JP2019189798A - Epoxy resin composition, cured article, and sheet-like molded body - Google Patents

Epoxy resin composition, cured article, and sheet-like molded body Download PDF

Info

Publication number
JP2019189798A
JP2019189798A JP2018086569A JP2018086569A JP2019189798A JP 2019189798 A JP2019189798 A JP 2019189798A JP 2018086569 A JP2018086569 A JP 2018086569A JP 2018086569 A JP2018086569 A JP 2018086569A JP 2019189798 A JP2019189798 A JP 2019189798A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
epoxy
sheet
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018086569A
Other languages
Japanese (ja)
Inventor
洋祐 柘植
Yosuke Tsuge
洋祐 柘植
丹娜 銭
Danna Qian
丹娜 銭
淳 ▲高▼橋
淳 ▲高▼橋
Atsushi Takahashi
純 松井
Jun Matsui
純 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2018086569A priority Critical patent/JP2019189798A/en
Publication of JP2019189798A publication Critical patent/JP2019189798A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Epoxy Resins (AREA)

Abstract

To provide an epoxy resin composition excellent in heat resistance, transparency and flexibility in good balance, and applicable in various fields requiring elasticity, especially electric and electronic fields, a cured article and a sheet-like molded body by curing the epoxy resin composition.SOLUTION: There is provided an epoxy resin composition containing an epoxy resin obtained by reacting a bifunctional aliphatic epoxy compound (X) having purity of a diglycidyl body obtained by distillate purification of a reaction product of bivalent alcohol having 2 to 12 carbon atoms, and epihalohydrin of 90 mass% or more, and a total chlorine amount of 0.3 mass% or less, and a bivalent phenol compound (Y) in a presence of a catalyst, and a curing agent having an alicyclic structure. There is provided a cured article by curing the epoxy resin composition. There is provided a sheet-like molded body consisting of the cured article.SELECTED DRAWING: None

Description

本発明は、耐熱性、柔軟性、伸縮性及び透明性にバランスよく優れ、耐熱性、柔軟性、伸縮性及び透明性が要求される各種分野、特にセンサ、ディスプレイなどの電気・電子分野に適用可能なエポキシ樹脂組成物と、該エポキシ樹脂組成物を硬化させてなる硬化物及びシート状成形体に関する。   The present invention is well balanced in heat resistance, flexibility, stretchability and transparency, and is applied to various fields where heat resistance, flexibility, stretchability and transparency are required, especially in the electrical and electronic fields such as sensors and displays. The present invention relates to a possible epoxy resin composition, a cured product obtained by curing the epoxy resin composition, and a sheet-like molded body.

エポキシ樹脂は、耐熱性、接着性、耐水性、機械的強度及び電気特性等に優れていることから、様々な分野で使用されている。
一方で、近年、エレクトロニクス分野、特にセンサ、ディスプレイ、ロボット用人工皮膚などの様々なインターフェースの用途において、装着性や形状追従性の要求が高まっている。すなわち、曲面や凹凸面などに配置したり自由に変形させたりすることが可能な柔軟なデバイス、それを支える柔軟な基材が要求されつつある。また、半導体材料を実装するためには半田リフロー工程に耐えうる耐熱性が必要になる。
Epoxy resins are used in various fields because they are excellent in heat resistance, adhesion, water resistance, mechanical strength, electrical properties, and the like.
On the other hand, in recent years, demands for wearability and shape followability are increasing in the field of electronics, in particular, in various interface applications such as sensors, displays, and artificial skin for robots. That is, a flexible device that can be arranged on a curved surface or an uneven surface or can be freely deformed, and a flexible substrate that supports the device are being demanded. Moreover, in order to mount a semiconductor material, heat resistance that can withstand a solder reflow process is required.

これらの要求を満たすものとして、特定の高可撓性エポキシ樹脂とフェノールノボラック系硬化剤を用いたエポキシ樹脂組成物が報告されている(例えば、特許文献1)。しかし、このエポキシ樹脂組成物は、柔軟性は良好ではあるが、伸びが不十分であり、透明性にも課題があった。   In order to satisfy these requirements, an epoxy resin composition using a specific highly flexible epoxy resin and a phenol novolac curing agent has been reported (for example, Patent Document 1). However, this epoxy resin composition has good flexibility, but has insufficient elongation and has a problem with transparency.

特開2005−320477号公報JP 2005-320477 A

本発明の課題は、前記問題点を解決し、耐熱性と透明性、柔軟性にバランスよく優れ、伸縮性が要求される各種分野、特に電気・電子分野に適用可能なエポキシ樹脂組成物と、このエポキシ樹脂組成物を硬化させてなる硬化物及びシート状成形体を提供することにある。   An object of the present invention is to solve the above problems, have excellent balance of heat resistance, transparency, and flexibility, and an epoxy resin composition that can be applied to various fields that require stretchability, particularly electric and electronic fields, It is providing the hardened | cured material and sheet-like molded object which harden this epoxy resin composition.

本発明者は、上記課題を解決すべく検討を重ねた結果、特定の高可撓性エポキシ樹脂に対して、硬化剤として脂環式構造を有する硬化剤を用いることにより、耐熱性、透明性、柔軟性及び伸縮性に優れた硬化物を得ることができることを知見した。
即ち、前述の特許文献1には、高可撓性エポキシ樹脂に用いる硬化剤として、芳香族ポリアミン、ジシアンジアミド、酸無水物、各種フェノールノボラック樹脂等が記載され、具体的にビスフェノールAノボラック樹脂が使用されるのみであり、脂環式構造を有する硬化剤の開示はないが、本発明者は、この特許文献1に記載の硬化剤では、高可撓性エポキシ樹脂の可撓性を十分に発揮させることができず、得られる硬化物は伸縮性が不足し、また、芳香環を有する硬化剤を用いることにより透明性が劣るものとなること、この硬化剤を脂環式構造を有する硬化剤に変えることで、耐熱性、柔軟性、伸縮性及び透明性をバランスよく改善できることを見出した。
本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。
As a result of repeated studies to solve the above-mentioned problems, the present inventor uses a curing agent having an alicyclic structure as a curing agent for a specific highly flexible epoxy resin. It was found that a cured product having excellent flexibility and stretchability can be obtained.
That is, Patent Document 1 described above describes aromatic polyamines, dicyandiamides, acid anhydrides, various phenol novolac resins, and the like as curing agents used for highly flexible epoxy resins. Specifically, bisphenol A novolac resins are used. Although there is no disclosure of a curing agent having an alicyclic structure, the present inventor has sufficiently exhibited the flexibility of a highly flexible epoxy resin with the curing agent described in Patent Document 1. The cured product obtained is insufficient in stretchability, and becomes inferior in transparency by using a curing agent having an aromatic ring, and this curing agent has a cycloaliphatic structure. It was found that heat resistance, flexibility, stretchability, and transparency can be improved in a balanced manner by changing to.
The present invention has been achieved based on such findings, and the gist thereof is as follows.

[1] 炭素数2〜12の2価アルコールとエピハロヒドリンの反応生成物を蒸留精製して得られるジグリシジル体純度が90質量%以上で、全塩素量が0.3質量%以下の2官能脂肪族エポキシ化合物(X)と2価フェノール化合物(Y)を触媒の存在下に反応させて得られるエポキシ樹脂と、脂環式構造を有する硬化剤とを含有するエポキシ樹脂組成物。 [1] Bifunctional aliphatic having a diglycidyl purity of 90% by mass or more and a total chlorine content of 0.3% by mass or less obtained by distillation purification of a reaction product of a dihydric alcohol having 2 to 12 carbon atoms and an epihalohydrin An epoxy resin composition comprising an epoxy resin obtained by reacting an epoxy compound (X) and a divalent phenol compound (Y) in the presence of a catalyst, and a curing agent having an alicyclic structure.

[2] 前記硬化剤が脂環式ポリアミンである[1]に記載のエポキシ樹脂組成物。 [2] The epoxy resin composition according to [1], wherein the curing agent is an alicyclic polyamine.

[3] 前記エポキシ樹脂の数平均分子量が1,000〜20,000である[1]又は[2]に記載のエポキシ樹脂組成物。 [3] The epoxy resin composition according to [1] or [2], wherein the epoxy resin has a number average molecular weight of 1,000 to 20,000.

[4] [1]乃至[3]のいずれかに記載のエポキシ樹脂組成物を硬化させてなる硬化物。 [4] A cured product obtained by curing the epoxy resin composition according to any one of [1] to [3].

[5] [4]に記載の硬化物からなるシート状成形体。 [5] A sheet-like molded body comprising the cured product according to [4].

[6] ヘーズが1.5%以下かつYIが6以下である[5]に記載のシート状成形体。 [6] The sheet-like molded product according to [5], wherein haze is 1.5% or less and YI is 6 or less.

[7] 引張伸びが350%以上である[5]又は[6]に記載のシート状成形体。 [7] The sheet-like molded product according to [5] or [6], which has a tensile elongation of 350% or more.

[8] Tgが30℃以下である[5]乃至[7]のいずれかに記載のシート状成形体。 [8] The sheet-like molded product according to any one of [5] to [7], wherein Tg is 30 ° C. or lower.

本発明によれば、耐熱性、柔軟性、伸縮性及び透明性にバランスよく優れ、耐熱性、柔軟性、伸縮性及び透明性が要求される各種分野、特にセンサ、ディスプレイ、ロボット用人工皮膚などの様々なインターフェースなどの電気・電子分野に適用可能なエポキシ樹脂組成物と、該エポキシ樹脂組成物を硬化させてなる硬化物及びシート状成形体が提供される。
本発明のエポキシ樹脂組成物及びその硬化物とこの硬化物よりなるシート状成形体は、電気・電子部品の絶縁材料、封止材料、基材等の他に光学材料にも好適に用いることができる。
According to the present invention, heat resistance, flexibility, stretchability, and transparency are well balanced and various fields that require heat resistance, flexibility, stretchability, and transparency, especially sensors, displays, artificial skin for robots, etc. An epoxy resin composition applicable to the electric / electronic field such as various interfaces, and a cured product and a sheet-like molded body obtained by curing the epoxy resin composition are provided.
The epoxy resin composition of the present invention and the cured product thereof and a sheet-like molded product made of the cured product can be suitably used for optical materials as well as insulating materials, sealing materials, base materials, etc. for electric / electronic parts. it can.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

[1]エポキシ樹脂組成物
本発明のエポキシ樹脂組成物は、炭素数2〜12の2価アルコールとエピハロヒドリンの反応生成物を蒸留精製して得られるジグリシジル体純度が90質量%以上で、全塩素量が0.3質量%以下の2官能脂肪族エポキシ化合物(X)と2価フェノール化合物(Y)を触媒の存在下に反応させて得られるエポキシ樹脂(以下、「本発明のエポキシ樹脂」又は「本発明の高可撓性エポキシ樹脂」と称す場合がある。)と、脂環式構造を有する硬化剤とを含有するものである。
[1] Epoxy resin composition The epoxy resin composition of the present invention has a diglycidyl purity of 90% by mass or more obtained by distilling and purifying a reaction product of a dihydric alcohol having 2 to 12 carbon atoms and an epihalohydrin. An epoxy resin obtained by reacting a bifunctional aliphatic epoxy compound (X) having an amount of 0.3% by mass or less and a dihydric phenol compound (Y) in the presence of a catalyst (hereinafter referred to as “the epoxy resin of the present invention” or “ It may be referred to as “the highly flexible epoxy resin of the present invention”) and a curing agent having an alicyclic structure.

