JP2019190431A - 内燃機関の空燃比推定装置、及び、内燃機関の空燃比推定方法 - Google Patents

内燃機関の空燃比推定装置、及び、内燃機関の空燃比推定方法 Download PDF

Info

Publication number
JP2019190431A
JP2019190431A JP2018086122A JP2018086122A JP2019190431A JP 2019190431 A JP2019190431 A JP 2019190431A JP 2018086122 A JP2018086122 A JP 2018086122A JP 2018086122 A JP2018086122 A JP 2018086122A JP 2019190431 A JP2019190431 A JP 2019190431A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
intake pipe
fuel
ratio estimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018086122A
Other languages
English (en)
Other versions
JP6916760B2 (ja
Inventor
恒 高柳
Hisashi Takayanagi
恒 高柳
三橋 真人
Masato Mihashi
真人 三橋
田中 健吾
Kengo Tanaka
健吾 田中
井川芳克
Yoshikatsu Igawa
芳克 井川
大輔 小森
Daisuke Komori
大輔 小森
祐生 小山
Yuki Koyama
祐生 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Engine and Turbocharger Ltd
Original Assignee
Mitsubishi Heavy Industries Engine and Turbocharger Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Engine and Turbocharger Ltd filed Critical Mitsubishi Heavy Industries Engine and Turbocharger Ltd
Priority to JP2018086122A priority Critical patent/JP6916760B2/ja
Publication of JP2019190431A publication Critical patent/JP2019190431A/ja
Application granted granted Critical
Publication of JP6916760B2 publication Critical patent/JP6916760B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】煩雑な演算処理を行うことなく、吸気配管における燃料ガスの輸送遅れを考慮することにより、空燃比を精度よく推定する。【解決手段】空燃比推定装置は、予混合方式の内燃機関において空燃比を推定する。本装置は、吸気配管内に存在する混合気の燃料ガス濃度を含む空燃比推定モデルを用いて、状態パラメータに対応する空燃比を推定する。【選択図】図4

