JP2019192729A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2019192729A
JP2019192729A JP2018082156A JP2018082156A JP2019192729A JP 2019192729 A JP2019192729 A JP 2019192729A JP 2018082156 A JP2018082156 A JP 2018082156A JP 2018082156 A JP2018082156 A JP 2018082156A JP 2019192729 A JP2019192729 A JP 2019192729A
Authority
JP
Japan
Prior art keywords
heat
substrate
semiconductor device
conductive film
active element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018082156A
Other languages
Japanese (ja)
Inventor
将夫 近藤
Masao Kondo
将夫 近藤
大部 功
Isao Obe
功 大部
梅本 康成
Yasunari Umemoto
康成 梅本
山本靖久
Yasuhisa Yamamoto
靖久 山本
雅博 柴田
Masahiro Shibata
雅博 柴田
孝幸 筒井
Takayuki Tsutsui
孝幸 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2018082156A priority Critical patent/JP2019192729A/en
Priority to CN201910221467.1A priority patent/CN110391196B/en
Priority to TW108110313A priority patent/TWI708338B/en
Priority to US16/374,674 priority patent/US10957617B2/en
Publication of JP2019192729A publication Critical patent/JP2019192729A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3135Double encapsulation or coating and encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • H03F1/302Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in bipolar transistor amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0237Disposition of the redistribution layers
    • H01L2224/02372Disposition of the redistribution layers connecting to a via connection in the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/0502Disposition
    • H01L2224/05025Disposition the internal layer being disposed on a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05541Structure
    • H01L2224/05548Bonding area integrally formed with a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13024Disposition the bump connector being disposed on a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13026Disposition relative to the bonding area, e.g. bond pad, of the semiconductor or solid-state body
    • H01L2224/13028Disposition relative to the bonding area, e.g. bond pad, of the semiconductor or solid-state body the bump connector being disposed on at least two separate bonding areas, e.g. bond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • H01L2224/13082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16238Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13051Heterojunction bipolar transistor [HBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • H01L2924/30111Impedance matching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/222A circuit being added at the input of an amplifier to adapt the input impedance of the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/318A matching circuit being used as coupling element between two amplifying stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/387A circuit being added at the output of an amplifier to adapt the output impedance of the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/411Indexing scheme relating to amplifiers the output amplifying stage of an amplifier comprising two power stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/68Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Wire Bonding (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

To provide a semiconductor device capable of efficiently dissipating heat diffused inside a substrate to the outside.SOLUTION: A semiconductor chip is mounted on a printed board. In the semiconductor chip, an active element is formed on a first surface opposed to the printed board. At a position different from the active element, a thermally conductive film made of a material having a coefficient of thermal conductivity higher than that of the substrate is provided. An insulating film covering the active element and the thermally conductive film is arranged on the first surface. A bump electrically connected to the thermally conductive film is provided on the insulating film. A through-via hole reaching the thermally conductive film from a second surface at an opposite side of the first surface is provided. A thermally conductive member made of a material having a coefficient of thermal conductivity higher than that of the substrate is continuously arranged from a region of the second surface overlapping with the active element in a plan view to an inner surface of the through-via hole. A bump of the semiconductor chip is connected to a land of the printed board, and the semiconductor chip is sealed by a sealing resin.SELECTED DRAWING: Figure 2

Description

本発明は、半導体装置に関する。   The present invention relates to a semiconductor device.

半導体チップに組み込まれた電力増幅器の動作時にトランジスタが自己発熱し、半導体チップの性能がトランジスタの動作温度の上昇とともに劣化する場合がある。半導体チップの劣化を抑制するために、発熱源であるトランジスタから半導体チップの外部に効率的に放熱することが望まれる。   When the power amplifier incorporated in the semiconductor chip is operated, the transistor self-heats, and the performance of the semiconductor chip may be deteriorated as the operating temperature of the transistor is increased. In order to suppress the deterioration of the semiconductor chip, it is desired to efficiently dissipate heat from the transistor which is a heat source to the outside of the semiconductor chip.

特許文献1に、モジュール基板に実装した半導体チップからの伝熱経路についての記載がある。特許文献1に記載された発明では、半導体チップのバンプから、モジュール基板の上面に形成された端子、及びモジュール基板の上面から下面まで達する放熱ビアを介して、モジュール基板の下面に形成された接地用の電極に至る伝熱経路が形成される。   Patent Document 1 describes a heat transfer path from a semiconductor chip mounted on a module substrate. In the invention described in Patent Document 1, the grounding formed on the lower surface of the module substrate through the bumps of the semiconductor chip, the terminals formed on the upper surface of the module substrate, and the heat radiation via extending from the upper surface to the lower surface of the module substrate. A heat transfer path leading to the electrode is formed.

接地用の電極には、トタンジスタのエミッタまたはソースが接続される。従って、エミッタやソースが伝熱経路の一部に含まれる。バンプに接続されて伝熱経路となるエミッタやソースは、通常、小面積であり、伝熱経路のうちエミッタやソースに接続される箇所が隘路になってしまう。このため、伝熱経路の熱抵抗を十分低くすることが困難である。   The emitter or source of the transistor is connected to the grounding electrode. Therefore, the emitter and the source are included in a part of the heat transfer path. The emitter or source that is connected to the bump and becomes the heat transfer path usually has a small area, and a portion connected to the emitter or source in the heat transfer path becomes a bottleneck. For this reason, it is difficult to sufficiently reduce the thermal resistance of the heat transfer path.

特許文献2に、放熱特性を向上させた半導体装置が開示されている。特許文献2に開示された半導体装置においては、外部接続パッドから、活性素子が形成された半導体基板の上面まで達する放熱構造が設けられている。半導体基板の上面に形成されたトランジスタで発生した熱は、放熱構造が配置された位置まで半導体基板の上面に沿って横方向に伝わり、その後、放熱構造を介して放熱される。   Patent Document 2 discloses a semiconductor device with improved heat dissipation characteristics. The semiconductor device disclosed in Patent Document 2 is provided with a heat dissipation structure that extends from an external connection pad to the upper surface of a semiconductor substrate on which an active element is formed. The heat generated in the transistor formed on the upper surface of the semiconductor substrate is transmitted laterally along the upper surface of the semiconductor substrate to the position where the heat dissipation structure is disposed, and then is radiated through the heat dissipation structure.

特開2011−198866号公報JP 2011-198866 A 特開2014−99470号公報JP 2014-99470 A

トランジスタ等の発熱源で発生した熱は、半導体基板の上面に沿って横方向に伝わるほかに、半導体基板を厚さ方向にも伝わる。従来の半導体装置では、半導体基板の表面の発熱源で発生し、半導体基板の内部に拡散する熱を効率的に外部に放熱することが困難であった。   In addition to being transmitted laterally along the upper surface of the semiconductor substrate, heat generated by a heat source such as a transistor is also transmitted in the thickness direction of the semiconductor substrate. In the conventional semiconductor device, it is difficult to efficiently dissipate the heat generated by the heat source on the surface of the semiconductor substrate and diffusing inside the semiconductor substrate to the outside.

本発明の目的は、基板の内部に拡散する熱を効率的に外部に放熱することが可能な半導体装置を提供することである。   An object of the present invention is to provide a semiconductor device capable of efficiently dissipating heat diffusing inside a substrate to the outside.

本発明の一観点によると、
実装面にランドが設けられたプリント基板と、
前記プリント基板に実装された半導体チップと
を有し、
前記半導体チップは、
基板の、前記プリント基板に対向する第1面に形成された能動素子と、
前記基板の前記第1面の、前記能動素子とは異なる位置に設けられ、前記基板より熱伝導率の高い材料からなる熱伝導膜と、
前記基板の前記第1面の上に配置され、前記能動素子及び前記熱伝導膜を覆う絶縁膜と、
前記絶縁膜の上に配置され、前記熱伝導膜に電気的に接続されたバンプと、
前記基板の前記第1面とは反対側の第2面から前記熱伝導膜まで達する貫通ビアホールと、
平面視において前記能動素子と重なる前記第2面の領域から、前記貫通ビアホールの内面まで連続して配置され、前記基板より熱伝導率の高い材料からなる熱伝導部材と
を有し、
前記バンプが前記ランドに接続されており、前記半導体チップが封止樹脂で封止されている半導体装置が提供される。
According to one aspect of the invention,
A printed circuit board with a land on the mounting surface;
A semiconductor chip mounted on the printed circuit board;
The semiconductor chip is
An active element formed on a first surface of the substrate facing the printed circuit board;
A thermally conductive film made of a material having a higher thermal conductivity than the substrate, provided at a position different from the active element on the first surface of the substrate;
An insulating film disposed on the first surface of the substrate and covering the active element and the heat conducting film;
A bump disposed on the insulating film and electrically connected to the thermal conductive film;
A through via hole reaching from the second surface opposite to the first surface of the substrate to the heat conductive film;
A heat conduction member made of a material having a higher thermal conductivity than the substrate, which is continuously arranged from the region of the second surface overlapping the active element in plan view to the inner surface of the through via hole;
There is provided a semiconductor device in which the bump is connected to the land, and the semiconductor chip is sealed with a sealing resin.

本発明の他の観点によると、
基板の第1面に形成された能動素子と、
前記基板の前記第1面の、前記能動素子とは異なる位置に設けられ、前記基板より熱伝導率の高い材料からなる熱伝導膜と、
前記基板の前記第1面の上に配置され、前記能動素子及び前記熱伝導膜を覆う絶縁膜と、
前記絶縁膜の上に配置され、前記熱伝導膜に電気的に接続されたバンプと、
前記基板の前記第1面とは反対側の第2面に設けられ、平面視において前記能動素子及び前記熱伝導膜と少なくとも部分的に重なる凹部と、
前記凹部の内面に設けられ、前記基板より熱伝導率の高い材料からなる熱伝導部材と
を有し、
前記凹部の底面に配置された前記熱伝導部材と前記熱伝導膜とは、前記基板の一部分を挟んで対向している半導体装置が提供される。
According to another aspect of the invention,
An active element formed on the first surface of the substrate;
A thermally conductive film made of a material having a higher thermal conductivity than the substrate, provided at a position different from the active element on the first surface of the substrate;
An insulating film disposed on the first surface of the substrate and covering the active element and the heat conducting film;
A bump disposed on the insulating film and electrically connected to the thermal conductive film;
A concave portion provided on a second surface opposite to the first surface of the substrate, and at least partially overlapping the active element and the heat conductive film in plan view;
A heat conductive member provided on the inner surface of the concave portion and made of a material having a higher thermal conductivity than the substrate;
There is provided a semiconductor device in which the heat conducting member and the heat conducting film disposed on the bottom surface of the recess are opposed to each other with a part of the substrate interposed therebetween.