本発明のエポキシ樹脂組成物は、少なくとも本発明のエポキシ樹脂と硬化剤として脂環式構造を有する硬化剤とを含むものであるが、本発明のエポキシ樹脂組成物には、必要に応じて、本発明のエポキシ樹脂以外の他のエポキシ化合物、硬化促進剤、その他の成分等を適宜配合することができる。
なお、本発明のエポキシ樹脂組成物は、本発明のエポキシ樹脂の1種のみを含むものであってもよく、2種以上を含むものであってもよい。同様に、脂環式構造を有する硬化剤についても1種のみを含むものであってもよく、2種以上を含むものであってもよい。
The epoxy resin composition of the present invention contains at least the epoxy resin of the present invention and a curing agent having an alicyclic structure as a curing agent. The epoxy resin composition of the present invention includes, as necessary, the present invention. Other epoxy compounds other than the epoxy resin, curing accelerator, other components, and the like can be appropriately blended.
In addition, the epoxy resin composition of this invention may contain only 1 type of the epoxy resin of this invention, and may contain 2 or more types. Similarly, the curing agent having an alicyclic structure may include only one type, or may include two or more types.

[1−1]本発明のエポキシ樹脂
[1−1−1]2官能脂肪族エポキシ化合物(X)
本発明のエポキシ樹脂の製造原料である2官能脂肪族エポキシ化合物(X)は、炭素数2〜12の2価アルコールとエピハロヒドリンの反応生成物である2価アルコールのジグリシジルエーテルを蒸留精製して得られる、ジグリシジル体純度、即ちジグリシジルエーテル純度が90質量%以上で、全塩素量が0.3質量%以下の脂肪族エポキシ樹脂であり、該2価アルコールとしては、例えば、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、1,8−オクタンジオール、1,10−デカンジオール、2,2−ジメチル−1,3−プロパンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ヘキサエチレングリコール、1,4−シクロヘキサンジメタノールが挙げられる。これらの中で、1,4−ブタンジオール、1,6−ヘキサンジオール、1,4−シクロヘキサンジメタノール又は2,2−ジメチル−1,3−プロパンジオールが、得られるエポキシ樹脂の低粘化効果が大きく、硬化物の耐熱性低下が少ないという点で特に好ましい。
[1-1] Epoxy resin of the present invention [1-1-1] Bifunctional aliphatic epoxy compound (X)
The bifunctional aliphatic epoxy compound (X) which is a raw material for producing the epoxy resin of the present invention is obtained by distilling and purifying diglycidyl ether of a dihydric alcohol which is a reaction product of a dihydric alcohol having 2 to 12 carbon atoms and an epihalohydrin. The obtained diglycidyl body purity, that is, diglycidyl ether purity is 90% by mass or more and the total amount of chlorine is 0.3% by mass or less aliphatic epoxy resin. Examples of the dihydric alcohol include ethylene glycol, propylene Glycol, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, 1,10-decanediol, 2,2-dimethyl-1,3-propanediol, diethylene glycol, triethylene glycol, tetra Ethylene glycol, hexaethylene glycol, 1,4-cyclohexane dimethyl Nord, and the like. Among these, 1,4-butanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol or 2,2-dimethyl-1,3-propanediol is effective for reducing the viscosity of the resulting epoxy resin. Is particularly preferred in that it is large and the heat resistance of the cured product is small.

2官能脂肪族エポキシ化合物(X)は、2価アルコールとエピハロヒドリンを、硫酸、三弗化ホウ素エチルエーテル、四塩化錫等の酸性触媒の存在下に反応させて、ハロヒドリンエーテル体を製造し、次いで、このハロヒドリンエーテル体を脱ハロゲン化水素剤と反応させて閉環せしめる2段階法により得た反応生成物を蒸留精製することにより製造される。   The bifunctional aliphatic epoxy compound (X) is produced by reacting a dihydric alcohol and epihalohydrin in the presence of an acidic catalyst such as sulfuric acid, boron trifluoride ethyl ether, tin tetrachloride or the like to produce a halohydrin ether body. Subsequently, the reaction product obtained by the two-step method in which the halohydrin ether is reacted with a dehydrohalogenating agent to cyclize is purified by distillation.

触媒の使用量は、2価アルコールに対して、0.1〜20モル%、特に0.5〜10モル%とするのが好ましい。触媒の使用量が多過ぎると、塩素含有物質の副生が増加し、逆に少な過ぎると、反応が遅くなり、極端な場合には反応が途中で停止してしまう。   The amount of the catalyst used is preferably from 0.1 to 20 mol%, particularly preferably from 0.5 to 10 mol%, based on the dihydric alcohol. If the amount of the catalyst used is too large, the amount of chlorine-containing substances produced as a by-product increases. Conversely, if the amount is too small, the reaction slows down, and in an extreme case, the reaction stops halfway.

エピハロヒドリンとしてはエピクロルヒドリンが好ましく、その使用量は、2価アルコールの水酸基1個当たり、0.8〜1.5当量、特に0.9〜1.2当量が好ましい。エピクロルヒドリンの使用量が0.8当量未満の場合には、目的物であるクロルヒドリンエーテル体の収量が低下し、逆に1.5当量を超えるとエピクロルヒドリン高モル付加体や塩素含有物質が多く副生するため好ましくない。   The epihalohydrin is preferably epichlorohydrin, and the amount used is preferably 0.8 to 1.5 equivalents, particularly 0.9 to 1.2 equivalents per hydroxyl group of the dihydric alcohol. When the amount of epichlorohydrin used is less than 0.8 equivalent, the yield of the target chlorohydrin ether body decreases, and conversely, when it exceeds 1.5 equivalents, there are many epichlorohydrin high molar adducts and chlorine-containing substances. It is not preferable because it is a by-product.

反応温度は、通常0〜100℃、好ましくは25〜85℃である。反応温度が0℃より低いと、反応の進行が非常に遅くなり、逆に100℃より高いと、塩素含有物質の副生量が増加するため好ましくない。   The reaction temperature is usually 0 to 100 ° C., preferably 25 to 85 ° C. When the reaction temperature is lower than 0 ° C., the progress of the reaction is very slow. On the other hand, when the reaction temperature is higher than 100 ° C., the amount of by-produced chlorine-containing substance is not preferable.

上記2価アルコールとエピハロヒドリンとの反応生成物は、反応終了後、必要に応じて熟成した後、通常、生成したハロヒドリンエーテル体を単離・精製することなく、脱ハロゲン化水素剤と反応させる。脱ハロゲン化水素剤としては、水酸化ナトリウムが好ましい。脱ハロゲン化水素剤は、水溶液として用いることが好ましいが、場合によっては、粉末又は固形の脱ハロゲン化水素剤を、水と同時に若しくは別々に加えることもできる。脱ハロゲン化水素剤は好ましくは10〜50質量%の水溶液として、より好ましくは20〜50質量%水溶液として添加するのが良い。   The reaction product of the above dihydric alcohol and epihalohydrin is reacted with the dehydrohalogenating agent without the isolation and purification of the produced halohydrin ether after the reaction is completed and after aging as necessary. Let As the dehydrohalogenating agent, sodium hydroxide is preferable. The dehydrohalogenating agent is preferably used as an aqueous solution, but in some cases, the powder or solid dehydrohalogenating agent can be added simultaneously or separately with water. The dehydrohalogenating agent is preferably added as a 10 to 50% by mass aqueous solution, more preferably as a 20 to 50% by mass aqueous solution.

水酸化ナトリウム等の脱ハロゲン化水素剤の使用量は、2価アルコールの水酸基に対して通常1〜2当量、好ましくは1〜1.5当量である。脱ハロゲン化水素剤の使用量が少な過ぎる場合には、グリシジルエーテル化されないクロルヒドリンエーテル基が残存し、塩素量の増加が起こる。また、脱ハロゲン化水素剤の使用量が多過ぎる場合は、生成したグリシジルエーテルの水和反応が促進され、グリセリルエーテル化物が増加するため好ましくない。   The usage-amount of dehydrohalogenating agents, such as sodium hydroxide, is 1-2 equivalent normally with respect to the hydroxyl group of a bihydric alcohol, Preferably it is 1-1.5 equivalent. When the amount of the dehydrohalogenating agent used is too small, chlorohydrin ether groups that are not glycidyl etherified remain, resulting in an increase in the amount of chlorine. Moreover, when there is too much usage-amount of a dehydrohalogenating agent, since the hydration reaction of the produced | generated glycidyl ether is accelerated | stimulated and glyceryl etherified substance increases, it is unpreferable.

脱ハロゲン化水素剤との反応温度は、通常20〜100℃の範囲であり、好ましくは30〜80℃の範囲である。脱ハロゲン化水素剤との反応時間は、脱ハロゲン化水素剤の使用量、溶媒使用の有無によって異なるが、通常0.1〜10時間である。   The reaction temperature with the dehydrohalogenating agent is usually in the range of 20 to 100 ° C, preferably in the range of 30 to 80 ° C. Although the reaction time with a dehydrohalogenating agent changes with the usage-amount of a dehydrohalogenating agent and the presence or absence of solvent use, it is 0.1 to 10 hours normally.

脱ハロゲン化水素反応終了後のジグリシジルエーテルの単離は常法によって行うことができる。例えば、必要に応じて炭化水素等の非水溶性溶媒を加え、水洗して生成する塩を除去した後、脱溶媒、脱水、濾過を行うことによって、ジグリシジルエーテルを得ることができる。   Isolation of the diglycidyl ether after completion of the dehydrohalogenation reaction can be performed by a conventional method. For example, a diglycidyl ether can be obtained by adding a non-water-soluble solvent such as a hydrocarbon as necessary, washing with water to remove the generated salt, and then removing the solvent, dehydrating, and filtering.

更に、上記ジグリシジルエーテルは、純度を90質量%以上、全塩素量を0.3質量%以下とするために蒸留精製を行う。蒸留精製は、ジグリシジルエーテルの分解を防ぐため、通常は減圧下で行われ、蒸留段数は5段以上が好ましく、高真空かつ圧力損失の少ない設備を使用することが好ましい。   Further, the diglycidyl ether is purified by distillation in order to achieve a purity of 90% by mass or more and a total chlorine content of 0.3% by mass or less. In order to prevent decomposition of diglycidyl ether, distillation purification is usually performed under reduced pressure, the number of distillation stages is preferably 5 or more, and it is preferable to use equipment with high vacuum and low pressure loss.

蒸留時の粗液の温度は通常270℃以下であり、好ましくは240℃以下である。粗液の温度が270℃を超えると高沸点塩素含物質の分解が顕著になり、分解した塩素含有物質が製品留分に混入するため、製品の全塩素量が高くなる。また、ジグリシジルエーテル同士の二量化反応も生じ、製品回収率が低下するため好ましくない。   The temperature of the crude liquid during distillation is usually 270 ° C. or lower, preferably 240 ° C. or lower. When the temperature of the crude liquid exceeds 270 ° C., the decomposition of the high boiling point chlorine-containing substance becomes remarkable, and the decomposed chlorine-containing substance is mixed into the product fraction, so that the total chlorine amount of the product becomes high. Moreover, the dimerization reaction between diglycidyl ethers also occurs, which is not preferable because the product recovery rate decreases.

本発明のエポキシ樹脂の製造に用いる2官能脂肪族エポキシ化合物(X)のジグリシジル体純度は90質量%以上であり、好ましくは92質量%以上であり、より好ましくは95質量%以上である。また、全塩素量は0.3質量%以下、好ましくは0.25質量%以下、より好ましくは0.2質量%以下である。   The diglycidyl purity of the bifunctional aliphatic epoxy compound (X) used for the production of the epoxy resin of the present invention is 90% by mass or more, preferably 92% by mass or more, and more preferably 95% by mass or more. The total chlorine content is 0.3% by mass or less, preferably 0.25% by mass or less, more preferably 0.2% by mass or less.

