JP2019179649A - マイクロ波加熱装置、マイクロ波加熱方法、及び包装食品の製造方法 - Google Patents

マイクロ波加熱装置、マイクロ波加熱方法、及び包装食品の製造方法 Download PDF

Info

Publication number
JP2019179649A
JP2019179649A JP2018067684A JP2018067684A JP2019179649A JP 2019179649 A JP2019179649 A JP 2019179649A JP 2018067684 A JP2018067684 A JP 2018067684A JP 2018067684 A JP2018067684 A JP 2018067684A JP 2019179649 A JP2019179649 A JP 2019179649A
Authority
JP
Japan
Prior art keywords
microwave
waveguide
frequency
packaged food
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018067684A
Other languages
English (en)
Other versions
JP6915785B2 (ja
Inventor
武田 安弘
Yasuhiro Takeda
安弘 武田
篤 古谷
Atsushi Furuya
篤 古谷
貴広 小山
Takahiro Koyama
貴広 小山
池田 博之
Hiroyuki Ikeda
博之 池田
尾辻 淳一
Junichi Otsuji
淳一 尾辻
秀志 小尾
Shuji Koo
秀志 小尾
山本 泰司
Taiji Yamamoto
泰司 山本
児玉 順一
Junichi Kodama
順一 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morinaga Milk Industry Co Ltd
Yamamoto Vinita Co Ltd
Original Assignee
Morinaga Milk Industry Co Ltd
Yamamoto Vinita Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morinaga Milk Industry Co Ltd, Yamamoto Vinita Co Ltd filed Critical Morinaga Milk Industry Co Ltd
Priority to JP2018067684A priority Critical patent/JP6915785B2/ja
Priority to US16/299,569 priority patent/US20190297922A1/en
Publication of JP2019179649A publication Critical patent/JP2019179649A/ja
Application granted granted Critical
Publication of JP6915785B2 publication Critical patent/JP6915785B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/005Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating using irradiation or electric treatment
    • A23L3/01Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating using irradiation or electric treatment using microwaves or dielectric heating
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/001Details of apparatus, e.g. for transport, for loading or unloading manipulation, pressure feed valves
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/015Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with pressure variation, shock, acceleration or shear stress or cavitation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/015Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with pressure variation, shock, acceleration or shear stress or cavitation
    • A23L3/0155Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with pressure variation, shock, acceleration or shear stress or cavitation using sub- or super-atmospheric pressures, or pressure variations transmitted by a liquid or gas
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/02Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating materials in packages which are progressively transported, continuously or stepwise, through the apparatus
    • A23L3/04Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating materials in packages which are progressively transported, continuously or stepwise, through the apparatus with packages on endless chain or band conveyors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B55/00Preserving, protecting or purifying packages or package contents in association with packaging
    • B65B55/02Sterilising, e.g. of complete packages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B55/00Preserving, protecting or purifying packages or package contents in association with packaging
    • B65B55/02Sterilising, e.g. of complete packages
    • B65B55/04Sterilising wrappers or receptacles prior to, or during, packaging
    • B65B55/08Sterilising wrappers or receptacles prior to, or during, packaging by irradiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/02Bends; Corners; Twists
    • H01P1/022Bends; Corners; Twists in waveguides of polygonal cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/02Bends; Corners; Twists
    • H01P1/022Bends; Corners; Twists in waveguides of polygonal cross-section
    • H01P1/025Bends; Corners; Twists in waveguides of polygonal cross-section in the E-plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • H01P5/022Transitions between lines of the same kind and shape, but with different dimensions
    • H01P5/024Transitions between lines of the same kind and shape, but with different dimensions between hollow waveguides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6402Aspects relating to the microwave cavity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6447Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
    • H05B6/645Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using temperature sensors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/705Feed lines using microwave tuning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/707Feed lines using waveguides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/78Arrangements for continuous movement of material
    • H05B6/782Arrangements for continuous movement of material wherein the material moved is food
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/06Cavity resonators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves
    • H05B2206/045Microwave disinfection, sterilization, destruction of waste...

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Abstract

【課題】低周波数側のマイクロ波による加熱をシングルモードで行うことで、装置の大型化を防止しつつ、均一加熱と高い加熱効率を得る。【解決手段】マイクロ波加熱装置1は、密封包装された包装食品PFにマイクロ波を照射して100℃以上にして加熱殺菌を行う。マイクロ波加熱装置1は、2450MHzのマイクロ波をマルチモードで包装食品PFに照射するマイクロ波照射部40と、915MHzのマイクロ波を導波管53内にてシングルモードで包装食品PFに照射するマイクロ波照射部50とを備えている。【選択図】図1