能動素子で発生して基板側に拡散する熱が、熱伝導部材、熱伝導膜、及びバンプを通って外部に放熱される。このため、基板の内部に拡散する熱を効率的に外部に放熱することができる。   The heat generated by the active element and diffused to the substrate side is radiated to the outside through the heat conducting member, the heat conducting film, and the bump. For this reason, the heat diffused inside the substrate can be efficiently radiated to the outside.

図1Aは、第1実施例による半導体装置のブロック図であり、図1Bは、第1実施例による半導体装置の各回路のレイアウトを示す平面図であり、図1Cは、第1実施例による半導体装置の概略断面図である。1A is a block diagram of the semiconductor device according to the first embodiment, FIG. 1B is a plan view showing a layout of each circuit of the semiconductor device according to the first embodiment, and FIG. 1C is a semiconductor according to the first embodiment. It is a schematic sectional drawing of an apparatus. 図2Aは、第1実施例による半導体装置に含まれる半導体チップに形成されている出力段増幅回路の平面図であり、図2Bは、図2Aの一点鎖線2B−2Bにおける断面図である。2A is a plan view of an output stage amplifier circuit formed in a semiconductor chip included in the semiconductor device according to the first embodiment, and FIG. 2B is a cross-sectional view taken along one-dot chain line 2B-2B in FIG. 2A. 図3は、第1実施例による半導体装置のバンプの近傍の断面図である。FIG. 3 is a cross-sectional view of the vicinity of the bump of the semiconductor device according to the first embodiment. 図4は、第2実施例による半導体装置に含まれる半導体チップの断面図である。FIG. 4 is a cross-sectional view of a semiconductor chip included in the semiconductor device according to the second embodiment. 図5Aは、第3実施例による半導体装置に含まれる半導体チップに形成されている出力段増幅回路の平面図であり、図5Bは、図5Aの一点鎖線5B−5Bにおける断面図である。5A is a plan view of an output stage amplifier circuit formed in a semiconductor chip included in the semiconductor device according to the third embodiment, and FIG. 5B is a cross-sectional view taken along one-dot chain line 5B-5B in FIG. 5A. 図6は、第4実施例による半導体装置に含まれる半導体チップの断面図である。FIG. 6 is a cross-sectional view of a semiconductor chip included in the semiconductor device according to the fourth embodiment. 図7Aは、第5実施例による半導体装置に含まれる半導体チップの断面図であり、図7Bは、第5実施例による半導体装置の各回路のレイアウトを示す平面図である。FIG. 7A is a cross-sectional view of a semiconductor chip included in the semiconductor device according to the fifth embodiment, and FIG. 7B is a plan view showing a layout of each circuit of the semiconductor device according to the fifth embodiment. 図8は、第6実施例による半導体装置に含まれる半導体チップの断面図である。FIG. 8 is a cross-sectional view of a semiconductor chip included in the semiconductor device according to the sixth embodiment. 図9は、第6実施例による半導体装置に含まれる半導体チップの断面図である。FIG. 9 is a cross-sectional view of a semiconductor chip included in the semiconductor device according to the sixth embodiment.

[第1実施例]
図1Aから図3までの図面を参照して、第1実施例による半導体装置について説明する。
図1Aは、第1実施例による半導体装置のブロック図である。入力信号が、入力端子15からインピーダンス整合回路10を介してドライバ段増幅回路11に入力される。ドライバ段増幅回路11で増幅された信号が、インピーダンス整合回路12を介して出力段増幅回路13に入力される。出力段増幅回路13で増幅された信号が出力端子16から出力される。ドライバ段増幅回路11にインダクタ17を介して直流電力が供給される。出力段増幅回路13にインダクタ18を介して直流電力が供給される。
[First embodiment]
A semiconductor device according to the first embodiment will be described with reference to FIGS. 1A to 3.
FIG. 1A is a block diagram of the semiconductor device according to the first embodiment. An input signal is input from the input terminal 15 to the driver stage amplifier circuit 11 via the impedance matching circuit 10. The signal amplified by the driver stage amplifier circuit 11 is input to the output stage amplifier circuit 13 via the impedance matching circuit 12. The signal amplified by the output stage amplifier circuit 13 is output from the output terminal 16. DC power is supplied to the driver stage amplifier circuit 11 via the inductor 17. DC power is supplied to the output stage amplifier circuit 13 via the inductor 18.

図1Bは、第1実施例による半導体装置に含まれる半導体チップ30の各回路のレイアウトを示す平面図である。半導体基板40の表面に、インピーダンス整合回路10、12、ドライバ段増幅回路11、出力段増幅回路13、及び制御回路14が形成されている。出力段増幅回路13が形成されている領域に、半導体基板40を厚さ方向に貫通する貫通ビアホール41が設けられている。   FIG. 1B is a plan view showing a layout of each circuit of the semiconductor chip 30 included in the semiconductor device according to the first embodiment. Impedance matching circuits 10 and 12, a driver stage amplifier circuit 11, an output stage amplifier circuit 13, and a control circuit 14 are formed on the surface of the semiconductor substrate 40. A through via hole 41 that penetrates the semiconductor substrate 40 in the thickness direction is provided in a region where the output stage amplifier circuit 13 is formed.

貫通ビアホール41は、後述するように、出力段増幅回路13を構成するトランジスタで発生する熱を効率的に半導体チップ30の外部まで伝導させる機能を持つ。ドライバ段増幅回路11のトランジスタの発熱量は、出力段増幅回路13のトランジスタの発熱量に比べて少ない。このため、出力段増幅回路13に対応して貫通ビアホール41を設けることが好ましい。ドライバ段増幅回路11に対しては、貫通ビアホールを設けてもよいし、設けなくてもよい。   As will be described later, the through via hole 41 has a function of efficiently conducting heat generated by the transistors constituting the output stage amplifier circuit 13 to the outside of the semiconductor chip 30. The amount of heat generated by the transistor of the driver stage amplifier circuit 11 is smaller than the amount of heat generated by the transistor of the output stage amplifier circuit 13. For this reason, it is preferable to provide the through via hole 41 corresponding to the output stage amplifier circuit 13. A through via hole may or may not be provided for the driver stage amplifier circuit 11.

図1Cは、第1実施例による半導体装置の概略断面図である。プリント基板20の実装面(図1Bにおいて上面)に半導体チップ30が実装されている。半導体チップ30は、半導体基板40のプリント基板20に対向する面(以下、第1面という。)に形成された複数のバンプ31を含む。プリント基板20は、実装面に形成された複数のランド21、及び下面(実装面とは反対側の面)に形成された外部接続用の複数の電極23を含む。   FIG. 1C is a schematic cross-sectional view of the semiconductor device according to the first embodiment. The semiconductor chip 30 is mounted on the mounting surface (the upper surface in FIG. 1B) of the printed circuit board 20. The semiconductor chip 30 includes a plurality of bumps 31 formed on a surface (hereinafter referred to as a first surface) of the semiconductor substrate 40 facing the printed circuit board 20. The printed circuit board 20 includes a plurality of lands 21 formed on the mounting surface and a plurality of electrodes 23 for external connection formed on the lower surface (the surface opposite to the mounting surface).

複数のランド21のうち少なくとも1つはグランド用のランド21であり、複数の電極23のうち少なくとも1つはグランド用の電極23である。グランド用のランド21とグランド用の電極23とが、複数のビア導体24及び内層の配線25を介して電気的に接続されている。   At least one of the plurality of lands 21 is a ground land 21, and at least one of the plurality of electrodes 23 is a ground electrode 23. A ground land 21 and a ground electrode 23 are electrically connected via a plurality of via conductors 24 and an inner layer wiring 25.

半導体チップ30のバンプ31がプリント基板20のランド21に接続されている。半導体チップ30の複数のバンプ31のうち少なくとも1つはグランド用のバンプ31であり、グランド用のバンプ31は、プリント基板20のグランド用のランド21に接続されている。半導体チップ30は、封止樹脂28によって封止されている。   The bumps 31 of the semiconductor chip 30 are connected to the lands 21 of the printed circuit board 20. At least one of the plurality of bumps 31 of the semiconductor chip 30 is a ground bump 31, and the ground bump 31 is connected to the ground land 21 of the printed circuit board 20. The semiconductor chip 30 is sealed with a sealing resin 28.

図2Aは、第1実施例による半導体装置に含まれる半導体チップ30に形成されている出力段増幅回路13(図1A)の平面図である。出力段増幅回路13は、例えば相互に並列に接続され、一列に配列した4個のトランジスタ42(能動素子)を含む。以下、トランジスタ42が配列する方向を、単に「配列方向」という。トランジスタ42は、例えばヘテロ接合バイポーラトランジスタである。   FIG. 2A is a plan view of the output stage amplifier circuit 13 (FIG. 1A) formed in the semiconductor chip 30 included in the semiconductor device according to the first embodiment. The output stage amplifier circuit 13 includes, for example, four transistors 42 (active elements) connected in parallel to each other and arranged in a line. Hereinafter, the direction in which the transistors 42 are arranged is simply referred to as “arrangement direction”. The transistor 42 is, for example, a heterojunction bipolar transistor.

トランジスタ42の各々は、エミッタ電極E0、ベース電極B0、及びコレクタ電極C0を含む。図2Aにおいて、エミッタ電極E0、ベース電極B0、及びコレクタ電極C0の領域にハッチングを付している。1つのトランジスタ42に着目すると、配列方向に関してエミッタ電極E0の両側にそれぞれベース電極B0の一部分が配置され、さらにその両側にそれぞれコレクタ電極C0が配置されている。エミッタ電極E0の両側に配置されたベース電極B0の一部分は、エミッタ電極E0の外側で相互に連続している。例えば、ベース電極B0は、平面視においてエミッタ電極E0を三方向からU字状に取り囲んでいる。相互に隣り合うトランジスタ42は、1つのコレクタ電極C0を共用している。   Each of the transistors 42 includes an emitter electrode E0, a base electrode B0, and a collector electrode C0. In FIG. 2A, regions of the emitter electrode E0, the base electrode B0, and the collector electrode C0 are hatched. Focusing on one transistor 42, a part of the base electrode B0 is disposed on both sides of the emitter electrode E0 in the arrangement direction, and further a collector electrode C0 is disposed on both sides thereof. Part of the base electrode B0 disposed on both sides of the emitter electrode E0 is continuous with the outside of the emitter electrode E0. For example, the base electrode B0 surrounds the emitter electrode E0 in a U shape from three directions in plan view. The transistors 42 adjacent to each other share one collector electrode C0.