2官能脂肪族エポキシ化合物(X)に含まれるジグリシジル体以外の不純物としては、例えば、アルコール性水酸基が未反応で残ったもの、脱塩酸されずにクロルヒドリン基として残ったもの等が挙げられる。これらは、末端基がエポキシ基でなくなるため、2価フェノール化合物(Y)との共重合反応がここで停止して所定の分子量にならなかったり、得られる高可撓性エポキシ樹脂の官能基数が2より小さくなり、硬化物の性能が低下するので、ジグリシジル体純度が90質量%より低いと好ましくない。また、2官能脂肪族エポキシ化合物(X)の全塩素量が0.3質量%より多いと、特に電子絶縁材料として用いた場合に、微少な回路パターンが塩素不純物により腐蝕されるので好ましくない。   Examples of impurities other than the diglycidyl compound contained in the bifunctional aliphatic epoxy compound (X) include those in which alcoholic hydroxyl groups remain unreacted and those that remain as chlorohydrin groups without being dehydrochlorinated. In these, since the terminal group is not an epoxy group, the copolymerization reaction with the dihydric phenol compound (Y) stops here and does not reach a predetermined molecular weight, or the number of functional groups of the resulting highly flexible epoxy resin is Since it becomes smaller than 2 and the performance of hardened | cured material falls, it is unpreferable when diglycidyl body purity is lower than 90 mass%. Further, when the total chlorine content of the bifunctional aliphatic epoxy compound (X) is more than 0.3% by mass, it is not preferable because a minute circuit pattern is corroded by chlorine impurities particularly when used as an electronic insulating material.

なお、2官能脂肪族エポキシ化合物(X)のジグリシジル体純度及び全塩素量は後述の実施例の項に記載の方法で測定される。   In addition, the diglycidyl body purity and total chlorine amount of bifunctional aliphatic epoxy compound (X) are measured by the method as described in the term of the below-mentioned Example.

本発明のエポキシ樹脂の製造に、このような2官能脂肪族エポキシ化合物(X)は1種のみを用いてもよく、2種以上を混合して用いてもよい。   In the production of the epoxy resin of the present invention, such bifunctional aliphatic epoxy compound (X) may be used alone or in combination of two or more.

[1−1−2]2価フェノール化合物(Y)
本発明のエポキシ樹脂の製造原料である2価フェノール化合物(Y)は、2個の水酸基が芳香族環に結合したものであればどのようなものでもよい。例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、ビスフェノールB、ビスフェノールAD、ビスフェノールアセトフェノン等のビスフェノール類、ビフェノール、カテコール、レゾルシン、ヒドロキノン、ジヒドロキシナフタレン等が挙げられる。また、これらの2価フェノール化合物の水素原子がアルキル基、アリール基、エーテル基、エステル基などの非妨害性置換基で置換されたこれらのものが挙げられる。これらの2価フェノールの中で好ましいものは、ビスフェノールA、ビスフェノールF、ビスフェノールS、ビスフェノールアセトフェノン、4,4'−ビフェノール、3,3',5,5'−テトラメチル−4,4'−ビフェノール、レゾルシン、ヒドロキノン、ジヒドロキシナフタレンである。
[1-1-2] Dihydric phenol compound (Y)
The divalent phenol compound (Y) that is a raw material for producing the epoxy resin of the present invention may be any one as long as two hydroxyl groups are bonded to an aromatic ring. Examples thereof include bisphenols such as bisphenol A, bisphenol F, bisphenol S, bisphenol B, bisphenol AD, and bisphenol acetophenone, biphenol, catechol, resorcin, hydroquinone, dihydroxynaphthalene, and the like. Further, those in which the hydrogen atom of these dihydric phenol compounds is substituted with a non-interfering substituent such as an alkyl group, an aryl group, an ether group, or an ester group can be mentioned. Among these dihydric phenols, preferred are bisphenol A, bisphenol F, bisphenol S, bisphenol acetophenone, 4,4′-biphenol, 3,3 ′, 5,5′-tetramethyl-4,4′-biphenol. , Resorcin, hydroquinone, dihydroxynaphthalene.

本発明のエポキシ樹脂の製造に、これらの2価フェノール化合物(Y)は1種のみを用いてもよく、2種以上を混合して用いてもよい。   In producing the epoxy resin of the present invention, these dihydric phenol compounds (Y) may be used alone or in combination of two or more.

[1−1−3]2官能脂肪族エポキシ化合物(X)と2価フェノール化合物(Y)の配合当量比
本発明のエポキシ樹脂の製造に用いる2官能脂肪族エポキシ化合物(X)と2価フェノール(Y)の配合当量比は、2官能脂肪族エポキシ化合物(X)由来のエポキシ基:2価フェノール化合物(Y)由来のフェノール性水酸基=1:0.1〜3とすることが好ましく、より好ましくは1:0.3〜1.5、特に好ましくは1:0.5〜0.995である。エポキシ基に対してフェノール性水酸基の当量が1未満でフェノール性水酸基が少ない場合は、理論的に得られる高可撓性エポキシ樹脂の末端はエポキシ基であり、逆にフェノール性水酸基当量が1より大きい場合は、得られる高可撓性エポキシ樹脂の末端がフェノール性水酸基となる。数平均分子量が10,000以上の高分子量の高可撓性エポキシ樹脂を得るには、エポキシ基:フェノール性水酸基=1:0.90〜1.10であることが好ましく、更に1:0.92〜1.05が好ましく、特に1:0.93〜1.00が好ましく、1:0.95〜0.995が最も好ましい。この当量比が0.90より小さくなっても、1.10より大きくなっても十分に高分子量化することができない。
[1-1-3] Compounding Equivalent Ratio of Bifunctional Aliphatic Epoxy Compound (X) and Divalent Phenol Compound (Y) Bifunctional Aliphatic Epoxy Compound (X) and Divalent Phenol Used for Production of Epoxy Resin of the Present Invention The blending equivalent ratio of (Y) is preferably an epoxy group derived from the bifunctional aliphatic epoxy compound (X): a phenolic hydroxyl group derived from the divalent phenol compound (Y) = 1: 0.1-3, The ratio is preferably 1: 0.3 to 1.5, particularly preferably 1: 0.5 to 0.995. When the equivalent of the phenolic hydroxyl group to the epoxy group is less than 1 and the phenolic hydroxyl group is small, the end of the highly flexible epoxy resin obtained theoretically is an epoxy group, and conversely, the phenolic hydroxyl group equivalent is from 1. When large, the terminal of the highly flexible epoxy resin obtained becomes a phenolic hydroxyl group. In order to obtain a high-flexibility epoxy resin having a high molecular weight with a number average molecular weight of 10,000 or more, it is preferable that epoxy group: phenolic hydroxyl group = 1: 0.90 to 1.10, and further 1: 0. 92 to 1.05 is preferable, particularly 1: 0.93 to 1.00 is preferable, and 1: 0.95 to 0.995 is most preferable. Even if the equivalent ratio is less than 0.90 or greater than 1.10, the molecular weight cannot be sufficiently increased.

[1−1−4]その他の原料
本発明のエポキシ樹脂の原料として、2官能脂肪族エポキシ化合物(X)と共に他の2官能エポキシ樹脂を併用することができる。併用できる2官能エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、その他の2官能グリシジルエーテル型エポキシ樹脂、2官能グリシジルエステル型エポキシ樹脂、2官能グリシジルアミン型エポキシ樹脂、2官能線状脂肪族エポキシ樹脂、2官能脂環式エポキシ樹脂、2官能複素環式エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂等の水添型のエポキシ樹脂が挙げられる。また、3官能以上のエポキシ化合物を、得られる高可撓性エポキシ樹脂がゲル化しない程度に併用することも可能である。更に1官能のエポキシ化合物を少量併用することも可能であるが、その場合、得られる高可撓性エポキシ樹脂の末端基が非反応性基となるので、多量に併用することは好ましくない。
[1-1-4] Other raw materials As a raw material of the epoxy resin of the present invention, other bifunctional epoxy resins can be used in combination with the bifunctional aliphatic epoxy compound (X). Examples of bifunctional epoxy resins that can be used in combination include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, biphenyl type epoxy resins, and other bifunctional glycidyl ether type epoxy resins and bifunctional glycidyl ester type epoxies. Hydrogenated epoxy resin such as resin, bifunctional glycidylamine type epoxy resin, bifunctional linear aliphatic epoxy resin, bifunctional alicyclic epoxy resin, bifunctional heterocyclic epoxy resin, hydrogenated bisphenol A type epoxy resin Is mentioned. Moreover, it is also possible to use a trifunctional or higher functional epoxy compound in combination so that the resulting highly flexible epoxy resin does not gel. Further, it is possible to use a small amount of a monofunctional epoxy compound, but in this case, since the terminal group of the resulting highly flexible epoxy resin becomes a non-reactive group, it is not preferable to use a large amount in combination.

本発明のエポキシ樹脂の原料として、2価フェノール化合物(Y)以外に、エポキシ基と反応する基を有する他の化合物を併用することもできる。併用できる他の化合物としては、チオール基、カルボン酸基、アミノ基、イソシアネート基、シアネート基、及びフェノール性水酸基のいずれかで合計2官能である化合物が挙げられる。また、3価以上のフェノール化合物や、上記の反応基で3官能以上となる化合物を、得られる高可撓性エポキシ樹脂がゲル化しない程度に併用することも可能である。更に、1官能のフェノール化合物や上記の反応基を有する1官能の化合物を少量併用することも可能であるが、その場合、得られる高可撓性エポキシ樹脂の末端基が非反応性基となるので、多量に併用することは好ましくない。   In addition to the dihydric phenol compound (Y), other compounds having a group that reacts with an epoxy group can be used in combination as a raw material for the epoxy resin of the present invention. Examples of other compounds that can be used in combination include compounds that are bifunctional in total among any of thiol groups, carboxylic acid groups, amino groups, isocyanate groups, cyanate groups, and phenolic hydroxyl groups. It is also possible to use a trivalent or higher valent phenol compound or a compound that becomes trifunctional or higher with the above reactive group to such an extent that the resulting highly flexible epoxy resin does not gel. Furthermore, it is possible to use a small amount of a monofunctional phenol compound or a monofunctional compound having the above-mentioned reactive group. In this case, the terminal group of the resulting highly flexible epoxy resin becomes a non-reactive group. Therefore, it is not preferable to use a large amount together.

[1−1−5]触媒
本発明のエポキシ樹脂の製造に使用される触媒は、エポキシ基とフェノール性水酸基との反応を進めるような触媒能を持つ化合物であればどのようなものでもよい。例えば、アルカリ金属化合物、有機リン化合物、第3級アミン、第4級アンモニウム塩、環状アミン類、イミダゾール類等が挙げられる。
[1-1-5] Catalyst The catalyst used for the production of the epoxy resin of the present invention may be any compound as long as it has a catalytic ability to promote the reaction between an epoxy group and a phenolic hydroxyl group. For example, alkali metal compounds, organic phosphorus compounds, tertiary amines, quaternary ammonium salts, cyclic amines, imidazoles and the like can be mentioned.

アルカリ金属化合物の具体例としては、水酸化ナトリウム、水酸化リチウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、重炭酸ナトリウム、塩化ナトリウム、塩化リチウム、塩化カリウム等のアルカリ金属塩、ナトリウムメトキシド、ナトリウムエトキシド等のアルカリ金属アルコキシド、アルカリ金属フェノキシド、水素化ナトリウム、水素化リチウム等のアルカリ金属水素化物、酢酸ナトリウム、ステアリン酸ナトリウム等の有機酸のアルカリ金属塩が挙げられる。   Specific examples of the alkali metal compound include alkali metal hydroxides such as sodium hydroxide, lithium hydroxide and potassium hydroxide, alkali metal salts such as sodium carbonate, sodium bicarbonate, sodium chloride, lithium chloride and potassium chloride, sodium Examples include alkali metal alkoxides such as methoxide and sodium ethoxide, alkali metal phenoxides, alkali metal hydrides such as sodium hydride and lithium hydride, and alkali metal salts of organic acids such as sodium acetate and sodium stearate.