Description

本発明は、密封包装された被加熱物にマイクロ波を照射して加熱を行うマイクロ波加熱装置、方法、及びこれを利用した包装食品の製造方法に関する。
近年、レトルト食品等の包装食品に対する加熱殺菌に際して、従来の外部加熱方法による長時間の加熱に起因する食品の鮮度劣化、栄養分、風味、色調等の品質低下などを考慮して、短時間で殺菌処理を施すべくマイクロ波による誘電加熱を利用した加熱殺菌装置が知られている。マイクロ波を利用することで内部加熱が可能となり、殺菌品質の向上が見込まれる。一方、マイクロ波は、使用周波数により被加熱物に対する浸透深さ(入射電界強度が1/eになる深さ。なお、1/2になるものを電力半減深度という。)が異なることから、複数周波数のマイクロ波を利用して加熱を行う技術が提案されている。
例えば特許文献1には、加熱対象の密封包装食品の大きさに対して充分に広い空間を有する第1、第2加熱処理室を設け、これらの加熱処理室内に配置された搬送ライン上で前記食品を搬送しつつ、導波管から周波数500〜1000MHzのマイクロ波の照射を受け、次に周波数1000〜3000MHzのマイクロ波の照射を受けて、食品の全体を加熱する加熱加圧殺菌装置が記載されている。
特許文献2には、915MHzマグネトロン及び915MHz導波管と、2450MHzマグネトロン及び2450MHz導波管とを備えると共に、被加熱物を収納可能な充分に広い内部空間を有し、伝送された915MHzと2450MHzのマイクロ波が照射される金属加熱箱を備えたハイブリッド電子レンジとしてのマイクロ波加熱装置が記載されている。なお、水の電力半減深度は、25℃の水の場合、915MHzで9cm、2450MHzで1.3cm、85℃の水の場合、915MHzで24cm、2450MHzで3.9cmと知られている。
特開1995−255388号公報 特開2015−118781号公報
特許文献1,2に記載されたマイクロ波加熱装置は、高低2周波数のマイクロ波を適用することで電力半減深度を考慮して全体をより均一加熱せんとするものであるが、各マイクロ波による加熱処理は、いずれも各導波管から照射されたマイクロ波を室内で多重反射させる、いわゆるマルチモードによるものであるため、低周波数側の導波管を収容する収容室が大型化してしまうとの問題がある。また、マルチモードによる加熱では効率的に一定の限界がある。さらに、特許文献2では、大型の金属加熱箱を採用することが困難なため、処理量が要求される業務用への適応には一定の限界がある。
本発明は、上記に鑑みてなされたもので、被加熱物に対し、高周波数側のマイクロ波による加熱をマルチモードで、かつ低周波数側のマイクロ波による加熱をシングルモードで行うマイクロ波加熱装置及び方法を提供するものである。また、本発明は、このようなマイクロ波加熱装置を利用した包装食品の製造方法を提供するものである。
本発明に係るマイクロ波加熱装置は、密封包装された物品にマイクロ波を照射して加熱を行うマイクロ波加熱装置において、第1の周波数のマイクロ波をマルチモードで前記物品に照射する第1のマイクロ波照射部と、第1の周波数より低い第2の周波数のマイクロ波をシングルモードで前記物品に照射する第2のマイクロ波照射部とを備えたものである。
また、本発明に係るマイクロ波加熱方法は、密封包装された物品にマイクロ波を照射して加熱を行うマイクロ波加熱方法において、第1の周波数のマイクロ波をマルチモードで前記物品に照射する第1のマイクロ波照射工程と、第1の周波数より低い第2の周波数のマイクロ波をシングルモードで前記物品に照射する第2のマイクロ波照射工程とを備えたものである。
また、本発明の包装食品の製造方法は、密封包装された食品にマイクロ波を照射して加熱殺菌を行う加熱殺菌工程を含む包装食品の製造方法において、前記加熱殺菌工程が、第1の周波数のマイクロ波をマルチモードで前記包装食品に照射する第1のマイクロ波照射工程と、第1の周波数より低い第2の周波数のマイクロ波をシングルモードで前記包装食品に照射する第2のマイクロ波照射工程とを含むというものである。
これらの発明によれば、密封包装された物品に対して、第1の周波数のマイクロ波がマルチモードで照射され、かつ第1の周波数より低い第2の周波数のマイクロ波がシングルモードで照射される。従って、第1、第2の周波数のマイクロ波の照射によって電力半減深度の異なる部位がそれぞれ主体的に急速加熱され、全体として加熱ムラのない均一加熱が実現される。また、波長の長い方の第2の周波数のマイクロ波で導波管内でのシングルモードによる照射を行うことで、マルチモードで構成した場合に比して小型化、効率化が図れる。
本発明は、前記物品を収容する内部空間を有する圧力容器と、前記圧力容器の内部空間を1気圧以上に加圧する加圧部とを備え、前記圧力容器は、前記第1のマイクロ波照射部を収容する第1照射室と、前記第2のマイクロ波照射部を備えた第2照射室とを備えたものである。この構成によれば、第1照射室及び第2照射室が1気圧以上の、すなわち、密封包装された内部の温度が加熱によって上昇した時の飽和水蒸気圧に略等しいなどの対応する圧力に加圧可能であるため、加熱によって包装内圧が上昇しても、包装が破裂、破損することが抑止される。
本発明は、前記第1照射室は、前記第1の周波数に対応する空間波長より広く、マイクロ波の多重反射を起こす金属壁で囲繞された空間を有し、前記第2照射室は、前記第2の周波数の定在波を形成する導波管内の空間である。この構成によれば、第1照射室では多重反射が起き易くマルチモードが効率的に行われる。一方、第2照射室では導波管内でのシングルモードによる照射が可能となる。
本発明は、前記第2照射室を構成する前記導波管は、軸方向の途中に形成された屈曲部と、前記屈曲部から軸方向の下流端に設けられた短絡板とを有し、前記屈曲部の外周側の壁及び前記短絡板の少なくとも一方であって、前記導波管の横断面の長辺方向における中央部に、開口が穿設されているものである。この構成によれば、開口を介して物品が搬入、搬出されることで、屈曲部より下流側の下流端までの導波管内が第2照射室として作用する。また、導波管の横断面の長辺方向における中央部に、開口を設けることで、電界強度が最大となる領域を選んで物品を位置させることができ、効率的な加熱が可能になる。
本発明は、前記開口の長尺方向の寸法は、前記開口が形成されていない場合に発生する電界の強度に対して100%〜50%となるときの寸法であることが好ましい。この構成によれば、開口がない場合に比して少なくとも50%以上の強度の電界が得られるので、物品に対する効率的な加熱処理が維持可能となる。
本発明は、前記第2照射室には、前記開口を通して前記導波管内で軸方向に沿って前記物品を搬送するコンベア部が敷設されているものである。この構成によれば、物品は第2照射室において自動的に搬送される。
本発明は、前記第1のマイクロ波照射部は、複数のマイクロ波照射口を有するものである。この構成によれば、多重反射によるマルチモードがより効果的となる。
本発明は、前記第1、第2のマイクロ波照射部は、前記圧力容器の側壁を介してマイクロ波を伝送する導波管部が接続されており、前記導波管部は前記圧力容器の内と外とを遮蔽する窓部を有しており、前記窓部は誘電体仕切板を含み、前記誘電体仕切板の材質はフッ素樹脂であるものである。この構成によれば、フッ素樹脂は強化ガラスに比してマイクロ波の透過率が高いため、マイクロ波をより確実に内部に透過させて照射することが可能となる。
本発明は、前記第1、第2のマイクロ波照射部を順番に動作させる制御部を備えている。この構成によれば、マイクロ波の照射は、同時ではなく、第1、第2のマイクロ波照射の順で行われ、あるいはその逆の順で行われてもよい。
また、本発明は、前記第2のマイクロ波照射工程は、前記第2の周波数の定在波が形成される導波管内の空間であって、前記導波管の横断面の長辺方向の中央部を前記導波管の軸方向に延長して形成される空間内で行うものである。この構成によれば、電界強度が最大となる空間を選んで物品を位置させることで、効率的な加熱が可能になる。
一方、本発明の包装食品の製造方法は、包装食品を加熱殺菌するにあたって、以上のマイクロ波加熱装置、マイクロ波加熱方法を採用したものである。
