JP2019190811A - Recirculation heat pipe with different bore diameters - Google Patents

Recirculation heat pipe with different bore diameters Download PDF

Info

Publication number
JP2019190811A
JP2019190811A JP2018108491A JP2018108491A JP2019190811A JP 2019190811 A JP2019190811 A JP 2019190811A JP 2018108491 A JP2018108491 A JP 2018108491A JP 2018108491 A JP2018108491 A JP 2018108491A JP 2019190811 A JP2019190811 A JP 2019190811A
Authority
JP
Japan
Prior art keywords
hole
connection end
housing
pipe
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018108491A
Other languages
Japanese (ja)
Inventor
曾惓祺
Quan Qi Ceng
莊岳龍
Yue Long Zhuang
呉小龍
xiao long Wu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tai Sol Electronics Co Ltd
Original Assignee
Tai Sol Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tai Sol Electronics Co Ltd filed Critical Tai Sol Electronics Co Ltd
Publication of JP2019190811A publication Critical patent/JP2019190811A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

To provide a recirculation heat pipe with different bore diameters.SOLUTION: A recirculation heat pipe with different bore diameters includes an evaporation chamber, a cooling member, an air current pipe part, and a fluid current pipe part. The evaporation chamber includes a housing and a capillary material arranged in the housing. The housing is not fully filled with the capillary member, and an evaporation space is formed between the capillary member and the housing. The cooling member includes a heat radiation member outside and a fluid passage inside. One end of the fluid passage is a gas connection end part while the other end is a fluid connection end part. The inner diameter of the gas connection end part is larger than the inner diameter of the fluid connection end part. One end of the air current pipe part is connected to the housing, and is connected to the evaporation space while the other end is connected to the gas connection end part of the cooling member and is connected to the fluid passage. One end of the fluid current pipe part is connected to the housing, and is connected to the inside of the housing while the other end is connected to the fluid connection end part of the cooling member and is connected to the fluid passage. The inner diameter of the fluid current pipe part is smaller than the inner diameter of the air current pipe part. By the means mentioned above, working fluid is quickly recirculated to the evaporation chamber, and a heat radiation effect can be enhanced.SELECTED DRAWING: Figure 1

Description

本発明は、放熱装置に関し、口径の異なる還流ヒートパイプに関するものである。   The present invention relates to a heat dissipation device, and relates to a reflux heat pipe having a different diameter.

特許文献1により掲示された還流ヒートパイプにおいて、中空パイプは折り曲げられ、蒸発部位になる管路および冷却部位になる管路に分割される。二つの管路は開口部および相互に対応する側の管壁が平坦な壁面に形成される。密封キャップは密封端部および嵌合端部を有する。嵌合端部は嵌合口部を有する。二つの管路を組み合わせる際、二つの管路の開口部を相互に密着させる。
特許文献2により掲示された還流ヒートパイプにおいて、中空パイプは蒸発部位になる管路および冷却部位になる管路を有する。密封キャップは二つの管路の開口部に嵌合され、密封端部および嵌合端部を有する。嵌合端部は嵌合口部となる。二つの管路を組み合わせる際、二つの管路の開口部と嵌合口部との間の隙間に接着剤を充填する。
特許文献3により掲示された還流ヒートパイプにおいて、中空パイプは蒸発部位になる管路および冷却部位になる管路を有する。密封キャップは二つの管路の開口部に嵌合され、密封端部および嵌合端部を有する。嵌合端部は二つの嵌合口部を有する。二つの管路の開口部は二つの嵌合口部に別々に差し込まれる。
特許文献1、特許文献2および特許文献3において、蒸気流路および流体流路は大直径の管体からなるが、流体を容易に流動させるように設計されていないため、液体状態で流動する作動液が蒸気流路に還流する流れが順調でなく、循環速度が遅くなり、放熱効率に影響を与える。
In the reflux heat pipe posted by patent document 1, a hollow pipe is bent and divided | segmented into the pipe line used as an evaporation part, and the pipe line used as a cooling part. The two pipe lines are formed in a flat wall surface with an opening and a pipe wall on the side corresponding to each other. The sealing cap has a sealing end and a mating end. The fitting end has a fitting opening. When combining two pipe lines, the openings of the two pipe lines are brought into close contact with each other.
In the reflux heat pipe posted by Patent Document 2, the hollow pipe has a pipe line that becomes an evaporation part and a pipe line that becomes a cooling part. The sealing cap is fitted into the openings of the two conduits and has a sealed end and a fitted end. The fitting end becomes a fitting opening. When two pipe lines are combined, an adhesive is filled in the gap between the opening and the fitting opening of the two pipe lines.
In the reflux heat pipe posted by Patent Document 3, the hollow pipe has a pipe line that becomes an evaporation part and a pipe line that becomes a cooling part. The sealing cap is fitted into the openings of the two conduits and has a sealed end and a fitted end. The fitting end has two fitting openings. The opening portions of the two pipe lines are separately inserted into the two fitting openings.
In Patent Document 1, Patent Document 2 and Patent Document 3, the steam flow path and the fluid flow path are made of large-diameter pipes, but are not designed to flow the fluid easily, and therefore operate in a liquid state. The flow of the liquid returning to the steam channel is not smooth, the circulation speed is slow, and the heat dissipation efficiency is affected.

