を示す側断面図である。It is a sectional side view which shows the outline of the manufacturing method of the carburized component shown by FIG. 図4に示された高融点金属部品の概略構成を示す平面図である。It is a top view which shows schematic structure of the refractory metal component shown by FIG. 図4に示された第一挟持部材の概略構成を示す平面図である。It is a top view which shows schematic structure of the 1st clamping member shown by FIG. 図4に示された第二挟持部材の概略構成を示す平面図である。It is a top view which shows schematic structure of the 2nd clamping member shown by FIG. 第三実施形態に係る製造方法の概略を示す側断面図である。It is a sectional side view which shows the outline of the manufacturing method which concerns on 3rd embodiment. 第四実施形態に係る浸炭部品の概略構成を示す側断面図である。It is a sectional side view which shows schematic structure of the carburized component which concerns on 4th embodiment. 図9に示された浸炭部品の製造方法の概略を示す側断面図である。FIG. 10 is a side sectional view showing an outline of a method of manufacturing the carburized component shown in FIG. 9.

(実施形態)
以下、本発明の実施形態を、図面に基づいて説明する。なお、一つの実施形態に対して適用可能な各種の変形例については、当該実施形態に関する一連の説明の途中に挿入されると当該実施形態の理解が妨げられるおそれがあるため、当該実施形態の説明の後にまとめて記載する。
(Embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that various modifications that can be applied to one embodiment may interfere with understanding of the embodiment if inserted in the middle of a series of descriptions related to the embodiment. It is described collectively after the explanation.

(第一実施形態)
まず、図1を参照しつつ、第一実施形態に係る浸炭部品10の概略構成について説明する。本実施形態においては、浸炭部品10は、板状またはブロック状の形状を有している。
(First embodiment)
First, a schematic configuration of the carburized component 10 according to the first embodiment will be described with reference to FIG. In the present embodiment, the carburized component 10 has a plate shape or a block shape.

本実施形態においては、浸炭部品10は、高融点金属であるタンタルまたはタンタル合金によって形成された部品に対して浸炭処理を行うことによって形成されている。すなわち、浸炭部品10の中心部11は、タンタルまたはタンタル合金によって構成されている。一方、中心部11の周囲には、浸炭層12が形成されている。   In the present embodiment, the carburized component 10 is formed by performing a carburizing process on a component formed of tantalum or a tantalum alloy that is a refractory metal. That is, the central portion 11 of the carburized component 10 is made of tantalum or a tantalum alloy. On the other hand, a carburized layer 12 is formed around the central portion 11.

以下、図1に示された浸炭部品10の製造方法について、図2を参照しつつ説明する。なお、説明の便宜上、図2において、図示の通りに、右手系XYZ直交座標を設定する。また、図2において、下方向すなわちZ軸負方向が、重力作用方向であるものとする。   Hereinafter, the manufacturing method of the carburized component 10 shown in FIG. 1 will be described with reference to FIG. For convenience of explanation, right-handed XYZ orthogonal coordinates are set as shown in FIG. In FIG. 2, the downward direction, that is, the negative Z-axis direction is assumed to be the direction of gravity action.

まず、浸炭前のタンタルまたはタンタル合金によって形成された、板状またはブロック状の高融点金属部品20を用意する。また、剛体であり板状またはブロック状の、第一挟持部材21および第二挟持部材22を用意する。本実施形態においては、第一挟持部材21および第二挟持部材22は、一方または双方が炭素供給源としての機能を有する。具体的には、第一挟持部材21および第二挟持部材22は、双方が炭素供給源としての機能を有するように、黒鉛材料によって形成されている。   First, a plate-shaped or block-shaped refractory metal part 20 formed of tantalum or a tantalum alloy before carburizing is prepared. Moreover, the 1st clamping member 21 and the 2nd clamping member 22 which are rigid bodies and are plate shape or block shape are prepared. In the present embodiment, one or both of the first clamping member 21 and the second clamping member 22 have a function as a carbon supply source. Specifically, the first clamping member 21 and the second clamping member 22 are formed of a graphite material so that both have a function as a carbon supply source.

次に、第一挟持部材21と第二挟持部材22との間に高融点金属部品20を挟持することで、高融点金属部品20と第一挟持部材21と第二挟持部材22との積層体Sを形成する。この積層体Sにおける積層方向を、図中、積層軸L1として示す。すなわち、積層体Sは、第一挟持部材21と高融点金属部品20と第二挟持部材22とを、この順に積層方向に配列したものである。   Next, the refractory metal component 20 is sandwiched between the first sandwiching member 21 and the second sandwiching member 22, so that the laminated body of the refractory metal component 20, the first sandwiching member 21, and the second sandwiching member 22. S is formed. The stacking direction in the stacked body S is shown as a stacking axis L1 in the drawing. That is, the laminated body S is obtained by arranging the first sandwiching member 21, the refractory metal component 20, and the second sandwiching member 22 in this order in the stacking direction.

続いて、図2に示されているように、積層体Sを、加熱炉30内に投入する。具体的には、本実施形態においては、加熱炉30内において、積層体Sを、耐熱材料製の載置台31上に載置する。載置台31の上面は、ほぼ水平に保持されている。すなわち、積層体Sの積層方向は、重力作用方向に沿った方向となる。具体的には、積層体Sの積層方向と重力作用方向とのなす角度は、0〜10度程度である。さらに、積層体Sの上に、密度1.5g/cm3以上の耐熱部材40を載置する。 Subsequently, as shown in FIG. 2, the stacked body S is put into the heating furnace 30. Specifically, in the present embodiment, the stacked body S is placed on a placing table 31 made of a heat-resistant material in the heating furnace 30. The upper surface of the mounting table 31 is held almost horizontally. That is, the stacking direction of the stacked body S is a direction along the gravity action direction. Specifically, the angle formed by the stacking direction of the stacked body S and the direction of gravity action is about 0 to 10 degrees. Further, a heat resistant member 40 having a density of 1.5 g / cm 3 or more is placed on the laminate S.

続いて、加熱炉30内に投入した積層体Sを、加熱炉30内にて加熱する。加熱温度は、例えば、2000℃以上である。すると、高融点金属部品20の両側に位置する第一挟持部材21および第二挟持部材22が炭素供給源として機能することで、高融点金属部品20の表面側から炭素が浸入する。このようにして、浸炭処理が行われる。   Subsequently, the stacked body S put in the heating furnace 30 is heated in the heating furnace 30. The heating temperature is, for example, 2000 ° C. or higher. Then, the first sandwiching member 21 and the second sandwiching member 22 located on both sides of the refractory metal component 20 function as a carbon supply source, so that carbon enters from the surface side of the refractory metal component 20. In this way, the carburizing process is performed.