Description

本開示は、内燃機関の燃焼室における空燃比を推定するための内燃機関の空燃比推定装置、及び、内燃機関の空燃比推定方法に関する。
燃料ガスを吸気と混合することで生成した混合気を燃焼することにより動力を出力可能なガスエンジン等の内燃機関が知られている。この種の内燃機関の一方式として、燃焼室より上流側において燃料供給弁から供給される燃料ガスと、外部から取り込まれる吸気とを予混合することで混合気を生成し、所定の長さを有する吸気配管を介して混合気を燃焼室に吸気する、いわゆる予混合方式がある。
内燃機関は、例えば発電プラントにおける発電機の動力源として用いられ、主に燃焼制御及び空燃比制御が行われる。燃焼制御では、出力回転数及び負荷を一定に保持するために出力回転数又は負荷を制御量、燃料ガスの供給量を操作量とするフィードバック制御が行われる。空燃比制御では、燃焼室における空燃比を一定に保持するために、空燃比を制御量とするフィードバック制御を行うことで、インテークマニホールドの手前に配置されたスロットルバルブの開度が調整される。
ところで、この種の内燃機関では、負荷投入時や負荷遮断時のように負荷が変動した際に、出力回転数の変動を抑制することで、発電端の周波数への影響を低減することが求められる。このように負荷変動時の出力回転数の変動を抑制するためには、上述の空燃比制御で制御量とされる空燃比の推定精度が重要である。
予混合方式の内燃機関では、燃料供給弁から供給される燃料ガスが燃焼室に至るまでの配管容積が大きいため、燃料供給弁から供給された燃料ガスは、燃焼室に到達するまでに時間を要する。そのため空燃比の推定精度を良好に確保するためには、このような時間遅れを考慮する必要がある。例えば特許文献1では、吸気配管における燃料ガスの輸送遅れモデルを導入することで、時間遅れを考慮した空燃比の推定を行うことが記載されている。
特開2000−282948号公報
しかしながら上記特許文献1では、燃料ガスの輸送遅れモデルにおける時定数をパラメータとして設定する必要があるため、運転状態に応じて適切な時定数を求めることが難しく、また結果の妥当性を保証することが難しい。また特許文献1では、内燃機関のコントロールユニット(ECU)においてシステム同定を行っているため、煩雑な演算処理が必要となってしまう。
本発明の少なくとも一実施形態は上述の事情に鑑みなされたものであり、煩雑な演算処理を行うことなく、吸気配管における燃料ガスの輸送遅れを考慮することにより、空燃比を精度よく推定可能な内燃機関の空燃比推定装置、及び、内燃機関の空燃比推定方法を提供することを目的とする。
(1)本発明の少なくとも一実施形態に係る内燃機関の空燃比推定装置は上記課題を解決するために、
吸気及び燃料ガスが予混合された混合気が所定の容積を有する吸気配管を介して導入される燃焼室を有する内燃機関において、前記燃焼室における空燃比を推定するための内燃機関の空燃比推定装置であって、
前記吸気配管内に存在する前記混合気の燃料ガス濃度を含み、前記吸気配管における前記燃料ガス又は前記混合気の少なくとも一方に関する状態パラメータを変数とする演算式を用いて、前記空燃比を算出可能な前記吸気配管の空燃比推定モデルを記憶する記憶部と、
前記状態パラメータを取得する状態パラメータ取得部と、
前記記憶部に記憶された前記空燃比推定モデルを用いて、前記状態パラメータ取得部で取得された前記状態パラメータに対応する前記空燃比を推定する空燃比推定部と、
を備える。
上記(1)の構成によれば、吸気配管における燃料ガス又は混合気の少なくとも一方に関する状態パラメータを空燃比推定モデルに入力することにより、当該状態パラメータに対応する空燃比が推定される。このような空燃比推定モデルは、吸気配管内に存在する混合気の燃料ガス濃度を含む演算式を用いることによって、煩雑な演算処理を行うことなく、所定の容量を有する吸気配管を通過する燃料ガスの輸送遅れを考慮した空燃比の推定が可能である。
(2)幾つかの実施形態では上記(1)の構成において、
前記空燃比推定モデルは、前記吸気配管に対する前記燃料ガスの供給流量、及び、前記吸気配管に対する前記燃料ガスの排出流量の間の差分を積分することにより、前記燃料ガス濃度を評価可能な前記吸気配管の物理モデルである。
上記(2)の構成によれば、吸気配管に対する燃料ガスの供給流量、及び、吸気配管に対する燃料ガスの排出流量の間の差分を積分することで、吸気配管を通過する燃料ガス濃度を、比較的シンプルな演算処理によって的確に求めることができる。
(3)幾つかの実施形態では上記(1)又は(2)の構成において、
前記空燃比推定モデルを伝達関数に変換することにより時定数を算出する時定数算出部を備える。
上記(3)の構成によれば、空燃比推定モデルを伝達関数に変換することによって、吸気配管における燃料ガスの輸送遅れに関する時定数を、適切な値として求めることができる。このように求められた時定数は、例えば特許文献1のようにパラメータとして時定数が求められる際に、信頼性のある値(すなわち妥当性が保証された値)として用いることもできる。
(4)幾つかの実施形態では上記(1)から(3)のいずれか一構成において、
前記吸気配管は前記混合気の流れに対して互いに直列に配置された第1吸気配管及び第2吸気配管を含み、
前記空燃比推定モデルは、
−前記第1吸気配管に対応する第1物理モデルと、前記第2吸気配管に対応する第2物理モデルと、を含み、
−前記第1物理モデルで算出される前記第1吸気配管の出力側における前記状態パラメータと、前記第2物理モデルの前記第2吸気配管の入口側における前記状態パラメータとが共通するように構成される。
上記(4)の構成によれば、吸気配管を構成する第1吸気配管及び第2吸気配管の各々に対応する第1物理モデル及び第2物理モデルを用いた空燃比の推定が行われる。このように吸気配管を第1吸気配管及び第2吸気配管に分割し、各々に対応する物理モデルを用いることで、燃料ガスが吸気配管を通過する際に時間遅れが生じる様子をより的確にシミュレートすることができる。
(5)幾つかの実施形態では上記(4)の構成において、
前記第1吸気配管は、前記吸気配管に対する前記燃料ガスの供給箇所と、前記吸気配管上に設置されたコンプレッサとの間に設けられ、
前記第2吸気配管は、前記コンプレッサと前記燃焼室との間に設けられる。
上記(5)の構成によれば、吸気配管はコンプレッサを境界として第1吸気配管及び第2吸気配管に分割される。コンプレッサで圧力・温度の状態が大きく変わり、またコンプレッサ下流側の圧力・温度が計測可能である。またコンプレッサ上流側の圧力・温度は外気の条件に近いため推定が容易である。そのため、追加センサの設置のコスト増やシステム複雑化を回避しつつ、既存センサの計測値を利用した推定が可能となる。
(6)本発明の少なくとも一実施形態に係る内燃機関の空燃比推定方法は上記課題を解決するために、
吸気及び燃料ガスが予混合された混合気が所定の容積を有する吸気配管を介して導入される燃焼室を有する内燃機関において、前記燃焼室における空燃比を推定するための内燃機関の空燃比推定方法であって、
前記吸気配管内に存在する前記混合気の燃料ガス濃度を含み、前記吸気配管における前記燃料ガス又は前記混合気の少なくとも一方に関する状態パラメータを変数とする演算式を用いて、前記空燃比を算出可能な前記吸気配管の空燃比推定モデルを用意する工程と、
前記状態パラメータを取得する工程と、
前記空燃比推定モデルを用いて、前記状態パラメータに対応する前記空燃比を推定する工程と、
を備える。
上記(6)の方法によれば、吸気配管における燃料ガス又は混合気の少なくとも一方に関する状態パラメータを空燃比推定モデルに入力することにより、当該状態パラメータに対応する空燃比が推定される。このような空燃比推定モデルは、吸気配管内に存在する混合気の燃料ガス濃度を含む演算式を用いることによって、煩雑な演算処理を行うことなく、所定の容量を有する吸気配管を通過する燃料ガスの輸送遅れを考慮した空燃比の推定が可能である。
本発明の少なくとも一実施形態によれば、煩雑な演算処理を行うことなく、吸気配管における燃料ガスの輸送遅れを考慮することにより、空燃比を精度よく推定可能な内燃機関の空燃比推定装置、及び、内燃機関の空燃比推定方法を提供できる。