有機リン化合物の具体例としては、トリ−n−プロピルホスフィン、トリ−n−ブチルホスフィン、トリフェニルホスフィン、テトラメチルホスホニウムブロマイド、テトラメチルホスホニウムアイオダイド、テトラメチルホスホニウムハイドロオキサイド、トリメチルシクロヘキシルホスホニウムクロライド、トリメチルシクロヘキシルホスホニウムブロマイド、トリメチルベンジルホスホニウムクロライド、トリメチルベンジルホスホニウムブロマイド、テトラフェニルホスホニウムブロマイド、トリフェニルメチルホスホニウムブロマイド、トリフェニルメチルホスホニウムアイオダイド、トリフェニルエチルホスホニウムクロライド、トリフェニルエチルホスホニウムブロマイド、トリフェニルエチルホスホニウムアイオダイド、トリフェニルベンジルホスホニウムクロライド、トリフェニルベンジルホスホニウムブロマイドなどが挙げられる。   Specific examples of organic phosphorus compounds include tri-n-propylphosphine, tri-n-butylphosphine, triphenylphosphine, tetramethylphosphonium bromide, tetramethylphosphonium iodide, tetramethylphosphonium hydroxide, trimethylcyclohexylphosphonium chloride, trimethyl. Cyclohexylphosphonium bromide, trimethylbenzylphosphonium chloride, trimethylbenzylphosphonium bromide, tetraphenylphosphonium bromide, triphenylmethylphosphonium bromide, triphenylmethylphosphonium iodide, triphenylethylphosphonium chloride, triphenylethylphosphonium bromide, triphenylethylphosphonium iodide The Phenyl benzyl phosphonium chloride, triphenyl benzyl phosphonium bromide and the like.

第3級アミンの具体例としては、トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、トリエタノールアミン、ベンジルジメチルアミンなどが挙げられる。   Specific examples of the tertiary amine include triethylamine, tri-n-propylamine, tri-n-butylamine, triethanolamine, benzyldimethylamine and the like.

第4級アンモニウム塩の具体例としては、テトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、テトラメチルアンモニウムハイドロオキサイド、トリエチルメチルアンモニウムクロライド、テトラエチルアンモニウムクロライド、テトラエチルアンモニウムブロマイド、テトラエチルアンモニウムアイオダイド、テトラプロピルアンモニウムブロマイド、テトラプロピルアンモニウムハイドロオキサイド、テトラブチルアンモニウムクロライド、テトラブチルアンモニウムブロマイド、テトラブチルアンモニウムアイオダイド、ベンジルトリメチルアンモニウムクロライド、ベンジルトリメチルアンモニウムブロマイド、ベンジルトリメチルアンモニウムハイドロオキサイド、ベンジルトリブチルアンモニウムクロライド、フェニルトリメチルアンモニウムクロライドなどが挙げられる。   Specific examples of the quaternary ammonium salt include tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium hydroxide, triethylmethylammonium chloride, tetraethylammonium chloride, tetraethylammonium bromide, tetraethylammonium iodide, tetrapropylammonium bromide, Tetrapropylammonium hydroxide, tetrabutylammonium chloride, tetrabutylammonium bromide, tetrabutylammonium iodide, benzyltrimethylammonium chloride, benzyltrimethylammonium bromide, benzyltrimethylammonium hydroxide, benzyltributylammonium chloride Id, and a phenyl trimethyl ammonium chloride.

イミダゾール類の具体例としては、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾールなどが挙げられる。
環状アミン類の具体例としては、1,8−ジアザビシクロ(5,4,0)ウンデセン−7,1,5−ジアザビシクロ(4,3,0)ノネン−5等が挙げられる。
これらの触媒は、1種のみを用いてもよく、2種以上を混合して用いてもよい。
Specific examples of imidazoles include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole and the like.
Specific examples of cyclic amines include 1,8-diazabicyclo (5,4,0) undecene-7,1,5-diazabicyclo (4,3,0) nonene-5.
These catalysts may use only 1 type and may mix and use 2 or more types.

通常、触媒の使用量は反応固形分中、0.001〜1質量%であるが、アルカリ金属化合物を使用すると得られるエポキシ樹脂中にアルカリ金属分が残留し、それを使用したプリント配線板の絶縁特性を極端に悪化させるため、アルカリ金属化合物を用いる場合は、得られるエポキシ樹脂中のLi,Na,Kの含有量の合計が通常100ppm以下、好ましくは50ppm以下となるように用いる。また、有機リン化合物を触媒として使用した場合も、エポキシ樹脂中に触媒残渣として残留し、アルカリ金属分の残留と同様にプリント配線板の絶縁特性を悪化させるので、有機リン化合物を用いる場合は、得られるエポキシ樹脂中のリンの含有量が通常300ppm以下、好ましくは150ppm以下となるように用いる。   Usually, the amount of catalyst used is 0.001 to 1% by mass in the solid content of the reaction. However, when an alkali metal compound is used, the alkali metal component remains in the epoxy resin obtained, and the printed wiring board using the same remains. In order to extremely deteriorate the insulating properties, when an alkali metal compound is used, it is used so that the total content of Li, Na and K in the obtained epoxy resin is usually 100 ppm or less, preferably 50 ppm or less. Also, when an organophosphorus compound is used as a catalyst, it remains as a catalyst residue in the epoxy resin and deteriorates the insulating properties of the printed wiring board in the same manner as the alkali metal residue, so when using an organophosphorus compound, It is used so that the content of phosphorus in the obtained epoxy resin is usually 300 ppm or less, preferably 150 ppm or less.

[1−1−6]溶媒
本発明のエポキシ樹脂の製造時の合成反応工程においては溶媒を用いても良く、その溶媒としては、得られるエポキシ樹脂を溶解するものであればどのようなものでもよい。例えば、芳香族系溶媒、ケトン系溶媒、アミド系溶媒、グリコールエーテル系溶媒などが挙げられる。
[1-1-6] Solvent A solvent may be used in the synthesis reaction step during the production of the epoxy resin of the present invention, and any solvent can be used as long as it dissolves the resulting epoxy resin. Good. Examples include aromatic solvents, ketone solvents, amide solvents, glycol ether solvents, and the like.

芳香族系溶媒の具体例としては、ベンゼン、トルエン、キシレンなどが挙げられる。
ケトン系溶媒の具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、2−ヘプタノン、4−ヘプタノン、2−オクタノン、シクロヘキサノン、アセチルアセトン、ジオキサンなどが挙げられる。
アミド系溶媒の具体例としては、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、2−ピロリドン、N−メチルピロリドンなどが挙げられる。
Specific examples of the aromatic solvent include benzene, toluene, xylene and the like.
Specific examples of the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, 2-heptanone, 4-heptanone, 2-octanone, cyclohexanone, acetylacetone, and dioxane.
Specific examples of the amide solvent include formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, 2-pyrrolidone, N-methylpyrrolidone and the like.

グリコールエーテル系溶媒の具体例としては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ−n−ブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ−n−ブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノ−n−ブチルエーテル、プロピレングリコールモノメチルエーテルアセテートなどが挙げられる。   Specific examples of the glycol ether solvent include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-butyl ether, ethylene glycol dimethyl ether, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol. Examples thereof include mono-n-butyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether, propylene glycol mono-n-butyl ether, propylene glycol monomethyl ether acetate.

これらの溶媒は1種のみを用いてもよく、2種以上を混合して用いてもよい。   These solvents may be used alone or in combination of two or more.

本発明のエポキシ樹脂の製造時の合成反応における固形分濃度は35〜100質量%が好ましい。また、反応途中で高粘性生成物が生じたときは溶媒を添加して反応を続けることができる。反応終了後、溶媒は必要に応じて除去することもできるし、更に追加することもできる。   The solid content concentration in the synthesis reaction during the production of the epoxy resin of the present invention is preferably 35 to 100% by mass. When a highly viscous product is produced during the reaction, the reaction can be continued by adding a solvent. After completion of the reaction, the solvent can be removed as necessary, or further added.

[1−1−7]反応条件
本発明のエポキシ樹脂の製造時の合成反応は、使用する触媒が分解しない程度の反応温度で行う。反応温度は、好ましくは50〜230℃、より好ましくは120〜200℃である。アセトンやメチルエチルケトンのような低沸点溶媒を使用する場合には、オートクレーブを使用して高圧下で反応を行うことで反応温度を確保することができる。
[1-1-7] Reaction conditions The synthesis reaction during the production of the epoxy resin of the present invention is carried out at a reaction temperature at which the used catalyst does not decompose. The reaction temperature is preferably 50 to 230 ° C, more preferably 120 to 200 ° C. When using a low boiling point solvent such as acetone or methyl ethyl ketone, the reaction temperature can be ensured by carrying out the reaction under high pressure using an autoclave.

[1−1−8]物性
本発明のエポキシ樹脂の数平均分子量は、1,000〜20,000であることが好ましく、より好ましくは1,000〜15,000、更に好ましくは1,500〜12,000、特に好ましくは2,000〜10,000である。数平均分子量が上記下限以上であれば信頼性試験でのアウトガス量が少なく、可撓性に優れたものとなり易く、上記上限以下であれば取り扱い性に優れたものとなり易い。
[1-1-8] Physical Properties The number average molecular weight of the epoxy resin of the present invention is preferably 1,000 to 20,000, more preferably 1,000 to 15,000, and still more preferably 1,500 to 5,000. 12,000, particularly preferably 2,000 to 10,000. If the number average molecular weight is not less than the above lower limit, the outgas amount in the reliability test is small and the flexibility tends to be excellent, and if it is not more than the above upper limit, the handleability is likely to be excellent.

なお、エポキシ樹脂の数平均分子量(Mn)は、ゲル浸透クロマトグラフィーによってポリスチレン換算値として測定することができる。   In addition, the number average molecular weight (Mn) of an epoxy resin can be measured as a polystyrene conversion value by gel permeation chromatography.

また、本発明のエポキシ樹脂のエポキシ当量は、300〜12,000g/eqであることが好ましく、より好ましくは400〜11,000g/eq、特に好ましくは900〜10,000g/eqである。エポキシ当量が上記下限以上であれば信頼性試験でのアウトガス量が少なく、可撓性に優れたものとなり易く、上記上限以下であれば他の成分と架橋して耐熱性が良好になる。   The epoxy equivalent of the epoxy resin of the present invention is preferably 300 to 12,000 g / eq, more preferably 400 to 11,000 g / eq, and particularly preferably 900 to 10,000 g / eq. If the epoxy equivalent is greater than or equal to the above lower limit, the amount of outgas in the reliability test is small and the flexibility tends to be excellent, and if it is less than or equal to the above upper limit, it crosslinks with other components to improve heat resistance.

なお、「エポキシ当量」とは、「1当量のエポキシ基を含むエポキシ樹脂の質量」と定義され、JIS K7236に準じて測定することができる。   The “epoxy equivalent” is defined as “a mass of an epoxy resin containing one equivalent of an epoxy group” and can be measured according to JIS K7236.

[1−2]硬化剤
本発明のエポキシ樹脂組成物は、上記の本発明のエポキシ樹脂に対して、硬化剤として脂環式構造を有する硬化剤を用いることを特徴とする。
[1-2] Curing Agent The epoxy resin composition of the present invention is characterized by using a curing agent having an alicyclic structure as a curing agent for the epoxy resin of the present invention.