上記の通り、本実施形態の製造方法においては、浸炭処理中に、高融点金属部品20は、ともに剛体である第一挟持部材21と第二挟持部材22との間で挟持される。これにより、浸炭処理中における、高融点金属部品20の変形が、可及的に抑制され得る。したがって、本実施形態によれば、所望の形状の浸炭部品10を安定的に製造することが可能となる。   As described above, in the manufacturing method of the present embodiment, the refractory metal component 20 is sandwiched between the first sandwiching member 21 and the second sandwiching member 22 that are both rigid bodies during the carburizing process. Thereby, the deformation | transformation of the high melting-point metal component 20 during a carburizing process can be suppressed as much as possible. Therefore, according to the present embodiment, it is possible to stably manufacture the carburized component 10 having a desired shape.

本実施形態においては、高融点金属部品20、第一挟持部材21、および第二挟持部材22は、板状またはブロック状の形状を有している。また、積層体Sは、第一挟持部材21と、高融点金属部品20と、第二挟持部材22とを、この順に積層方向に配列したものである。さらに、本実施形態の製造方法は、積層体Sにおける積層方向が重力作用方向に沿った状態で、浸炭処理を行う。したがって、浸炭処理中における、高融点金属部品20の変形が、よりいっそう良好に抑制され得る。   In the present embodiment, the refractory metal part 20, the first clamping member 21, and the second clamping member 22 have a plate shape or a block shape. Moreover, the laminated body S arranges the 1st clamping member 21, the high melting-point metal component 20, and the 2nd clamping member 22 in the lamination direction in this order. Furthermore, the manufacturing method of the present embodiment performs the carburizing process in a state where the stacking direction in the stacked body S is along the gravity action direction. Therefore, the deformation of the refractory metal component 20 during the carburizing process can be suppressed even better.

本実施形態の製造方法は、積層体Sの上に、密度1.5g/cm3以上の耐熱部材40を載置した状態で、浸炭処理を行う。したがって、浸炭処理中にて、高融点金属部品20が、第一挟持部材21と第二挟持部材22との間で良好に保持され得る。 In the manufacturing method according to the present embodiment, the carburizing process is performed with the heat-resistant member 40 having a density of 1.5 g / cm 3 or more placed on the laminate S. Therefore, the refractory metal component 20 can be favorably held between the first clamping member 21 and the second clamping member 22 during the carburizing process.

(第二実施形態)
以下の第二実施形態の説明においては、上記の第一実施形態と異なる部分についてのみ説明する。また、第一実施形態と第二実施形態とにおいて、互いに同一または均等である部分には、同一符号が付されている。したがって、以下の第二実施形態の説明において、第一実施形態と同一の符号を有する構成要素に関しては、技術的矛盾または特段の追加説明なき限り、第一実施形態における説明が適宜援用され得る。
(Second embodiment)
In the following description of the second embodiment, only different parts from the first embodiment will be described. In the first embodiment and the second embodiment, the same or equivalent parts are denoted by the same reference numerals. Therefore, in the following description of the second embodiment, regarding the components having the same reference numerals as those in the first embodiment, the description in the first embodiment can be incorporated as appropriate unless there is a technical contradiction or special additional description.

図3を参照すると、本実施形態においては、浸炭部品10は、対称軸L2を有する筒形状、具体的には円筒形状に形成されている。同様に、図4を参照すると、第一挟持部材21および第二挟持部材22は、対称軸L2を有する筒形状、具体的には円筒形状に形成されている。積層体Sは、第一挟持部材21の内側に高融点金属部品20を収容するとともに、高融点金属部品20の内側に第二挟持部材22を収容することによって形成したものである。   Referring to FIG. 3, in the present embodiment, the carburized component 10 is formed in a cylindrical shape having a symmetry axis L <b> 2, specifically, a cylindrical shape. Similarly, referring to FIG. 4, the first clamping member 21 and the second clamping member 22 are formed in a cylindrical shape having a symmetry axis L <b> 2, specifically in a cylindrical shape. The laminate S is formed by housing the refractory metal component 20 inside the first sandwiching member 21 and housing the second sandwiching member 22 inside the refractory metal component 20.

本実施形態においても、第一挟持部材21および第二挟持部材22は、双方が炭素供給源としての機能を有するように、黒鉛材料によって形成されている。また、本実施形態においては、第一挟持部材21の熱膨張係数は、第二挟持部材22の熱膨張係数以下である。具体的には、第一挟持部材21の熱膨張係数をC1は、第二挟持部材22の熱膨張係数をC2とした場合に、C1=2.5〜5.0×10-6[1/K],C2=5.0〜6.6×10-6[1/K]である。黒鉛材料の熱膨張係数は、例えば、焼結条件の変更により、簡易に調整可能である。 Also in this embodiment, the 1st clamping member 21 and the 2nd clamping member 22 are formed with the graphite material so that both may have a function as a carbon supply source. In the present embodiment, the thermal expansion coefficient of the first clamping member 21 is equal to or lower than the thermal expansion coefficient of the second clamping member 22. Specifically, the thermal expansion coefficient of the first clamping member 21 is C1, and the thermal expansion coefficient of the second clamping member 22 is C2, C1 = 2.5 to 5.0 × 10 −6 [1 / K], C2 = 5.0 to 6.6 × 10 −6 [1 / K]. The thermal expansion coefficient of the graphite material can be easily adjusted, for example, by changing the sintering conditions.

図5に示されているように、高融点金属部品20の外径をD0、内径をd0とする。また、図6に示されているように、第一挟持部材21の内径をd1とする。さらに、図7に示されているように、第二挟持部材22の外径をD2とする。この場合、本実施形態においては、D0=80〜160[mm],d0=77〜157[mm],d1=D0+α,α=1.5〜5[mm],D2=d0−β,β=1.5〜3[mm]である。   As shown in FIG. 5, the outer diameter of the refractory metal part 20 is D0 and the inner diameter is d0. Further, as shown in FIG. 6, the inner diameter of the first clamping member 21 is d1. Furthermore, as shown in FIG. 7, the outer diameter of the second clamping member 22 is D2. In this case, in this embodiment, D0 = 80 to 160 [mm], d0 = 77 to 157 [mm], d1 = D0 + α, α = 1.5 to 5 [mm], D2 = d0−β, β = 1.5 to 3 [mm].

以下、図3に示された浸炭部品10の製造方法について、図4を参照しつつ説明する。なお、説明の便宜上、図4において、図示の通りに、右手系XYZ直交座標を設定する。また、図4において、下方向すなわちZ軸負方向が、重力作用方向であるものとする。   Hereinafter, the manufacturing method of the carburized component 10 shown in FIG. 3 will be described with reference to FIG. For convenience of explanation, in FIG. 4, right-handed XYZ orthogonal coordinates are set as shown. In FIG. 4, the downward direction, that is, the negative Z-axis direction is assumed to be the gravity action direction.

まず、浸炭前のタンタルまたはタンタル合金によって形成された、筒状の高融点金属部品20を用意する。また、剛体かつ筒状の、第一挟持部材21および第二挟持部材22を用意する。   First, a cylindrical refractory metal component 20 formed of tantalum or a tantalum alloy before carburizing is prepared. Moreover, the 1st clamping member 21 and the 2nd clamping member 22 which are rigid and cylindrical are prepared.