本発明の包装食品の製造方法は、まず容器に食材を充填し密封する充填工程を行う。この充填工程を経たあとは、食材は包装食品となる。例えば、容器が容器本体と蓋体とで構成されている成形容器である場合には、まず食材を容器本体に充填し、ついで容器本体に蓋体をかぶせて密封すれば包装食品となる。容器が平袋やスタンディングパウチのような袋状である場合にはピロー包装でもよい。容器の形態としては、袋状、皿状、どんぶり状、お椀状、ワイングラスのような台付き容器状等、いかなる形状であってもよい。容器の材質は、前記したようにマイクロ波透過性材を採用することが好ましい。この場合、容器の材質は、気密性とともに遮光性を有するものが好ましい。なお、容器が容器本体と蓋体とで構成されている場合には、蓋体のほうもマイクロ波透過性材を採用することが好ましい。
充填工程を経た包装食品に対して加熱殺菌工程が行われる。加熱殺菌工程はマイクロ波の照射によって行なわれるが、この加熱殺菌工程には、前記した第1のマイクロ波照射工程と第2のマイクロ波照射工程とが含まれる。なお、加熱殺菌工程には、マイクロ波照射以外の加熱方法を併用することも可能であり、例えば、第1のマイクロ波照射工程を行う前に蒸気や温湯等によって包装食品を予備的に加熱する予備加熱工程を追加してもよい。
加熱殺菌工程の条件としては、例えば、食材がpH4.6を超えかつ水分活性が0.94を超える場合には、包装食品の中心部の温度を120℃で4分間加熱する条件か、これと同等以上の効力を有する条件に設定することが好ましい。
加熱殺菌工程を行った後は、包装食品を冷却する冷却工程を行う。以上のような包装食品の製造方法に適用できる食材としては、例えば、主菜、副菜、総菜、主食、ゼリー、飲料等いかなる食材でも良い。例えば、食材としては、カレー、ハヤシ、パスタソース、麻婆のような中華料理のもと類、混ぜごはんのもと類、どんぶりもののもと類、シチュー、スープ、和風汁物、粥、ごはん等の米飯類、ぜんざい、ハンバーグステーキ、ミートボール、食肉味付、食肉油漬け、魚肉味付、魚肉油漬け等を例示することができる。
また、本発明の包装食品の製造方法によって製造される包装食品としては、いかなる食品でもよいが、とくに高齢者向けの包装食品が好適であり、例えば、介護食、流動食、病態向け特別食、栄養補助食、嚥下困難者向けのとろみ調整食、機能性食品等が好適である。
本発明によれば、低周波数側のマイクロ波による加熱をシングルモードで行うことで、装置の大型化を防止しつつ、均一加熱と高い加熱効率を得ることができる。
本発明に係るマイクロ波加熱装置の一実施形態を示す概略側面図である。 マイクロ波周波数と電力半減深度との関係を説明する図で、(A)は高周波数による加熱の場合、(B)は低周波数による加熱の場合、(C)は高低周波数の両方を施した場合の説明図である。 導波管を圧力容器内に導入する窓部の構造の一例を示す説明図で、(A)は平面図、(B)は縦断面図である。 低周波数側のマイクロ波を伝送する導波管の一例を示す構造図で、(A)は導波管の概略側面図、(B)はTE10モードの電界、磁界ベクトルを示す図、(C)は(A)を左方から見た図、(D)は短絡板の斜視図である。 フィーダの一例を示すロータリーフィーダの概略平面図である。 マイクロ波加熱装置の一例を示すブロック図である。 低周波数側のマイクロ波を伝送する導波管の他の例を示す構造図で、(A)は圧力容器内の部分の導波管の概略斜視図、(B)は導波管を圧力容器内に導入する窓部の構造の一例を示す説明図、(C)は導波管の長辺方向から見た図、(D)は(A)のC−C’矢視図である。 低周波数側の915MHzにおける導波管の横断面の長辺方向の大中小の各寸法と、開口が穿設されていない場合の定在波の電界強度との関係を示す試験結果の図表で、(A)は326mm(自由空間波長λoに対応)の場合、(AA)は(A)における電界強度、(B)は247.6mm(λo/2〜λoの中間の規格「WRI−9」)の場合、(BB)は(B)における電界強度、(C)は164mm(λoの1/2に対応)の場合、(CC)は(C)における電界強度の図である。 低周波数側の915MHzにおける導波管の横断面の長辺方向が大寸法の場合において、開口の同方向における寸法と定在波の電界強度との関係を示す試験結果の図表で、(A)は開口が125mmの場合、(AA)は(A)における電界強度、(B)は開口が150mmの場合、(BB)は(B)における電界強度、(C)は開口が165mmの場合、(CC)は(C)における電界強度の図である。 低周波数側の915MHzにおける導波管の横断面の長辺方向が中寸法の場合において、開口の同方向における寸法と定在波の電界強度との関係を示す試験結果の図表で、(A)は開口が25mmの場合、(AA)は(A)における電界強度、(B)は開口が50mmの場合、(BB)は(B)における電界強度、(C)は開口が75mmの場合、(CC)は(C)における電界強度の図である。 低周波数側の915MHzにおける導波管の横断面の長辺方向が中寸法の場合において、開口の同方向における寸法と定在波の電界強度との関係を示す試験結果の図表で、(A)は開口が100mmの場合、(AA)は(A)における電界強度、(B)は開口が150mmの場合、(BB)は(B)における電界強度、(C)は開口が165mmの場合、(CC)は(C)における電界強度の図である。 低周波数側の915MHzにおける導波管の横断面の長辺方向が小寸法の場合において、開口の同方向における寸法と定在波の電界強度との関係を示す試験結果の図表で、(A)は開口が25mmの場合、(AA)は(A)における電界強度、(B)は開口が150mmの場合、(BB)は(B)における電界強度、(C)は開口が164mm(全開)の場合、(CC)は(C)における電界強度の図である。
図1は、本発明に係るマイクロ波加熱装置の一実施形態を示す概略側面図である。図1において、マイクロ波加熱装置1は、密封された被加熱物としての包装食品PFに対して加熱処理を施す圧力容器10と、図1の左右側となる上流側と下流側にそれぞれ連接された、包装食品PFの搬入、搬出を行うフィーダ30とを備えている。
圧力容器10は、上下流方向に長尺の筒状、例えば方形の筒状体をなし、常圧以上の耐圧性を有する金属製で構成されている。包装食品PFに対する加熱処理は、確実な殺菌性能(滅菌)を発揮するべく、包装食品PFの内部温度を110℃〜130℃に上昇させる必要があり、常圧空間では、加熱によって内部の含有水分が蒸発して高圧となって包装が破裂してしまう可能性がある。そのために、圧力容器10を用いて、高い気圧環境下(例えば123℃の場合、0.13MPa以上、例えば0.2MPa)で加熱処理を実行し、前記包装の破損を防止している。
圧力容器10の内部には、上下流方向に複数の仕切り壁11が配置されて、上下流方向に実質的に区分けされた複数の処理室が形成され、また、上下流方向に沿って搬送手段、例えばベルトコンベア20が配設されている。仕切り壁11は、好ましくは板状の金属製であり、また、本実施形態では、高さ方向の一部分に包装食品PFが通過する窓を備えている。
ベルトコンベア20は、複数のローラ21に掛け渡されて、上下流方向で周回可能に張設されている。ローラ21のうちの1つローラの回転軸を圧力容器10外に延設するなどし、その回転軸に、搬送駆動部としてのモータ22の出力軸を連結(噛合)させて、回転駆動力を外部から伝達可能にしている。
密封包装された被加熱物としての包装食品PFは、モータ22によってベルトコンベア20上を所定の速度で、あるいは間欠送りで、矢印に示すように、図1の左方から右方に搬送される。包装食品PFは、上流のフィーダ30を介して搬入され、各仕切り壁11の窓を通過した後、下流のフィーダ30を介して搬出される。包装食品PFは、例えばプラスチック等のマイクロ波透過性材の包装材を有し、内部に食材が充填されている。最近では、種々の食材が提供されるようになっており、かかる包装食品について、包装後に食品と容器とを共に加熱殺菌するようにしている。食材としては、固形食品、固液食品、高粘度食品、ペースト状食品等を含む。また、包装内にヘッドスペースを有するものにも適用可能である。
圧力容器10は、上流側から仕切り壁11で実質的に仕切られたマイクロ波照射部40、マイクロ波照射部50、恒温部60及び冷却部70を有する。また、圧力容器10の適所には、後述するように外部の各部材と連通する窓部が必要な個数形成され、これら窓部を内外連結用のコネクタとして適用している。なお、図1では、最上流にマイクロ波照射部40が配設されているが、フィーダ30による搬入領域に、蒸気ヒータ等を利用して所要温度まで事前加熱を行う予熱部を介在させてもよい。