CN106052448A号公報CN106052448A publication CN106052449A号公報CN106052449A CN106091761A号公報CN106099161A

本発明は、液流管部の口径を気流管部の口径より小さくすることによって液体弾を生成する効果を生じ、液体作動液を蒸発チャンバーに順調に還流させ、放熱効率を向上させる還流ヒートパイプを提供することを主な目的とする。   The present invention has the effect of generating liquid bullets by making the diameter of the liquid flow pipe part smaller than the diameter of the air flow pipe part, smoothly refluxing the liquid working liquid to the evaporation chamber, and improving the heat dissipation efficiency The main purpose is to provide

上述した課題を解決するための、口径の異なる還流ヒートパイプは蒸発チャンバー、冷却部材、気流管部および液流管部を備える。
蒸発チャンバーはハウジングおよびハウジング内に配置された毛細管材を有する。毛細管材はハウジングに充満せず、ハウジングとの間に蒸発空間を形成する。冷却部材は外部に放熱部材を有し、内部に流体流路を有する。流体流路は一端が気体接続端部になり、別の一端が液体接続端部になる。気体接続端部の内径は液体接続端部の内径より大きい。気流管部は一端がハウジングに連結されて蒸発空間に繋がり、別の一端が冷却部材の気体接続端部に連結されて流体流路に繋がる。液流管部は一端がハウジングに連結されてハウジングの内部に繋がり、別の一端が冷却部材の液体接続端部に連結されて流体流路に繋がる。液流管部の内径は気流管部の内径より小さい。
In order to solve the above-described problems, a reflux heat pipe having a different diameter includes an evaporation chamber, a cooling member, an airflow pipe section, and a liquid flow pipe section.
The evaporation chamber has a housing and a capillary material disposed within the housing. The capillary material does not fill the housing, and forms an evaporation space with the housing. The cooling member has a heat radiating member on the outside and a fluid flow path on the inside. One end of the fluid channel is a gas connection end, and the other end is a liquid connection end. The inner diameter of the gas connection end is larger than the inner diameter of the liquid connection end. One end of the airflow tube portion is connected to the housing and connected to the evaporation space, and the other end is connected to the gas connection end portion of the cooling member and connected to the fluid flow path. One end of the liquid flow pipe portion is connected to the housing and connected to the inside of the housing, and the other end is connected to the liquid connection end portion of the cooling member and connected to the fluid flow path. The inner diameter of the liquid flow tube portion is smaller than the inner diameter of the air flow tube portion.

上述したとおり、本発明は液流管部の口径が気流管部の口径より小さいことで液体弾を生成する効果を生じるため、液体作動液は毛管力がない状態で圧力差によって液体弾を前進させる形で蒸発チャンバーに順調に還流し、放熱効率を向上させることができる。   As described above, the present invention produces an effect of generating liquid bullets because the diameter of the liquid flow pipe part is smaller than the diameter of the airflow pipe part, so that the liquid hydraulic fluid advances the liquid bullets by pressure difference in the absence of capillary force. As a result, it is possible to smoothly return to the evaporation chamber and improve the heat dissipation efficiency.

本発明の第1実施形態を示す斜視図である。1 is a perspective view showing a first embodiment of the present invention. 本発明の第1実施形態を示す分解斜視図である。1 is an exploded perspective view showing a first embodiment of the present invention. 本発明の第1実施形態において放熱部材を加えた状態を示す横断面である。It is a cross section which shows the state which added the heat radiating member in 1st Embodiment of this invention. 本発明の第2実施形態を示す斜視図である。It is a perspective view which shows 2nd Embodiment of this invention. 本発明の第2実施形態において放熱部材を加えた状態を示す横断面である。It is a cross section which shows the state which added the heat radiating member in 2nd Embodiment of this invention. 本発明の第3実施形態を示す斜視図である。It is a perspective view which shows 3rd Embodiment of this invention. 本発明の第3実施形態を示す分解斜視図である。It is a disassembled perspective view which shows 3rd Embodiment of this invention. 本発明の第3実施形態を示す横断面である。It is a cross section which shows 3rd Embodiment of this invention.

以下、本発明による口径の異なる還流ヒートパイプを図面に基づいて説明する。   Hereinafter, reflux heat pipes having different diameters according to the present invention will be described with reference to the drawings.

(第1実施形態)
図1から図3に示すように、本発明の第1実施形態よる口径の異なる還流ヒートパイプ10は、蒸発チャンバー11、冷却部材21、気流管部31、液流管部41および作動液51から構成される。
(First embodiment)
As shown in FIGS. 1 to 3, the reflux heat pipe 10 having a different diameter according to the first embodiment of the present invention includes an evaporation chamber 11, a cooling member 21, an airflow pipe part 31, a liquid flow pipe part 41, and a working liquid 51. Composed.

蒸発チャンバー11は、ハウジング12およびハウジング12内に配置された毛細管材13を有する。毛細管材13はハウジング12に充満せず、ハウジング12との間に蒸発空間125を形成する。ハウジング12は蓋121および格納ケース122からなる。毛細管材13は格納ケース122内に格納される。蓋121は格納ケース122に被さる。
格納ケース122は周りに形成された四つの側壁、側壁に形成された第一孔123および第二孔124を有する。第一孔123、第二孔124および蒸発空間125は格納ケース122の同じ側に位置する。第一孔123の孔径は第二孔124の孔径より大きい。第一孔123は蒸発空間125に繋がる。気流管部31は一端が格納ケース122の第一孔123に差し込まれることによってハウジング12に連結される。
液流管部41は一端が格納ケース122の第二孔124に差し込まれることによってハウジング12に連結される。毛細管材13は複数の流路131を有する。複数の流路131の開口部132は蒸発空間125に繋がる。本実施形態において、毛細管材13は銅粉末の焼結によって成形される。
The evaporation chamber 11 has a housing 12 and a capillary material 13 disposed in the housing 12. The capillary material 13 does not fill the housing 12, and forms an evaporation space 125 with the housing 12. The housing 12 includes a lid 121 and a storage case 122. The capillary material 13 is stored in the storage case 122. The lid 121 covers the storage case 122.
The storage case 122 has four side walls formed around it, a first hole 123 and a second hole 124 formed in the side walls. The first hole 123, the second hole 124, and the evaporation space 125 are located on the same side of the storage case 122. The hole diameter of the first hole 123 is larger than the hole diameter of the second hole 124. The first hole 123 is connected to the evaporation space 125. One end of the airflow pipe portion 31 is connected to the housing 12 by being inserted into the first hole 123 of the storage case 122.
One end of the liquid flow pipe portion 41 is connected to the housing 12 by being inserted into the second hole 124 of the storage case 122. The capillary material 13 has a plurality of flow paths 131. The openings 132 of the plurality of flow paths 131 are connected to the evaporation space 125. In the present embodiment, the capillary material 13 is formed by sintering copper powder.