次に、第一挟持部材21と第二挟持部材22との間に高融点金属部品20を挟持することで、高融点金属部品20と第一挟持部材21と第二挟持部材22との積層体Sを形成する。具体的には、第一挟持部材21の内側に高融点金属部品20を収容するとともに、高融点金属部品20の内側に第二挟持部材22を収容することによって、積層体Sを形成する。このとき、高融点金属部品20と第一挟持部材21とは、ほぼ密着状態となる。同様に、高融点金属部品20と第二挟持部材22とは、ほぼ密着状態となる。   Next, the refractory metal component 20 is sandwiched between the first sandwiching member 21 and the second sandwiching member 22, so that the laminated body of the refractory metal component 20, the first sandwiching member 21, and the second sandwiching member 22. S is formed. Specifically, the laminated body S is formed by housing the refractory metal component 20 inside the first sandwiching member 21 and housing the second sandwiching member 22 inside the refractory metal component 20. At this time, the refractory metal component 20 and the first clamping member 21 are substantially in close contact with each other. Similarly, the refractory metal part 20 and the second holding member 22 are substantially in close contact with each other.

続いて、図4に示されているように、積層体Sを、対称軸L2が重力作用方向に沿った状態で加熱炉30内に投入する。具体的には、対称軸L2と重力作用方向とのなす角度は、0〜3度程度である。続いて、加熱炉30内に投入した積層体Sを、加熱炉30内にて加熱する。加熱温度は、例えば、2000℃以上である。これにより、浸炭処理が行われる。   Subsequently, as shown in FIG. 4, the stacked body S is put into the heating furnace 30 with the symmetry axis L <b> 2 along the direction of gravity action. Specifically, the angle formed between the symmetry axis L2 and the direction of gravity action is about 0 to 3 degrees. Subsequently, the stacked body S put in the heating furnace 30 is heated in the heating furnace 30. The heating temperature is, for example, 2000 ° C. or higher. Thereby, a carburizing process is performed.

上記の通り、本実施形態の製造方法においても、浸炭処理中に、高融点金属部品20は、ともに剛体である第一挟持部材21と第二挟持部材22との間で挟持される。したがって、浸炭処理中における、高融点金属部品20の変形が、可及的に抑制され得る。   As described above, also in the manufacturing method of the present embodiment, the refractory metal component 20 is sandwiched between the first sandwiching member 21 and the second sandwiching member 22 that are both rigid bodies during the carburizing process. Therefore, deformation of the refractory metal part 20 during the carburizing process can be suppressed as much as possible.

本実施形態においては、高融点金属部品20、第一挟持部材21、および第二挟持部材22は、対称軸L2を有する筒形状、具体的には円筒形状を有している。また、積層体Sは、第一挟持部材21の内側に高融点金属部品20を収容するとともに、高融点金属部品20の内側に第二挟持部材22を収容することによって形成したものである。さらに、本実施形態の製造方法は、積層体Sにおける対称軸L2が重力作用方向に沿った状態で、浸炭処理を行う。したがって、浸炭処理中における、高融点金属部品20の変形が、可及的に抑制され得る。   In the present embodiment, the refractory metal part 20, the first clamping member 21, and the second clamping member 22 have a cylindrical shape having a symmetry axis L2, specifically, a cylindrical shape. The laminate S is formed by housing the refractory metal part 20 inside the first sandwiching member 21 and housing the second sandwiching member 22 inside the refractory metal part 20. Furthermore, the manufacturing method of this embodiment performs the carburizing process in a state in which the axis of symmetry L2 in the stacked body S is along the direction of gravity action. Therefore, deformation of the refractory metal part 20 during the carburizing process can be suppressed as much as possible.

本実施形態の製造方法においては、第一挟持部材21の熱膨張係数は、第二挟持部材22の熱膨張係数以下である。具体的には、第一挟持部材21の熱膨張係数をC1は、第二挟持部材22の熱膨張係数をC2とした場合に、C1=2.5〜5.0×10-6[1/K],C2=5.0〜6.6×10-6[1/K]である。さらに、高融点金属部品20のD0=80〜160[mm],高融点金属部品20の内径d0=77〜157[mm],第一挟持部材21の内径d1=D0+α,α=1.5〜5[mm],第二挟持部材22の外径D2=d0−β,β=1.5〜3[mm]である。 In the manufacturing method of the present embodiment, the thermal expansion coefficient of the first clamping member 21 is equal to or less than the thermal expansion coefficient of the second clamping member 22. Specifically, C1 is the thermal expansion coefficient of the first clamping member 21, and C1 is 2.5 to 5.0 × 10 −6 [1 / when the thermal expansion coefficient of the second clamping member 22 is C2. K], C2 = 5.0 to 6.6 × 10 −6 [1 / K]. Furthermore, D0 = 80 to 160 [mm] of the refractory metal component 20, the inner diameter d0 = 77 to 157 [mm] of the refractory metal component 20, and the inner diameter d1 of the first clamping member 21 = D0 + α, α = 1.5 5 [mm], the outer diameter D2 of the second clamping member 22 = d0−β, and β = 1.5 to 3 [mm].

これにより、浸炭処理中にて、第一挟持部材21と第二挟持部材22との間での高融点金属部品20の挟持状態が、良好に維持され得る。すなわち、浸炭処理中における、高融点金属部品20と、その両側に位置する第一挟持部材21および第二挟持部材22との密着状態が、良好に維持され得る。したがって、浸炭処理中における、高融点金属部品20の変形が、可及的に抑制され得る。また、浸炭処理中における、高融点金属部品20への浸炭が、良好に進行し得る。   Thereby, during the carburizing process, the sandwiched state of the refractory metal component 20 between the first sandwiching member 21 and the second sandwiching member 22 can be satisfactorily maintained. That is, the adhesion state between the refractory metal component 20 and the first and second clamping members 21 and 22 located on both sides thereof during the carburizing process can be maintained well. Therefore, deformation of the refractory metal part 20 during the carburizing process can be suppressed as much as possible. Moreover, the carburizing to the refractory metal component 20 during the carburizing process can proceed well.

本実施形態の製造方法は、積層体Sの対称軸L2が重力作用方向に沿った状態で、浸炭処理を行う。具体的には、浸炭処理中にて、対称軸L2と重力作用方向とのなす角度が0〜3度となる。したがって、浸炭処理中における、高融点金属部品20の変形が、よりいっそう良好に抑制され得る。   In the manufacturing method of the present embodiment, the carburizing process is performed in a state where the axis of symmetry L2 of the stacked body S is along the direction of gravity action. Specifically, during the carburizing process, the angle formed between the axis of symmetry L2 and the direction of gravity action is 0 to 3 degrees. Therefore, the deformation of the refractory metal component 20 during the carburizing process can be suppressed even better.

(第三実施形態)
以下の第三実施形態の説明においては、上記の第二実施形態と異なる部分についてのみ説明する。また、第二実施形態と第三実施形態とにおいて、互いに同一または均等である部分には、同一符号が付されている。したがって、以下の第三実施形態の説明において、第二実施形態と同一の符号を有する構成要素に関しては、技術的矛盾または特段の追加説明なき限り、第一実施形態および第二実施形態における説明が適宜援用され得る。
(Third embodiment)
In the following description of the third embodiment, only different parts from the second embodiment will be described. In the second embodiment and the third embodiment, parts that are the same or equivalent to each other are given the same reference numerals. Therefore, in the following description of the third embodiment, the components having the same reference numerals as those in the second embodiment are not described in the first embodiment and the second embodiment unless technical contradiction or special additional explanation is given. It may be incorporated as appropriate.