脂環式構造を有する硬化剤としては、脂環式構造を有し、エポキシ樹脂のエポキシ基間の架橋反応及び/又は鎖長延長反応に寄与する物質であればよく、特に制限はないが、例えば、脂環式ポリアミン、脂環式酸無水物等が挙げられる。より具体的は、1,4−ジアザビシクロ−2,2,2−オクタン、1,8−ジアザビシクロ−5,4,0−ウンデカ−7−エン、N,N’−ジメチルピペラジン、N−アミノエチルピペラジン、メンセンジアミン、イソホロンジアミン、ヘキサメチレンテトラミン、メチレンビスシクロヘキサナミン、1,3−ビスアミノメチルシクロヘキサン、ノルボルネンジアミン、1,2−ジアミノシクロヘキサン、及びこれらの脂環式ポリアミンをエポキシ変性又はエチレンオキド変性、ダイマー酸変性、マンニッヒ変性、マイケル付加、チオ尿素縮合、ケチミン化した変性脂環式ポリアミンや、無水ヘキサヒドロフタル酸、無水メチルヘキサヒドロフタル酸等が挙げられる。
この中でも脂環式ポリアミンが好ましく、その中でもイソホロンジアミン、ヘキサメチレンテトラミン、メチレンビスシクロヘキサナミン、1,3−ビスアミノメチルシクロヘキサン、ノルボルネンジアミン、1,2−ジアミノシクロヘキサン、及びこれらの変性物が特に好ましい。
The curing agent having an alicyclic structure may be any substance that has an alicyclic structure and contributes to the crosslinking reaction and / or chain extension reaction between epoxy groups of the epoxy resin, and is not particularly limited. Examples thereof include alicyclic polyamines and alicyclic acid anhydrides. More specifically, 1,4-diazabicyclo-2,2,2-octane, 1,8-diazabicyclo-5,4,0-undec-7-ene, N, N′-dimethylpiperazine, N-aminoethylpiperazine , Mensendiamine, isophoronediamine, hexamethylenetetramine, methylenebiscyclohexanamine, 1,3-bisaminomethylcyclohexane, norbornenediamine, 1,2-diaminocyclohexane, and alicyclic polyamines modified with epoxy or ethylene oxide , Dimer acid modified, Mannich modified, Michael addition, thiourea condensation, ketiminated modified alicyclic polyamine, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, and the like.
Among these, alicyclic polyamines are preferable, and among them, isophoronediamine, hexamethylenetetramine, methylenebiscyclohexanamine, 1,3-bisaminomethylcyclohexane, norbornenediamine, 1,2-diaminocyclohexane, and modified products thereof are particularly preferable. preferable.

脂環式構造を有する硬化剤は市販品を用いることもでき、例えば三菱ケミカル社製「jERキュア113」、「jERキュアST−14」、新日本理化社製「リカシッドMH−700」等を用いることができる。   Commercially available products may be used as the curing agent having an alicyclic structure, such as “jER Cure 113”, “jER Cure ST-14” manufactured by Mitsubishi Chemical Corporation, “Licacid MH-700” manufactured by Shin Nippon Rika Co., Ltd. be able to.

なお、本発明のエポキシ樹脂組成物は、上記の脂環式構造を有する硬化剤以外の硬化剤を含有していてもよく、その場合、脂環式構造を有する硬化剤以外の硬化剤としては、多官能フェノール類、ポリイソシアネート系化合物、アミン系化合物、酸無水物系化合物、イミダゾール系化合物、アミド系化合物、カチオン重合開始剤、有機ホスフィン類等が挙げられるが、脂環式構造を有する硬化剤を用いることによる本発明の効果をより確実に得る上で、脂環式構造を有する硬化剤以外のその他の硬化剤を用いる場合、脂環式構造を有する硬化剤とその他の硬化剤の合計に対するその他の硬化剤の割合が70質量%以下、更に50質量%以下、特に0〜30質量%であることが好ましい。   The epoxy resin composition of the present invention may contain a curing agent other than the above-described curing agent having an alicyclic structure, and in that case, as a curing agent other than the curing agent having an alicyclic structure, , Polyfunctional phenols, polyisocyanate compounds, amine compounds, acid anhydride compounds, imidazole compounds, amide compounds, cationic polymerization initiators, organic phosphines, etc., but curing with an alicyclic structure In order to obtain the effect of the present invention more reliably by using an agent, when using other curing agents other than the curing agent having an alicyclic structure, the total of the curing agent having an alicyclic structure and the other curing agent The ratio of the other curing agent with respect to is preferably 70% by mass or less, more preferably 50% by mass or less, and particularly preferably 0 to 30% by mass.

本発明のエポキシ樹脂組成物における硬化剤の含有量(脂環式構造を有する硬化剤以外のその他の硬化剤を用いる場合は、脂環式構造を有する硬化剤とその他の硬化剤との合計の含有量)は、本発明のエポキシ樹脂(本発明のエポキシ樹脂以外の後述する他のエポキシ化合物が含まれる場合は、本発明のエポキシ樹脂とその他のエポキシ樹脂との合計の含有量)100質量部に対して好ましくは0.1〜100重量部である。また、より好ましくは80重量部以下であり、更に好ましくは60重量部以下、特に好ましくは40重量部以下である。   Content of curing agent in epoxy resin composition of the present invention (when using other curing agent other than curing agent having alicyclic structure, total amount of curing agent having alicyclic structure and other curing agent Content) is 100 parts by mass of the epoxy resin of the present invention (when other epoxy compounds described later other than the epoxy resin of the present invention are included), the total content of the epoxy resin of the present invention and other epoxy resins) The amount is preferably 0.1 to 100 parts by weight. Further, it is more preferably 80 parts by weight or less, still more preferably 60 parts by weight or less, and particularly preferably 40 parts by weight or less.

本発明において、「固形分」とは溶媒を除いた成分を意味し、固体のエポキシ樹脂ないしはエポキシ化合物のみならず、半固形や粘稠な液状物をも含むものとする。また、「全エポキシ成分」とは、本発明のエポキシ樹脂と後述する他のエポキシ化合物との合計を意味する。   In the present invention, “solid content” means a component excluding a solvent, and includes not only a solid epoxy resin or an epoxy compound but also a semi-solid or viscous liquid. The “total epoxy component” means the total of the epoxy resin of the present invention and other epoxy compounds described later.

[1−3]その他のエポキシ化合物
本発明のエポキシ樹脂組成物が本発明のエポキシ樹脂以外の、他のエポキシ化合物を含有する場合、他のエポキシ化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などのグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、線状脂肪族エポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂等の各種のエポキシ樹脂の1種又は2種以上が挙げられる。
[1-3] Other epoxy compounds When the epoxy resin composition of the present invention contains other epoxy compounds other than the epoxy resin of the present invention, examples of the other epoxy compounds include bisphenol A type epoxy resins and bisphenols. F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, glycidyl ether type epoxy resin such as cresol novolac type epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, linear fat 1 type (s) or 2 or more types of various epoxy resins, such as a group epoxy resin, an alicyclic epoxy resin, and a heterocyclic epoxy resin, are mentioned.

本発明のエポキシ樹脂組成物が、本発明のエポキシ樹脂と他のエポキシ化合物とを含有する場合、エポキシ樹脂組成物中の固形分としての全エポキシ成分中の他のエポキシ化合物の割合は、好ましくは5質量%以上であり、より好ましくは10質量%以上であり、一方、好ましくは95質量%以下であり、より好ましくは90質量%以下である。他のエポキシ化合物の割合が上記下限値以上であることにより、他のエポキシ化合物を配合することによる物性向上効果を十分に得ることができる。一方、他のエポキシ化合物の割合が上記上限値以下であることにより、本発明のエポキシ樹脂による柔軟性、可撓性向上効果を十分に得ることができる。   When the epoxy resin composition of the present invention contains the epoxy resin of the present invention and another epoxy compound, the proportion of the other epoxy compounds in the total epoxy component as a solid content in the epoxy resin composition is preferably It is 5% by mass or more, more preferably 10% by mass or more, on the other hand, preferably 95% by mass or less, more preferably 90% by mass or less. When the ratio of the other epoxy compound is not less than the above lower limit value, the effect of improving physical properties by blending the other epoxy compound can be sufficiently obtained. On the other hand, when the ratio of the other epoxy compound is not more than the above upper limit value, the effect of improving the flexibility and flexibility by the epoxy resin of the present invention can be sufficiently obtained.

[1−4]溶剤
本発明のエポキシ樹脂組成物には、塗膜形成時等の取り扱い時に、エポキ樹脂組成物の粘度を適度に調整するために溶剤を配合し、希釈してもよい。本発明のエポキシ樹脂組成物において、溶剤は、エポキシ樹脂組成物の成形における取り扱い性、作業性を確保するために用いられ、その使用量には特に制限がない。なお、本発明においては「溶剤」という語と「溶媒」という語をその使用形態により区別して用いるが、それぞれ独立して同種のものを用いても異なるものを用いてもよい。
[1-4] Solvent The epoxy resin composition of the present invention may be diluted by blending a solvent in order to appropriately adjust the viscosity of the epoxy resin composition during handling such as when a coating film is formed. In the epoxy resin composition of the present invention, the solvent is used in order to ensure the handleability and workability in the molding of the epoxy resin composition, and the amount used is not particularly limited. In the present invention, the term “solvent” and the term “solvent” are distinguished from each other depending on the form of use, but the same or different ones may be used independently.

本発明のエポキシ樹脂組成物が含み得る溶剤としては、例えば、アセトン、メチルエチルケトン、トルエン、キシレン、メチルイソブチルケトン、酢酸エチル、エチレングリコールモノメチルエーテル、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、メタノール、エタノールなどが挙げられ、これらの溶剤は適宜に2種又はそれ以上の混合溶剤として使用することも可能である。   Examples of the solvent that can be contained in the epoxy resin composition of the present invention include acetone, methyl ethyl ketone, toluene, xylene, methyl isobutyl ketone, ethyl acetate, ethylene glycol monomethyl ether, N, N-dimethylformamide, N, N-dimethylacetamide, Methanol, ethanol and the like can be mentioned, and these solvents can be used as a mixed solvent of two or more as appropriate.

[1−5]その他の成分
本発明のエポキシ樹脂組成物には、以上に挙げた成分の他にその他の成分を含有することができる。その他の成分はエポキシ樹脂組成物の所望の物性により適宜組み合わせて用いることができる。
[1-5] Other components The epoxy resin composition of the present invention may contain other components in addition to the components listed above. Other components can be used in appropriate combination depending on the desired physical properties of the epoxy resin composition.

例えば、得られる硬化物の硬化収縮率を下げる効果、熱膨張率を低下させる効果等の各種特性を向上させることを目的に、本発明のエポキシ樹脂組成物に無機充填材を配合し、電気・電子分野、特に液状半導体封止材への応用展開を図ることができる。靱性を付与するためにゴム粒子、アクリル粒子などの有機充填材も含んでも良い。   For example, for the purpose of improving various properties such as the effect of lowering the curing shrinkage of the resulting cured product and the effect of reducing the coefficient of thermal expansion, an inorganic filler is blended in the epoxy resin composition of the present invention. Applications can be developed in the electronic field, particularly in liquid semiconductor encapsulants. In order to impart toughness, organic fillers such as rubber particles and acrylic particles may also be included.

使用できる無機充填材は、粉末状の補強剤や充填剤、例えば、酸化アルミニウム、酸化マグネシウムなどの金属酸化物、炭酸カルシウム、炭酸マグネシウムなどの金属炭酸塩、ケイ藻土粉、塩基性ケイ酸マグネシウム、焼成クレイ、微粉末シリカ、溶融シリカ、結晶シリカなどのケイ素化合物、水酸化アルミニウムなどの金属水酸化物、その他、カオリン、マイカ、石英粉末、グラファイト、二硫化モリブデン等である。
これらの無機充填材はエポキシ樹脂(本発明のエポキシ樹脂と必要に応じて用いられる他のエポキシ化合物の合計、以下同様)と硬化剤の和の100質量部に対して、通常10〜900質量部配合することができる。
Inorganic fillers that can be used include powdered reinforcing agents and fillers, such as metal oxides such as aluminum oxide and magnesium oxide, metal carbonates such as calcium carbonate and magnesium carbonate, diatomaceous earth powder, and basic magnesium silicate. Fired clay, finely divided silica, fused silica, crystalline silica and other metal compounds, aluminum hydroxide and other metal hydroxides, kaolin, mica, quartz powder, graphite, molybdenum disulfide and the like.
These inorganic fillers are usually 10 to 900 parts by mass with respect to 100 parts by mass of the sum of the epoxy resin (the epoxy resin of the present invention and other epoxy compounds used as necessary, the same applies hereinafter) and the curing agent. Can be blended.