冷却部材21は、内部が中空のU字型パイプから構成され、外部に放熱部材100を有し、内部に流体流路211を有する。流体流路211はU字型パイプの両端を貫通し、一端が気体接続端部212になり、別の一端が液体接続端部213になる。
気体接続端部212の内径はハウジング12の第一孔123の孔径に対応し、液体接続端部213の内径より大きい。液体接続端部213の内径はウジング12の第二孔124の孔径に対応する。放熱部材100は複数のフィンから構成され、U字型パイプの周りに沿って配置されてもよい。
The cooling member 21 is configured by a U-shaped pipe having a hollow inside, has a heat radiation member 100 on the outside, and has a fluid flow path 211 on the inside. The fluid flow path 211 passes through both ends of the U-shaped pipe, and one end serves as a gas connection end 212 and the other end serves as a liquid connection end 213.
The inner diameter of the gas connection end 212 corresponds to the diameter of the first hole 123 of the housing 12 and is larger than the inner diameter of the liquid connection end 213. The inner diameter of the liquid connection end 213 corresponds to the diameter of the second hole 124 of the udging 12. The heat radiating member 100 may be composed of a plurality of fins, and may be disposed around the U-shaped pipe.

気流管部31は中空パイプからなり、本明細書において所定長さの曲線パイプであり、口径がハウジング12の第一孔123および冷却部材21の気体接続端部212の内径に対応する。気流管部31は一端がハウジング12の第一孔123に差し込まれて蒸発空間125に繋がり、別の一端が冷却部材21の気体接続端部212に連結されて流体流路211に繋がる。   The airflow pipe portion 31 is formed of a hollow pipe and is a curved pipe having a predetermined length in this specification, and the diameter corresponds to the inner diameter of the first hole 123 of the housing 12 and the gas connection end portion 212 of the cooling member 21. One end of the airflow pipe portion 31 is inserted into the first hole 123 of the housing 12 and connected to the evaporation space 125, and the other end is connected to the gas connection end portion 212 of the cooling member 21 and connected to the fluid flow path 211.

液流管部41は中空パイプからなり、本明細書において気流管部31に対応する所定長さの曲線パイプであり、口径がハウジング12の第二孔124および冷却部材21の液体接続端部213の内径に対応する。液流管部41の内径は気流管部31の内径より小さい。
図3に示すように、液流管部41は一端がハウジング12の第二孔124に差し込まれてハウジング12の内部に繋がり、別の一端が冷却部材21の液体接続端部213に連結されて流体流路211に繋がる。
The liquid flow pipe portion 41 is formed of a hollow pipe, and is a curved pipe having a predetermined length corresponding to the air flow pipe portion 31 in this specification, and has a diameter of the second hole 124 of the housing 12 and the liquid connection end portion 213 of the cooling member 21. Corresponds to the inner diameter of The inner diameter of the liquid flow pipe portion 41 is smaller than the inner diameter of the air flow pipe portion 31.
As shown in FIG. 3, one end of the liquid flow pipe portion 41 is inserted into the second hole 124 of the housing 12 and connected to the inside of the housing 12, and the other end is connected to the liquid connection end portion 213 of the cooling member 21. The fluid channel 211 is connected.

作動液51は、蒸発チャンバー11に注入される。本実施形態において、作動液51は純水からなり、毛細管材13に吸着し、かつ還流ヒートパイプ10の一部分に存在する。   The working fluid 51 is injected into the evaporation chamber 11. In the present embodiment, the hydraulic fluid 51 is made of pure water, adsorbs on the capillary material 13, and exists in a part of the reflux heat pipe 10.

以上は本発明の第1実施形態の構造についての説明である。続いて本発明の第1実施形態の作動状態について説明を進める。   The above is the description of the structure of the first embodiment of the present invention. Subsequently, description will be given on the operating state of the first embodiment of the present invention.