図8を参照すると、本実施形態においては、積層体Sは、炭素源部材50を有している。本実施形態においては、炭素源部材50は、高融点金属部品20と第一挟持部材21との間に設けられている。   Referring to FIG. 8, in the present embodiment, the laminate S has a carbon source member 50. In the present embodiment, the carbon source member 50 is provided between the refractory metal component 20 and the first clamping member 21.

炭素源部材50は、炭素を含むフェルト状またはスポンジ状の部材である。具体的には、例えば、炭素源部材50として、市販の、炭素繊維製フェルト材が利用可能である。   The carbon source member 50 is a felt-like or sponge-like member containing carbon. Specifically, for example, a commercially available carbon fiber felt material can be used as the carbon source member 50.

本実施形態においては、高融点金属部品20、第一挟持部材21、および第二挟持部材22は、対称軸L2を有する筒形状、具体的には円筒形状を有している。また、本実施形態の製造方法は、高融点金属部品20と第一挟持部材21との間に、炭素を含むフェルト状またはスポンジ状の炭素源部材50を挟持した状態で、積層体Sを形成する。   In the present embodiment, the refractory metal part 20, the first clamping member 21, and the second clamping member 22 have a cylindrical shape having a symmetry axis L2, specifically, a cylindrical shape. Further, in the manufacturing method of the present embodiment, the laminate S is formed in a state where a felt-like or sponge-like carbon source member 50 containing carbon is sandwiched between the refractory metal component 20 and the first sandwiching member 21. To do.

具体的には、例えば、積層体Sは、以下のようにして形成することが可能である。第二挟持部材22の周囲に、炭素源部材50を被覆する。高融点金属部品20の内側に、炭素源部材50を周囲に被覆した状態の第二挟持部材22を収容する。その後、第一挟持部材21の内側に、高融点金属部品20を収容する。   Specifically, for example, the stacked body S can be formed as follows. The carbon source member 50 is covered around the second holding member 22. Inside the refractory metal part 20, the second holding member 22 in a state in which the carbon source member 50 is covered is accommodated. Thereafter, the refractory metal component 20 is accommodated inside the first clamping member 21.

続いて、積層体Sを、対称軸L2が重力作用方向に沿った状態で加熱炉30内に投入する。具体的には、対称軸L2と重力作用方向とのなす角度は、0〜3度程度である。続いて、加熱炉30内に投入した積層体Sを、加熱炉30内にて加熱する。加熱温度は、例えば、2000℃以上である。これにより、浸炭処理が行われる。   Subsequently, the stacked body S is put into the heating furnace 30 with the axis of symmetry L2 along the direction of gravity action. Specifically, the angle formed between the symmetry axis L2 and the direction of gravity action is about 0 to 3 degrees. Subsequently, the stacked body S put in the heating furnace 30 is heated in the heating furnace 30. The heating temperature is, for example, 2000 ° C. or higher. Thereby, a carburizing process is performed.

本実施形態においては、浸炭処理中に、高融点金属部品20と、その内側に収容された第一挟持部材21との間に、炭素を含むフェルト状またはスポンジ状の炭素源部材50が介在している。このため、熱膨張量の差異により高融点金属部品20の内径と第二挟持部材22の外径との差が大きくなっても、高融点金属部品20の内面と炭素源部材50との接触状態が良好に維持される。したがって、浸炭処理中における、高融点金属部品20への浸炭が、良好に進行し得る。   In the present embodiment, during the carburizing process, a felt-like or sponge-like carbon source member 50 containing carbon is interposed between the refractory metal part 20 and the first holding member 21 accommodated inside thereof. ing. For this reason, even if the difference between the inner diameter of the refractory metal component 20 and the outer diameter of the second clamping member 22 increases due to the difference in thermal expansion, the contact state between the inner surface of the refractory metal component 20 and the carbon source member 50 Is maintained well. Therefore, carburizing to the refractory metal component 20 during the carburizing process can proceed well.

また、加熱炉30内の浸炭処理雰囲気ガスが、炭素源部材50を通過可能となる。これにより、高融点金属部品20の内面近傍にて、炭素源となり得る炭素含有ガスが発生する。したがって、浸炭処理中における、高融点金属部品20への浸炭が、良好に進行し得る。   Further, the carburizing atmosphere gas in the heating furnace 30 can pass through the carbon source member 50. As a result, a carbon-containing gas that can be a carbon source is generated in the vicinity of the inner surface of the refractory metal component 20. Therefore, carburizing to the refractory metal component 20 during the carburizing process can proceed well.

(第四実施形態)
以下の第四実施形態の説明においては、上記の第二実施形態と異なる部分についてのみ説明する。また、第二実施形態と第四実施形態とにおいて、互いに同一または均等である部分には、同一符号が付されている。したがって、以下の第四実施形態の説明において、第二実施形態と同一の符号を有する構成要素に関しては、技術的矛盾または特段の追加説明なき限り、第一実施形態および第二実施形態における説明が適宜援用され得る。
(Fourth embodiment)
In the following description of the fourth embodiment, only parts different from the second embodiment will be described. Moreover, in 2nd embodiment and 4th embodiment, the same code | symbol is attached | subjected to the part which is mutually the same or equivalent. Therefore, in the following description of the fourth embodiment, the components having the same reference numerals as those in the second embodiment are not described in the first embodiment and the second embodiment unless technical contradiction or special additional explanation is given. It may be incorporated as appropriate.

図9を参照すると、本実施形態においては、浸炭部品10は、筒部101と、延設部102と、屈曲部103とを有している。筒部101は、対称軸L2に沿った筒状、具体的には円筒状に形成されている。延設部102は、筒部101から、対称軸L2と交差する径方向に延設されている。「径方向」とは、対称軸L2と直交し、且つ、対称軸L2から放射状に延びる方向である。   Referring to FIG. 9, in the present embodiment, the carburized component 10 includes a cylindrical portion 101, an extending portion 102, and a bent portion 103. The cylindrical portion 101 is formed in a cylindrical shape, specifically, a cylindrical shape along the symmetry axis L2. The extending portion 102 extends from the cylindrical portion 101 in the radial direction intersecting the symmetry axis L2. The “radial direction” is a direction orthogonal to the symmetry axis L2 and extending radially from the symmetry axis L2.

本実施形態においては、延設部102は、筒部101の軸方向における一端(すなわち図中下端)から、径方向外側に延設されている。「軸方向」とは、対称軸L2と平行な方向である。すなわち、浸炭部品10は、鍔付筒状に形成されている。   In the present embodiment, the extending portion 102 extends radially outward from one end (that is, the lower end in the drawing) of the cylindrical portion 101 in the axial direction. The “axial direction” is a direction parallel to the symmetry axis L2. That is, the carburized component 10 is formed in a flanged cylindrical shape.