図1(B)に示すように、包装食品PFの内部温度は、第1の周波数でのマイクロ波照射部40、第2の周波数でのマイクロ波照射部50、恒温部60及び冷却部70で調整される。すなわち、包装食品PFの内部温度は、マイクロ波照射部40で常温から内部加熱によって、マイクロ波の周波数に応じた部位が主に急速に上昇して殺菌温度(110〜130℃)に達する。次いで、マイクロ波照射部50で、マイクロ波の周波数に応じた部位も主に加熱されて殺菌温度とされる。図中、Trは温度上昇が早い部位の温度変化を示し、Tsは温度上昇が遅い部位の温度変化を示す。続いて、恒温部60で滅菌のための所要時間だけ温度が保持される。そして、冷却部70で比較的短時間で内部温度が100℃未満に冷まされ、外部に出しても包装が破損することがなくなる。
マイクロ波照射部40は、第1の周波数、例えば2450MHzのマイクロ波を包装食品PFに照射する。マイクロ波照射部40は、2450MHzのマイクロ波の発振を行う発振器、例えばマグネトロン及びマグネトロンを駆動させる各回路部を備えた複数台のマイクロ波発振部41、気密性を有する窓部42、各マイクロ波発振部41に対応する2450MHzのマイクロ波を伝送する例えば方形状の導波管部43、及び各導波管部43先端のマイクロ波の照射を行う開口端であるホーン部44を少なくとも備えている。マイクロ波照射部40は、2450MHzのマイクロ波を用いて、電力半減深度が相対的に浅い、すなわち包装食品PFの周囲側を主体に加熱する。
浸透深さは、図2に示している。図2は、マイクロ波周波数と電力半減深度との関係を説明する図で、(A)は高周波数(例えば2450MHz)による加熱の場合、(B)は低周波数(例えば915MHz)による加熱の場合、(C)は高低周波数の両方を施した場合の説明図である。図2(A)に示すように、直径88mmの寒天からなる試料に2450MHzを照射した場合、電力半減深度が相対的に浅いため、試料の主に周囲部分が加熱、すなわち白色変化している。一方、図2(B)に示すように、同形の寒天からなる試料に915MHzを照射した場合、電力半減深度が相対的に深いため、試料の主に中心部分が加熱されている。
そして、順番を問わず両方の周波数のマイクロ波を照射した場合には、図2(C)に示すように、中心及び周囲の双方が加熱され、全体に対して加熱ムラのない、均一加熱が実現されていることが分かる。加熱殺菌の場合、加熱状態が均一でなく、一部に殺菌温度に達していない部位があるとか、殺菌温度での保持時間が不足したような場合に、内部に僅かに菌が残ると、その後に菌が繁殖してしまうことが考えられるため、加熱殺菌では完全な滅菌処理が要求される。従って、高低2周波数のマイクロ波を効果的に適用した短時間での処理ができるというメリット及び均一加熱が望まれる。
導波管部43は、1又は必要数が採用され、本実施形態では下側からベルトコンベア20上の包装食品PFに向けてマイクロ波が照射される。マイクロ波照射部40の処理室は、2450MHzの自由空間波長122mmに比して上下方向の寸法(例えば数百mm)、上下流方向の寸法(例えば千数百mm)がそれぞれ数倍程度と広く、これによって処理室内でマイクロ波が圧力容器10の側壁や仕切り壁11で反射乃至は多重反射してマルチモードでの照射が実現される。
また、マイクロ波照射部40の処理室内の適所に金属製の回転ファン(スターラファン)を有する撹拌部45を備え、これを回転させることで、ホーン部44から照射されたマイクロ波を処理室内で、より撹拌させてマルチモードでの加熱殺菌処理効率を高めてもよい。なお、マイクロ波発振部41で発生したマイクロ波を圧力容器10内に導く窓部42の構成としては、導波管のまま圧力容器10を通過させる態様(図7で後述)を採用している。
マイクロ波照射部50は、第1の周波数より低い第2の周波数、例えば915MHzのマイクロ波を包装食品PFに照射する。マイクロ波照射部50は、915MHzのマイクロ波の発振を行う発振器、例えばマグネトロン及びマグネトロンを駆動させる各回路部を備えたマイクロ波発振部51、915MHzのマイクロ波を伝送する例えば方形状の導波管53、及び導波管53の下流端に設けられた短絡部材である短絡板54を少なくとも備えている。マイクロ波照射部50は、915MHzのマイクロ波を用いて、電力半減深度が相対的に深い、すなわち包装食品PFの中心側を主体に加熱する。
導波管53は、本実施形態では窓部52を貫通して下方に延設され、その途中で90度だけ円弧状にされた屈曲部を経て下流側に延設された形状を有する。導波管53の軸方向寸法は、終端である短絡板54で反射して内部軸方向に定在波が発生するように設定されている。なお、屈曲部の形状は円弧のほか、所定の角度、好ましくは45度傾斜した中継用の導波管で連結されてもよい。
ここで、導波管部43、導波管53を貫通する窓部42,52の構造の一例を図3で説明する。図3は、例えば導波管53を圧力容器10内に導入する窓部の構造の一例を示す説明図、(A)は平面図、(B)は縦断面図である。なお、図4に示す導波管53は横断面の長辺を湾曲して形成したものである。
窓部52は、一対の円柱状の金属製のフランジ521と、気密用のOリング等のパッキン522と、一対のフランジ521の間に介設される誘電体仕切板523とを含む。一対のフランジ521は、外径側の周方向に等間隔で複数の締結孔521aが設けられ、ビス等の締結具で締結される。また、一対のフランジ521は、導波管53の横断面と一致する形状を有する貫通孔521bが、導波管の一部を構成するものとして穿設されている。
さらに、一対のフランジ521は、対向する面に貫通孔521bに対応し、かつ大きめの形状をした凹部521cが穿設されている。凹部521cには所定厚を有する誘電体仕切板523が挟み込まれている。誘電体仕切板523は、テフロン(登録商標)等のフッ素樹脂からなり、その他、ポリメチルペンテン(TPX:登録商標)、アルミナ等、耐圧性を備え、かつマイクロ波透過性を有する素材が採用可能である。なお、フランジ521の一方には、導波管53の横断面に沿った形状の溝521dが穿設されており、この溝521dにパッキン522が圧入されている。
導波管53の横断面寸法は、例えば図4(D)に例示しているが、一例として、長辺方向及び短辺方向が、247.6mm×123.8mmである。また、導波管53には、互いに対向する、屈曲部の外周側面531(図4(A)参照)と短絡板54とに包装食品PFの搬入、搬出用の開口55,56が穿設されている(図4(C)、(D)参照)。開口55,56は、同一サイズで、図4(A)に示すように、ベルトコンベア20及びベルトコンベア20上の包装食品PFが少なくとも通過可能な寸法に設定されている。
図4は、低周波数側のマイクロ波を伝送する導波管の一例を示す構造図で、(A)は導波管の概略側面図、(B)はTE10モードの電界、磁界ベクトルを示す図、(C)は(A)を左方から見た図、(D)は短絡板の斜視図である。図4(B)に示すように、電磁波の電界分布Exは、長辺方向の中央で最大強度となり、上下端で最少となる。磁界分布は電界に直交している。なお、軸方向における電界強度分布は、図では示していないが、自由空間波長周期でサイン(sin)波形を描く。従って、包装食品PFを連続的に定速搬送する他、電界強度分布に合わせたピッチで配置してもよく、あるいは電界強度分布のピッチに対応させて間欠送りすることで効果的な加熱が可能となる。
開口55,56は、電界強度が最高となる導波管53の横断面の長辺方向(高さ方向)の中央部に穿設されている。そして、ベルトコンベア20は、最大電界強度となる高さと一致する位置で、包装食品PFを開口55から開口56に向けて移動するように設計されている。かかる構成により、マイクロ波照射部50の処理室では、導波管53の内部で915MHzのマイクロ波の定在波によってシングルモードでのマイクロ波照射が高い効率で行われる。従って、シングルモードを適用することで、マルチモード照射用の広い多重反射空間が不要となるため、十分な小型化が可能となる。なお、図4(D)に示すように、導波管53の横断面寸法は、915MHzの標準である247.6mm×123.8mmに限られず、(略165〜330)mm×(略82〜165)mmの範囲で、かつTE10モードが形成、維持される制約内で適宜設計してもよい。導波管53の横断面の長辺方向のサイズは、使用周波数(この例では915MHz)の遮断波長(自由空間波長/2)以上で、基本モードTE10のみを伝送する自由空間波長以下であることが好ましい。なお、自由空間波長を超えても、発生する高次モード成分が低レベルである範囲でも適用可能である。