還流ヒートパイプが作動する際、電子装置などの発熱源(図中未表示)は蒸発チャンバー11の上に配置され、暫く稼働した後、熱エネルギーを生じ、熱伝導方式によって蒸発チャンバー11に伝導させ、同時に毛細管材13へ拡散させる。作動液51の大部分は液体状態で毛細管材13内に保存される。熱エネルギーが毛細管材13に伝導する際、毛細管材13は昇温し、毛細管材13内の液体作動液に熱エネルギーを十分に吸収させ、蒸発反応を起こして気体作動液を生成する。
気体作動液は毛細管材13の複数の流路131の開口部132から蒸発空間125に流入し、集結した後、気流管部31を流動し、冷却部材21の方向に前進し、気体接続端部212から冷却部材21に流入する。冷却部材21の外部の放熱部材100は冷却部材21を流動する気体作動液の熱エネルギーを空気中に拡散させるため、気体作動液は冷却し、水滴状の液体作動液を凝結させて冷却部材21の管壁に付着させる。冷却して凝集した液体作動液が多ければ水滴状の液体作動液が大きくなる。冷却部材21の液体接続端部213の孔径が比較的小さいため、水滴状の液体作動液は迅速に液体接続端部213に充満して液流管部41に流入し、液流管部41の断面に充満する液体弾511を生成する。続いて、液流管部41の口径が比較的小さいため、液体弾511は毛管力がない状態で気流管部31および液流管部41内の圧力差によって前進し、かつ液流管部41を容易かつ迅速に流動することができる。
一方、気体作動液は気流管部31から冷却部材21に持続的に流れ込んで液体弾511を前進させる力を生じ、続いて蒸発チャンバー11に還流し、再び毛細管材13に吸着する。このような循環作用により発熱源の熱エネルギーを持続的に誘導し、良好な放熱効果を達成することができる。
When the reflux heat pipe operates, a heat source such as an electronic device (not shown in the figure) is disposed on the evaporation chamber 11 and after operating for a while, generates heat energy and conducts it to the evaporation chamber 11 by a heat conduction method. At the same time, it is diffused into the capillary material 13. Most of the working fluid 51 is stored in the capillary 13 in a liquid state. When the thermal energy is conducted to the capillary material 13, the capillary material 13 is heated, and the liquid hydraulic fluid in the capillary material 13 sufficiently absorbs the thermal energy to cause an evaporation reaction to generate a gas hydraulic fluid.
After the gas hydraulic fluid flows into the evaporation space 125 from the openings 132 of the plurality of flow paths 131 of the capillary material 13 and is collected, the gas hydraulic fluid flows through the airflow tube portion 31 and advances in the direction of the cooling member 21, and the gas connection end portion It flows from 212 to the cooling member 21. The heat dissipating member 100 outside the cooling member 21 diffuses the thermal energy of the gas working fluid flowing through the cooling member 21 into the air. Therefore, the gas working fluid is cooled and the water droplet-like liquid working fluid is condensed to form the cooling member 21. Adhere to the tube wall. If there are many liquid working fluids that have cooled and aggregated, the liquid working fluid in the form of droplets becomes larger. Since the hole diameter of the liquid connection end portion 213 of the cooling member 21 is relatively small, the water droplet-like liquid working fluid quickly fills the liquid connection end portion 213 and flows into the liquid flow tube portion 41. A liquid bullet 511 that fills the cross section is generated. Subsequently, since the diameter of the liquid flow tube portion 41 is relatively small, the liquid bullet 511 moves forward due to a pressure difference between the air flow tube portion 31 and the liquid flow tube portion 41 in the absence of capillary force, and the liquid flow tube portion 41. Can flow easily and quickly.
On the other hand, the gas hydraulic fluid continuously flows into the cooling member 21 from the air flow tube portion 31 to generate a force for moving the liquid bullet 511 forward, then returns to the evaporation chamber 11 and is adsorbed on the capillary material 13 again. By such a circulation action, the heat energy of the heat source can be continuously induced, and a good heat radiation effect can be achieved.

上述したとおり、本発明は液流管部41の口径が気流管部31より小さく、気流管部31および液流管部41を連結する冷却部材21の液体接続端部213の孔径が気体接続端部212より小さいため、図3に示すように、断面積の小さい液流管部41の中に液体弾511を生成できるだけでなく、毛管力がない状態で気流管部31および液流管部41内の圧力差によって液体弾511を前進させる方式で液体作動液を蒸発チャンバー11に順調かつ迅速に還流させることができる。   As described above, in the present invention, the diameter of the liquid flow pipe part 41 is smaller than that of the air flow pipe part 31, and the hole diameter of the liquid connection end part 213 of the cooling member 21 connecting the air flow pipe part 31 and the liquid flow pipe part 41 is the gas connection end. Since it is smaller than the portion 212, as shown in FIG. 3, not only can the liquid bullet 511 be generated in the liquid flow tube portion 41 having a small cross-sectional area, but also the air flow tube portion 31 and the liquid flow tube portion 41 in the absence of capillary force. The liquid hydraulic fluid can be smoothly and quickly refluxed to the evaporation chamber 11 by a method in which the liquid bullet 511 is advanced by the pressure difference inside.

(第2実施形態)
図4および図5は本発明の第2実施形態による還流ヒートパイプ10’を示す斜視図および横断面図である。第1実施形態との違いは次のとおりである。
(Second Embodiment)
4 and 5 are a perspective view and a cross-sectional view showing a reflux heat pipe 10 'according to a second embodiment of the present invention. Differences from the first embodiment are as follows.

第2実施形態において、第一孔123’および蒸発空間125’は格納ケース122’の同じ側に位置する。第一孔123’および第二孔124’は格納ケース122’の異なる側に位置する。第一孔123’は蒸発空間125’に繋がり、孔径が第二孔124’より大きい。気流管部31’は一端が格納ケース122’の第一孔123’に差し込まれることによってハウジング12’に連結される。
液流管部41’は一端が格納ケース122’の第二孔124’に差し込まれることによってハウジング12’に連結される。冷却部材21’は中空パイプからなる。流体流路211’は中空パイプの内部に位置し、中空パイプの両端を別々に貫通する気体接続端部212’および液体接続端部213’を有する。気体接続端部212’の内径は液体接続端部213’の内径より大きい。放熱部材100’は中空パイプの周りに配列する複数のフィンから構成される。
In the second embodiment, the first hole 123 ′ and the evaporation space 125 ′ are located on the same side of the storage case 122 ′. The first hole 123 ′ and the second hole 124 ′ are located on different sides of the storage case 122 ′. The first hole 123 ′ is connected to the evaporation space 125 ′ and has a larger diameter than the second hole 124 ′. One end of the airflow pipe portion 31 ′ is connected to the housing 12 ′ by being inserted into the first hole 123 ′ of the storage case 122 ′.
One end of the liquid flow pipe portion 41 ′ is connected to the housing 12 ′ by being inserted into the second hole 124 ′ of the storage case 122 ′. The cooling member 21 ′ is made of a hollow pipe. The fluid flow path 211 ′ is located inside the hollow pipe and has a gas connection end 212 ′ and a liquid connection end 213 ′ penetrating both ends of the hollow pipe separately. The inner diameter of the gas connection end 212 ′ is larger than the inner diameter of the liquid connection end 213 ′. The heat dissipating member 100 ′ is composed of a plurality of fins arranged around the hollow pipe.