屈曲部103は、板材がL字状に屈曲された部分であって、筒部101と延設部102との接続箇所に設けられている。本実施形態においては、浸炭部品10は、継目なく一体に形成されている。すなわち、筒部101と延設部102とは、屈曲部103にて、継目なく一体的に接続されている。   The bent portion 103 is a portion where the plate material is bent in an L shape, and is provided at a connection portion between the tube portion 101 and the extended portion 102. In the present embodiment, the carburized component 10 is integrally formed without a seam. That is, the tube portion 101 and the extended portion 102 are integrally connected at the bent portion 103 without a joint.

浸炭部品10は、図10に示されている形状の高融点金属部品20を浸炭することにより形成されている。具体的には、図10を参照すると、高融点金属部品20は、筒部201と、延設部202と、屈曲部203とを有している。   The carburized component 10 is formed by carburizing a refractory metal component 20 having a shape shown in FIG. Specifically, referring to FIG. 10, the refractory metal component 20 includes a cylindrical portion 201, an extending portion 202, and a bent portion 203.

筒部201は、浸炭部品10における筒部101に対応する部分であって、対称軸L2に沿った筒状、具体的には円筒状に形成されている。延設部202は、浸炭部品10における延設部102に対応する部分であって、筒部201から径方向に延設されている。屈曲部203は、浸炭部品10における屈曲部103に対応する部分であって、筒部201と延設部202との接続箇所に設けられている。   The cylindrical portion 201 is a portion corresponding to the cylindrical portion 101 in the carburized component 10 and is formed in a cylindrical shape, specifically, a cylindrical shape along the symmetry axis L2. The extended portion 202 is a portion corresponding to the extended portion 102 in the carburized component 10 and extends from the cylindrical portion 201 in the radial direction. The bent portion 203 is a portion corresponding to the bent portion 103 in the carburized component 10 and is provided at a connection portion between the cylindrical portion 201 and the extended portion 202.

本実施形態においては、高融点金属部品20は、継目なく一体に形成されている。具体的には、高融点金属部品20は、高融点金属であるタンタルまたはタンタル合金によって形成された筒状部品に対して塑性加工(すなわち曲げ加工等)を行うことにより、鍔付筒状に形成されている。   In the present embodiment, the refractory metal component 20 is integrally formed with no joint. Specifically, the refractory metal part 20 is formed into a brazed cylindrical shape by performing plastic working (that is, bending) on a cylindrical part formed of tantalum or a tantalum alloy that is a refractory metal. Has been.

本実施形態においては、第一挟持部材21は、対称軸L2に沿った筒状、具体的には円筒状に形成されている。第一挟持部材21は、高融点金属部品20における筒部201の軸方向寸法よりも、延設部202の厚さ分だけ短い軸方向寸法を有している。   In the present embodiment, the first clamping member 21 is formed in a cylindrical shape, specifically, a cylindrical shape along the symmetry axis L2. The first clamping member 21 has an axial dimension that is shorter than the axial dimension of the cylindrical part 201 in the refractory metal part 20 by the thickness of the extending part 202.

第二挟持部材22は、高融点金属部品20と同様に、鍔付筒状に形成されている。具体的には、第二挟持部材22は、内筒部221と延設部222とを有している。   Similar to the refractory metal component 20, the second clamping member 22 is formed in a flanged cylindrical shape. Specifically, the second clamping member 22 has an inner cylinder part 221 and an extension part 222.

内筒部221は、対称軸L2に沿った筒状、具体的には円筒状に形成されている。内筒部221は、高融点金属部品20における筒部201の軸方向寸法よりも、延設部202の厚さ分だけ長い軸方向寸法を有している。すなわち、積層体Sにて、高融点金属部品20における筒部201の軸方向における他端(すなわち図中上端)が軸方向にはみ出さないように、第一挟持部材21および第二挟持部材22の形状および寸法が設定されている。   The inner cylinder portion 221 is formed in a cylindrical shape, specifically, a cylindrical shape along the symmetry axis L2. The inner cylinder part 221 has an axial dimension that is longer than the axial dimension of the cylinder part 201 in the refractory metal part 20 by the thickness of the extending part 202. That is, in the laminated body S, the first clamping member 21 and the second clamping member 22 are arranged so that the other end (that is, the upper end in the drawing) of the cylindrical portion 201 of the refractory metal component 20 does not protrude in the axial direction. The shape and dimensions are set.

延設部222は、内筒部221の軸方向における一端(すなわち図中下端)から、径方向外側に延設されている。延設部222は、外径(すなわち径方向寸法)が高融点金属部品20における延設部202の外径と略一致するように形成されている。すなわち、積層体Sにて、高融点金属部品20における延設部202が径方向外側にはみ出さないように、第一挟持部材21および第二挟持部材22の形状および寸法が設定されている。   The extending portion 222 extends radially outward from one end (that is, the lower end in the drawing) of the inner cylinder portion 221 in the axial direction. The extending portion 222 is formed so that the outer diameter (that is, the dimension in the radial direction) substantially matches the outer diameter of the extending portion 202 in the refractory metal part 20. That is, in the laminated body S, the shapes and dimensions of the first clamping member 21 and the second clamping member 22 are set so that the extended portion 202 of the refractory metal component 20 does not protrude radially outward.

本実施形態の製造方法においては、まず、塑性加工(すなわち曲げ加工等)により、筒部201と延設部202と屈曲部203とを有する構造の、鍔付筒状の高融点金属部品20を形成する。また、積層体Sにて、高融点金属部品20が軸方向にも径方向にもはみ出さないような形状および寸法の、第一挟持部材21および第二挟持部材22を用意する。具体的には、高融点金属部品20の軸方向寸法よりも若干短い軸方向寸法を有する筒状の第一挟持部材21を用意する。また、高融点金属部品20の軸方向寸法よりも若干長い軸方向寸法を有する鍔付筒状の第二挟持部材22を用意する。   In the manufacturing method of the present embodiment, first, a brazed cylindrical refractory metal part 20 having a structure having a cylindrical portion 201, an extending portion 202, and a bent portion 203 is formed by plastic processing (that is, bending processing or the like). Form. In the laminate S, a first sandwiching member 21 and a second sandwiching member 22 having a shape and dimensions that prevent the refractory metal component 20 from protruding in the axial direction or the radial direction are prepared. Specifically, a cylindrical first clamping member 21 having an axial dimension slightly shorter than the axial dimension of the refractory metal part 20 is prepared. Also, a brazed tubular second clamping member 22 having an axial dimension slightly longer than the axial dimension of the refractory metal part 20 is prepared.

次に、第一挟持部材21と第二挟持部材22との間に高融点金属部品20を挟持することで、高融点金属部品20と第一挟持部材21と第二挟持部材22との積層体Sを形成する。具体的には、第一挟持部材21の内側に高融点金属部品20を収容するとともに、高融点金属部品20の内側に第二挟持部材22を収容することによって、積層体Sを形成する。   Next, the refractory metal component 20 is sandwiched between the first sandwiching member 21 and the second sandwiching member 22, so that the laminated body of the refractory metal component 20, the first sandwiching member 21, and the second sandwiching member 22. S is formed. Specifically, the laminated body S is formed by housing the refractory metal component 20 inside the first sandwiching member 21 and housing the second sandwiching member 22 inside the refractory metal component 20.