本発明の少なくとも一実施形態に係る内燃機関の全体構成図である。 第1実施形態に係る空燃比推定装置の内部構成を機能的に示すブロック図である。 図2の空燃比推定装置で実施される空燃比推定方法を工程毎に示すフローチャートである。 第1実施形態における空燃比推定モデルを概念的に示す模式図である。 内燃機関1の負荷が段階的に変化した際における空燃比の推移を、燃料ガス供給量の推移とともに示すグラフである。 第2実施形態に係る空燃比推定装置の内部構成を機能的に示すブロック図である。 図6の空燃比推定装置で実施される空燃比推定方法を工程毎に示すフローチャートである。 第2実施形態における空燃比推定モデルを概念的に示す模式図である。 図7の空燃比推定方法で推定された空燃比の推定値の推移を、状態パラメータとともに示すシミュレーション結果である。 第3実施形態において吸気配管を複数の区域に分割した様子を示す模式図である。 第3実施形態における空燃比推定モデルを概念的に示す模式図である。 第3実施形態に係る空燃比推定モデルに基づくシミュレーション結果である。
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
図1は、本発明の少なくとも一実施形態に係る内燃機関1の全体構成図である。内燃機関1は、燃料として燃料ガスを使用するガスエンジンであり、例えば、発電プラント等において発電を行うための発電機(不図示)に対して動力を出力する発電用エンジンである。
内燃機関1は少なくとも一つの気筒2を有する。本実施形態では内燃機関1は複数の気筒2を有するが、図1では理解しやすいように一つの気筒2のみが代表的に示されている。
気筒2は、シリンダブロック4と一体的に形成されたシリンダ6と、シリンダ内を往復動可能に構成されたピストン8とを含む。シリンダ6及びピストン8は、主燃焼室10を構成する。また各気筒2には、燃料ガスと吸気との混合気を取り込むための吸気ポート12と、主燃焼室10で生じた排ガスを排出するための排気ポート14が設けられている。
吸気ポート12は、ECU(エンジン制御ユニット:Engine Control Unit)からの制御信号に応じて開閉可能な吸気バルブ16を有する。また各気筒2の吸気ポート12は、上流側に設けられた吸気配管18と接続するための吸気マニホールド20を介して互いに接続されている。
吸気配管18は、外気供給ライン22と主燃料ガス供給ライン24との合流点に配置されたミキサ26と、吸気ポート12との間を接続するように設けられる。ミキサ26では、外気供給ライン22を介して外部から取り込まれる吸気(外気)と、主燃料ガス供給ライン24から供給される燃料ガスとが混合されることにより、混合気が生成される。ミキサ26で生成された混合気は、吸気配管18を介して吸気ポート12に供給される。
尚、吸気配管18には、吸気ポート12に供給される混合気の流量を制御するためのスロットルバルブ17が設けられている。
外気供給ライン22には、外部から取り込まれる吸気に含まれる異物を除去するためのエアフィルタ28が配置されている。また主燃料ガス供給ライン24には、ミキサ26への燃料ガスの供給量を調整するための調整バルブ30が設けられている。これにより、吸気ポート12には、ミキサ26において予め燃料ガスと吸気とが混合されることで生成された混合気が吸気配管18を介して供給される。
吸気配管18のうちスロットルバルブ17の上流側には、ミキサ26で生成された混合気を主燃焼室10に対して過給するためのコンプレッサ32が配置されている。コンプレッサ32は排気通路34に設けられた排気タービン36と連結されており、排気通路34を流れる排ガスによって駆動する排気タービン36と連動して駆動される。
尚、コンプレッサ32によって昇圧された混合気は、スロットルバルブ17の下流側に配置されたインタークーラ19によって冷却された後、吸気ポート12に供給される。
排気ポート14には、外部に対して主燃焼室10で生成された排ガスを排出するための排気通路34が接続される。排気通路34には、排ガスによって駆動可能な排気タービン36が配置される。排気タービン36は、上述のコンプレッサ32とともにターボチャージャ40を構成する。排気タービン36を通過した排ガスは、不図示の排ガス処理装置によって所定の排ガス処理が実施された後、外部に排出される。
尚、本実施形態の排気通路34は、排気タービン36を迂回するように構成されたバイパス通路42を有する。バイパス通路42には制御信号に応じて開閉可能なウエストゲートバルブ44が設置されている。
またシリンダブロック4には、副燃焼室46を有する副室口金48が設けられている。副室口金48の先端部周囲には主燃焼室10内に火炎を噴射するための噴口(不図示)が複数形成されている。副燃焼室46には、副燃料ガス供給ライン52を介して燃料ガスが供給され、副燃焼室46内に設けられた点火プラグ(不図示)によって火炎が形成される。副燃焼室46で形成された火炎は噴口から主燃焼室10にトーチ状に吹き出されることで、主燃焼室10の広範囲において効率的な燃焼が行われるように構成されている。
尚、副燃料ガス供給ライン52には、副燃焼室46に対する燃料ガスの供給量を調整するための調整バルブ54が設けられている。また副燃料ガス供給ライン52は、前述の主燃料ガス供給ライン24と上流側において合流しているが、互いに独立していてもよい。
主燃料ガス供給ライン24には、ミキサ26に対して供給される燃料ガスの流量を検出するための第1流量センサ56が設けられている。また吸気配管18の出口(すなわち、吸気ポート12近傍)には吸気配管18から吸気ポート12に供給される混合気の流量を検出するための第2流量センサ58が設けられている。また吸気配管18には、吸気配管18内を流れる混合気の圧力及び温度をそれぞれ検出するための圧力センサ60及び温度センサ62が設けられている。これら各種センサの検出値は、電気的信号として後述する空燃比推定装置100に入力される。
<第1実施形態>
続いて上記構成を有する内燃機関1の空燃比推定装置100について説明する。図2は第1実施形態に係る空燃比推定装置100の内部構成を機能的に示すブロック図であり、図3は図2の空燃比推定装置100で実施される空燃比推定方法を工程毎に示すフローチャートである。
空燃比推定装置100は、例えばコンピュータのような演算処理装置に対して、本発明の少なくとも一実施形態に係る空燃比推定方法を実施するためのプログラムがインストールされることにより構成される。この場合、プログラムは予めコンピュータ読み取り可能な記録媒体に記録されていてもよく、当該記録媒体を演算処理装置によって読み込むことで、当該プログラムをインストールしてもよい。
また図2では、空燃比推定装置100の構成要素を機能毎に分割した機能ブロックとして示しているが、これらの機能ブロックは互いに統合されてもよいし、更に細分化されていてもよい。また空燃比推定装置100は、単一の演算処理装置によって構成されてもよいし、互いに通信可能な複数の演算処理装置(例えばクラウドサーバも含む)によって構成されてもよい。
空燃比推定装置100は、空燃比推定モデル110を記憶する記憶部102と、状態パラメータ取得部104と、空燃比推定部106と、を備える。
記憶装置である記憶部102には、予め空燃比の推定に用いられる空燃比推定モデル110が予め記憶されることにより用意される(ステップS10)。記憶部102に記憶される空燃比推定モデル110は、吸気配管18における燃料ガス又は混合気の少なくとも一方に関する状態パラメータを変数とする演算式を用いて、空燃比を算出可能な演算モデルである。空燃比推定モデル110は、吸気配管18内に存在する混合気の燃料ガス濃度を含むことにより、煩雑な演算処理を行うことなく、所定の容量を有する吸気配管を通過する燃料ガスの輸送遅れを考慮した空燃比の推定が可能である。
ここで空燃比推定モデル110の具体的内容について説明する。図4は第1実施形態いのける空燃比推定モデル110を概念的に示す模式図である。
この空燃比推定モデル110では、図4に示されるように、所定容積を有する吸気配管18をモデリングしたボリューム112が設定される。ボリューム112には、吸気配管18における燃料ガス又は混合気の少なくとも一方に関する状態パラメータが変数として設定される。本実施形態では、このような状態パラメータとして、吸気配管18の入口燃料ガス流量Wgin、出口混合気流量Wmixout、出口燃料ガス流量Wgout、ボリューム112における燃料ガス濃度C、圧力P、温度T、体積V、質量mが設定される。
尚、空燃比推定モデル110では、吸気配管18の入口燃料ガス流量Wginとして第1流量センサ56の検出値が入力され、出口混合気流量Wmixoutとして第2流量センサ58の検出値が入力され、圧力Pとして圧力センサ60の検出値が入力され、温度Tとして温度センサ62の検出値が入力されるように構成されている。また体積Vには、吸気配管18の仕様として設定される既知値が入力される。
吸気配管18の出口燃料ガス流量Wgoutは、吸気配管18内における燃料ガス濃度Cが一定であると仮定すると、吸気配管18の出口混合気流量Wmixoutを用いて次式により求められる。