複数の1層目のエミッタ配線E1が、それぞれ複数のエミッタ電極E0と重なるように配置されている。複数の1層目のベース配線B1が、それぞれ複数のベース電極B0の一部に重なり、重なり箇所から外側に引き出されている。線状部と複数の櫛歯部とを含む1層目のコレクタ配線C1の複数の櫛歯部が、それぞれ複数のコレクタ電極C0と重なっている。コレクタ配線C1の線状部は、コレクタ電極C0に隣接して、配列方向に関して一方の端のトランジスタ42が配置された位置から他方の端のトランジスタ42が配置された位置まで及び、複数の櫛歯部の各々に接続されている。   The plurality of first-layer emitter wirings E1 are arranged so as to overlap with the plurality of emitter electrodes E0, respectively. The plurality of first-layer base wirings B1 overlap with parts of the plurality of base electrodes B0, respectively, and are drawn out from the overlapping portions. The plurality of comb-teeth portions of the first-layer collector wiring C1 including the linear portion and the plurality of comb-teeth portions overlap with the plurality of collector electrodes C0, respectively. The linear portion of the collector wiring C1 is adjacent to the collector electrode C0 and extends from the position where the transistor 42 at one end in the arrangement direction is disposed to the position where the transistor 42 at the other end is disposed. Connected to each of the parts.

トランジスタ42とは異なる位置に、熱伝導膜43が配置されている。例えば、トランジスタ42から見て1層目のコレクタ配線C1の線状部とは反対側に、熱伝導膜43が配置されている。熱伝導膜43は配列方向に長い形状を持ち、配列方向に関して一方の端のトランジスタ42が配置された位置から他方の端のトランジスタ42が配置された位置まで及んでいる。熱伝導膜43は、1層目のベース配線B1、エミッタ配線E1、及びコレクタ配線C1と同一の金属材料、例えばAuで形成されており、同一の工程で成膜される。平面視において熱伝導膜43の内側に貫通ビアホール41が配置されている。   A heat conductive film 43 is disposed at a position different from that of the transistor 42. For example, the heat conductive film 43 is disposed on the opposite side to the linear portion of the first-layer collector wiring C <b> 1 when viewed from the transistor 42. The heat conductive film 43 has a long shape in the arrangement direction, and extends from the position where the transistor 42 at one end is arranged to the position where the transistor 42 at the other end is arranged in the arrangement direction. The heat conductive film 43 is made of the same metal material, for example, Au, as the first layer base wiring B1, emitter wiring E1, and collector wiring C1, and is formed in the same process. The through via hole 41 is disposed inside the heat conductive film 43 in plan view.

2層目のコレクタ配線C2が1層目のコレクタ配線C1の線状部と重なるように配置されている。2層目のエミッタ配線E2が、1層目のエミッタ配線E1及び熱伝導膜43に重なるように配置されている。   The second-layer collector wiring C2 is arranged so as to overlap the linear portion of the first-layer collector wiring C1. The second-layer emitter wiring E2 is disposed so as to overlap the first-layer emitter wiring E1 and the heat conductive film 43.

最上層にバンプ31が配置されている。バンプ31は、平面視において2層目のエミッタ配線E2と重なるとともに、複数のエミッタ電極E0及び熱伝導膜43と部分的に、または複数のエミッタ電極E0及び熱伝導膜43の全体に重なる。   Bumps 31 are arranged on the uppermost layer. The bump 31 overlaps with the emitter wiring E2 of the second layer in plan view, and partially overlaps with the plurality of emitter electrodes E0 and the heat conduction film 43 or entirely over the plurality of emitter electrodes E0 and the heat conduction film 43.

図2Bは、図2Aの一点鎖線2B−2Bにおける断面図である。半導体基板40の上面(第1面)にトランジスタ42が形成されている。半導体基板40は、例えば半絶縁性のGaAsからなる支持基板と、その上にエピタキシャル成長されたGaAsからなるエピタキシャル成長層とを含む。エピタキシャル成長層のうち、トランジスタ42が配置された領域には導電性が付与され、その他の領域は絶縁性とされている。   2B is a cross-sectional view taken along one-dot chain line 2B-2B in FIG. 2A. A transistor 42 is formed on the upper surface (first surface) of the semiconductor substrate 40. The semiconductor substrate 40 includes, for example, a support substrate made of semi-insulating GaAs and an epitaxial growth layer made of GaAs epitaxially grown thereon. In the epitaxial growth layer, the region where the transistor 42 is disposed is given conductivity, and the other regions are insulative.

トランジスタ42は、コレクタ層、ベース層、及びエミッタ層からなる半導体メサと、ベース電極B0、及びエミッタ電極E0を含む。コレクタ電極C0(図2A)は図2Bの断面には現れていない。半導体基板40の上面の上に、トランジスタ42を覆うSiN等の絶縁膜45が配置されている。絶縁膜45の上に、1層目のエミッタ配線E1、ベース配線B1、コレクタ配線C1、及び熱伝導膜43が配置されている。1層目のエミッタ配線E1及びベース配線B1は、それぞれ絶縁膜45に設けられた開口内を経由してエミッタ電極E0及びベース電極B0に接続されている。図2Bに示した断面においては、1層目のコレクタ配線C1の直下の絶縁膜45には開口が設けられていない。熱伝導膜43は、絶縁膜45に設けられた開口内を経由して半導体基板40の上面に接している。   The transistor 42 includes a semiconductor mesa composed of a collector layer, a base layer, and an emitter layer, a base electrode B0, and an emitter electrode E0. The collector electrode C0 (FIG. 2A) does not appear in the cross section of FIG. 2B. An insulating film 45 such as SiN covering the transistor 42 is disposed on the upper surface of the semiconductor substrate 40. On the insulating film 45, a first-layer emitter wiring E1, a base wiring B1, a collector wiring C1, and a heat conductive film 43 are arranged. The first-layer emitter wiring E1 and the base wiring B1 are connected to the emitter electrode E0 and the base electrode B0 through the openings provided in the insulating film 45, respectively. In the cross section shown in FIG. 2B, no opening is provided in the insulating film 45 immediately below the first-layer collector wiring C1. The heat conductive film 43 is in contact with the upper surface of the semiconductor substrate 40 through an opening provided in the insulating film 45.

1層目のエミッタ配線E1、ベース配線B1、コレクタ配線C1、及び熱伝導膜43には、例えばAu等の金属が用いられる。熱伝導膜43に用いられる金属の熱伝導率は、半導体基板40の熱伝導率より高い。   For the emitter wiring E1, the base wiring B1, the collector wiring C1, and the heat conductive film 43 in the first layer, for example, a metal such as Au is used. The heat conductivity of the metal used for the heat conductive film 43 is higher than the heat conductivity of the semiconductor substrate 40.

絶縁膜45の上に、1層目のエミッタ配線E1、ベース配線B1、コレクタ配線C1、及び熱伝導膜43を覆うように、絶縁膜46が配置されている。絶縁膜46は、例えばSiN膜と樹脂膜との2層構造を有し、絶縁膜46の上面は平坦化されている。   An insulating film 46 is disposed on the insulating film 45 so as to cover the first-layer emitter wiring E 1, base wiring B 1, collector wiring C 1, and thermal conductive film 43. The insulating film 46 has, for example, a two-layer structure of a SiN film and a resin film, and the upper surface of the insulating film 46 is flattened.

絶縁膜46の上に、2層目のエミッタ配線E2及び2層目のコレクタ配線C2が配置されている。2層目のエミッタ配線E2は、絶縁膜46に設けられた開口内を経由して1層目のエミッタ配線E1に接続されるとともに、他の開口内を経由して熱伝導膜43にも接続されている。2層目のコレクタ配線C2は、絶縁膜46に設けられた開口内を経由して1層目のコレクタ配線C1に接続されている。   On the insulating film 46, a second-layer emitter wiring E2 and a second-layer collector wiring C2 are arranged. The second-layer emitter wiring E2 is connected to the first-layer emitter wiring E1 through the opening provided in the insulating film 46, and is also connected to the heat conductive film 43 through the other opening. Has been. The second-layer collector wiring C2 is connected to the first-layer collector wiring C1 through an opening provided in the insulating film 46.

絶縁膜46の上に、絶縁膜47が配置されている。絶縁膜47に、2層目のエミッタ配線E2の一部を露出させる開口が設けられ、開口内の2層目のエミッタ配線E2の上、及び開口の周囲の絶縁膜47の上にバンプ31が配置されている。バンプ31には、例えば、Cuピラー32と、その上面に設けられたはんだバンプ33とを含むCuピラーバンプが用いられる。エミッタ配線E2、E1を介してエミッタ電極E0に接続されているバンプ31はグランド用のバンプである。   An insulating film 47 is disposed on the insulating film 46. The insulating film 47 is provided with an opening exposing a part of the second-layer emitter wiring E2, and the bumps 31 are formed on the second-layer emitter wiring E2 in the opening and on the insulating film 47 around the opening. Is arranged. For example, a Cu pillar bump including a Cu pillar 32 and a solder bump 33 provided on the upper surface thereof is used as the bump 31. A bump 31 connected to the emitter electrode E0 via the emitter wirings E2 and E1 is a ground bump.