このとき、高融点金属部品20における筒部201および延設部202と、第一挟持部材21とは、ほぼ密着状態となる。また、高融点金属部品20における筒部201と、第二挟持部材22における内筒部221とは、ほぼ密着状態となる。同様に、高融点金属部品20における延設部202と、第二挟持部材22における延設部222とは、ほぼ密着状態となる。   At this time, the cylinder part 201 and the extension part 202 in the refractory metal component 20 and the first clamping member 21 are substantially in close contact with each other. Moreover, the cylinder part 201 in the refractory metal component 20 and the inner cylinder part 221 in the second clamping member 22 are substantially in close contact with each other. Similarly, the extended portion 202 in the refractory metal component 20 and the extended portion 222 in the second clamping member 22 are substantially in close contact with each other.

続いて、図10に示されているように、積層体Sを、対称軸L2が重力作用方向に沿った状態で加熱炉30内に投入する。具体的には、対称軸L2と重力作用方向とのなす角度は、0〜3度程度である。続いて、加熱炉30内に投入した積層体Sを、加熱炉30内にて加熱する。加熱温度は、例えば、2000℃以上である。これにより、浸炭処理が行われる。   Subsequently, as shown in FIG. 10, the stacked body S is put into the heating furnace 30 with the symmetry axis L <b> 2 along the direction of gravity action. Specifically, the angle formed between the symmetry axis L2 and the direction of gravity action is about 0 to 3 degrees. Subsequently, the stacked body S put in the heating furnace 30 is heated in the heating furnace 30. The heating temperature is, for example, 2000 ° C. or higher. Thereby, a carburizing process is performed.

ところで、塑性加工により、高融点金属部品20には、残留応力が発生している。かかる残留応力は、屈曲部203にて、特に大きい。このため、仮に、第一挟持部材21および第二挟持部材22を用いずに、高融点金属部品20をガス浸炭した場合、加熱に伴って残留応力が解放されることで、浸炭中に高融点金属部品20に変形が生じることがある。すると、浸炭後に得られる浸炭部品10における寸法あるいは形状が、所望の状態から乖離する懸念がある。   By the way, residual stress is generated in the refractory metal part 20 due to plastic working. Such residual stress is particularly large at the bent portion 203. For this reason, if the high melting point metal part 20 is gas carburized without using the first clamping member 21 and the second clamping member 22, the residual stress is released along with heating, so that the high melting point during the carburization. The metal part 20 may be deformed. Then, there exists a possibility that the dimension or shape in the carburized component 10 obtained after carburizing may deviate from a desired state.

この点、本実施形態の製造方法は、塑性加工により鍔付筒状に形成された高融点金属部品20の外形形状全体を、第一挟持部材21と第二挟持部材22との間で拘束しつつ、浸炭処理を行う。これにより、残留応力に起因する高融点金属部品20および浸炭部品10の変形の発生が、良好に抑制され得る。   In this respect, the manufacturing method of the present embodiment restrains the entire outer shape of the refractory metal part 20 formed into a brazed cylindrical shape by plastic working between the first clamping member 21 and the second clamping member 22. Carburizing treatment is performed. Thereby, generation | occurrence | production of a deformation | transformation of the refractory metal component 20 and the carburized component 10 resulting from a residual stress can be suppressed favorably.

(変形例)
本発明は、上記実施形態に限定されるものではない。故に、上記実施形態に対しては、適宜変更が可能である。以下、代表的な変形例について説明する。以下の変形例の説明においては、上記実施形態と異なる部分についてのみ説明する。また、上記実施形態と変形例とにおいて、互いに同一または均等である部分には、同一符号が付されている。したがって、以下の変形例の説明において、上記実施形態と同一の符号を有する構成要素に関しては、技術的矛盾または特段の追加説明なき限り、上記実施形態における説明が適宜援用され得る。
(Modification)
The present invention is not limited to the above embodiment. Therefore, it can change suitably with respect to the said embodiment. Hereinafter, typical modifications will be described. In the following description of the modified example, only the parts different from the above embodiment will be described. Moreover, in the said embodiment and a modification, the same code | symbol is attached | subjected to the part which is mutually the same or equivalent. Therefore, in the following description of the modified example, regarding the components having the same reference numerals as those in the above embodiment, the description in the above embodiment can be incorporated as appropriate unless there is a technical contradiction or special additional explanation.

本発明は、上記実施形態にて示された具体的な構成および製造方法に限定されない。例えば、高融点金属部品20は、ニオブまたはニオブ合金であってもよい。その他、本発明は、高温化学用坩堝等に用いられる、浸炭された高融点金属部品の製造に、好適に適用され得る。   The present invention is not limited to the specific configuration and manufacturing method shown in the above embodiment. For example, the refractory metal part 20 may be niobium or a niobium alloy. In addition, the present invention can be suitably applied to the manufacture of carburized refractory metal parts used for high temperature chemical crucibles and the like.

浸炭部品10は、そのほぼ全体が浸炭された状態で形成され得る。すなわち、浸炭部品10のほぼ全体が、浸炭層12であってもよい。換言すれば、非浸炭領域としての中心部11は、無くてもよい。   The carburized component 10 can be formed in a state where almost the entire carburized component 10 is carburized. In other words, the entire carburized component 10 may be the carburized layer 12. In other words, the central portion 11 as a non-carburized region may be omitted.

浸炭部品10および高融点金属部品20の形状については、本発明が良好に適用される限り、特段の限定はない。すなわち、例えば、浸炭部品10および高融点金属部品20は、楕円筒形状、あるいは、多角筒形状に形成され得る。あるいは、例えば、浸炭部品10および高融点金属部品20は、有底筒状に形成され得る。   The shapes of the carburized component 10 and the refractory metal component 20 are not particularly limited as long as the present invention is applied satisfactorily. That is, for example, the carburized component 10 and the refractory metal component 20 can be formed in an elliptical cylindrical shape or a polygonal cylindrical shape. Alternatively, for example, the carburized component 10 and the refractory metal component 20 can be formed in a bottomed cylindrical shape.

図2において、積層軸L1は、略水平であってもよい。その他、積層軸L1および対称軸L2と、水平方向あるいは重力作用方向とのなす角度は、浸炭処理中における変形が生じない程度において、適宜設定され得る。   In FIG. 2, the stacking axis L1 may be substantially horizontal. In addition, the angle formed by the stacking axis L1 and the symmetry axis L2 and the horizontal direction or the gravitational action direction can be appropriately set as long as no deformation occurs during the carburizing process.

図2および図4において、第一挟持部材21と第二挟持部材22とのうちの一方は、炭素供給源としての機能を有しない部材(例えばセラミック部材)であってもよい。   2 and 4, one of the first clamping member 21 and the second clamping member 22 may be a member (for example, a ceramic member) that does not have a function as a carbon supply source.