Figure 2019190431
ここで(1)式に用いられる燃料ガス濃度Cは次式により求められる。

Figure 2019190431
(2)式の分子成分は、吸気配管18に対する燃料ガスの供給流量である入口燃料ガス流量Wgin、及び、吸気配管18からの燃料ガスの排出流量である出口燃料ガス流量Wgoutの差分を積分したものである。吸気配管18は所定容積を有するため、燃料ガスが吸気配管18を通過する際に要する時間(時間遅れ)に対応して、ある瞬間における燃料ガスの供給流量と排出流量との間には少なからず差分が生じる。(2)式では、当該積分値を吸気配管18内に存在する混合気の質量mで割算することにより、所定容量を有する吸気配管18における燃料ガス濃度Cをシンプルな演算式で精度よく算出することができる。
尚、(2)式に含まれる混合気の質量mは、吸気配管18に設けられた圧力センサ60及び温度センサ62の検出値である圧力P及び温度T、吸気配管18の仕様値である体積V、並びに、気体定数Rを用いて、次式に示される気体の状態方程式から算出することができる。
Figure 2019190431
そして(1)式〜(3)式を連立して解くことにより、出口燃料ガス流量Wgoutが求められる。空燃比推定モデル110では、このように求められた出口燃料ガス流量Wgoutを次式に入力することにより、空燃比λが推定される。