恒温部60は、マイクロ波照射部40,50で殺菌温度まで昇温させた状態を所定時間持続させて滅菌を確保するものである。恒温部60は、例えば蒸気発生部61と、圧力容器10内に配管されたスチームパイプ62と、スチームパイプ62の表面熱を処理室内に熱風として送風するファン63とを備えている。これらは、ベルトコンベア20の上下側に配置してもよい。持続時間は、包装食品PFの内部温度が高い程、短時間となるように設定されている。平均的には1〜数分程度であってもよい。なお、恒温部60の処理室を高温蒸気の雰囲気としたり、電気ヒータで高温雰囲気としたりして、包装食品PFを高温保持させてもよい。
冷却部70は、恒温処理後の包装食品PFの内部を少なくとも100℃未満に冷ましてフィーダ30に送出するものである。冷却部70は、冷水生成部71と、圧力容器10を貫通するコネクタ72と、配管73とを備えている。配管73の下端はベルトコンベア20の上方で下方に向けて配置され、包装食品PFに冷水の散水乃至は噴霧を行う。なお、冷却部70の処理室を冷気の雰囲気としたり、あるいは包装食品PFをそのまま冷却貯水タンクに浸漬したりして、包装食品PFを冷却させる態様としてもよい。なお、蒸気や冷却水は必要時点、例えば定期的に又は休止期間に使用済みの水分が抜かれる。
圧力調整部81は、図略のポンプ等を用い、コネクタ82を経て圧力容器10内の圧力が滅菌温度における飽和水蒸気圧に対応乃至は等しい圧力となるように調整する。圧力調整は、例えば図略の温度センサ乃至圧力センサを利用することで、自動あるいはマニュアルで圧力が設定される。なお、滅菌温度が予め設定されている態様では、当該温度における包装食品PF内の飽和水蒸気圧に対応した圧力となるよう設定制御されてもよい。また、加圧のための空気は滅菌温度程度に加熱された圧縮空気を用いてもよい。
また、本実施形態では、ベルトコンベア20を圧力容器10の全長に亘って1本で設置したが、処理室単位に設けてもよいし、あるいはマイクロ波照射部40,50とそれ以外の処理室とに分けてもよい。
図5は、フィーダ30の一例を示すロータリーフィーダの概略平面図である。フィーダ30は、包装食品PFを圧力容器10に対し搬入、搬出するもので、種々の態様が採用可能である。フィーダ30は、必要に応じて採用されてよい。なお、本実施形態に係るフィーダ30は、本出願人の出願に係るロータリーフィーダ(特許第2885305号)が一例として適用可能である。
フィーダ30は、上面が水平な基台301(図1参照)上に、軸32で回転可能に支持された、円柱形状のロータリ部31を備える。ロータリ部31の高さ方向寸法は、包装食品PFの高さと同等か高めに設定されている。ロータリ部31の周方向の一方向(図5の右方)は、圧力容器10の導入口12と連接されている。ロータリ部31の外周部には、1つ又は同一形状をなす複数の、本実施形態では4個の凹部33が周方向均等位置に穿設されている。凹部33は、包装食品PFを一時的に収容するサイズを有し、例えば円弧状とされている。なお、凹部33の形状は、包装食品PFの形状に合わせてもよく、楕円、紡錘状、多角形状も採用可能である。
摺接部302は、ロータリ部31の外周と同一の曲率を有する壁面を有し、ロータリ部31の外周とシール状で摺接して配置されている。摺接部302は、凹部33に包装食品PFが収容された直後から圧力容器10内に臨むまでのロータリ部31の回転期間中、包装食品PFを収容した凹部33を外部に対して気密にする。なお、ロータリ部31は、図略の駆動源、例えばモータによって定速で、あるいは凹部33と圧力容器10とが対面する所定の角度ピッチで間欠的に回転される。
軸32と各凹部33との間には、押し出しロッド部34が設けられている。押し出しロッド部34は、ロータリ部31の径方向に形成された空間内に内装され、径方向に進退する押し出し用ロッドで包装食品PFを圧力容器10側に押し出す(受け渡す)。押し出し用ロッドは、螺設されたバネの圧縮付勢力と、圧縮付勢力に抗する径外方向への機械力とによって凹部33への進退を可能にされている。なお、機械力は、図略の駆動源を利用して、圧力容器10と対面する回転位置で押し出し動作をさせればよく、あるいはマニュアルでロータリ部31の回転操作も含めて、押し出し操作を行ってもよい。
また、ロータリ部31は、押し出しロッド部34を必須とせず、例えばロータリ部31を包装食品PFの移送方向に傾斜して配置して、導入側では傾斜に沿って自重で摺動して凹部33に進入させ、導出側では開放されると自重で摺動してベルトコンベア20上に搬出させる態様でもよい。また、自重を利用して移動、落下などさせる態様としては、外気側と圧力容器10内とを連通させないように、上下方向の通路に、交互に開閉を行って物の間欠移動を行う二重シャッタ方式を採用してもよい。
図6は、マイクロ波加熱装置の一例を示すブロック図である。マイクロ波加熱装置1は、各部の動作を制御する、コンピュータで構成される制御部100を備えている。制御部100には、加熱殺菌処理を実行する動作プログラム及び処理に必要なデータを記憶する記憶部100a、外部から操作可能な操作部111が接続されている。モータ22、…は搬送用で、ベルトコンベア20の周回動作、フィーダ30の駆動用、その他のモータを含む。
制御部100は、圧力容器10内の圧力を検出する圧力センサ83及び温度センサ91の検出結果に基づいて動作プログラムをコンピュータで実行することによって、搬送のための各モータの駆動を制御する搬送制御部101、周波数f1のマイクロ波による照射制御を行う加熱制御部102、周波数f2のマイクロ波による照射制御を行う加熱制御部103、圧力容器10内の空気圧を調整する圧力制御部104、及び図略の計時用の内部タイマとして機能する。加熱制御部102、加熱制御部103は、被加熱殺菌物の種類等に応じて、予め設定されている加熱条件で動作処理される。
整合部411,511は、インピーダンスの変化を電気的に検出する検出回路を含み、包装食品PFの加熱状況に応じたインピーダンスの変化、マイクロ波発振部41,51からマイクロ波照射端までの導波管等の立体回路部の不整合に起因するインピーダンスの変化に対応してマッチング動作を行うものである。
圧力容器10内の各処理室は、ベルトコンベア20の設定搬送速度に応じて、それぞれの処理時間を考慮した上下流方向の長さ寸法が設定されていてもよい。また、ベルトコンベア20が処理室毎に設けられる態様では、各処理室の長さ寸法は、それぞれの処理時間あるいは各処理室のベルトコンベア20の搬送速度を調整することで適宜対応することができる。
以上の実施形態では、導波管53は、図1、図4に示すように、横断面の長辺方向に屈曲させた構造で説明した。これに対し、図7は、横断面の短辺方向に屈曲させた他の例を示す構造図である。図7において、(A)は圧力容器内の部分の導波管の概略斜視図、(B)は導波管を圧力容器内に導入する窓部の構造の一例を示す説明図、(C)は導波管の長辺方向から見た図、(D)は(A)のC−C’矢視図である。
図7(A)に示すように、低周波数側の導波管153は長辺方向が上下方向に一致し、水平面で湾曲されている。この構成では屈曲部の曲率が図4の場合に比して小さくできる分、小型化が図れる。また、図7(C)、(D)に示すように、開口155が導波管の屈曲部の外周側1530に、開口156が短絡板154に穿設されている。開口155,156は、図7(A)、(D)に示すように、横断面の長辺方向の中央線O―O’に対して所定の寸法を有して穿設されている。好ましくは、中央線O―O’に対して上下等寸法に設定される。
また、図7(B)は導波管153の窓部152の一例を示している。窓部152の構成は、図3と基本的に同様な構造を有するもので、また、窓部42も同様であってよく、さらに、図1、図4の実施形態においても同様の構造を採用可能である。