加熱炉30内には、ガス浸炭用の炭素供給源(例えば浸炭性ガス等)が導入され得る。すなわち、本発明は、いわゆる固体浸炭に限定されない。   A carbon supply source for gas carburizing (for example, carburizing gas) may be introduced into the heating furnace 30. That is, the present invention is not limited to so-called solid carburization.

浸炭処理温度は、2000℃以上に限定されない。すなわち、例えば、浸炭処理温度は、1500℃以上であってもよい。   The carburizing temperature is not limited to 2000 ° C. or higher. That is, for example, the carburizing temperature may be 1500 ° C. or higher.

図8に示されているように、高融点金属部品20と第一挟持部材21との間に炭素源部材50が設けられる場合、第一挟持部材21は、炭素供給源としての機能を有しない部材(例えばセラミック部材)であってもよい。   As shown in FIG. 8, when the carbon source member 50 is provided between the refractory metal part 20 and the first clamping member 21, the first clamping member 21 does not have a function as a carbon supply source. It may be a member (for example, a ceramic member).

炭素源部材50は、図2に示された製造方法にも用いられ得る。   The carbon source member 50 can also be used in the manufacturing method shown in FIG.

炭素源部材50は、高融点金属部品20と第一挟持部材21との間に代えて、あるいはこれとともに、高融点金属部品20と第二挟持部材22との間に設けられ得る。   The carbon source member 50 may be provided between the refractory metal component 20 and the second clamping member 22 instead of or together with the refractory metal component 20 and the first clamping member 21.

上記実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に本発明が限定されることはない。同様に、構成要素等の形状、方向、位置関係等が言及されている場合、特に必須であると明示した場合および原理的に特定の形状、方向、位置関係等に限定される場合等を除き、その形状、方向、位置関係等に本発明が限定されることはない。各部を構成する材料についても、特に必須であると明示した場合および原理的に明らかに特定の材料に限定される場合等を除き、特段の限定はない。   It goes without saying that the elements constituting the above-described embodiment are not necessarily essential except for the case where it is clearly indicated that it is essential and the case where it is considered that it is clearly essential in principle. In addition, when numerical values such as the number, numerical value, quantity, range, etc. of a component are mentioned, the specifics are specified unless explicitly stated as being essential, and clearly limited to a specific number in principle. The present invention is not limited to this number. Similarly, when the shape, direction, positional relationship, etc. of a component are mentioned, except when clearly stated as essential and in principle limited to a specific shape, direction, positional relationship, etc. The present invention is not limited to the shape, direction, positional relationship, and the like. The material constituting each part is not particularly limited unless it is specified as being particularly essential, or is clearly limited to a specific material in principle.

変形例も、上記の例示に限定されない。また、複数の実施形態が、互いに組み合わされ得る。同様に、複数の変形例が、互いに組み合わされ得る。さらに、複数の実施形態のうちの少なくとも1つと、複数の変形例のうちの少なくとも1つとが、互いに組み合わされ得る。   The modification is not limited to the above example. Also, multiple embodiments can be combined with each other. Similarly, multiple variations can be combined with each other. Furthermore, at least one of the plurality of embodiments and at least one of the plurality of modifications may be combined with each other.

10 浸炭部品
20 高融点金属部品
21 第一挟持部材
22 第二挟持部材
30 加熱炉
31 載置台
40 耐熱部材
L1 積載軸
L2 対称軸
S 積層体
DESCRIPTION OF SYMBOLS 10 Carburized part 20 Refractory metal part 21 1st clamping member 22 2nd clamping member 30 Heating furnace 31 Mounting stand 40 Heat-resistant member L1 Loading axis L2 Symmetry axis S Laminate

Claims (13)

高融点金属部品(20)を浸炭することにより浸炭部品(10)を製造する方法であって、
ともに剛体である第一挟持部材(21)と第二挟持部材(22)との間に前記高融点金属部品を挟持することで、前記第一挟持部材と前記高融点金属部品と前記第二挟持部材との積層体(S)を形成し、
前記積層体を加熱しつつ浸炭処理する、
浸炭部品の製造方法。
A method of manufacturing a carburized part (10) by carburizing a refractory metal part (20),
By sandwiching the refractory metal part between the first clamping member (21) and the second clamping member (22), both of which are rigid bodies, the first clamping member, the refractory metal part, and the second clamping Forming a laminate (S) with the member,
Carburizing while heating the laminate,
Manufacturing method of carburized parts.
前記第一挟持部材、前記高融点金属部品、および前記第二挟持部材は、板状またはブロック状の形状を有し、
前記積層体は、前記第一挟持部材と前記高融点金属部品と前記第二挟持部材とを積層方向に配列したものであり、
前記積層方向が重力作用方向に沿った状態で、前記浸炭処理を行う、
請求項1に記載の製造方法。
The first sandwiching member, the refractory metal component, and the second sandwiching member have a plate shape or a block shape,
The laminated body is obtained by arranging the first sandwiching member, the refractory metal component, and the second sandwiching member in the stacking direction,
In the state where the stacking direction is along the direction of gravity action, the carburizing treatment is performed.
The manufacturing method according to claim 1.
前記積層体の上に、密度1.5g/cm3以上の耐熱部材(40)を載置した状態で、前記浸炭処理を行う、
請求項2に記載の製造方法。
On the laminate, the carburizing treatment is performed in a state where a heat-resistant member (40) having a density of 1.5 g / cm 3 or more is placed.
The manufacturing method according to claim 2.
前記第一挟持部材、前記高融点金属部品、および前記第二挟持部材は、対称軸(L2)を有する筒形状を有し、
前記積層体は、前記第一挟持部材の内側に前記高融点金属部品を収容するとともに、前記高融点金属部品の内側に前記第二挟持部材を収容することによって形成した、
請求項1に記載の製造方法。
The first clamping member, the refractory metal part, and the second clamping member have a cylindrical shape having an axis of symmetry (L2),
The laminate is formed by housing the refractory metal part inside the first sandwiching member and housing the second sandwiching member inside the refractory metal part,
The manufacturing method according to claim 1.
前記対称軸が重力作用方向に沿った状態で、前記浸炭処理を行う、
請求項4に記載の製造方法。
Carburizing treatment is performed in a state where the axis of symmetry is along the direction of gravity action.
The manufacturing method according to claim 4.
前記第一挟持部材の熱膨張係数は、前記第二挟持部材の熱膨張係数以下である、
請求項4または5に記載の製造方法。
The thermal expansion coefficient of the first clamping member is equal to or lower than the thermal expansion coefficient of the second clamping member.
The manufacturing method of Claim 4 or 5.
前記第一挟持部材の熱膨張係数をC1は、前記第二挟持部材の熱膨張係数をC2とした場合に、
C1=2.5〜5.0×10-6[1/K]であり、
C2=5.0〜6.6×10-6[1/K]である、
請求項6に記載の製造方法。
When the thermal expansion coefficient of the first clamping member is C1, the thermal expansion coefficient of the second clamping member is C2,
C1 = 2.5 to 5.0 × 10 −6 [1 / K],
C2 = 5.0 to 6.6 × 10 −6 [1 / K].
The manufacturing method according to claim 6.
前記高融点金属部品は、塑性加工により、前記対称軸に沿った筒状に形成された筒部(201)と、前記筒部から前記対称軸と交差する方向に延設された延設部(202)と、前記筒部と前記延設部との接続箇所に設けられた屈曲部(203)とを有する構造に形成された、
請求項4〜7のいずれか1つに記載の製造方法。
The refractory metal component includes a cylindrical portion (201) formed in a cylindrical shape along the symmetry axis by plastic working, and an extending portion (a portion extending from the cylindrical portion in a direction crossing the symmetry axis). 202) and a bent portion (203) provided at a connection portion between the cylindrical portion and the extending portion,
The manufacturing method as described in any one of Claims 4-7.
前記第一挟持部材、前記高融点金属部品、および前記第二挟持部材は、円筒形状を有し、
前記高融点金属部品の外径をD0、内径をd0とし、
前記第一挟持部材の内径をd1とし、
前記第二挟持部材の外径をD2とした場合、
D0=80〜160[mm], d0=77〜157[mm]であり、
d1=D0+α, α=1.5〜5[mm]であり、
D2=d0−β, β=1.5〜3[mm]である、
請求項4〜8のいずれか1つに記載の製造方法。
The first clamping member, the refractory metal part, and the second clamping member have a cylindrical shape,
The outer diameter of the refractory metal part is D0, the inner diameter is d0,
The inner diameter of the first clamping member is d1,
When the outer diameter of the second clamping member is D2,
D0 = 80 to 160 [mm], d0 = 77 to 157 [mm],
d1 = D0 + α, α = 1.5-5 [mm],
D2 = d0−β, β = 1.5-3 [mm].
The manufacturing method as described in any one of Claims 4-8.
前記浸炭処理にて、前記高融点金属部品を2000℃以上の温度で加熱する、
請求項1〜9のいずれか1つに記載の製造方法。
In the carburizing treatment, the refractory metal part is heated at a temperature of 2000 ° C. or higher.
The manufacturing method as described in any one of Claims 1-9.
前記第一挟持部材および前記第二挟持部材は、一方または双方が炭素供給源として用いられる、
請求項1〜10のいずれか1つに記載の製造方法。
One or both of the first clamping member and the second clamping member are used as a carbon supply source.
The manufacturing method as described in any one of Claims 1-10.
前記第一挟持部材または前記第二挟持部材と、前記高融点金属部品との間に、炭素を含むフェルト状またはスポンジ状の炭素源部材(50)を挟持した状態で、前記積層体を形成する、
請求項1〜11のいずれか1つに記載の製造方法。
The laminate is formed with a felt-like or sponge-like carbon source member (50) containing carbon sandwiched between the first sandwiching member or the second sandwiching member and the refractory metal part. ,
The manufacturing method as described in any one of Claims 1-11.
前記高融点金属部品は、タンタル、タンタル合金、ニオブ、またはニオブ合金である、
請求項1〜12のいずれか1つに記載の製造方法。
The refractory metal part is tantalum, a tantalum alloy, niobium, or a niobium alloy.
The manufacturing method as described in any one of Claims 1-12.
JP2018090570A 2018-05-09 2018-05-09 Manufacturing method of carburized parts Active JP7095385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018090570A JP7095385B2 (en) 2018-05-09 2018-05-09 Manufacturing method of carburized parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018090570A JP7095385B2 (en) 2018-05-09 2018-05-09 Manufacturing method of carburized parts