半導体基板40に、その下面(第2面)から熱伝導膜43まで達する貫通ビアホール41が形成されている。平面視において、半導体基板40の下面の、トランジスタ42と重なる領域から、貫通ビアホール41の内面まで連続して熱伝導部材51が配置されている。熱伝導部材51として、例えば、Au等の金属膜が用いられる。一例として、熱伝導部材51は、半導体基板40の下面の全域を覆い、貫通ビアホール41の側面及び底面の全域を覆う。貫通ビアホール41の底面には熱伝導膜43が露出しているため、熱伝導部材51は熱伝導膜43に接触する。   A through via hole 41 extending from the lower surface (second surface) to the heat conductive film 43 is formed in the semiconductor substrate 40. In a plan view, the heat conducting member 51 is continuously arranged from the region of the lower surface of the semiconductor substrate 40 that overlaps the transistor 42 to the inner surface of the through via hole 41. As the heat conducting member 51, for example, a metal film such as Au is used. As an example, the heat conducting member 51 covers the entire lower surface of the semiconductor substrate 40 and covers the entire side surface and bottom surface of the through via hole 41. Since the heat conductive film 43 is exposed on the bottom surface of the through via hole 41, the heat conductive member 51 is in contact with the heat conductive film 43.

次に、図3を参照して第1実施例の優れた効果について説明する。
図3は、第1実施例による半導体装置のバンプ31の近傍の断面図である。半導体チップ30のグランド用のバンプ31がプリント基板20のグランド用のランド21に電気的に接続されるとともに、機械的に固定されている。ランド21は、プリント基板20に設けられている内層の複数の配線25及び複数のビア導体24を介して、実装面とは反対側の面に形成された外部接続用の電極23に接続されている。
Next, an excellent effect of the first embodiment will be described with reference to FIG.
FIG. 3 is a sectional view of the vicinity of the bump 31 of the semiconductor device according to the first embodiment. The ground bumps 31 of the semiconductor chip 30 are electrically connected to the ground lands 21 of the printed circuit board 20 and mechanically fixed. The land 21 is connected to an external connection electrode 23 formed on the surface opposite to the mounting surface through a plurality of inner layer wirings 25 and a plurality of via conductors 24 provided on the printed circuit board 20. Yes.

トランジスタ42の動作時に、平面視においてエミッタ電極E0と重なる半導体領域に動作電流が流れることにより、熱が発生する。平面視において、トランジスタ42の半導体領域のうちエミッタ電極E0と重なる部分が発熱源48となる。半導体基板40の厚さ方向に関しては、トランジスタ42のコレクタ層、ベース層、及びエミッタ層からなる領域が発熱源48となる。発熱源48で発生し、半導体基板40とは反対側に流れる熱は、エミッタ電極E0、エミッタ配線E1、E2、及びバンプ31で構成される熱経路T0を経由してプリント基板20のランド21まで伝導する。   During the operation of the transistor 42, heat is generated by the operating current flowing through the semiconductor region overlapping the emitter electrode E0 in plan view. In a plan view, a portion of the semiconductor region of the transistor 42 that overlaps the emitter electrode E0 serves as a heat source 48. With respect to the thickness direction of the semiconductor substrate 40, a region including the collector layer, the base layer, and the emitter layer of the transistor 42 becomes the heat source 48. The heat generated by the heat generation source 48 and flowing to the opposite side of the semiconductor substrate 40 passes to the land 21 of the printed circuit board 20 via the heat path T0 formed by the emitter electrode E0, the emitter wirings E1 and E2, and the bumps 31. Conduct.

さらに、発熱源48で発生した熱の一部は、半導体基板40の内部に拡散する。半導体基板40の内部に拡散した熱は、半導体基板40、熱伝導部材51、熱伝導膜43、2層目のエミッタ配線E2、及びバンプ31で構成される熱経路T1を経由してプリント基板20のランド21まで伝導する。   Further, part of the heat generated by the heat source 48 diffuses inside the semiconductor substrate 40. The heat diffused inside the semiconductor substrate 40 passes through the heat path T1 constituted by the semiconductor substrate 40, the heat conduction member 51, the heat conduction film 43, the second-layer emitter wiring E2, and the bumps 31, and the printed board 20 Conducted up to the land 21.

プリント基板20のランド21まで伝わった熱は、ビア導体24及び配線25を経由して、外部接続用の電極23まで伝わる。電極23は、例えばマザーボード等の大きなグランド導体に接続される。従って、電極23まで伝わった熱は、半導体チップ30に比べて十分大きな熱容量を持つ外部のグランド導体に向かって排出される。   The heat transmitted to the land 21 of the printed circuit board 20 is transmitted to the external connection electrode 23 via the via conductor 24 and the wiring 25. The electrode 23 is connected to a large ground conductor such as a mother board. Accordingly, the heat transmitted to the electrode 23 is discharged toward the external ground conductor having a sufficiently large heat capacity as compared with the semiconductor chip 30.

第1実施例では、発熱源48で発生し半導体基板40を横方向(厚さ方向に対して直交する方向)に拡散する熱は、貫通ビアホール41の側面を覆う熱伝導部材51まで伝わり、その後、熱伝導膜43まで伝わる。発熱源48で発生し、半導体基板40を厚さ方向に拡散する熱は、半導体基板40の実装面とは反対側の面を覆う熱伝導部材51まで伝わり、その後、熱伝導部材51を経由して熱伝導膜43まで伝わる。熱伝導部材51には、半導体基板40よりも熱伝導率の高い材料が用いられているため、熱伝導部材51を配置しない構成と比べて熱経路T1の熱抵抗を低減させることができる。   In the first embodiment, the heat generated in the heat generation source 48 and diffused in the lateral direction (direction perpendicular to the thickness direction) of the semiconductor substrate 40 is transmitted to the heat conduction member 51 covering the side surface of the through via hole 41, and thereafter The heat conduction film 43 is transmitted. The heat generated in the heat generation source 48 and diffused in the thickness direction of the semiconductor substrate 40 is transmitted to the heat conduction member 51 that covers the surface opposite to the mounting surface of the semiconductor substrate 40, and then passes through the heat conduction member 51. To the heat conductive film 43. Since a material having a higher thermal conductivity than that of the semiconductor substrate 40 is used for the heat conducting member 51, the thermal resistance of the heat path T1 can be reduced compared to a configuration in which the heat conducting member 51 is not disposed.

第1実施例では、熱経路T0のみならず、半導体基板40内に拡散する熱を熱経路T1を経由して外部に放熱させるため、トランジスタ42の温度上昇を抑制することができる。熱伝導部材51と熱伝導膜43とが、絶縁材料や半導体材料を介することなく直接接触しているため、熱経路T1の熱抵抗の上昇が抑制される。このため、熱経路T1を経由して効率的に放熱を行うことができる。   In the first embodiment, not only the heat path T0 but also the heat diffused in the semiconductor substrate 40 is radiated to the outside through the heat path T1, so that the temperature rise of the transistor 42 can be suppressed. Since the heat conducting member 51 and the heat conducting film 43 are in direct contact with no insulating material or semiconductor material interposed therebetween, an increase in the thermal resistance of the heat path T1 is suppressed. For this reason, heat can be efficiently radiated via the heat path T1.

熱経路T1の熱抵抗を低減させるために、平面視において、貫通ビアホール41及び熱伝導膜43を、絶縁膜46に設けられた開口及びバンプ31に少なくとも部分的に重ねて配置することが好ましい。さらに、平面視において、プリント基板20のグランド用のランド21をグランド用の電極23と少なくとも部分的に重ねて配置することが好ましい。ここで、「少なくとも部分的に重ねる」とは、平面視において、一方の部材の一部と他方の部材の一部とを重ねる状態、一方の部材の全域を他方の部材の一部に重ねる状態、及び一方の部材の全域を他方の部材の全域に重ねる状態のいずれかを意味する。熱経路T1の一部を構成するバンプ31として、他のバンプに比べて大きな面積を持つグランド用のバンプを用いることが好ましい。   In order to reduce the thermal resistance of the heat path T1, it is preferable to dispose the through via hole 41 and the heat conductive film 43 at least partially overlapping the openings and the bumps 31 provided in the insulating film 46 in a plan view. Furthermore, it is preferable to arrange the ground land 21 of the printed circuit board 20 at least partially overlapping the ground electrode 23 in plan view. Here, “at least partially overlap” means a state in which a part of one member and a part of the other member are overlapped in a plan view, and a state in which the entire area of one member is overlapped with a part of the other member. , And one of the states in which the entire area of one member is overlapped with the entire area of the other member. As the bump 31 constituting a part of the heat path T1, it is preferable to use a bump for ground having a larger area than other bumps.

次に、第1実施例の変形例について説明する。
第1実施例では、半導体基板40として例えばGaAsからなる基板を用いたが、その他の半導体からなる基板を用いてもよし、能動素子の半導体領域をエピタキシャル成長させることが可能な絶縁性基板を用いてもよい。また、第1実施例では、トランジスタ42としてヘテロ接合バイポーラトランジスタを用いたが、その他の能動素子、例えばMISトランジスタ、MESトランジスタ、高電子移動度トランジスタ(HEMT)等を用いてもよい。また、第1実施例では、バンプ31としてCuピラーバンプを用いたが、その他の構造のバンプを用いてもよい。
Next, a modification of the first embodiment will be described.
In the first embodiment, a substrate made of GaAs, for example, is used as the semiconductor substrate 40. However, a substrate made of another semiconductor may be used, and an insulating substrate capable of epitaxially growing the semiconductor region of the active element is used. Also good. In the first embodiment, a heterojunction bipolar transistor is used as the transistor 42, but other active elements such as a MIS transistor, a MES transistor, and a high electron mobility transistor (HEMT) may be used. In the first embodiment, Cu pillar bumps are used as the bumps 31. However, bumps having other structures may be used.

[第2実施例]
次に、図4を参照して第2実施例による半導体装置について説明する。以下、第1実施例による半導体装置(図1Aから図2B)と共通の構成については説明を省略する。
[Second Embodiment]
Next, a semiconductor device according to the second embodiment will be described with reference to FIG. Hereinafter, the description of the configuration common to the semiconductor device according to the first embodiment (FIGS. 1A to 2B) will be omitted.

図4は、第2実施例による半導体装置に含まれる半導体チップの断面図である。第1実施例では、貫通ビアホール41(図2B)の側面と底面が熱伝導部材51で覆われており、貫通ビアホール41内の残りの部分は空洞であるか、または封止樹脂(図1C)で充填されていた。第2実施例では、貫通ビアホール41内の残りの部分に熱伝導性ペースト49が埋め込まれている。ここで、「埋め込まれている」とは、貫通ビアホール41内の空間が熱伝導性ペースト49で完全に充填されていることを意味しない。例えば、熱伝導性ペースト49の表面がやや窪んでいるような場合でも、「埋め込まれている」ということができる。   FIG. 4 is a cross-sectional view of a semiconductor chip included in the semiconductor device according to the second embodiment. In the first embodiment, the side surface and the bottom surface of the through via hole 41 (FIG. 2B) are covered with the heat conducting member 51, and the remaining portion in the through via hole 41 is hollow or is a sealing resin (FIG. 1C). It was filled with. In the second embodiment, the heat conductive paste 49 is embedded in the remaining part of the through via hole 41. Here, “being embedded” does not mean that the space in the through via hole 41 is completely filled with the heat conductive paste 49. For example, even when the surface of the heat conductive paste 49 is slightly depressed, it can be said that it is “embedded”.