第1実施形態と同様に、液流管部41’は口径が気流管部31’より小さいため、図5に示すように、液体作動液は液体弾511’を生成し、毛管力がない状態で気流管部31’および液流管部41’内の圧力差によって液体弾511’を前進させ、液流管部41’内の液体弾511’を順調に流動させることができる。従って、第2実施形態は第1実施形態と同様に液体作動液を蒸発チャンバー11’に順調かつ迅速に還流させる効果を有する。   As in the first embodiment, since the liquid flow tube portion 41 ′ has a smaller diameter than the air flow tube portion 31 ′, the liquid hydraulic fluid generates a liquid bullet 511 ′ and has no capillary force, as shown in FIG. Thus, the liquid bullet 511 ′ can be moved forward by the pressure difference in the airflow pipe section 31 ′ and the liquid flow pipe section 41 ′, and the liquid bullet 511 ′ in the liquid flow pipe section 41 ′ can be smoothly flowed. Therefore, the second embodiment has the effect of smoothly and rapidly refluxing the liquid working fluid to the evaporation chamber 11 ′ as in the first embodiment.

第2実施形態のほかのステップおよび達成できる効果は第1実施形態と同じであるため、説明を省略する。   Since the other steps and effects that can be achieved in the second embodiment are the same as those in the first embodiment, description thereof is omitted.

(第3実施形態)
図6から図8は本発明の第3実施形態による還流ヒートパイプ10’を示す斜視図、分解斜視図および横断面図である。第1実施形態との違いは次のとおりである。
(Third embodiment)
6 to 8 are a perspective view, an exploded perspective view, and a cross-sectional view showing a reflux heat pipe 10 'according to a third embodiment of the present invention. Differences from the first embodiment are as follows.

第3実施形態において、冷却部材21”は矩形ブロックを呈し、内部に流体流路211”になる管路を有する。管路は一端が気体接続端部212”になり、別の一端が液体接続端部213”になる。気体接続端部212”および液体接続端部213”は矩形ブロックに突出する。
気体接続端部212”の内径は気流管部31”の口径に対応し、かつ液体接続端部213”の内径より大きい。気流管部31”は一端が気体接続端部212”に差し込まれて流体流路211”に繋がる。液体接続端部213”の内径は液流管部41”の口径に対応する。液流管部41”は一端が液体接続端部213”に差し込まれて流体流路211”に繋がる。放熱部材(図中未表示)は複数のフィンから構成され、直接矩形ブロックに配置される。
In the third embodiment, the cooling member 21 ″ has a rectangular block, and has a conduit that becomes a fluid flow path 211 ″ inside. One end of the conduit is a gas connection end 212 "and the other end is a liquid connection end 213". The gas connection end 212 "and the liquid connection end 213" project into a rectangular block.
The inner diameter of the gas connection end 212 "corresponds to the diameter of the air flow tube 31" and is larger than the inner diameter of the liquid connection end 213 ". One end of the air flow tube 31" is inserted into the gas connection end 212 ". Connected to fluid flow path 211 ". The inner diameter of the liquid connection end portion 213 ″ corresponds to the diameter of the liquid flow tube portion 41 ″. One end of the liquid flow pipe portion 41 ″ is inserted into the liquid connection end portion 213 ″ and connected to the fluid flow path 211 ″. The heat radiating member (not shown in the drawing) is composed of a plurality of fins and is directly arranged in the rectangular block. .

第3実施形態において、液流管部41”は口径が気流管部31”より小さい。気流管部31”および液流管部41”を連結する冷却部材21”の流体流路211”は液体接続端部213”に位置する孔径が比較的小さく、気体接続端部212”に位置する孔径が比較的大きいため、図8に示すように、液体作動液は液体弾511”を生成し、毛管力がない状態で気流管部31”および液流管部41”内の圧力差によって液体弾511”を前進させ、液流管部41”内の液体弾511”を順調に流動させることができる。従って、第3実施形態は同様に液体作動液を蒸発チャンバー11”に順調かつ迅速に還流させ、還流ヒートパイプの放熱効果を向上させることができる。   In the third embodiment, the liquid flow tube portion 41 ″ has a smaller diameter than the air flow tube portion 31 ″. The fluid flow path 211 ″ of the cooling member 21 ″ connecting the air flow tube portion 31 ″ and the liquid flow tube portion 41 ″ has a relatively small hole diameter located at the liquid connection end portion 213 ″ and is located at the gas connection end portion 212 ″. Since the hole diameter is relatively large, as shown in FIG. 8, the liquid hydraulic fluid generates a liquid bullet 511 ″, and the liquid is generated by the pressure difference in the airflow tube portion 31 ″ and the liquid flow tube portion 41 ″ in the absence of capillary force. The bullet 511 ″ can be advanced, and the liquid bullet 511 ″ in the liquid flow pipe portion 41 ″ can flow smoothly. Accordingly, the third embodiment similarly allows the liquid working fluid to smoothly and quickly recirculate to the evaporation chamber 11 ″, and to improve the heat dissipation effect of the recirculating heat pipe.