Publications (2)

Publication Number Publication Date
JP2019196518A true JP2019196518A (en) 2019-11-14
JP7095385B2 JP7095385B2 (en) 2022-07-05

Family

ID=68538391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018090570A Active JP7095385B2 (en) 2018-05-09 2018-05-09 Manufacturing method of carburized parts

Country Status (1)

Country Link
JP (1) JP7095385B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS505137B1 (en) * 1968-05-13 1975-02-28
JPS52104224A (en) * 1976-02-27 1977-09-01 Pioneer Electronic Corp Method of producing acoustic transducer vibrator
US5580397A (en) * 1995-01-26 1996-12-03 The United States Of America As Represented By The Department Of Energy Carbide and carbonitride surface treatment method for refractory metals
JPH10102229A (en) * 1996-09-25 1998-04-21 Nippon Koshuha Kogyo Kk Method for carburizing cylindrical steel
JP2010280948A (en) * 2009-06-04 2010-12-16 Toyo Tanso Kk Tantalum member and method for carburizing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS505137B1 (en) * 1968-05-13 1975-02-28
JPS52104224A (en) * 1976-02-27 1977-09-01 Pioneer Electronic Corp Method of producing acoustic transducer vibrator
US5580397A (en) * 1995-01-26 1996-12-03 The United States Of America As Represented By The Department Of Energy Carbide and carbonitride surface treatment method for refractory metals
JPH10102229A (en) * 1996-09-25 1998-04-21 Nippon Koshuha Kogyo Kk Method for carburizing cylindrical steel
JP2010280948A (en) * 2009-06-04 2010-12-16 Toyo Tanso Kk Tantalum member and method for carburizing the same

Also Published As

Publication number Publication date
JP7095385B2 (en) 2022-07-05

Similar Documents

Publication Publication Date Title
JPH079036Y2 (en) Vertical heat treatment furnace
US20080142196A1 (en) Heat Pipe with Advanced Capillary Structure
JPWO2006043531A1 (en) Substrate support / transport tray
JP2019196518A (en) Manufacturing method of carburized component
JP4452500B2 (en) Method for controlling composite preform components during formation of a fiber / metal matrix composite
JP5925958B2 (en) Diffusion / penetration method of creep reinforcement for heat-resistant metal material member and method for producing heat-resistant metal material member with enhanced creep strength
JP2017014590A (en) Sintering fixture
JP2009007649A (en) Mask frame
JP2008231451A (en) Heat treatment method for annular body, and annular body sizing tool
JP2016079428A (en) Support tool for heat treatment
JP2017088998A (en) Method for processing tantalum or tantalum alloy member
JP2017077998A (en) Heat resistant structural member
JP2018039708A (en) Heat-resistant structural member
JP6354504B2 (en) Cemented carbide composite roll and manufacturing method thereof
KR102208449B1 (en) Gas pressure casting method using porous tube for diffusion bonding copper to monoblock tungsten, and method for manufacturing laminated parts using nuclear fusion reactor
JP2023096833A (en) Tabular heater
JP6587204B2 (en) Cemented carbide composite roll and manufacturing method thereof
JP2009084088A (en) Quartz glass tube and its manufacturing method
JP2662360B2 (en) Manufacturing method of ceramic heater and ceramic heater
JP2018135220A (en) Silicon carbide ceramic joined body
JP2022092223A (en) Vertical wafer boat
JP2000171012A (en) Heater member for heating furnace
JPH08206754A (en) Working jig
JP3940915B2 (en) Hardening method for ring-shaped steel parts
JP2021053674A (en) Manufacturing method and manufacturing device of joined body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220606

R151 Written notification of patent or utility model registration

Ref document number: 7095385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151