熱伝導性ペースト49の熱伝導率は、封止樹脂28の熱伝導率よりも高い。熱伝導性ペースト49として、ペースト状物質に、金属やセラミックの粉末を分散させたものを用いることができる。ペースト状物質には、例えばエポキシ樹脂等の樹脂を用いることができる。金属やセラミックの粉末には、例えば銀、SiC、AlN等を用いることができる。「ペースト」とは、一般的に流動性と高い粘性を持つ物質を意味するが、本明細書において、ペーストが加熱等によって硬化されたものもペーストと呼ぶ。   The thermal conductivity of the thermal conductive paste 49 is higher than the thermal conductivity of the sealing resin 28. As the heat conductive paste 49, a paste-like substance in which metal or ceramic powder is dispersed can be used. As the paste-like substance, for example, a resin such as an epoxy resin can be used. As the metal or ceramic powder, for example, silver, SiC, AlN or the like can be used. “Paste” generally means a substance having fluidity and high viscosity, but in the present specification, a paste cured by heating or the like is also called a paste.

次に、第2実施例の優れた効果について説明する。第2実施例では、貫通ビアホール41内の熱伝導性ペースト49が、熱経路T1(図3)の一部として機能する。このため、熱経路T1の断面積が大きくなり、熱抵抗が低下する。その結果、熱経路T1を経由した熱伝導の効率を高めることができる。   Next, the excellent effect of the second embodiment will be described. In the second embodiment, the heat conductive paste 49 in the through via hole 41 functions as a part of the heat path T1 (FIG. 3). For this reason, the cross-sectional area of the heat path T1 increases, and the thermal resistance decreases. As a result, the efficiency of heat conduction via the heat path T1 can be increased.

熱伝導性ペースト49は、硬化後においても、半導体基板40よりも低いヤング率を持つ。熱伝導性ペースト49は、半導体基板40の熱変形に応じて柔軟に変形するため、貫通ビアホール41内に金属部材を充填する構成と比べて、半導体基板40が熱変形しても半導体チップ30が損傷を受けにくいという効果が得られる。   The thermally conductive paste 49 has a Young's modulus lower than that of the semiconductor substrate 40 even after curing. Since the thermal conductive paste 49 is flexibly deformed in accordance with the thermal deformation of the semiconductor substrate 40, the semiconductor chip 30 is not deformed even when the semiconductor substrate 40 is thermally deformed as compared with the configuration in which the through via hole 41 is filled with a metal member. The effect that it is hard to receive damage is acquired.

[第3実施例]
次に、図5A及び図5Bを参照して、第3実施例による半導体装置について説明する。以下、第1実施例による半導体装置(図1Aから図2B)と共通の構成については説明を省略する。
[Third embodiment]
Next, a semiconductor device according to a third embodiment will be described with reference to FIGS. 5A and 5B. Hereinafter, the description of the configuration common to the semiconductor device according to the first embodiment (FIGS. 1A to 2B) will be omitted.

図5Aは、第3実施例による半導体装置に含まれる半導体チップ30に形成されている出力段増幅回路13(図1A)平面図である。図5Bは、図5Aの一点鎖線5B−5Bにおける断面図である。第3実施例では、半導体基板40の底面に凹部60が形成されている。凹部60は、半導体基板40の上面までは到達していない。平面視において、凹部60はトランジスタ42と少なくとも部分的に重なり、凹部60の領域内に貫通ビアホール41が配置されている。図5Aでは、平面視においてトランジスタ42が凹部60の内部に配置されている例を示している。貫通ビアホール41は、凹部60の底面から熱伝導膜43まで達する。   FIG. 5A is a plan view of the output stage amplifier circuit 13 (FIG. 1A) formed in the semiconductor chip 30 included in the semiconductor device according to the third embodiment. 5B is a cross-sectional view taken along one-dot chain line 5B-5B in FIG. 5A. In the third embodiment, a recess 60 is formed on the bottom surface of the semiconductor substrate 40. The recess 60 does not reach the upper surface of the semiconductor substrate 40. In plan view, the recess 60 at least partially overlaps the transistor 42, and the through via hole 41 is disposed in the region of the recess 60. FIG. 5A shows an example in which the transistor 42 is disposed inside the recess 60 in plan view. The through via hole 41 reaches the heat conductive film 43 from the bottom surface of the recess 60.

半導体基板40の下面、凹部60の側面と底面、及び貫通ビアホール41の側面と底面が、熱伝導部材51で覆われている。   The lower surface of the semiconductor substrate 40, the side surface and the bottom surface of the recess 60, and the side surface and the bottom surface of the through via hole 41 are covered with the heat conducting member 51.

次に、第3実施例の優れた効果について説明する。第3実施例では、半導体基板40に凹部60が形成されているため、半導体基板40の厚さ方向に関して発熱源48から熱伝導部材51までの距離が、第1実施例の場合と比べて短くなる。熱経路T1が短くなることにより熱抵抗が低下するため、熱経路T1を通した熱伝導の効率を高めることができる。半導体基板40を薄くしてしまうと、半導体チップ30の機械的強度が低下してしまうが、第3実施例では、熱経路T1として機能する領域以外では、半導体基板40を薄くしていない。このため、半導体チップ30の十分な機械的強度を維持することができる。   Next, the excellent effect of the third embodiment will be described. In the third embodiment, since the recess 60 is formed in the semiconductor substrate 40, the distance from the heat generation source 48 to the heat conducting member 51 in the thickness direction of the semiconductor substrate 40 is shorter than that in the first embodiment. Become. Since the heat resistance is lowered by shortening the heat path T1, the efficiency of heat conduction through the heat path T1 can be increased. If the semiconductor substrate 40 is thinned, the mechanical strength of the semiconductor chip 30 is lowered. However, in the third embodiment, the semiconductor substrate 40 is not thin except in a region functioning as the heat path T1. For this reason, sufficient mechanical strength of the semiconductor chip 30 can be maintained.

熱伝導部材51の熱伝導度は半導体基板40の熱伝導度より十分高いと見なすことができる。このとき、熱経路T1の熱抵抗を低下させることによる十分な効果を得るために、発熱源48から凹部60の底面までの距離L2を、発熱源48から貫通ビアホール41までの横方向の距離L1より短くすることが好ましい。発熱源48から貫通ビアホール41までの距離L1の起点は、エミッタ電極E0の端部と定義するとよい。発熱源48から凹部60の底面までの距離L2の起点は、トランジスタ42を構成するコレクタ層の下面と定義するとよい。   It can be considered that the thermal conductivity of the thermal conductive member 51 is sufficiently higher than the thermal conductivity of the semiconductor substrate 40. At this time, in order to obtain a sufficient effect by reducing the thermal resistance of the heat path T1, the distance L2 from the heat source 48 to the bottom surface of the recess 60 is set as the lateral distance L1 from the heat source 48 to the through via hole 41. It is preferable to make it shorter. The starting point of the distance L1 from the heat generation source 48 to the through via hole 41 may be defined as the end of the emitter electrode E0. The starting point of the distance L2 from the heat source 48 to the bottom surface of the recess 60 may be defined as the lower surface of the collector layer that constitutes the transistor 42.

[第4実施例]
次に、図6を参照して、第4実施例による半導体装置について説明する。以下、第3実施例による半導体装置(図5A、図5B)と共通の構成については説明を省略する。
[Fourth embodiment]
Next, a semiconductor device according to the fourth embodiment will be described with reference to FIG. Hereinafter, the description of the configuration common to the semiconductor device according to the third embodiment (FIGS. 5A and 5B) will be omitted.

図6は、第4実施例による半導体装置に含まれる半導体チップ30の断面図である。第4実施例では、凹部60及び貫通ビアホール41の内部が熱伝導性ペースト61で埋め込まれている。熱伝導性ペースト61として、例えば第2実施例による半導体装置に用いられている熱伝導性ペースト49(図4)と同一のものを用いるとよい。   FIG. 6 is a sectional view of a semiconductor chip 30 included in the semiconductor device according to the fourth embodiment. In the fourth embodiment, the recess 60 and the inside of the through via hole 41 are filled with the heat conductive paste 61. As the thermal conductive paste 61, for example, the same thermal conductive paste 49 (FIG. 4) used in the semiconductor device according to the second embodiment may be used.

次に、第4実施例の優れた効果について説明する。第4実施例では、凹部60及び貫通ビアホール41の内部が熱伝導性ペースト61で埋め込まれているため、第2実施例と同様に、熱伝導の効率を高めることができる。その結果、トランジスタ42の温度上昇を抑制することができる。   Next, the excellent effect of the fourth embodiment will be described. In the fourth embodiment, since the inside of the recess 60 and the through via hole 41 is embedded with the heat conductive paste 61, the efficiency of heat conduction can be increased as in the second embodiment. As a result, the temperature rise of the transistor 42 can be suppressed.

また、熱伝導性ペースト61は、硬化後においても、半導体基板40よりも低いヤング率を持つ。熱伝導性ペースト61は、半導体基板40の熱変形に応じて柔軟に変形するため、貫通ビアホール41と凹部60との内部に金属部材を充填する構成と比べて、半導体基板40が熱変形しても半導体チップ30が損傷を受けにくいという効果が得られる。   Further, the thermally conductive paste 61 has a Young's modulus lower than that of the semiconductor substrate 40 even after curing. Since the thermally conductive paste 61 is flexibly deformed in accordance with the thermal deformation of the semiconductor substrate 40, the semiconductor substrate 40 is thermally deformed as compared with the configuration in which the metal member is filled in the through via hole 41 and the recess 60. In this case, the semiconductor chip 30 can be hardly damaged.