Figure 2019190431
尚、定数Lthは理論空燃比である。
続いて状態パラメータ取得部104は、空燃比推定モデル110による空燃比の推定演算に必要な状態パラメータを取得する(ステップS11)。すなわち(1)式〜(4)式において外部から入力されるべき各状態パラメータが取得される。具体的には、状態パラメータ取得部104は、第1流量センサ56の検出値を入口燃料ガス流量Wginとして取得し、第2流量センサ58の検出値を出口混合気流量Wmixoutとして取得し、圧力センサ60の検出値を圧力Pとして取得し、温度センサ62の検出値を温度Tとして取得する。
続いて空燃比推定部106は、記憶部102に記憶された空燃比推定モデル110を用いて、状態パラメータ取得部104で取得された状態パラメータに対応する空燃比を推定する(ステップS12)。すなわち、空燃比推定部106は、ステップS11で取得した各状態パラメータを(1)式〜(4)式に代入することにより、空燃比λの推定値を算出する。
ここで図5は内燃機関1の負荷が段階的に変化した際における空燃比λの推移を、燃料ガス供給量の推移とともに示すグラフである。図5では、空燃比λの推定値に関する比較対象として、吸気配管18を0次元のボリューム要素で表したMVM(Mean Value Model)を用いたシミュレーション結果と、従来モデルに基づいた推定値とが示されている。
尚、図5では従来モデルの一例として、時定数T(パラメータ)[Ssec]を用いた1/(T・s+1)の一次遅れの式である次式
Wgout=1/(T・s+1)・Wgin
からWgoutを求めている。
図5(a)では、内燃機関の負荷が0%、25%、50%、75%、100%と段階的に増加する際に、内燃機関1の出力回転数を一定に保持するために、燃料ガスの供給量が段階的に増加するように制御される様子が示されている。このとき空燃比λの推定値は、図5(b)に示されるように、従来モデルの推定値に比べてMVMを用いたシミュレーション結果に近いものが得られている。図5(c)〜(f)は図5(b)の時間t1、t2、t3、t4近傍における空燃比λの推移を拡大して示しており、負荷変動が生じる各時刻t1、t2、t3、t4において空燃比λが急激に変動した際におけるMVMのシミュレーション結果に対する乖離量が少なくなっていることが表されている。これは、従来モデルに比べて精度のよい空燃比の推定ができていることを示している。
<第2実施形態>
図6は第2実施形態に係る空燃比推定装置100´の内部構成を機能的に示すブロック図であり、図7は図6の空燃比推定装置100´で実施される空燃比推定方法を工程毎に示すフローチャートである。
尚、以下の説明では上述の実施形態に対応する構成には共通の符号を付すこととし、重複する説明は適宜省略する。
図6に示されるように、空燃比推定装置100´は、上述の空燃比推定装置100に比べて、吸気配管18の物理モデルに基づいて時定数Lを算出する時定数算出部113と、時定数に基づいて空燃比推定モデルを作成する空燃比推定モデル作成部114と、を更に備える。
まず時定数算出部113は、吸気配管18の物理モデルである(1)式〜(3)式を伝達関数Fに変換することにより時定数τを算出する(ステップS20)。具体的には、(2)式をラプラス変換することにより次式

Figure 2019190431
が得られる。このように得られた(5)式を(1)式に代入することにより、次式

Figure 2019190431
が得られる。そして(6)式に(3)式を代入すると次式

Figure 2019190431
が得られる。(7)式によれば、出口燃料ガス流量Wgoutは、入口燃料ガス流量Wginの一次遅れで表されており、時定数τが求められる。尚、むだ時間Lは次式