窓部152は、圧力容器10の適所に穿設された孔13と、孔13を囲繞する環状をなし、圧力容器10の外面に溶接等された金属フランジ131と、導波管153の、本実施形態では両端に形成された金属フランジ1531,1532と、金属フランジ131,1531間に挟み込まれた、前記したフッ素樹脂等のマイクロ波透過性を有する誘電体仕切板1523とを含む。金属フランジ1531,1532は導波管153の横断面と同一形状の孔が穿設されている。また、金属フランジ131,1531を圧接して連結することで、導波管153の横断面全面に亘って誘電体仕切板1523が介設される。さらに、誘電体仕切板1523と金属フランジ131間には環状の溝が形成されており、この溝にパッキン1522が圧入されている。これらにより、導波管153内を経由してマイクロ波を伝送可能にする一方、圧力容器10の内外の気密性を確保している。
図8は、低周波数側の915MHzにおける導波管の横断面の長辺方向の大中小の各寸法と、開口が穿設されていない場合の定在波の電界強度との関係を示す試験結果の図表である。
(A)に示す326mm(自由空間波長λoに対応)の場合、(AA)に示すように、最大電界強度は13000(V/m)である。
(B)に示す247.6mm(λo/2〜λoの中間の規格「WRI−9」)の場合、(BB)に示すように、最大電界強度は、16000(V/m)である。
(C)に示す164mm(λoの1/2に対応)の場合、対面壁面間の距離が短い分、(CC)に示すように、最大電界強度は85000(V/m)と高い。この場合、915MHzの基本モードの発生限界であり、波長が4000(mm)となっている。
以下、図9〜図12に示す開口を有する場合の各種の試験結果を用いて、図8に示す開口が形成されていない場合の(同じ入力電力下での)電界強度との比率を検討する。なお、各図における開口は、中央線O−O’の上下に等寸法で形成されている。
図9は、低周波数側の915MHzにおける導波管の横断面の長辺方向が大寸法の場合において、開口の同方向における寸法と定在波の電界強度との関係を示す試験結果の図表である。
(A)に示す開口が125mmの場合、(AA)に示すように最大電界強度は、13000(V/m)である。従って、開口がない場合との比較では、13000(V/m)/13000(V/m)であり、略100%となる。
(B)に示す開口が150mmの場合、(BB)に示すように最大電界強度は、13000(V/m)である。従って、開口がない場合との比較では、13000(V/m)/13000(V/m)であり、略100%となる。
(C)に示す開口が165mmの場合、(CC)に示すように最大電界強度は、5500(V/m)である。従って、開口がない場合との比較では、5500(V/m)/13000(V/m)であり、42%となって不適である。
シングルモードにおける効率的な加熱の観点から、開口がない場合に比して最大電界強度が100〜50%となる開口寸法が好ましい。長辺方向寸法326mmに対して150mmの開口を形成しても、最大電界強度の比率が略100%であるため、比較的嵩のある包装食品PFにも適用できる。
図10、図11は、低周波数側の915MHzにおける導波管の横断面の長辺方向が中寸法の場合において、開口の同方向における寸法と定在波の電界強度との関係を示す試験結果の図表である。
図10(A)に示す開口が25mmの場合、(AA)に示すように最大電界強度は、16000(V/m)である。従って、開口がない場合との比較では、16000(V/m)/16000(V/m)であり、略100%となる。
図10(B)に示す開口が50mmの場合、(BB)に示すように最大電界強度は、16000(V/m)である。従って、開口がない場合との比較では、16000(V/m)/16000(V/m)であり、略100%となる。
図10(C)に示す開口が75mmの場合、(CC)に示すように最大電界強度は、16000(V/m)である。従って、開口がない場合との比較では、16000(V/m)/16000(V/m)であり、略100%となる。
図11(A)に示す開口が100mmの場合、(AA)に示すように最大電界強度は、15000(V/m)である。従って、開口がない場合との比較では、15000(V/m)/16000(V/m)であり、94%となる。
図11(B)に示す開口が150mmの場合、(BB)に示すように最大電界強度は、13000(V/m)である。従って、開口がない場合との比較では、13000(V/m)/16000(V/m)であり、81%となる。
図11(C)に示す開口が165mmの場合、(CC)に示すように最大電界強度は、9000(V/m)である。従って、開口がない場合との比較では、9000(V/m)/16000(V/m)であり、56%となる。
長辺方向寸法247.6mmに対して150mmの開口を形成しても、最大電界強度の比率が81%となるので、比較的嵩のある包装食品PFにも適用できる。さらに、図11に示すように、長辺方向寸法247.6mmの場合には、165mmの開口を形成しても、最大電界強度の比率が56%、すなわち50%を超えているため、より嵩のある包装食品PFにも適用できる。
図12は、低周波数側の915MHzにおける導波管の横断面の長辺方向が小寸法の場合において、開口の同方向における寸法と定在波の電界強度との関係を示す試験結果の図表である。
(A)に示す開口が25mmの場合、(AA)に示すように最大電界強度の比率は略90%程度である。
(B)に示す開口が150mmの場合、(BB)に示すように最大電界強度の比率は略90%程度である。
(C)に示す開口が164mm、すなわち全開の場合、(CC)に示すように最大電界強度は、35000(V/m)であり、開口がない場合との比較では、35000(V/m)/85000(V/m)であり、24%と低下する。
このように、図12によれば、開口は導波管のほぼ全開に近い寸法(150mm)まで穿設可能となる。また、電界強度が高い分、加熱効果は高い。一方、波長が長いため、複数の電界の山を利用して効率的な加熱を行う場合には、装置が大型化する。
なお、本実施形態では、第1の周波数のマイクロ波による照射、第2の周波数のマイクロ波による照射の順で加熱処理をしたが、順序は逆でもよい。また、第1、第2周波数は、2450MHz、915MHzに限定されず、電力半減深度の違いが利用可能な第2周波数<第1周波数の関係にあればよい。さらに、開口55,56(開口155,156)は少なくとも一方に穿設された態様でもよく、穿設された側の開口と導波管53内部との間で包装食品PFを往復搬送させるようにしても同様の加熱処理は可能となる。
また、本実施形態は、圧力容器内でのマイクロ波加熱で説明したが、これに限定されず、対象物品の包装が所要の圧力で破損しない強固な場合、また対象物品個々にリテーナやプラスチック容器に収容される態様にも採用可能である。さらに、本実施形態では、加熱殺菌装置に適用した例で説明したが、これに限定されず、食品以外の種々の用途に沿った加熱処理一般にも適用可能である。
次に、本発明の包装食品の製造方法の一実施例を説明する。プラスチック製で直径が88mm、内部中心深さが35mmの大きさであり、開口部の外縁にフランジ部が形成されている円形のお盆型成形容器に、市販の筑前煮を100g充填した。次いでプラスチック製の蓋材をフランジ部全体を覆うように上からかぶせ、フランジ部の上から加熱溶融処理を行い、蓋材とフランジ部とを密着し、内部を密封して包装筑前煮を得た。
この包装筑前煮の加熱殺菌工程を、本発明のマイクロ波加熱装置1によって行った。すなわち、包装筑前煮をマイクロ波照射部40及びマイクロ波照射部50を通過させて、第1のマイクロ波照射工程と第2のマイクロ波照射工程とを行い、包装筑前煮の温度を121℃まで上昇させた。次いで包装筑前煮を恒温部60に移送してそのまま4分間保持し、その後冷却部70で冷却した。
以上の工程を経て、内部が十分に殺菌された包装筑前煮を得ることができた。
1 マイクロ波加熱装置
10 圧力容器
20 ベルトコンベア
30 フィーダ
40,50 マイクロ波照射部
41,51 マイクロ波発振部
42,52,152 窓部
523,1523 誘電体仕切板
43,53 導波管部
531 屈曲部の外周側面
54 短絡板
55,56,155,156 開口
60 恒温部
70 冷却部
81 圧力調整部
PF 包装食品