更に、繊維質の補強剤や充填剤を配合することも可能である。例えば、ガラス繊維、セラミック繊維、カーボンファイバー、アルミナ繊維、炭化ケイ素繊維、ボロン繊維等が挙げられる。また、有機繊維、無機繊維のクロスあるいは不織布を用いることもできる。更に、これらの無機充填剤、繊維、クロス、不織布は、それらの表面をシランカップリング剤、チタネート系カップリング剤、アルミネート系カップリング剤あるいはプライマー処理する等の表面処理を行ったものも使用できる。   Furthermore, it is also possible to mix | blend a fibrous reinforcement and a filler. For example, glass fiber, ceramic fiber, carbon fiber, alumina fiber, silicon carbide fiber, boron fiber and the like can be mentioned. Also, organic fiber, inorganic fiber cloth or non-woven fabric can be used. Furthermore, these inorganic fillers, fibers, cloths, and nonwoven fabrics are also used after surface treatment such as silane coupling agent, titanate coupling agent, aluminate coupling agent or primer treatment on the surface thereof. it can.

更に本発明のエポキシ樹脂組成物には、必要に応じて下記(1),(2)の成分を添加配合することができる。   Furthermore, the following components (1) and (2) can be added to the epoxy resin composition of the present invention as required.

(1)カップリング剤、可塑剤、希釈剤、可撓性付与剤、分散剤、湿潤剤、着色剤、顔料、紫外線吸収剤、ヒンダードアミン系光安定剤等の光安定剤、酸化防止剤、脱泡剤、流れ調整剤等。
これらはエポキシ樹脂と硬化剤の和の100質量部に対して、通常0.1〜20質量部配合される。
(1) Coupling agents, plasticizers, diluents, flexibility imparting agents, dispersants, wetting agents, colorants, pigments, UV absorbers, hindered amine light stabilizers and other light stabilizers, antioxidants, de-binding agents Foaming agent, flow control agent, etc.
These are usually blended in an amount of 0.1 to 20 parts by mass per 100 parts by mass of the sum of the epoxy resin and the curing agent.

(2)最終的な塗膜における樹脂の性質を改善する目的で種々の硬化性モノマー、オリゴマー及び合成樹脂。例えば、シアネートエステル樹脂、アクリル樹脂、シリコーン樹脂、ポリエステル樹脂等の1種又は2種以上。
これら樹脂類の配合割合は、本発明のエポキシ樹脂組成物の本来の性質を損なわない範囲の量、すなわちエポキシ樹脂と硬化剤の和の100質量部に対して、50質量部以下が好ましい。
また、難燃性を付与する為に、ノンハロゲンタイプのP系、N系、Si系難燃剤等を添加しても良い。
(2) Various curable monomers, oligomers and synthetic resins for the purpose of improving the properties of the resin in the final coating. For example, one or more of cyanate ester resin, acrylic resin, silicone resin, polyester resin and the like.
The blending ratio of these resins is preferably 50 parts by mass or less with respect to an amount within a range not impairing the original properties of the epoxy resin composition of the present invention, that is, 100 parts by mass of the sum of the epoxy resin and the curing agent.
In order to impart flame retardancy, non-halogen type P-based, N-based, Si-based flame retardants, and the like may be added.

[2]硬化物
本発明のエポキシ樹脂組成物を硬化させることにより、硬化物を得ることができる。ここでいう「硬化」とは熱及び/又は光等によりエポキシ樹脂を意図的に硬化させることを意味するものであり、その硬化の程度は所望の物性、用途により制御すればよい。
[2] Cured product A cured product can be obtained by curing the epoxy resin composition of the present invention. Here, “curing” means that the epoxy resin is intentionally cured by heat and / or light or the like, and the degree of curing may be controlled by desired physical properties and applications.

本発明のエポキシ樹脂組成物を硬化させて硬化物とする際のエポキシ樹脂組成物の硬化方法は、エポキシ樹脂組成物中の配合成分や配合量、配合物の形状によっても異なるが、通常、23〜200℃で5分〜24時間の加熱条件が挙げられる。この加熱は23〜160℃で5分〜24時間の一次加熱と、一次加熱温度よりも40〜177℃高い80〜200℃で5分〜24時間の二次加熱との二段処理、更に二次加熱温度よりも高い100〜200℃で5分〜24時間の三次加熱を行う三段処理で行うことが、硬化不良を少なくする点で好ましい。   The curing method of the epoxy resin composition when curing the epoxy resin composition of the present invention to obtain a cured product varies depending on the blending component and blending amount in the epoxy resin composition, and the shape of the blend, but usually 23 A heating condition of ˜200 ° C. for 5 minutes to 24 hours can be mentioned. This heating is a two-stage treatment of a primary heating at 23 to 160 ° C. for 5 minutes to 24 hours and a secondary heating at 80 to 200 ° C. that is 40 to 177 ° C. higher than the primary heating temperature for 5 minutes to 24 hours. It is preferable to carry out by a three-stage treatment in which tertiary heating is performed at 100 to 200 ° C., which is higher than the secondary heating temperature, for 5 minutes to 24 hours, from the viewpoint of reducing poor curing.

硬化物を半硬化物として製造する際には、加熱等により形状が保てる程度にエポキシ樹脂組成物の硬化反応を進行させればよい。エポキシ樹脂組成物が溶剤を含んでいる場合には、加熱、減圧、風乾等の手法で大部分の溶剤を除去するが、半硬化物中に5重量%以下の溶剤を残留させてもよい。   When producing a cured product as a semi-cured product, the curing reaction of the epoxy resin composition may be advanced to such an extent that the shape can be maintained by heating or the like. When the epoxy resin composition contains a solvent, most of the solvent is removed by techniques such as heating, reduced pressure, and air drying, but 5% by weight or less of the solvent may be left in the semi-cured product.

[3]シート状成形体
本発明のシート状成形体は、本発明のエポキシ樹脂組成物を硬化させてなる本発明の硬化物よりなるシート状の成形体である。
[3] Sheet-shaped molded product The sheet-shaped molded product of the present invention is a sheet-shaped molded product made of the cured product of the present invention obtained by curing the epoxy resin composition of the present invention.

本発明のシート状成形体は、本発明のエポキシ樹脂組成物を所定の厚さのシート状に調整した状態で硬化させることにより製造することができる。或いは、本発明のエポキシ樹脂組成物より得られた半硬化物を所定の厚さのシート状に成形すると共に更に硬化させることにより製造することができる。   The sheet-like molded product of the present invention can be produced by curing the epoxy resin composition of the present invention in a state adjusted to a sheet shape having a predetermined thickness. Alternatively, it can be produced by molding a semi-cured product obtained from the epoxy resin composition of the present invention into a sheet having a predetermined thickness and further curing it.

なお、本発明のシート状成形体の厚さには特に制限はないが、好ましくは0.05mm以上、更に好ましくは0.1mm以上、特に好ましくは0.2mm以上である。   In addition, there is no restriction | limiting in particular in the thickness of the sheet-like molded object of this invention, Preferably it is 0.05 mm or more, More preferably, it is 0.1 mm or more, Most preferably, it is 0.2 mm or more.

本発明のシート状成形体は、後述の実施例の項で測定されるヘーズが1.5%以下でYIが6以下であることが好ましい。ヘーズ及びYIが上記上限以下であれば透明性の要求特性を満たし易い。透明性の観点から、本発明のシート状成形体のヘーズは1.3%以下であることがより好ましく、1.0%以下であることが更に好ましい。YIは4以下であることがより好ましく、1以下であることが更に好ましい。   The sheet-like molded product of the present invention preferably has a haze of 1.5% or less and a YI of 6 or less as measured in the Examples section below. If the haze and YI are less than or equal to the above upper limits, it is easy to satisfy the required characteristics of transparency. From the viewpoint of transparency, the haze of the sheet-like molded product of the present invention is more preferably 1.3% or less, and further preferably 1.0% or less. YI is more preferably 4 or less, and still more preferably 1 or less.

本発明のシート状成形体は、後述の実施例の項で測定されるガラス転移温度(Tg)が30℃以下であることが好ましい。Tgが上記上限以下であれば、室温以上の貯蔵弾性率の変化が小さいものとなり好ましい。この観点から、本発明のシート状成形体のTgは25℃以下であることがより好ましく、10℃以下であることが更に好ましく、0℃以下であることが特に好ましい。   The sheet-like molded product of the present invention preferably has a glass transition temperature (Tg) of 30 ° C. or less as measured in the Examples section described below. If Tg is below the above upper limit, the change in storage elastic modulus at room temperature or higher is small, which is preferable. From this viewpoint, the Tg of the sheet-like molded product of the present invention is more preferably 25 ° C. or less, further preferably 10 ° C. or less, and particularly preferably 0 ° C. or less.

本発明のシート状成形体は、後述の実施例の項で測定される5%熱分解温度(Td5)が260℃以上であることが好ましい。Td5が上記下限以上であれば、リフロー方式のはんだ付け(半田リフロー)工程に耐え得るものとなり好ましい。この観点から、本発明のシート状成形体のTd5は300℃以上であることがより好ましく、350℃以上であることが更に好ましい。   The sheet-like molded product of the present invention preferably has a 5% thermal decomposition temperature (Td5) of 260 ° C. or higher as measured in the Examples section below. If Td5 is at least the above lower limit, it is preferable because it can withstand a reflow soldering (solder reflow) step. From this viewpoint, Td5 of the sheet-like molded body of the present invention is more preferably 300 ° C. or higher, and further preferably 350 ° C. or higher.

本発明のシート状成形体は、後述の実施例の項で測定される引張伸びが350%以上であることが好ましい。引張伸びが上記下限以上であれば柔軟性、伸縮性の要求特性を満たし易い。柔軟性、伸縮性の観点から、本発明のシート状成形体の引張伸びは355%以上、例えば355〜400%であることがより好ましい。   The sheet-like molded product of the present invention preferably has a tensile elongation measured in the section of Examples below of 350% or more. If the tensile elongation is not less than the above lower limit, the required properties of flexibility and stretchability are easily satisfied. From the viewpoints of flexibility and stretchability, the tensile elongation of the sheet-like molded body of the present invention is more preferably 355% or more, for example, 355 to 400%.

本発明のシート状成形体は、後述の実施例の項で測定される弾性率が8MPa以下であることが好ましい。弾性率が上記上限以下であれば柔軟性の要求特性を満たし易い。柔軟性の観点から、本発明のシート状成形体の弾性率は5MPa以下、例えば5〜0.1MPaであることがより好ましい。   The sheet-like molded product of the present invention preferably has an elastic modulus of 8 MPa or less as measured in the Examples section described below. If the elastic modulus is less than or equal to the above upper limit, the required characteristics of flexibility are easily satisfied. From the viewpoint of flexibility, the elastic modulus of the sheet-shaped molded body of the present invention is more preferably 5 MPa or less, for example, 5 to 0.1 MPa.

[4]用途
本発明のエポキシ樹脂組成物は、耐熱性、柔軟性、伸縮性、透明性に優れた硬化物を与えるものであり、積層板、封止材、接着剤、塗料及び電気絶縁材料等に使用することができる。特にセンサ、ディスプレイ、ロボット用人工皮膚などの様々なインターフェース用の柔軟なデバイス、それを支える柔軟な基材や、半導体封止用封止材、電気絶縁用粉体塗料、レジストインキ、電気・電子部品用注型材及び電気・電子部品用接着剤及び絶縁フィルム等に使用することができる。
[4] Use The epoxy resin composition of the present invention provides a cured product excellent in heat resistance, flexibility, stretchability, and transparency, and is a laminate, sealing material, adhesive, paint, and electrical insulating material. Can be used for etc. In particular, flexible devices for various interfaces such as sensors, displays, and artificial skin for robots, flexible substrates that support them, sealing materials for semiconductor encapsulation, powder coatings for electrical insulation, resist inks, electrical / electronics It can be used for casting materials for parts, adhesives for electrical and electronic parts, insulating films, and the like.