Figure 2019190431
により得られる。ここでρは混合気の密度である。
続いて空燃比推定モデル作成部114は、時定数算出部113で算出された時定数τを用いて空燃比推定モデル120を作成する(ステップS21)。ここで図8は第2実施形態における空燃比推定モデル120を概念的に示す模式図である。
空燃比推定モデル120は、入力パラメータとして入口燃料ガス流量Wgin及び出口吸気流量Waを有する。入口燃料ガス流量Wginは、上記(7)の伝達関数に入力され、対応する出口燃料ガス流量Wgoutが算出される。伝達関数から出力された出口燃料ガス流量Wgout出口吸気流量Waとともに次式
Figure 2019190431
に入力されることで、空燃比の推定値λが算出される。尚、Lthは理論空燃比である。
このように空燃比推定モデル作成部114で作成された空燃比推定モデル120は、記憶部に読み出し可能に記憶される。
続いて状態パラメータ取得部104は、空燃比推定モデル120による空燃比の推定演算に必要な状態パラメータを取得する(ステップS22)。空燃比推定モデル120の入力パラメータとして、第1流量センサ56の検出値を入口燃料ガス流量Wginとして取得するとともに、圧力センサ60の検出値を用いた演算により得られた出口吸気流量Waが取得される(実際には圧力センサ60の検出値を用いて混合気流量Wmixoutが演算され、出口吸気流量Waが式(Wa=Wmixout−Wgin)で計算される)。
続いて空燃比推定部106は、記憶部102に記憶された空燃比推定モデル120を用いて、状態パラメータ取得部104で取得された状態パラメータに対応する空燃比を推定する(ステップS23)。すなわち、空燃比推定部106は、ステップS22で取得した各状態パラメータを空燃比推定モデル120に入力することにより、空燃比λの推定値を算出する。
ここで図9は図7の空燃比推定方法で推定された空燃比の推定値の推移を、状態パラメータとともに示すシミュレーション結果である。図9(a)は吸気配管18の入口及び出口における燃料ガスの流量の推移を示しており、図9(b)は空燃比の推定値λの推移を示しており、図9(c)は吸気配管18の入口及び出口における混合気の流量の推移を示しており、図9(d)は状態パラメータである圧力(圧力センサ60の検出値)の推移を示しており、図9(e)は状態パラメータである温度(温度センサ62の検出値)の推移を示しており、図9(f)は式(2)によって算出された燃料ガス濃度Cの推移を示している。
図9(a)及び図9(b)に示されるように、このシミュレーションでは吸気配管18の入口における燃料ガスの流量をステップ変化させた場合に、本実施形態における空燃比の推定値λはMVMのものと一致する結果が得られた。これは、第2実施形態における空燃比の推定値λが信頼性に足りるものであることを示している。
<第3実施形態>
続いて第3実施形態について説明する。上述の第1及び第2実施形態では吸気配管18の全体を一つの空燃比推定モデルでモデリングすることにより空燃比を推定したが、第3実施形態では、吸気配管18を複数の区域に分割し、分割された区域の各々をモデリングすることにより、空燃比の推定を行う。
図10は第3実施形態において吸気配管18を複数の区域に分割した様子を示す模式図である。図10では、図1のうち吸気配管18が周辺構成とともに簡略して示されている。この例では、吸気配管18に配置されているコンプレッサ32を境界として上流側の第1吸気配管18aと下流側の第2吸気配管18bとに分割されている。
尚、以下の説明では、互いに分割された複数の区域を第1吸気配管18a及び第2吸気配管18bと称するが、これは吸気配管18が複数の区域に分割できることを概念的に示すものであり、第1吸気配管18a及び第2吸気配管18bは構造的に一体的に構成されていてもよい。
この場合、空燃比の推定に用いられる上述の空燃比推定モデル110,120は、領域(第1吸気配管18a及び第2吸気配管18b)の各々について上記各式を適用することにより構築されてもよい。図11は第3実施形態における空燃比推定モデル130を概念的に示す模式図である。
空燃比推定モデル130は、第1吸気配管に対応する第1ボリューム112aと、第2吸気配管に対応する第2ボリューム112bとを有する。上述の空燃比推定モデル110では吸気配管18の全体を一つのボリューム112でモデリングしているが、本実施形態に係る空燃比推定モデル130では、吸気配管18を混合気の流れに対して互いに直列に配置された第1吸気配管に対応する第1ボリューム112aと、第2吸気配管に対応する第2ボリューム112bとに分割し、第1ボリューム112a及び第2ボリューム112bの各々に対して同様のモデリングが行われる。
具体的に説明すると、図11に示されるように、空燃比推定モデル130では、第1吸気配管18aの体積V1に対応する第1ボリューム112aと、及び、第2吸気配管18bの体積V2に対応する第2ボリューム112bと、が設定される。第1ボリューム112a及び第2ボリューム112bには、第1吸気配管18a及び第2吸気配管18bの各々における燃料ガス又は混合気の少なくとも一方に関する状態パラメータが変数としてそれぞれ設定される。
ここで、第1ボリューム112a及び第2ボリューム112bに設定される状態パラメータは次の通りである。
まず第1ボリューム112aに対して設定される状態パラメータとして、第1吸気配管18aに対する混合気流量Qmixact、燃料ガス流量Qgasin、燃料ガス濃度C1、圧力P1、温度T1、体積V1、質量m1及び出口燃料ガス流量Qgasout1がある。混合気流量Qmixactは、圧力センサ60の検出値に基づいて算出可能である。燃料ガス流量Qgasinは、第1流量センサ56の検出値として取得可能である。燃料ガス濃度C1は次式

Figure 2019190431
により算出される。また第1吸気配管18aはコンプレッサ32の上流側に位置するため、圧力P1、温度T1はそれぞれ大気圧及び大気温度に対応する一定値として設定される。尚、圧力P1、温度T1は大気圧及び大気温度を検出するためのセンサを設置して、それらの検出値を用いるようにしてもよい。質量m1は次式

Figure 2019190431
により算出される。また出口燃料ガス流量Qgasout1は、上述の(1)式の類似式である次式

Figure 2019190431
により算出される。
尚、空燃比推定モデル130では、吸気配管18に供給される混合気流量Qmixactは第1ボリューム112a及び第2ボリューム112bの前後において一定であると仮定されている。
続いて第2ボリューム112bに対して設定される状態パラメータとして、第2吸気配管18bにおける燃料ガス濃度C2、圧力P2、温度T2、体積V2、質量m2及び出口燃料ガス流量Qgasout2がある。燃料ガス濃度C2は次式

Figure 2019190431
により算出される。また圧力P2、温度T2はそれぞれ圧力センサ60及び温度センサ62の検出値として取得される。また質量m2は次式