第3実施形態において、第一孔123”および第二孔124”は格納ケース122”の同じ側に位置する。気流管部31”および液流管部41”は格納ケース122”の同じ側に配置される。気流管部31”は冷却部材21”の気体接続端部212”に差し込まれて流体流路211”に繋がる。
液流管部41”は冷却部材21”の液体接続端部213”に差し込まれて流体流路211”に繋がる。一方、第一孔123”および第二孔124”は上述に限らず、格納ケース122”の異なる側に位置してもよい。気流管部31”および液流管部41”は上述に限らず、格納ケース122”の異なる側に配置されてよい。それに対し、冷却部材21”の流体流路211”は両端が矩形ブロックの両側を貫通する。気流管部31”および液流管部41”は流体流路211”の両端に位置する気体接続端部212”および液体接続端部213”に別々に差し込まれる。上述したとおり、第3実施形態は第2実施形態と同様に還流ヒートパイプの放熱効果を向上させる効果を有する。
In the third embodiment, the first hole 123 "and the second hole 124" are located on the same side of the storage case 122 ". The airflow pipe part 31" and the liquid flow pipe part 41 "are on the same side of the storage case 122". Be placed. The air flow tube portion 31 ″ is inserted into the gas connection end portion 212 ″ of the cooling member 21 ″ and connected to the fluid flow path 211 ″.
The liquid flow pipe portion 41 ″ is inserted into the liquid connection end portion 213 ″ of the cooling member 21 ″ and connected to the fluid flow path 211 ″. On the other hand, the first hole 123 ″ and the second hole 124 ″ are not limited to those described above, and may be located on different sides of the storage case 122 ″. The airflow tube portion 31 ″ and the liquid flow tube portion 41 ″ are not limited to those described above. May be arranged on different sides of the storage case 122 ". On the other hand, both ends of the fluid flow path 211 ″ of the cooling member 21 ″ penetrate both sides of the rectangular block. The air flow tube portion 31 ″ and the liquid flow tube portion 41 ″ are separately inserted into the gas connection end portion 212 ″ and the liquid connection end portion 213 ″ located at both ends of the fluid flow path 211 ″. As described above, the third embodiment. Has the effect of improving the heat dissipation effect of the reflux heat pipe as in the second embodiment.

第3実施形態のほかのステップおよび達成できる効果は第1実施形態と同じであるため、説明を省略する。   Since the other steps and effects that can be achieved in the third embodiment are the same as those in the first embodiment, description thereof is omitted.

10、10’、10” 還流ヒートパイプ
11、11’、11” 蒸発チャンバー
12、12’ ハウジング
121 蓋
122、122’、122” 格納ケース
123、123’、123” 第一孔
124、124’、124” 第二孔
125、125’ 蒸発空間
13 毛細管材
131 流路
132 開口部
21、21’、21” 冷却部材
211、211’、211” 流体流路
212、212’、212” 気体接続端部
213、213’、213” 液体接続端部
31、31’、31” 気流管部
41、41’、41” 液流管部
51 作動液
511、511’、511” 液体弾
100、100’ 放熱部材
10, 10 ′, 10 ″ reflux heat pipe 11, 11 ′, 11 ″ evaporation chamber 12, 12 ′ housing 121 lid 122, 122 ′, 122 ″ storage case 123, 123 ′, 123 ″ first hole 124, 124 ′, 124 "second hole 125, 125 'evaporation space 13 capillary tube 131 flow path 132 opening 21, 21', 21" cooling member 211, 211 ', 211 "fluid flow path 212, 212', 212" gas connection end 213, 213 ', 213 "Liquid connection end 31, 31', 31" Airflow tube 41, 41 ', 41 "Liquid flow tube 51 Hydraulic fluid 511, 511', 511" Liquid bullet 100, 100 'Heat radiation member

Claims (7)