さらに、凹部60に埋め込まれた熱伝導性ペースト61により、凹部60が設けられたことにより半導体基板40が薄くなった部分の機械的強度の低下を補償することができる。これにより、チップダイシング等の加工工程で機械的応力が加わることによる半導体チップの破損を抑制することができる。   Further, the thermal conductive paste 61 embedded in the recess 60 can compensate for a decrease in mechanical strength of the portion where the semiconductor substrate 40 has become thinner due to the provision of the recess 60. Thereby, damage to the semiconductor chip due to mechanical stress applied in a processing step such as chip dicing can be suppressed.

[第5実施例]
次に、図7A及び図7Bを参照して、第5実施例による半導体装置について説明する。以下、第1実施例による半導体装置(図1Aから図2B)と共通の構成については説明を省略する。
[Fifth embodiment]
Next, with reference to FIGS. 7A and 7B, a semiconductor device according to a fifth embodiment will be described. Hereinafter, the description of the configuration common to the semiconductor device according to the first embodiment (FIGS. 1A to 2B) will be omitted.

図7Aは、第5実施例による半導体装置に含まれる半導体チップ30の断面図である。第1実施例では半導体基板40に下面から上面の熱伝導膜43(図2B)まで達する貫通ビアホール41が設けられていた。第5実施例では、貫通ビアホールは設けられておらず、半導体基板40の下面に、上面まで達しない凹部60が設けられている。凹部60の側面及び底面が熱伝導部材51で覆われている。平面視において、凹部60は、トランジスタ42のエミッタ電極E0及び熱伝導膜43と少なくとも部分的に重なっている。凹部60の底面に配置された熱伝導部材51と熱伝導膜43とは、半導体基板40の一部分を挟んで対向しており、接触はしていない。凹部60には、封止樹脂28(図1C)が埋め込まれる。   FIG. 7A is a cross-sectional view of a semiconductor chip 30 included in the semiconductor device according to the fifth embodiment. In the first embodiment, the through via hole 41 extending from the lower surface to the heat conductive film 43 (FIG. 2B) on the upper surface is provided in the semiconductor substrate 40. In the fifth embodiment, no through via hole is provided, and a recess 60 that does not reach the upper surface is provided on the lower surface of the semiconductor substrate 40. The side surface and the bottom surface of the recess 60 are covered with the heat conducting member 51. In plan view, the recess 60 at least partially overlaps the emitter electrode E 0 and the heat conductive film 43 of the transistor 42. The heat conducting member 51 and the heat conducting film 43 disposed on the bottom surface of the recess 60 are opposed to each other with a part of the semiconductor substrate 40 interposed therebetween, and are not in contact with each other. Sealing resin 28 (FIG. 1C) is embedded in the recess 60.

図7Bは、第5実施例による半導体装置の各回路のレイアウトを示す平面図である。第1実施例では、出力段増幅回路13が配置された領域に貫通ビアホール41(図1B)が配置されていた。第5実施例では、出力段増幅回路13を内部に含むよう凹部60が配置されている。   FIG. 7B is a plan view showing a layout of each circuit of the semiconductor device according to the fifth embodiment. In the first embodiment, the through via hole 41 (FIG. 1B) is disposed in the region where the output stage amplifier circuit 13 is disposed. In the fifth embodiment, the recess 60 is disposed so as to include the output stage amplifier circuit 13 therein.

次に、第5実施例の優れた効果について説明する。第5実施例では、第1実施例の熱経路T0(図3)と同様に、発熱源48からエミッタ電極E0、及びエミッタ配線E1、E2を経由してバンプ31に至る熱経路T0が形成される。その他に、発熱源48から半導体基板40を横方向に伝わり、熱伝導膜43、2層目のエミッタ配線E2を経由してバンプ31に至る熱経路T2が形成される。さらに、発熱源48で発生した熱が半導体基板40を厚さ方向に拡散し、熱伝導部材51を横方向に伝導し、その後、半導体基板40を厚さ方向に伝導してバンプ31に至る熱経路T3が形成される。   Next, the excellent effect of the fifth embodiment will be described. In the fifth embodiment, similarly to the heat path T0 (FIG. 3) of the first embodiment, a heat path T0 from the heat source 48 to the bump 31 via the emitter electrode E0 and the emitter wirings E1 and E2 is formed. The In addition, a heat path T2 is formed which travels laterally from the heat generation source 48 through the semiconductor substrate 40 and reaches the bumps 31 via the heat conduction film 43 and the second-layer emitter wiring E2. Further, the heat generated by the heat source 48 diffuses the semiconductor substrate 40 in the thickness direction, conducts the heat conducting member 51 in the lateral direction, and then conducts the semiconductor substrate 40 in the thickness direction to reach the bumps 31. A path T3 is formed.

熱経路T3の一部を構成する熱伝導部材51の熱伝導率は、半導体基板40の熱伝導率より高い。また、凹部60を設けると、熱経路T3のうち熱伝導率の低い半導体基板40によって構成される部分が短くなる。このため、熱経路T3の熱抵抗が低くなり、熱経路T3を経由する熱伝導の効率を高めることができる。   The thermal conductivity of the heat conducting member 51 constituting a part of the heat path T3 is higher than the heat conductivity of the semiconductor substrate 40. Moreover, when the recessed part 60 is provided, the part comprised with the semiconductor substrate 40 with low heat conductivity among heat paths T3 will become short. For this reason, the thermal resistance of the heat path T3 is lowered, and the efficiency of heat conduction via the heat path T3 can be increased.

半導体基板40の全体を薄くすると、十分な機械的強度が確保できなくなる。第5実施例では、熱経路T3として機能する領域以外では、半導体基板40を薄くしていない。このため、半導体チップ30の十分な機械的強度を維持することができる。   If the entire semiconductor substrate 40 is thinned, sufficient mechanical strength cannot be secured. In the fifth embodiment, the semiconductor substrate 40 is not thinned except for the region functioning as the heat path T3. For this reason, sufficient mechanical strength of the semiconductor chip 30 can be maintained.

[第6実施例]
次に、図8を参照して第6実施例による半導体装置について説明する。以下、第5実施例による半導体装置(図7A、図7B)と共通の構成については説明を省略する。
[Sixth embodiment]
Next, a semiconductor device according to a sixth embodiment will be described with reference to FIG. Hereinafter, the description of the configuration common to that of the semiconductor device according to the fifth embodiment (FIGS. 7A and 7B) will be omitted.

図8は、第6実施例による半導体装置に含まれる半導体チップ30の断面図である。第5実施例では、平面視において凹部60(図7A)が発熱源48及び熱伝導膜43の両方に、少なくとも部分的に重なっていた。第6実施例では、凹部60が発熱源48及び熱伝導膜43の両方に重なっているとは限らない。図8では、平面視において凹部60が発熱源48と重なり、熱伝導膜43とは重なっていない例を示している。凹部60は、平面視において発熱源48と熱伝導膜43とに挟まれた領域と部分的に重なって配置される。   FIG. 8 is a sectional view of a semiconductor chip 30 included in the semiconductor device according to the sixth embodiment. In the fifth embodiment, the recess 60 (FIG. 7A) at least partially overlaps both the heat source 48 and the heat conductive film 43 in plan view. In the sixth embodiment, the recess 60 does not necessarily overlap both the heat source 48 and the heat conductive film 43. FIG. 8 shows an example in which the recess 60 overlaps the heat generation source 48 and does not overlap the heat conductive film 43 in plan view. The recess 60 is disposed so as to partially overlap a region sandwiched between the heat generation source 48 and the heat conductive film 43 in plan view.

第6実施例においても、熱伝導部材51が、発熱源48で発生して半導体基板40に拡散する熱をバンプ31まで伝導させる熱経路の一部を構成する。   Also in the sixth embodiment, the heat conducting member 51 constitutes a part of the heat path for conducting the heat generated by the heat generation source 48 and diffusing to the semiconductor substrate 40 to the bumps 31.

次に、凹部60、発熱源48、及び熱伝導膜43の好ましい相対的位置関係について説明する。発熱源48から凹部60の底面に配置された熱伝導部材51までの最短距離をL3で表す。熱伝導膜43から熱伝導部材51までの最短距離をL4で表す。平面視において、発熱源48の幾何学的重心位置から熱伝導膜43までの最短距離をL5で表す。熱伝導部材51の熱伝導度は半導体基板40の熱伝導度より十分高いと見なすことができる。このとき、凹部60を形成して熱伝導部材51を配置することによる十分な効果を得るために、L3+L4がL5以下になるように、凹部60の位置及び深さを設定することが好ましい。   Next, the preferable relative positional relationship of the recessed part 60, the heat-generation source 48, and the heat conductive film 43 is demonstrated. The shortest distance from the heat source 48 to the heat conducting member 51 disposed on the bottom surface of the recess 60 is represented by L3. The shortest distance from the heat conductive film 43 to the heat conductive member 51 is represented by L4. In a plan view, the shortest distance from the geometric gravity center position of the heat generation source 48 to the heat conducting film 43 is represented by L5. It can be considered that the thermal conductivity of the thermal conductive member 51 is sufficiently higher than the thermal conductivity of the semiconductor substrate 40. At this time, in order to obtain a sufficient effect by forming the recess 60 and disposing the heat conducting member 51, it is preferable to set the position and depth of the recess 60 so that L3 + L4 is L5 or less.

[第7実施例]
次に、図9を参照して第7実施例による半導体装置について説明する。以下、第5実施例による半導体装置(図7A、図7B)と共通の構成については説明を省略する。
[Seventh embodiment]
Next, a semiconductor device according to a seventh embodiment will be described with reference to FIG. Hereinafter, the description of the configuration common to that of the semiconductor device according to the fifth embodiment (FIGS. 7A and 7B) will be omitted.

図9は、第6実施例による半導体装置に含まれる半導体チップ30の断面図である。第5実施例では、半導体チップ30をプリント基板20(図1C)に実装した後に、凹部60の内部に封止樹脂28(図1C)が埋め込まれる。第7実施例では、凹部60の内部が、熱伝導性ペースト62で埋め込まれている。熱伝導性ペースト62には、例えば、第2実施例による半導体装置で用いた熱伝導性ペースト49(図4)と同一のものを用いることができる。   FIG. 9 is a sectional view of a semiconductor chip 30 included in the semiconductor device according to the sixth embodiment. In the fifth embodiment, after the semiconductor chip 30 is mounted on the printed circuit board 20 (FIG. 1C), the sealing resin 28 (FIG. 1C) is embedded in the recess 60. In the seventh embodiment, the inside of the recess 60 is embedded with the heat conductive paste 62. As the heat conductive paste 62, for example, the same material as the heat conductive paste 49 (FIG. 4) used in the semiconductor device according to the second embodiment can be used.