Figure 2019190431
により算出される。また出口燃料ガス流量Qgasout2は、上述の(1)式の類似式である次式

Figure 2019190431
により算出される。
尚、図11に示されるように、第1ボリューム112a及び第2ボリューム112bは互いに直列に接続されているため、第1ボリューム112aの出口側の状態パラメータである混合気流量Qmixact及び出口燃料ガス流量Qgasout1は、第2ボリューム112bの入口側の状態パラメータと共通している。
空燃比推定部106では、このような構成を有する空燃比推定モデル130に基づいて空燃比の推定が行われる。図11を参照して上述したように、空燃比推定部106は、記憶部に用意された空燃比推定モデル130に対して、状態パラメータ取得部104で取得された各状態パラメータを入力することにより、空燃比の推定を行う。
空燃比推定モデル130による空燃比の推定演算は、第1ボリューム112aの出口側の状態パラメータと第2ボリューム112bの入口側の状態パラメータとが共通するという前提条件を設定することで、上記各実施形態と同様の思想に基づいて、空燃比の推定値が算出される。特に本実施形態では、所定容量を有する吸気配管18を第1ボリューム112a及び第2ボリューム112bに分割してモデリングすることにより、上流側から下流側に向けて時間遅れを伴いながら流れる燃料ガスの振る舞いを考慮した、空燃比の推定が可能となる。すなわち、二次遅れを考慮した空燃比の推定が推定となる。そのため、上述した空燃比推定モデル110のように吸気配管18の全体に対して一つのモデリングを適用した場合に比べて、精度のよい空燃比推定が可能となる。
図12は第3実施形態に係る空燃比推定モデル130に基づくシミュレーション結果である。この結果においても、空燃比推定モデル130によって得られる空燃比の推定値は、MVMで得られるシミュレーション結果に近いものが得られており、推定精度の高さが検証できた。
尚、空燃比推定モデル130では吸気配管18を2分割したモデリングを行うことで二次遅れを考慮した空燃比推定を行っているが、吸気配管18をより細かく分割したモデリングを行うことで、より高次遅れを考慮した空燃比推定を行うことも可能である。また吸気配管18の分割を細かくするほど空燃比の推定精度も向上することができるが、比較的少ない分割数においても十分な推定精度が得られる。またモデリングを細分化した際の演算負荷も増加することから、必要な推定精度に応じて、分割数を決定することが好ましい。
以上説明したように上述の実施形態によれば、吸気配管18における燃料ガス又は混合気の少なくとも一方に関する状態パラメータを空燃比推定モデル110,120,130に入力することにより、当該状態パラメータに対応する空燃比が推定される。このような空燃比推定モデル110,120,130は、吸気配管18内に存在する混合気の燃料ガス濃度C、C1、C2を含む演算式を用いることによって、煩雑な演算処理を行うことなく、所定の容量を有する吸気配管18を通過する燃料ガスの輸送遅れを考慮した空燃比の推定が可能である。
本発明の少なくとも一実施形態は、内燃機関の燃焼室における空燃比を推定するための内燃機関の空燃比推定装置、及び、内燃機関の空燃比推定方法に利用可能である。
1 内燃機関
2 気筒
4 シリンダブロック
6 シリンダ
8 ピストン
10 主燃焼室
12 吸気ポート
14 排気ポート
16 吸気バルブ
17 スロットルバルブ
18 吸気配管
19 インタークーラ
20 吸気マニホールド
22 外気供給ライン
24 主燃料ガス供給ライン
26 ミキサ
28 エアフィルタ
30 調整バルブ
32 コンプレッサ
34 排気通路
36 排気タービン
40 ターボチャージャ
42 バイパス通路
44 ウエストゲートバルブ
46 副燃焼室
48 副室口金
52 副燃料ガス供給ライン
54 調整バルブ
56 第1流量センサ
58 第2流量センサ
60 圧力センサ
62 温度センサ
100 空燃比推定装置
102 記憶部
104 状態パラメータ取得部
106 空燃比推定部
110,120,130 空燃比推定モデル
112 ボリューム
112a 第1ボリューム
112b 第2ボリューム
113 時定数算出部
114 空燃比推定モデル作成部

Claims (6)