以下、本発明を実施例に基づいてより具体的に説明するが、本発明は以下の実施例により何ら限定されるものではない。なお、以下の実施例における各種の製造条件や評価結果の値は、本発明の実施態様における上限又は下限の好ましい値としての意味をもつものであり、好ましい範囲は前記した上限又は下限の値と、下記実施例の値又は実施例同士の値との組み合わせで規定される範囲であってもよい。以下において、「部」は全て「質量部」を示す。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited at all by the following example. In addition, the value of various manufacturing conditions and evaluation results in the following examples has a meaning as a preferable value of the upper limit or the lower limit in the embodiment of the present invention, and the preferable range is the above-described upper limit or lower limit value. A range defined by a combination of values of the following examples or values of the examples may be used. Hereinafter, all “parts” indicate “parts by mass”.

[各種分析・評価・測定方法]
以下における各種物性ないし特性の分析・評価・測定方法は次の通りである。
[Various analysis / evaluation / measurement methods]
The methods for analyzing, evaluating, and measuring various physical properties and characteristics are as follows.

得られたエポキシ樹脂硬化物の評価方法は以下の通りである。   The evaluation method of the obtained cured epoxy resin is as follows.

1)弾性率
エポキシ樹脂硬化物(試験片厚み4mm)について、長さ50mm、幅10mmに切り出し、試験片を作製した。試験片について、動的粘弾性測定装置(エスアイアイ・ナノテクノロジー社製、EXSTAR DMS6100)を用い、周波数1Hz、昇温速度2℃/分、両持ち曲げモードの測定条件で測定を行い、40℃における貯蔵弾性率E’を弾性率とした。
1) Elastic modulus About the epoxy resin hardened | cured material (test piece thickness 4mm), it cut out to length 50mm and width 10mm, and produced the test piece. The test piece was measured using a dynamic viscoelasticity measuring device (EXSTAR DMS6100, manufactured by SII Nano Technology Co., Ltd.) at a frequency of 1 Hz, a heating rate of 2 ° C./min, and a measurement condition of a double-end bending mode. The storage elastic modulus E ′ in was taken as the elastic modulus.

2)ガラス転移温度(Tg)
エポキシ樹脂硬化物(試験片厚み4mm)について、長さ50mm、幅10mmに切り出し、試験片を作製した。試験片について、動的粘弾性測定装置(エスアイアイ・ナノテクノロジー社製、EXSTAR DMS6100)を用い、周波数1Hz、昇温速度2℃/分、両持ち曲げモードの測定条件で測定を行い、温度−tanδ曲線が極大値を示すときの温度をガラス転移温度(Tg)とした。
2) Glass transition temperature (Tg)
About the epoxy resin hardened | cured material (test piece thickness 4mm), it cut out to length 50mm and width 10mm, and produced the test piece. The test piece was measured using a dynamic viscoelasticity measuring apparatus (EXSTAR DMS6100, manufactured by SII Nano Technology Co., Ltd.) at a frequency of 1 Hz, a heating rate of 2 ° C./min, and measurement conditions of a double-end bending mode. The temperature at which the tan δ curve showed the maximum value was defined as the glass transition temperature (Tg).

3)5%重量減少温度(Td5)
エポキシ樹脂硬化物(試験片厚み4mm)について、示差熱熱重量同時測定装置(エスアイアイ・ナノテクノロジー社製、
EXSTAR TG/DTA7200)を用い、昇温速度:5℃/分、測定温度範囲:30℃から600℃、窒素:流量200mL/分の測定条件で測定を行い、硬化物の重量が5%減少した時点の温度を5%重量減少温度(Td5)とした。
3) 5% weight loss temperature (Td5)
About the cured epoxy resin (test piece thickness 4mm), differential thermothermal weight simultaneous measurement device (SII Nano Technology,
EXSTAR TG / DTA7200) was used, and the temperature was increased at a rate of 5 ° C./minute, the measurement temperature range: 30 ° C. to 600 ° C., and the nitrogen: flow rate 200 mL / min. The temperature at the time was 5% weight loss temperature (Td5).

4)引張伸び
エポキシ樹脂硬化物(試験片厚み0.12mm)について、JIS K7161に準じて、評価用サンプルを試験速度200mm/minで引張試験を行い、その時の引張伸びを測定した。
4) Tensile elongation The epoxy resin cured product (test piece thickness 0.12 mm) was subjected to a tensile test at a test speed of 200 mm / min according to JIS K7161, and the tensile elongation at that time was measured.

5)ヘーズ
エポキシ樹脂硬化物(試験片厚み0.12mm)について、JIS K7105に準じてヘーズメーター(日本電色工業社製、NDH−5000)を用いて、ヘーズを測定した。
5) Haze About the epoxy resin hardened | cured material (test piece thickness 0.12mm), haze was measured using the haze meter (Nippon Denshoku Industries Co., Ltd. make, NDH-5000) according to JISK7105.

6)YI
エポキシ樹脂硬化物(試験片厚み0.12mm)について、JIS K7373に準じてカラーメーター(スガ試験機社製、SC−T)を用いて、YIを測定した。
6) YI
About cured epoxy resin (test piece thickness 0.12 mm), YI was measured using a color meter (manufactured by Suga Test Instruments Co., Ltd., SC-T) according to JIS K7373.

また、2官能脂肪族エポキシ化合物(X)の分析方法は以下の通りである。
ジグリシジル体純度:ガスグロマトグラフィーでFDI検出器を用いて分析し、ジグリシジル体ピーク面積の全ピーク面積合計に対する面積%を質量%として測定した。
全塩素量:蛍光X線法で定量した。
The analysis method of the bifunctional aliphatic epoxy compound (X) is as follows.
Diglycidyl purity: Analysis was carried out by gas chromatography using an FDI detector, and the area% of the total peak area of the diglycidyl peak was measured as mass%.
Total chlorine content: quantified by fluorescent X-ray method.

また、2官能脂肪族エポキシ化合物(X)のエポキシ当量と、得られたエポキシ樹脂の数平均分子量及びエポキシ当量の測定方法は以下の通りである。
数平均分子量:ゲル浸透クロマトグラフィーによってポリスチレン換算値として測定した。
エポキシ当量:JIS K7236に準じて電位差滴定法により測定し、樹脂固形分としての値に換算した。
Moreover, the epoxy equivalent of bifunctional aliphatic epoxy compound (X), the number average molecular weight of the obtained epoxy resin, and the measuring method of an epoxy equivalent are as follows.
Number average molecular weight: It was measured as a polystyrene equivalent value by gel permeation chromatography.
Epoxy equivalent: Measured by potentiometric titration according to JIS K7236 and converted to a value as resin solids.

[エポキシ樹脂の製造]
エポキシ樹脂としては、以下のようにして製造したものを用いた。
[Manufacture of epoxy resin]
As an epoxy resin, what was manufactured as follows was used.

<エポキシ樹脂(A−1)の製造>
まず、攪拌機、滴下ロート及び温度計を備えた1L容ガラス製フラスコに予め45℃に加熱した1,6−ヘキサンジオール141.8部、三弗化ホウ素エチルエーテル0.51部を仕込み、80℃まで加熱した。85℃以上にならない様に時間をかけてエピクロルヒドリン244.3部を滴下した。80〜85℃に保ちながら1時間熟成を行った後、45℃まで冷却した。ここへ22質量%水酸化ナトリウム水溶液528.0部を加え、45℃に加熱して4時間激しく攪拌した。室温まで冷却して水相を分離除去し、減圧下加熱して未反応のエピクロロヒドリン、水を除去し、粗1,6−ヘキサンジオールジグリシジルエーテル283.6部を得た。
この粗1,6−ヘキサンジオールジグリシジルエーテルをオールダショウ蒸留塔(15段)にて蒸留精製し、圧力1300Pa、170〜190℃の留分を主留分とし、1,6−ヘキサンジオールジグリシジルエーテル127.6部を得た。
この1,6−ヘキサンジオールジグリシジルエーテルのジグリシジル体純度、全塩素量及びエポキシ当量は以下の通りであった。
ジグリシジル体純度:97質量%
全塩素量:0.15質量%
エポキシ当量:116g/eq
<Manufacture of epoxy resin (A-1)>
First, 141.8 parts of 1,6-hexanediol and 0.51 part of boron trifluoride ethyl ether previously heated to 45 ° C. were charged into a 1 L glass flask equipped with a stirrer, a dropping funnel and a thermometer, and 80 ° C. Until heated. Epichlorohydrin (244.3 parts) was added dropwise over a period of time so as not to exceed 85 ° C. The mixture was aged for 1 hour while maintaining at 80 to 85 ° C, and then cooled to 45 ° C. To this was added 528.0 parts of a 22% by weight aqueous sodium hydroxide solution, heated to 45 ° C. and vigorously stirred for 4 hours. The mixture was cooled to room temperature, the aqueous phase was separated and removed, and heated under reduced pressure to remove unreacted epichlorohydrin and water to obtain 283.6 parts of crude 1,6-hexanediol diglycidyl ether.
This crude 1,6-hexanediol diglycidyl ether was purified by distillation in an Oldshaw distillation column (15 stages), and a fraction at a pressure of 1300 Pa and 170-190 ° C. was used as the main fraction, 127.6 parts of glycidyl ether were obtained.
The 1,6-hexanediol diglycidyl ether had the following diglycidyl purity, total chlorine content, and epoxy equivalent.
Diglycidyl purity: 97% by mass
Total chlorine content: 0.15% by mass
Epoxy equivalent: 116 g / eq

得られた2官能エポキシ化合物(1,6−ヘキサンジオールジグリシジルエーテル)100部及びビスフェノールF(フェノール性水酸基当量:100g/eq)69.3部と、エチルトリフェニルホスホニウムアイオダイド(30質量%メチルセロソルブ溶液)0.13部を耐圧反応容器に入れ、窒素ガス雰囲気下、165〜170℃で5時間、重合反応を行ってエポキシ樹脂(A−1)を得た。
得られたエポキシ樹脂(A−1)のエポキシ当量は1,000g/eqで、数平均分子量は3,000であった。
100 parts of the obtained bifunctional epoxy compound (1,6-hexanediol diglycidyl ether) and 69.3 parts of bisphenol F (phenolic hydroxyl group equivalent: 100 g / eq), ethyltriphenylphosphonium iodide (30 mass% methyl) 0.13 parts of a cellosolve solution) was put in a pressure resistant reactor, and a polymerization reaction was performed at 165 to 170 ° C. for 5 hours in a nitrogen gas atmosphere to obtain an epoxy resin (A-1).
The epoxy equivalent of the obtained epoxy resin (A-1) was 1,000 g / eq, and the number average molecular weight was 3,000.

<エポキシ樹脂(A−2)の製造>
エポキシ樹脂(A−1)の製造におけると同様にして製造した2官能エポキシ化合物(1,6−ヘキサンジオールジグリシジルエーテル)100部に、ビスフェノールF(フェノール性水酸基当量:100g/eq)53.5部と、エチルトリフェニルホスホニウムアイオダイド(30質量%メチルセロソルブ溶液)0.08部を用いたこと以外は、エポキシ樹脂(A−1)の製造と同様にして、エポキシ樹脂(A−2)を得た。
得られたエポキシ樹脂(A−2)のエポキシ当量は500g/eq、数平均分子量は1,600であった。
<Manufacture of epoxy resin (A-2)>
Bisphenol F (phenolic hydroxyl group equivalent: 100 g / eq) 53.5 is added to 100 parts of a bifunctional epoxy compound (1,6-hexanediol diglycidyl ether) produced in the same manner as in the production of the epoxy resin (A-1). The epoxy resin (A-2) was prepared in the same manner as in the production of the epoxy resin (A-1) except that 0.08 part of ethyltriphenylphosphonium iodide (30 mass% methyl cellosolve solution) was used. Obtained.
The epoxy equivalent of the obtained epoxy resin (A-2) was 500 g / eq, and the number average molecular weight was 1,600.