Claims (13)

  1. 密封包装された物品にマイクロ波を照射して加熱を行うマイクロ波加熱装置において、
    第1の周波数のマイクロ波をマルチモードで前記物品に照射する第1のマイクロ波照射部と、
    第1の周波数より低い第2の周波数のマイクロ波をシングルモードで前記物品に照射する第2のマイクロ波照射部とを備えたマイクロ波加熱装置。
  2. 前記物品を収容する内部空間を有する圧力容器と、
    前記圧力容器の内部空間を1気圧以上に加圧する加圧部とを備え、
    前記圧力容器は、前記第1のマイクロ波照射部を収容する第1照射室と、前記第2のマイクロ波照射部を備えた第2照射室とを備えた請求項1に記載のマイクロ波加熱装置。
  3. 前記第1照射室は、前記第1の周波数に対応する空間波長より広く、マイクロ波の多重反射を起こす金属壁で囲繞された空間を有し、
    前記第2照射室は、前記第2の周波数の定在波を形成する導波管内の空間である請求項2に記載のマイクロ波加熱装置。
  4. 前記第2照射室を構成する前記導波管は、軸方向の途中に形成された屈曲部と、前記屈曲部から軸方向の下流端に設けられた短絡板とを有し、
    前記屈曲部の外周側の壁及び前記短絡板の少なくとも一方であって、前記導波管の横断面の長辺方向における中央部に、開口が穿設されている請求項3に記載のマイクロ波加熱装置。
  5. 前記開口の長尺方向の寸法は、前記開口が形成されていない場合に発生する電界の強度に対して100%〜50%となるときの寸法である請求項4に記載のマイクロ波加熱装置。
  6. 前記第2照射室には、前記開口を通して前記導波管内で軸方向に沿って前記物品を搬送するコンベア部が敷設されている請求項4又は5に記載のマイクロ波加熱装置。
  7. 前記第1のマイクロ波照射部は、複数のマイクロ波照射口を有する請求項2〜6のいずれかに記載のマイクロ波加熱装置。
  8. 前記第1、第2のマイクロ波照射部は、前記圧力容器の側壁を介してマイクロ波を伝送する導波管部が接続されており、前記導波管部は前記圧力容器の内と外とを遮蔽する窓部を有しており、前記窓部は誘電体仕切板を含み、前記誘電体仕切板の材質はフッ素樹脂である請求項7に記載のマイクロ波加熱装置。
  9. 前記第1、第2のマイクロ波照射部を順番に動作させる制御部を備えた請求項1〜8のいずれかに記載のマイクロ波加熱装置。
  10. 密封包装された物品にマイクロ波を照射して加熱を行うマイクロ波加熱方法において、
    第1の周波数のマイクロ波をマルチモードで前記物品に照射する第1のマイクロ波照射工程と、
    第1の周波数より低い第2の周波数のマイクロ波をシングルモードで前記物品に照射する第2のマイクロ波照射工程とを備えたマイクロ波加熱方法。
  11. 前記第2のマイクロ波照射工程は、前記第2の周波数の定在波が形成される導波管内の空間で行われることを特徴とする請求項10に記載のマイクロ波加熱方法。
  12. 密封包装された食品にマイクロ波を照射して加熱殺菌を行う加熱殺菌工程を含む包装食品の製造方法において、
    前記加熱殺菌工程が、第1の周波数のマイクロ波をマルチモードで前記包装食品に照射する第1のマイクロ波照射工程と、
    第1の周波数より低い第2の周波数のマイクロ波をシングルモードで前記包装食品に照射する第2のマイクロ波照射工程と、を含む、
    包装食品の製造方法。
  13. 前記第2のマイクロ波照射工程は、前記第2の周波数の定在波が形成される導波管内の空間であって、前記導波管の横断面の長辺方向の中央部を前記導波管の軸方向に延長して形成される空間内で行う請求項12に記載の包装食品の製造方法。
JP2018067684A 2018-03-30 2018-03-30 マイクロ波加熱装置、マイクロ波加熱方法、及び包装食品の製造方法 Active JP6915785B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018067684A JP6915785B2 (ja) 2018-03-30 2018-03-30 マイクロ波加熱装置、マイクロ波加熱方法、及び包装食品の製造方法
US16/299,569 US20190297922A1 (en) 2018-03-30 2019-03-12 Microwave-Heating System, Microwave-Heating Process, and Process for Manufacturing Packaged Foods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018067684A JP6915785B2 (ja) 2018-03-30 2018-03-30 マイクロ波加熱装置、マイクロ波加熱方法、及び包装食品の製造方法