  1. 吸気及び燃料ガスが予混合された混合気が所定の容積を有する吸気配管を介して導入される燃焼室を有する内燃機関において、前記燃焼室における空燃比を推定するための内燃機関の空燃比推定装置であって、
    前記吸気配管内に存在する前記混合気の燃料ガス濃度を含み、前記吸気配管における前記燃料ガス又は前記混合気の少なくとも一方に関する状態パラメータを変数とする演算式を用いて、前記空燃比を算出可能な前記吸気配管の空燃比推定モデルを記憶する記憶部と、
    前記状態パラメータを取得する状態パラメータ取得部と、
    前記記憶部に記憶された前記空燃比推定モデルを用いて、前記状態パラメータ取得部で取得された前記状態パラメータに対応する前記空燃比を推定する空燃比推定部と、
    を備える、内燃機関の空燃比推定装置。
  2. 前記空燃比推定モデルは、前記吸気配管に対する前記燃料ガスの供給流量、及び、前記吸気配管に対する前記燃料ガスの排出流量の間の差分を積分することにより、前記燃料ガス濃度を評価可能な前記吸気配管の物理モデルである、請求項1に記載の内燃機関の空燃比推定装置。
  3. 前記空燃比推定モデルを伝達関数に変換することにより時定数を算出する時定数算出部を備える、請求項1又は2に記載の内燃機関の空燃比推定装置。
  4. 前記吸気配管は前記混合気の流れに対して互いに直列に配置された第1吸気配管及び第2吸気配管を含み、
    前記空燃比推定モデルは、
    −前記第1吸気配管に対応する第1物理モデルと、前記第2吸気配管に対応する第2物理モデルと、を含み、
    −前記第1物理モデルで算出される前記第1吸気配管の出力側における前記状態パラメータと、前記第2物理モデルの前記第2吸気配管の入口側における前記状態パラメータとが共通するように構成される、請求項1から3のいずれか一項に記載の内燃機関の空燃比推定装置。
  5. 前記第1吸気配管は、前記吸気配管に対する前記燃料ガスの供給箇所と、前記吸気配管上に設置されたコンプレッサとの間に設けられ、
    前記第2吸気配管は、前記コンプレッサと前記燃焼室との間に設けられる、請求項4に記載の内燃機関の空燃比推定装置。
  6. 吸気及び燃料ガスが予混合された混合気が所定の容積を有する吸気配管を介して導入される燃焼室を有する内燃機関において、前記燃焼室における空燃比を推定するための内燃機関の空燃比推定方法であって、
    前記吸気配管内に存在する前記混合気の燃料ガス濃度を含み、前記吸気配管における前記燃料ガス又は前記混合気の少なくとも一方に関する状態パラメータを変数とする演算式を用いて、前記空燃比を算出可能な前記吸気配管の空燃比推定モデルを用意する工程と、
    前記状態パラメータを取得する工程と、
    前記空燃比推定モデルを用いて、前記状態パラメータに対応する前記空燃比を推定する工程と、
    を備える、内燃機関の空燃比推定方法。
JP2018086122A 2018-04-27 2018-04-27 内燃機関の空燃比推定装置、及び、内燃機関の空燃比推定方法 Active JP6916760B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018086122A JP6916760B2 (ja) 2018-04-27 2018-04-27 内燃機関の空燃比推定装置、及び、内燃機関の空燃比推定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018086122A JP6916760B2 (ja) 2018-04-27 2018-04-27 内燃機関の空燃比推定装置、及び、内燃機関の空燃比推定方法

Publications (2)

Publication Number Publication Date
JP2019190431A true JP2019190431A (ja) 2019-10-31
JP6916760B2 JP6916760B2 (ja) 2021-08-11

Family

ID=68389074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018086122A Active JP6916760B2 (ja) 2018-04-27 2018-04-27 内燃機関の空燃比推定装置、及び、内燃機関の空燃比推定方法

Country Status (1)

Country Link
JP (1) JP6916760B2 (ja)

Also Published As

Publication number Publication date
JP6916760B2 (ja) 2021-08-11

Similar Documents

Publication Publication Date Title
US10830164B2 (en) Fresh air flow and exhaust gas recirculation control system and method
JP5182436B2 (ja) 過給エンジンの制御装置
KR101974654B1 (ko) 내연기관을 구비한 엔진 시스템에서 물리적 변수를 위한 모델링 값을 결정하는 방법 및 그 장치
CN102797571B (zh) 用于估计废气再循环量的装置
US20130013166A1 (en) Determination of exhaust back pressure
RU2698225C2 (ru) Двигатель внутреннего сгорания, в частности газовый двигатель, для транспортного средства, в частности для автомобиля промышленного назначения
JP2006336644A (ja) 適応非線形フィルタによる内燃エンジンのシリンダ内の空燃比の推定方法
JP2010249057A (ja) 内燃機関の制御方法及び制御装置
JP2008248859A (ja) 制御方法、制御装置
JP2007205339A (ja) ターボチャージャの状態量推定装置
JPWO2014083654A1 (ja) 過給機付きエンジンの制御装置
JP5854131B2 (ja) 過給機付き内燃機関の制御装置
JP2020002818A (ja) 内燃機関の制御装置
US10012158B2 (en) Optimization-based controls for an air handling system using an online reference governor
Unver et al. Modeling and validation of turbocharged diesel engine airpath and combustion systems
JP2019190431A (ja) 内燃機関の空燃比推定装置、及び、内燃機関の空燃比推定方法
Leufven et al. Engine test bench turbo mapping
JP2011043156A (ja) 制御装置
KR20170007460A (ko) 내연 엔진을 동작시키기 위한 방법 및 디바이스
JP2020020295A (ja) 内燃機関の制御装置
JP6625837B2 (ja) Egr制御方法及びegr装置
JP4665843B2 (ja) 内燃機関の異常判定装置
JP2013155613A (ja) 過給エンジンの制御装置
JP5561236B2 (ja) 過給エンジンの制御装置
KR20060090663A (ko) 터보과급 엔진용 촉매 변환기의 입구 하류부의 온도를결정하기 위한 방법

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20200410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210716

R150 Certificate of patent or registration of utility model

Ref document number: 6916760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150