蒸発チャンバー、冷却部材、気流管部および液流管部を備え、
前記蒸発チャンバーは、ハウジングおよび前記ハウジング内に配置された毛細管材を有し、前記毛細管材は前記ハウジングに充満せず、前記ハウジングとの間に蒸発空間を形成し、
前記冷却部材は、外部に放熱部材を有し、内部に流体流路を有し、前記流体流路は一端が気体接続端部になり、別の一端が液体接続端部になり、前記気体接続端部の内径は前記液体接続端部の内径より大きく、
前記気流管部は、一端が前記ハウジングに連結されて前記蒸発空間に繋がり、別の一端が前記冷却部材の前記気体接続端部に連結されて前記流体流路に繋がり、
前記液流管部は、一端が前記ハウジングに連結されて前記ハウジングの内部に繋がり、別の一端が前記冷却部材の前記液体接続端部に連結されて前記流体流路に繋がり、
前記液流管部の内径は前記気流管部の内径より小さいことを特徴とする、
口径の異なる還流ヒートパイプ。
Evaporation chamber, cooling member, airflow pipe part and liquid flow pipe part,
The evaporation chamber has a housing and a capillary material disposed in the housing, the capillary material does not fill the housing, and forms an evaporation space with the housing,
The cooling member has a heat radiating member on the outside, and has a fluid channel inside. The fluid channel has one end serving as a gas connection end, and the other end serving as a liquid connection end. The inner diameter of the end is larger than the inner diameter of the liquid connection end,
One end of the airflow tube is connected to the housing and connected to the evaporation space, and the other end is connected to the gas connection end of the cooling member and connected to the fluid flow path.
One end of the liquid flow pipe portion is connected to the housing and connected to the inside of the housing, and the other end is connected to the liquid connection end portion of the cooling member and connected to the fluid flow path.
The inner diameter of the liquid flow pipe part is smaller than the inner diameter of the air flow pipe part,
Reflux heat pipes with different diameters.
前記ハウジングは、蓋および格納ケースからなり、前記毛細管材は前記格納ケース内に格納され、前記蓋は前記格納ケースを覆い、前記格納ケースは周りに形成された四つの側壁、一つの前記側壁に形成された第一孔および第二孔を有し、前記第一孔、前記第二孔および前記蒸発空間は前記格納ケースの同じ側に位置し、前記第一孔は前記蒸発空間に繋がり、孔径が前記第二孔の孔径より大きく、前記気流管部は一端が前記第一孔に差し込まれることによって前記ハウジングに連結され、前記液流管部は一端が前記第二孔に差し込まれることによって前記ハウジングに連結されることを特徴とする請求項1に記載の口径の異なる還流ヒートパイプ。   The housing includes a lid and a storage case, the capillary material is stored in the storage case, the cover covers the storage case, and the storage case has four side walls formed around the one side wall. The first hole, the second hole and the evaporation space are located on the same side of the storage case, the first hole is connected to the evaporation space, and has a hole diameter. Is larger than the hole diameter of the second hole, one end of the airflow pipe portion is connected to the housing by being inserted into the first hole, and the liquid flow pipe portion is connected to the housing by being inserted into the second hole. The reflux heat pipe having different diameters according to claim 1, wherein the reflux heat pipe is connected to a housing. 前記冷却部材は、内部が中空のU字型パイプから構成され、前記流体流路は前記U字型パイプの内部に位置し、前記U字型パイプの両端を貫通し、前記U字型パイプは一端が前記気体接続端部になり、別の一端が前記液体接続端部になり、前記気体接続端部の内径は前記液体接続端部の内径より大きいことを特徴とする請求項2に記載の口径の異なる還流ヒートパイプ。   The cooling member is formed of a hollow U-shaped pipe, the fluid flow path is located inside the U-shaped pipe, penetrates both ends of the U-shaped pipe, and the U-shaped pipe is The one end is the gas connection end, the other end is the liquid connection end, and the inner diameter of the gas connection end is larger than the inner diameter of the liquid connection end. Reflux heat pipes with different diameters. 前記ハウジングは、蓋および格納ケースからなり、前記毛細管材は前記格納ケース内に格納され、前記蓋は前記格納ケースを覆い、前記格納ケースは周りに形成された四つの側壁、側壁に形成された第一孔および第二孔を有し、前記第一孔および前記蒸発空間は前記格納ケースの同じ側に位置し、前記第一孔および前記第二孔は前記格納ケースの異なる側に位置し、前記第一孔は前記蒸発空間に繋がり、孔径が前記第二孔の孔径より大きく、前記気流管部は一端が前記第一孔に差し込まれることによって前記ハウジングに連結され、前記液流管部は一端が前記第二孔に差し込まれることによって前記ハウジングに連結されることを特徴とする請求項1に記載の口径の異なる還流ヒートパイプ。   The housing includes a lid and a storage case, the capillary material is stored in the storage case, the cover covers the storage case, and the storage case is formed on four side walls formed around the side wall. Having a first hole and a second hole, the first hole and the evaporation space are located on the same side of the storage case, the first hole and the second hole are located on different sides of the storage case, The first hole is connected to the evaporation space, the hole diameter is larger than the hole diameter of the second hole, and the airflow pipe part is connected to the housing by inserting one end into the first hole, and the liquid flow pipe part is The reflux heat pipe having different diameters according to claim 1, wherein one end is connected to the housing by being inserted into the second hole. 前記冷却部材は、中空パイプから構成され、前記流体流路は前記中空パイプの内部に位置し、前記中空パイプの両端を貫通し、前記中空パイプは一端が前記気体接続端部になり、別の一端が前記液体接続端部になり、前記気体接続端部の内径は前記液体接続端部の内径より大きいことを特徴とする請求項4に記載の口径の異なる還流ヒートパイプ。   The cooling member is constituted by a hollow pipe, the fluid flow path is located inside the hollow pipe, penetrates both ends of the hollow pipe, and the hollow pipe has one end serving as the gas connection end, 5. The reflux heat pipe having different diameters according to claim 4, wherein one end is the liquid connection end, and an inner diameter of the gas connection end is larger than an inner diameter of the liquid connection end. 前記冷却部材は矩形ブロックからなり、内部に前記流体流路になる管路を有し、前記管路は一端が前記矩形ブロックの外側に突出して前記気体接続端部になり、別の一端が前記矩形ブロックの外側に突出して前記液体接続端部になり、前記気体接続端部の内径は前記液体接続端部の内径より大きいことを特徴とする請求項2に記載の口径の異なる還流ヒートパイプ。   The cooling member is formed of a rectangular block, and has a pipe line that becomes the fluid flow path inside, and the pipe line has one end protruding outside the rectangular block to be the gas connection end, and the other end is the above-mentioned one end. The reflux heat pipe with different caliber according to claim 2, wherein the liquid connection end portion protrudes outside the rectangular block, and the inner diameter of the gas connection end portion is larger than the inner diameter of the liquid connection end portion. 前記毛細管材は、銅粉末の焼結によって成形され、複数の流路を有し、複数の前記流路は開口部が前記蒸発空間に繋がることを特徴とする請求項1に記載の口径の異なる還流ヒートパイプ。   The said capillary material is shape | molded by sintering of copper powder, and has a some flow path, The opening part leads to the said evaporation space, and the said several flow path differs in the diameter of Claim 1 characterized by the above-mentioned. Reflux heat pipe.
JP2018108491A 2018-04-26 2018-06-06 Recirculation heat pipe with different bore diameters Pending JP2019190811A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW107114329 2018-04-26
TW107114329A TW201945680A (en) 2018-04-26 2018-04-26 Loop heat pipe having different pipe diameters characterized in allowing a working liquid to be rapidly returned to the evaporating chamber so as to increase the heat dissipation efficiency

Publications (1)

Publication Number Publication Date
JP2019190811A true JP2019190811A (en) 2019-10-31

Family

ID=68291984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018108491A Pending JP2019190811A (en) 2018-04-26 2018-06-06 Recirculation heat pipe with different bore diameters

Country Status (3)

Country Link
US (1) US20190331431A1 (en)
JP (1) JP2019190811A (en)
TW (1) TW201945680A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075497A1 (en) 2019-10-18 2021-04-22 住友化学株式会社 Boehmite and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112762745A (en) * 2021-01-26 2021-05-07 江苏苏净集团有限公司 Heat pipe