次に、第7実施例の優れた効果について説明する。第7実施例では、熱伝導性ペースト62が、熱経路T3のうち熱伝導部材51を横方向に延びる部分の断面積を拡大させる役割を持つ。このため、熱経路T3の熱抵抗が低下し、熱経路T3を経由する熱伝導の効率を高めることができる。その結果、トランジスタ42の温度上昇を抑制することができる。
Next, the excellent effect of the seventh embodiment will be described. In the seventh embodiment, the heat conductive paste 62 has a role of expanding the cross-sectional area of the portion of the heat path T3 extending in the lateral direction of the heat conductive member 51. For this reason, the thermal resistance of the heat path T3 is lowered, and the efficiency of heat conduction via the heat path T3 can be increased. As a result, the temperature rise of the transistor 42 can be suppressed.

また、凹部60に埋め込まれた熱伝導性ペースト62により、凹部60を設けることにより半導体基板40が薄くなった部分の機械的強度の低下を補償することができる。これにより、チップダイシング等の加工工程で機械的応力が加わることによる半導体基板40の破損を抑制することができる。   In addition, by providing the recess 60 with the heat conductive paste 62 embedded in the recess 60, it is possible to compensate for a decrease in mechanical strength of the portion where the semiconductor substrate 40 is thinned. Thereby, damage to the semiconductor substrate 40 due to mechanical stress applied in a processing step such as chip dicing can be suppressed.

上述の各実施例は例示であり、異なる実施例で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。複数の実施例の同様の構成による同様の作用効果については実施例ごとには逐次言及しない。さらに、本発明は上述の実施例に制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。   Each of the above-described embodiments is an exemplification, and needless to say, partial replacement or combination of the configurations shown in the different embodiments is possible. About the same effect by the same composition of a plurality of examples, it does not refer to every example one by one. Furthermore, the present invention is not limited to the embodiments described above. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

10 インピーダンス整合回路
11 ドライバ段増幅回路
12 インピーダンス整合回路
13 出力段増幅回路
14 制御回路
15 入力端子
16 出力端子
17、18 インダクタ
20 プリント基板
21 ランド
23 外部接続用の電極
24 ビア導体
25 内層の配線
28 封止樹脂
30 半導体チップ
31 バンプ
32 Cuピラー
33 はんだバンプ
40 半導体基板
41 貫通ビアホール
42 トランジスタ(能動素子)
43 熱伝導膜
45、46、47 絶縁膜
48 発熱源
49 熱伝導性ペースト
51 熱伝導部材
60 凹部
61、62 熱伝導性ペースト
B0 ベース電極
B1 1層目のベース配線
C0 コレクタ電極
C1 1層目のコレクタ配線
C2 2層目のコレクタ配線
E0 エミッタ電極
E1 1層目のエミッタ配線
E2 2層目のコレクタ配線
T0、T1、T2、T3 熱経路
DESCRIPTION OF SYMBOLS 10 Impedance matching circuit 11 Driver stage amplifier circuit 12 Impedance matching circuit 13 Output stage amplifier circuit 14 Control circuit 15 Input terminal 16 Output terminals 17, 18 Inductor 20 Printed circuit board 21 Land 23 Electrode for external connection 24 Via conductor 25 Inner layer wiring 28 Sealing resin 30 Semiconductor chip 31 Bump 32 Cu pillar 33 Solder bump 40 Semiconductor substrate 41 Through-via hole 42 Transistor (active element)
43 Thermal conductive films 45, 46, 47 Insulating film 48 Heat source 49 Thermal conductive paste 51 Thermal conductive member 60 Recess 61, 62 Thermal conductive paste B0 Base electrode B1 First layer base wiring C0 Collector electrode C1 First layer Collector wiring C2 Second-layer collector wiring E0 Emitter electrode E1 First-layer emitter wiring E2 Second-layer collector wiring T0, T1, T2, T3 Thermal path

接地用の電極には、トランジスタのエミッタまたはソースが接続される。従って、エミッタやソースが伝熱経路の一部に含まれる。バンプに接続されて伝熱経路となるエミッタやソースは、通常、小面積であり、伝熱経路のうちエミッタやソースに接続される箇所が隘路になってしまう。このため、伝熱経路の熱抵抗を十分低くすることが困難である。
The emitter or source of the transistor is connected to the grounding electrode. Therefore, the emitter and the source are included in a part of the heat transfer path. The emitter or source that is connected to the bump and becomes the heat transfer path usually has a small area, and a portion connected to the emitter or source in the heat transfer path becomes a bottleneck. For this reason, it is difficult to sufficiently reduce the thermal resistance of the heat transfer path.

図1Aは、第1実施例による半導体装置のブロック図であり、図1Bは、第1実施例による半導体装置の各回路のレイアウトを示す平面図であり、図1Cは、第1実施例による半導体装置の概略断面図である。1A is a block diagram of the semiconductor device according to the first embodiment, FIG. 1B is a plan view showing a layout of each circuit of the semiconductor device according to the first embodiment, and FIG. 1C is a semiconductor according to the first embodiment. It is a schematic sectional drawing of an apparatus. 図2Aは、第1実施例による半導体装置に含まれる半導体チップに形成されている出力段増幅回路の平面図であり、図2Bは、図2Aの一点鎖線2B−2Bにおける断面図である。2A is a plan view of an output stage amplifier circuit formed in a semiconductor chip included in the semiconductor device according to the first embodiment, and FIG. 2B is a cross-sectional view taken along one-dot chain line 2B-2B in FIG. 2A. 図3は、第1実施例による半導体装置のバンプの近傍の断面図である。FIG. 3 is a cross-sectional view of the vicinity of the bump of the semiconductor device according to the first embodiment. 図4は、第2実施例による半導体装置に含まれる半導体チップの断面図である。FIG. 4 is a cross-sectional view of a semiconductor chip included in the semiconductor device according to the second embodiment. 図5Aは、第3実施例による半導体装置に含まれる半導体チップに形成されている出力段増幅回路の平面図であり、図5Bは、図5Aの一点鎖線5B−5Bにおける断面図である。5A is a plan view of an output stage amplifier circuit formed in a semiconductor chip included in the semiconductor device according to the third embodiment, and FIG. 5B is a cross-sectional view taken along one-dot chain line 5B-5B in FIG. 5A. 図6は、第4実施例による半導体装置に含まれる半導体チップの断面図である。FIG. 6 is a cross-sectional view of a semiconductor chip included in the semiconductor device according to the fourth embodiment. 図7Aは、第5実施例による半導体装置に含まれる半導体チップの断面図であり、図7Bは、第5実施例による半導体装置の各回路のレイアウトを示す平面図である。FIG. 7A is a cross-sectional view of a semiconductor chip included in the semiconductor device according to the fifth embodiment, and FIG. 7B is a plan view showing a layout of each circuit of the semiconductor device according to the fifth embodiment. 図8は、第6実施例による半導体装置に含まれる半導体チップの断面図である。FIG. 8 is a cross-sectional view of a semiconductor chip included in the semiconductor device according to the sixth embodiment. 図9は、第7実施例による半導体装置に含まれる半導体チップの断面図である。FIG. 9 is a cross-sectional view of a semiconductor chip included in the semiconductor device according to the seventh embodiment.

図1Cは、第1実施例による半導体装置の概略断面図である。プリント基板20の実装面(図1Cにおいて上面)に半導体チップ30が実装されている。半導体チップ30は、半導体基板40のプリント基板20に対向する面(以下、第1面という。)に形成された複数のバンプ31を含む。プリント基板20は、実装面に形成された複数のランド21、及び下面(実装面とは反対側の面)に形成された外部接続用の複数の電極23を含む。
FIG. 1C is a schematic cross-sectional view of the semiconductor device according to the first embodiment. A semiconductor chip 30 is mounted on the mounting surface (the upper surface in FIG. 1C ) of the printed circuit board 20. The semiconductor chip 30 includes a plurality of bumps 31 formed on a surface (hereinafter referred to as a first surface) of the semiconductor substrate 40 facing the printed circuit board 20. The printed circuit board 20 includes a plurality of lands 21 formed on the mounting surface and a plurality of electrodes 23 for external connection formed on the lower surface (the surface opposite to the mounting surface).

図9は、第7実施例による半導体装置に含まれる半導体チップ30の断面図である。第5実施例では、半導体チップ30をプリント基板20(図1C)に実装した後に、凹部60の内部に封止樹脂28(図1C)が埋め込まれる。第7実施例では、凹部60の内部が、熱伝導性ペースト62で埋め込まれている。熱伝導性ペースト62には、例えば、第2実施例による半導体装置で用いた熱伝導性ペースト49(図4)と同一のものを用いることができる。 FIG. 9 is a sectional view of a semiconductor chip 30 included in the semiconductor device according to the seventh embodiment. In the fifth embodiment, after the semiconductor chip 30 is mounted on the printed circuit board 20 (FIG. 1C), the sealing resin 28 (FIG. 1C) is embedded in the recess 60. In the seventh embodiment, the inside of the recess 60 is embedded with the heat conductive paste 62. As the heat conductive paste 62, for example, the same material as the heat conductive paste 49 (FIG. 4) used in the semiconductor device according to the second embodiment can be used.