[硬化剤]
硬化剤としては、以下の硬化剤(B−1),(B−2)を用いた。
硬化剤(B−1):脂環式ポリアミン(三菱ケミカル(株)製 jERキュアST−14)
硬化剤(B−2):芳香族ポリアミン(三菱ケミカル(株)製 jERキュアW)
[Curing agent]
As the curing agent, the following curing agents (B-1) and (B-2) were used.
Curing agent (B-1): Alicyclic polyamine (JER Cure ST-14, manufactured by Mitsubishi Chemical Corporation)
Curing agent (B-2): aromatic polyamine (Mitsubishi Chemical Co., Ltd. jER Cure W)

[実施例1〜2、比較例1〜2]
エポキシ樹脂(A−1)又は(A−2)に、表−1に示す割合で硬化剤(B−1)又は(B−2)を配合してエポキシ樹脂組成物を調製し、このエポキシ樹脂組成物をSiコート系離型PETで挟み込み、所望の厚さに調整して硬化させ、それぞれエポキシ樹脂硬化物を得た。
硬化条件は硬化剤(B−1)を用いた場合は40℃で16時間、その後80℃で6時間とし、硬化剤(B−2)を用いた場合は40℃で16時間、その後100℃で3時間、更に160℃で4.5時間とした。
得られたエポキシ樹脂硬化物の性状(弾性率、Tg、Td5、引張伸び、ヘーズ、YI)の評価結果を表−1に示した。
[Examples 1-2, Comparative Examples 1-2]
The epoxy resin composition is prepared by blending the epoxy resin (A-1) or (A-2) with the curing agent (B-1) or (B-2) in the ratio shown in Table 1. The composition was sandwiched between Si-coated mold release PET, adjusted to a desired thickness and cured to obtain cured epoxy resins.
When the curing agent (B-1) is used, the curing conditions are 40 ° C. for 16 hours, and then 80 ° C. for 6 hours. When the curing agent (B-2) is used, the curing condition is 40 ° C. for 16 hours, and then 100 ° C. For 3 hours, and further at 160 ° C. for 4.5 hours.
The evaluation results of the properties (elastic modulus, Tg, Td5, tensile elongation, haze, YI) of the obtained cured epoxy resin are shown in Table 1.

Figure 2019189798
Figure 2019189798

[評価結果]
表−1の結果より、硬化剤として脂環式ポリアミンを用いた本発明のエポキシ樹脂組成物より得られた実施例1、2のエポキシ樹脂硬化物は、硬化剤として芳香族ポリアミンを用いた比較例1、2のエポキシ樹脂硬化物と比較して、透明性(ヘーズ、YI)と柔軟性(低弾性、高伸び)のバランスに優れたものであることがわかる。
また、実施例1,2のエポキシ樹脂硬化物はTd5が半田リフロー温度(260℃)よりも高く、耐熱性に優れることが分かる。さらに、実施例1、2のエポキシ樹脂硬化物はTgが低く、30℃以上での貯蔵弾性率の変化が小さいことからも実用上好ましい。
[Evaluation results]
From the results of Table 1, the cured epoxy resins of Examples 1 and 2 obtained from the epoxy resin composition of the present invention using an alicyclic polyamine as a curing agent were compared using an aromatic polyamine as a curing agent. Compared to the cured epoxy resins of Examples 1 and 2, it can be seen that the balance of transparency (haze, YI) and flexibility (low elasticity, high elongation) is excellent.
Moreover, it turns out that Td5 is higher than solder reflow temperature (260 degreeC), and the epoxy resin hardened | cured material of Example 1, 2 is excellent in heat resistance. Further, the cured epoxy resins of Examples 1 and 2 are practically preferable because of low Tg and small change in storage elastic modulus at 30 ° C. or higher.

Claims (8)

炭素数2〜12の2価アルコールとエピハロヒドリンの反応生成物を蒸留精製して得られるジグリシジル体純度が90質量%以上で、全塩素量が0.3質量%以下の2官能脂肪族エポキシ化合物(X)と2価フェノール化合物(Y)を触媒の存在下に反応させて得られるエポキシ樹脂と、
脂環式構造を有する硬化剤と
を含有するエポキシ樹脂組成物。
A difunctional aliphatic epoxy compound having a diglycidyl purity of 90% by mass or more and a total chlorine content of 0.3% by mass or less obtained by distillation purification of a reaction product of a dihydric alcohol having 2 to 12 carbon atoms and epihalohydrin ( An epoxy resin obtained by reacting X) with a dihydric phenol compound (Y) in the presence of a catalyst;
An epoxy resin composition containing a curing agent having an alicyclic structure.
前記硬化剤が脂環式ポリアミンである請求項1に記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 1, wherein the curing agent is an alicyclic polyamine. 前記エポキシ樹脂の数平均分子量が1,000〜20,000である請求項1又は請求項2に記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 1 or 2, wherein the epoxy resin has a number average molecular weight of 1,000 to 20,000. 請求項1乃至請求項3のいずれかに記載のエポキシ樹脂組成物を硬化させてなる硬化物。   Hardened | cured material formed by hardening | curing the epoxy resin composition in any one of Claim 1 thru | or 3. 請求項4に記載の硬化物からなるシート状成形体。   The sheet-like molded object which consists of hardened | cured material of Claim 4. ヘーズが1.5%以下かつYIが6以下である請求項5に記載のシート状成形体。   The sheet-like molded product according to claim 5, wherein the haze is 1.5% or less and the YI is 6 or less. 引張伸びが350%以上である請求項5又は請求項6に記載のシート状成形体。   The sheet-like molded product according to claim 5 or 6, wherein the tensile elongation is 350% or more. Tgが30℃以下である請求項5乃至請求項7のいずれかに記載のシート状成形体。   Tg is 30 degrees C or less, The sheet-like molded object in any one of Claim 5 thru | or 7.
JP2018086569A 2018-04-27 2018-04-27 Epoxy resin composition, cured article, and sheet-like molded body Pending JP2019189798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018086569A JP2019189798A (en) 2018-04-27 2018-04-27 Epoxy resin composition, cured article, and sheet-like molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018086569A JP2019189798A (en) 2018-04-27 2018-04-27 Epoxy resin composition, cured article, and sheet-like molded body

Publications (1)

Publication Number Publication Date
JP2019189798A true JP2019189798A (en) 2019-10-31

Family

ID=68387743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018086569A Pending JP2019189798A (en) 2018-04-27 2018-04-27 Epoxy resin composition, cured article, and sheet-like molded body

Country Status (1)

Country Link
JP (1) JP2019189798A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021123030A (en) * 2020-02-05 2021-08-30 三菱ケミカル株式会社 Laminate and method for producing the same
JP2021123029A (en) * 2020-02-05 2021-08-30 三菱ケミカル株式会社 Laminate and method for producing epoxy resin sheet
US12031708B2 (en) 2021-04-16 2024-07-09 Panasonic Intellectual Property Management Co., Ltd. Elastic resin sheet having light-diffusing portion, and light-emitting sheet using same preliminary class

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320477A (en) * 2004-05-11 2005-11-17 Japan Epoxy Resin Kk Highly flexible resin and curable resin composition
JP2007002017A (en) * 2005-06-21 2007-01-11 Japan Epoxy Resin Kk Epoxy resin composition
JP2010171069A (en) * 2009-01-20 2010-08-05 Mitsubishi Chemicals Corp Epoxy resin composition for solar battery sealant and solar battery
JP2013133407A (en) * 2011-12-27 2013-07-08 Nippon Kayaku Co Ltd Epoxy resin composition for transparent circuit board, and cured material thereof
WO2014103759A1 (en) * 2012-12-28 2014-07-03 三菱瓦斯化学株式会社 Resin composition, prepreg, and film
WO2016143738A1 (en) * 2015-03-11 2016-09-15 三菱瓦斯化学株式会社 Method for producing epoxy-resin curing agent and polyamine compound to be used therein, and epoxy resin composition and epoxy-resin curing agent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320477A (en) * 2004-05-11 2005-11-17 Japan Epoxy Resin Kk Highly flexible resin and curable resin composition
JP2007002017A (en) * 2005-06-21 2007-01-11 Japan Epoxy Resin Kk Epoxy resin composition
JP2010171069A (en) * 2009-01-20 2010-08-05 Mitsubishi Chemicals Corp Epoxy resin composition for solar battery sealant and solar battery
JP2013133407A (en) * 2011-12-27 2013-07-08 Nippon Kayaku Co Ltd Epoxy resin composition for transparent circuit board, and cured material thereof
WO2014103759A1 (en) * 2012-12-28 2014-07-03 三菱瓦斯化学株式会社 Resin composition, prepreg, and film
WO2016143738A1 (en) * 2015-03-11 2016-09-15 三菱瓦斯化学株式会社 Method for producing epoxy-resin curing agent and polyamine compound to be used therein, and epoxy resin composition and epoxy-resin curing agent

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021123030A (en) * 2020-02-05 2021-08-30 三菱ケミカル株式会社 Laminate and method for producing the same
JP2021123029A (en) * 2020-02-05 2021-08-30 三菱ケミカル株式会社 Laminate and method for producing epoxy resin sheet
JP7452053B2 (en) 2020-02-05 2024-03-19 三菱ケミカル株式会社 Laminated body and its manufacturing method
US12031708B2 (en) 2021-04-16 2024-07-09 Panasonic Intellectual Property Management Co., Ltd. Elastic resin sheet having light-diffusing portion, and light-emitting sheet using same preliminary class

Similar Documents

Publication Publication Date Title
JP5754731B2 (en) Epoxy resin, method for producing epoxy resin, and use thereof
JP6575838B2 (en) Epoxy resin, epoxy resin composition containing the same, and cured product using the epoxy resin composition
JP5000053B2 (en) Liquid epoxy resin composition and cured epoxy resin
JP2019189798A (en) Epoxy resin composition, cured article, and sheet-like molded body
KR101408535B1 (en) Modified liquid epoxy resin, epoxy resin composition using the same, and cured product thereof
US12060482B2 (en) Curable resin composition, cured product, and sheet-like formed body
JP2010095727A (en) Curable epoxy resin composition and cured product
JP4670255B2 (en) Curable resin composition for electric and electronic materials, highly flexible cured product thereof
JP5569215B2 (en) Method for producing highly flexible resin
JPH07196770A (en) Epoxy resin, epoxy resin composition and its cured product
JP2004256609A (en) Epoxy group-having silicon compound, method for producing the same and thermosetting resin composition
KR20150079627A (en) Curable compositions comprising 1,3-dioxiranylcyclopentane epoxide compounds and thermosets prepared therefrom
WO2008047613A1 (en) Epoxy resin, method for producing the epoxy resin, epoxy resin composition using the epoxy resin, and cured product of the epoxy resin composition
US20120283356A9 (en) Thermosettable resin compositions
JP2017115035A (en) Thermosetting molding material, method for producing the same, and semiconductor sealing material
JP6008064B2 (en) Epoxy resin, method for producing epoxy resin, curable resin composition, cured product thereof, fiber-reinforced composite material, and molded article
JP6715249B2 (en) Epoxy resin, modified epoxy resin, epoxy resin composition and cured product thereof
JP2019052276A (en) Epoxy resin, epoxy resin composition and cured product
JP6146999B2 (en) Epoxy resin, epoxy resin composition and cured product
JP4857598B2 (en) Epoxy compound, method for producing the same, and epoxy resin composition
WO2024135713A1 (en) Epoxy resin, production method for same, curable resin composition, and cured product
JP2022076766A (en) Epoxy resin, curable resin composition, cured product, sheet, laminate and method for producing epoxy resin
JP2022170345A (en) Epoxy resin, curable resin composition, cured product, fiber-reinforced composite material, and fiber-reinforced resin molding
JP2014162854A (en) Resin composition and cured product
JP2023141768A (en) Epoxy resin, curable resin composition, cured product, and electric and electronic materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221018