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318493A (en) * 1987-06-23 1988-12-27 Akutoronikusu Kk Capillary heat pipe of loop type
US4883116A (en) * 1989-01-31 1989-11-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Ceramic heat pipe wick
US6330907B1 (en) * 1997-03-07 2001-12-18 Mitsubishi Denki Kabushiki Kaisha Evaporator and loop-type heat pipe using the same
US20030051859A1 (en) * 2001-09-20 2003-03-20 Chesser Jason B. Modular capillary pumped loop cooling system
US20060283577A1 (en) * 2005-06-17 2006-12-21 Tay-Jian Liu Loop-type heat exchange device
US20070006994A1 (en) * 2005-07-08 2007-01-11 Tay-Jian Liu Loop-type heat exchange device
US7692926B2 (en) * 2005-09-16 2010-04-06 Progressive Cooling Solutions, Inc. Integrated thermal systems
US20100214740A1 (en) * 2005-07-30 2010-08-26 Articchoke Enterprises Phase-Separated Evaporator, Blade-Thru Condenser and Heat Dissipation System Thereof
US7882889B2 (en) * 2006-06-12 2011-02-08 Industrial Technology Research Institute Loop type heat dissipating apparatus with sprayer
CN201803501U (en) * 2010-09-10 2011-04-20 江苏赫特节能环保有限公司 Loop heat pipe for solar water heater
US20120043060A1 (en) * 2010-08-20 2012-02-23 Foxconn Technology Co., Ltd. Loop heat pipe
US20120273167A1 (en) * 2011-04-29 2012-11-01 Asia Vital Components (Shen Zhen) Co., Ltd. Loop heat pipe structure with low-profile evaporator
WO2013018667A1 (en) * 2011-08-01 2013-02-07 日本電気株式会社 Cooling device and electronic device using same
CN103000595A (en) * 2011-09-08 2013-03-27 北京芯铠电子散热技术有限责任公司 Multidirectional access phase change heat transfer device and manufacturing method thereof
US8550150B2 (en) * 2009-10-16 2013-10-08 Foxconn Technology Co., Ltd. Loop heat pipe

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318493A (en) * 1987-06-23 1988-12-27 Akutoronikusu Kk Capillary heat pipe of loop type
US4883116A (en) * 1989-01-31 1989-11-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Ceramic heat pipe wick
US6330907B1 (en) * 1997-03-07 2001-12-18 Mitsubishi Denki Kabushiki Kaisha Evaporator and loop-type heat pipe using the same
US20030051859A1 (en) * 2001-09-20 2003-03-20 Chesser Jason B. Modular capillary pumped loop cooling system
US20060283577A1 (en) * 2005-06-17 2006-12-21 Tay-Jian Liu Loop-type heat exchange device
US20070006994A1 (en) * 2005-07-08 2007-01-11 Tay-Jian Liu Loop-type heat exchange device
US20100214740A1 (en) * 2005-07-30 2010-08-26 Articchoke Enterprises Phase-Separated Evaporator, Blade-Thru Condenser and Heat Dissipation System Thereof
US7692926B2 (en) * 2005-09-16 2010-04-06 Progressive Cooling Solutions, Inc. Integrated thermal systems
US7882889B2 (en) * 2006-06-12 2011-02-08 Industrial Technology Research Institute Loop type heat dissipating apparatus with sprayer
US8550150B2 (en) * 2009-10-16 2013-10-08 Foxconn Technology Co., Ltd. Loop heat pipe
US20120043060A1 (en) * 2010-08-20 2012-02-23 Foxconn Technology Co., Ltd. Loop heat pipe
CN201803501U (en) * 2010-09-10 2011-04-20 江苏赫特节能环保有限公司 Loop heat pipe for solar water heater
US20120273167A1 (en) * 2011-04-29 2012-11-01 Asia Vital Components (Shen Zhen) Co., Ltd. Loop heat pipe structure with low-profile evaporator
WO2013018667A1 (en) * 2011-08-01 2013-02-07 日本電気株式会社 Cooling device and electronic device using same
CN103000595A (en) * 2011-09-08 2013-03-27 北京芯铠电子散热技术有限责任公司 Multidirectional access phase change heat transfer device and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075497A1 (en) 2019-10-18 2021-04-22 住友化学株式会社 Boehmite and method for producing same

Also Published As

Publication number Publication date
US20190331431A1 (en) 2019-10-31
TW201945680A (en) 2019-12-01

Similar Documents

Publication Publication Date Title
JP4578552B2 (en) Cooling device and power conversion device
US20120227934A1 (en) Heat pipe having a composite wick structure and method for making the same
JP2019190815A (en) Recirculation heat pipe in which capillary member is put in part of cooling section
JP2019184219A (en) Reflow heat pipe with liquid bullet pipe conduit
JP2012127642A (en) Thin film type heat pipe produced by extrusion
TWI776497B (en) Three-dimensional heat dissipating device
TWM526264U (en) Liquid-cooled heat dissipation device and heat dissipation structure thereof
JP2019190811A (en) Recirculation heat pipe with different bore diameters
CN104219934A (en) Apparatus
JP2007317825A (en) Heat sink and electronic device using the same
JP2020176752A (en) Heat sink
TWI675177B (en) Complex temperature plate combined assembly
KR101097390B1 (en) Heat pipe with double pipe structure
JP2019190812A (en) Recirculation heat pipe in which same pipe line is partitioned into air current passage and fluid current passage
CN107306486B (en) Integrated heat dissipation device
JP4080479B2 (en) Liquid cooler cooler
US20140338194A1 (en) Heat dissipation device and manufacturing method thereof
TWM523894U (en) Heat dissipation structure and water-cooling device comprising the same
TWM638398U (en) 3D vapor chamber
CN114521087A (en) Heat sink device
CN218955545U (en) Evaporator and loop heat pipe
TWI828451B (en) 3d vapor chamber
TWI620911B (en) Heat conduction structure with liquid-gas separation mechanism
CN214800420U (en) Heat radiation module
JP3168932U (en) Heat dissipation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200204