Claims (9)

実装面にランドが設けられたプリント基板と、
前記プリント基板に実装された半導体チップと
を有し、
前記半導体チップは、
基板の、前記プリント基板に対向する第1面に形成された能動素子と、
前記基板の前記第1面の、前記能動素子とは異なる位置に設けられ、前記基板より熱伝導率の高い材料からなる熱伝導膜と、
前記基板の前記第1面の上に配置され、前記能動素子及び前記熱伝導膜を覆う絶縁膜と、
前記絶縁膜の上に配置され、前記熱伝導膜に電気的に接続されたバンプと、
前記基板の前記第1面とは反対側の第2面から前記熱伝導膜まで達する貫通ビアホールと、
平面視において前記能動素子と重なる前記第2面の領域から、前記貫通ビアホールの内面まで連続して配置され、前記基板より熱伝導率の高い材料からなる熱伝導部材と
を有し、
前記バンプが前記ランドに接続されており、前記半導体チップが封止樹脂で封止されている半導体装置。
A printed circuit board with a land on the mounting surface;
A semiconductor chip mounted on the printed circuit board;
The semiconductor chip is
An active element formed on a first surface of the substrate facing the printed circuit board;
A thermally conductive film made of a material having a higher thermal conductivity than the substrate, provided at a position different from the active element on the first surface of the substrate;
An insulating film disposed on the first surface of the substrate and covering the active element and the heat conducting film;
A bump disposed on the insulating film and electrically connected to the thermal conductive film;
A through via hole reaching from the second surface opposite to the first surface of the substrate to the heat conductive film;
A heat conduction member made of a material having a higher thermal conductivity than the substrate, continuously disposed from the region of the second surface overlapping the active element in plan view to the inner surface of the through via hole;
A semiconductor device in which the bump is connected to the land, and the semiconductor chip is sealed with a sealing resin.
前記バンプと前記熱伝導膜とが、平面視において少なくとも部分的に重なって配置されている請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the bump and the heat conductive film are disposed so as to overlap at least partially in a plan view. 前記半導体チップは、さらに、前記基板の前記第2面に形成された凹部を有し、
前記凹部は、平面視において前記能動素子と少なくとの部分的に重なり、前記凹部の領域内に前記貫通ビアホールが配置されており、前記凹部の内面に前記熱伝導部材が配置されている請求項1または2に記載の半導体装置。
The semiconductor chip further has a recess formed in the second surface of the substrate,
The concave portion overlaps at least partially with the active element in a plan view, the through via hole is disposed in the region of the concave portion, and the heat conducting member is disposed on an inner surface of the concave portion. 3. The semiconductor device according to 1 or 2.
前記熱伝導部材は、前記貫通ビアホールの内面を覆っており、
さらに、前記貫通ビアホールの内部に埋め込まれた熱伝導性ペーストを有する請求項1乃至3のいずれか1項に記載の半導体装置。
The heat conducting member covers an inner surface of the through via hole;
The semiconductor device according to claim 1, further comprising a heat conductive paste embedded in the through via hole.
前記熱伝導部材は、前記貫通ビアホール及び前記凹部の内面を覆っており、
さらに、前記貫通ビアホールの内部及び前記凹部の内部に埋め込まれた熱伝導性ペーストを有する請求項3に記載の半導体装置。
The heat conducting member covers the inner surface of the through via hole and the recess,
The semiconductor device according to claim 3, further comprising a thermally conductive paste embedded in the through via hole and in the recess.
基板の第1面に形成された能動素子と、
前記基板の前記第1面の、前記能動素子とは異なる位置に設けられ、前記基板より熱伝導率の高い材料からなる熱伝導膜と、
前記基板の前記第1面の上に配置され、前記能動素子及び前記熱伝導膜を覆う絶縁膜と、
前記絶縁膜の上に配置され、前記熱伝導膜に電気的に接続されたバンプと、
前記基板の前記第1面とは反対側の第2面に設けられ、平面視において前記能動素子及び前記熱伝導膜と少なくとも部分的に重なる凹部と、
前記凹部の内面に設けられ、前記基板より熱伝導率の高い材料からなる熱伝導部材と
を有し、
前記凹部の底面に配置された前記熱伝導部材と前記熱伝導膜とは、前記基板の一部分を挟んで対向している半導体装置。
An active element formed on the first surface of the substrate;
A thermally conductive film made of a material having a higher thermal conductivity than the substrate, provided at a position different from the active element on the first surface of the substrate;
An insulating film disposed on the first surface of the substrate and covering the active element and the heat conducting film;
A bump disposed on the insulating film and electrically connected to the thermal conductive film;
A concave portion provided on a second surface opposite to the first surface of the substrate, and at least partially overlapping the active element and the heat conductive film in plan view;
A heat conductive member provided on the inner surface of the concave portion and made of a material having a higher thermal conductivity than the substrate;
The semiconductor device in which the heat conducting member and the heat conducting film disposed on the bottom surface of the recess are opposed to each other with a part of the substrate interposed therebetween.
前記バンプと前記熱伝導膜とが、平面視において少なくとも部分的に重なって配置されている請求項6に記載の半導体装置。   The semiconductor device according to claim 6, wherein the bump and the heat conductive film are disposed so as to overlap at least partially in plan view. さらに、前記凹部の内部に埋め込まれた熱伝導性ペーストを有する請求項6または7に記載の半導体装置。   Furthermore, the semiconductor device of Claim 6 or 7 which has the heat conductive paste embedded inside the said recessed part. 前記能動素子の発熱源から前記熱伝導部材までの最短距離と、前記熱伝導膜から前記熱伝導部材までの最短距離との和が、前記発熱源から前記熱伝導膜までの距離以下である請求項6乃至8のいずれか1項に記載の半導体装置。   The sum of the shortest distance from the heat source of the active element to the heat conductive member and the shortest distance from the heat conductive film to the heat conductive member is equal to or less than the distance from the heat source to the heat conductive film. Item 9. The semiconductor device according to any one of Items 6 to 8.
JP2018082156A 2018-04-23 2018-04-23 Semiconductor device Pending JP2019192729A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018082156A JP2019192729A (en) 2018-04-23 2018-04-23 Semiconductor device
CN201910221467.1A CN110391196B (en) 2018-04-23 2019-03-22 Semiconductor device with a semiconductor device having a plurality of semiconductor chips
TW108110313A TWI708338B (en) 2018-04-23 2019-03-25 Semiconductor device
US16/374,674 US10957617B2 (en) 2018-04-23 2019-04-03 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018082156A JP2019192729A (en) 2018-04-23 2018-04-23 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2019192729A true JP2019192729A (en) 2019-10-31

Family

ID=68236594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018082156A Pending JP2019192729A (en) 2018-04-23 2018-04-23 Semiconductor device

Country Status (4)

Country Link
US (1) US10957617B2 (en)
JP (1) JP2019192729A (en)
CN (1) CN110391196B (en)
TW (1) TWI708338B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113820A1 (en) * 2020-11-25 2022-06-02 株式会社村田製作所 High-frequency module and communication device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015111307A1 (en) * 2015-07-13 2017-01-19 Epcos Ag Component with improved heat dissipation
US10319695B2 (en) * 2017-06-29 2019-06-11 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and bump formation process
JP2019204841A (en) * 2018-05-22 2019-11-28 株式会社村田製作所 Semiconductor device
JP2020061406A (en) * 2018-10-05 2020-04-16 株式会社村田製作所 Semiconductor device
JP2022067797A (en) 2020-10-21 2022-05-09 株式会社村田製作所 Semiconductor device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065620A (en) 1992-06-22 1994-01-14 Matsushita Electric Ind Co Ltd Semiconductor device
US6703707B1 (en) * 1999-11-24 2004-03-09 Denso Corporation Semiconductor device having radiation structure
JP4459883B2 (en) * 2005-04-28 2010-04-28 三菱電機株式会社 Semiconductor device
US7538401B2 (en) * 2005-05-03 2009-05-26 Rosemount Aerospace Inc. Transducer for use in harsh environments
JP2009500820A (en) * 2005-06-29 2009-01-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and assembly for manufacturing an assembly
CN101449373B (en) * 2006-05-26 2010-09-22 株式会社村田制作所 Semiconductor device, electronic parts module, and method for manufacturing the semiconductor device
JP5407667B2 (en) * 2008-11-05 2014-02-05 株式会社村田製作所 Semiconductor device
US8058732B2 (en) * 2008-11-20 2011-11-15 Fairchild Semiconductor Corporation Semiconductor die structures for wafer-level chipscale packaging of power devices, packages and systems for using the same, and methods of making the same
JP2011198866A (en) 2010-03-18 2011-10-06 Renesas Electronics Corp Semiconductor device, and method of manufacturing the same
JP5521862B2 (en) * 2010-07-29 2014-06-18 三菱電機株式会社 Manufacturing method of semiconductor device
JP5234071B2 (en) * 2010-09-03 2013-07-10 株式会社村田製作所 RFIC module
JP6093556B2 (en) 2012-11-13 2017-03-08 富士通株式会社 Semiconductor device, semiconductor integrated circuit device, and electronic device
US9443839B2 (en) * 2012-11-30 2016-09-13 Enpirion, Inc. Semiconductor device including gate drivers around a periphery thereof
WO2015162815A1 (en) * 2014-04-24 2015-10-29 株式会社村田製作所 Semiconductor element and high-frequency amplifier module
JP2016004877A (en) * 2014-06-16 2016-01-12 ルネサスエレクトロニクス株式会社 Semiconductor device and electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113820A1 (en) * 2020-11-25 2022-06-02 株式会社村田製作所 High-frequency module and communication device

Also Published As

Publication number Publication date
CN110391196B (en) 2023-05-12
US10957617B2 (en) 2021-03-23
CN110391196A (en) 2019-10-29
US20190326191A1 (en) 2019-10-24
TWI708338B (en) 2020-10-21
TW201944557A (en) 2019-11-16

Similar Documents

Publication Publication Date Title
US10957617B2 (en) Semiconductor device
CN109659286B (en) power amplifier module
US6946740B2 (en) High power MCM package
JP5678884B2 (en) Power converter
US20100193943A1 (en) Semiconductor Device Having a Diamond Substrate Heat Spreader
TWI781704B (en) Power amplifier module
US11158592B2 (en) Semiconductor device
WO2022059251A1 (en) Semiconductor device
CN110912523A (en) High-frequency power amplifier and power amplification module
JP5217015B2 (en) Power converter and manufacturing method thereof
US10879155B2 (en) Electronic device with double-sided cooling
CN113809036B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
US11658171B2 (en) Dual cool power module with stress buffer layer
US10593610B2 (en) Semiconductor power device including wire or ribbon bonds over device active region
JP3644161B2 (en) Power semiconductor module
KR101958568B1 (en) Semiconductor device
US20230107764A1 (en) Semiconductor device and semiconductor device manufacturing method
US20220190124A1 (en) Power amplifier
JP7294403B2 (en) semiconductor equipment
JP2024050081A (en) Semiconductor Device
CN114823643A (en) Packaged semiconductor device
TWM596973U (en) Semiconductor device having heterojunction bipolar transistor with high heat-dissipation
JPH09153577A (en) Frame structure for semiconductor device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190225