Publications (2)

Publication Number Publication Date
JP2019179649A true JP2019179649A (ja) 2019-10-17
JP6915785B2 JP6915785B2 (ja) 2021-08-04

Family

ID=68057494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018067684A Active JP6915785B2 (ja) 2018-03-30 2018-03-30 マイクロ波加熱装置、マイクロ波加熱方法、及び包装食品の製造方法

Country Status (2)

Country Link
US (1) US20190297922A1 (ja)
JP (1) JP6915785B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9204501B1 (en) * 2010-03-17 2015-12-01 Cibus Wave LLC Microwave system and method
CN114322000A (zh) * 2020-09-30 2022-04-12 广东美的厨房电器制造有限公司 微波烹饪电器及其控制方法、存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926545B1 (ja) * 1970-07-20 1974-07-10
JPH07255388A (ja) * 1994-03-22 1995-10-09 Otsuka Chem Co Ltd 食品加熱処理方法及び装置
US20170027196A1 (en) * 2015-07-30 2017-02-02 Graphic Packaging International, Inc. Sterilization of Food in Microwave Interactive Packages

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3688068A (en) * 1970-12-21 1972-08-29 Ray M Johnson Continuous microwave heating or cooking system and method
US3715551A (en) * 1971-07-01 1973-02-06 Raytheon Co Twisted waveguide applicator
US3813918A (en) * 1971-12-23 1974-06-04 Ramex Co Methods and apparatus using microwaves for material characteristics measurements
US4808782A (en) * 1986-11-26 1989-02-28 Toppan Printing Co., Ltd. Microwave irradiating sterilization process
US7470876B2 (en) * 2005-12-14 2008-12-30 Industrial Microwave Systems, L.L.C. Waveguide exposure chamber for heating and drying material
US20110315678A1 (en) * 2009-02-09 2011-12-29 Shinichiroh Furuya Microwave heating device
US9179697B2 (en) * 2013-03-11 2015-11-10 Sterling L.C. Vending machine for popping kernels
US9558770B2 (en) * 2015-03-30 2017-01-31 Seagate Technology Llc Slot waveguide that couples energy to a near-field transducer
CN107815367A (zh) * 2016-09-13 2018-03-20 茗燕生物科技(上海)有限公司 洁净片智能化生产系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926545B1 (ja) * 1970-07-20 1974-07-10
JPH07255388A (ja) * 1994-03-22 1995-10-09 Otsuka Chem Co Ltd 食品加熱処理方法及び装置
US20170027196A1 (en) * 2015-07-30 2017-02-02 Graphic Packaging International, Inc. Sterilization of Food in Microwave Interactive Packages

Also Published As

Publication number Publication date
JP6915785B2 (ja) 2021-08-04
US20190297922A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
Tang Unlocking potentials of microwaves for food safety and quality
AU2021201634B2 (en) Radio frequency heating system
CN109068430B (zh) 微波加热系统及其使用方法
US20120164022A1 (en) Methods and devices for processing objects by applying electromagnetic (em) energy
EP0269073A1 (en) Microwave irradiating sterilization process
CN103153814A (zh) 用于向容器施加电磁能的装置和方法
JP6560241B2 (ja) 急速高圧マイクロ波熱分解システム、カプセル、及びそれらを使用するための方法
JP6915785B2 (ja) マイクロ波加熱装置、マイクロ波加熱方法、及び包装食品の製造方法
JPH07255388A (ja) 食品加熱処理方法及び装置
JP3604109B2 (ja) 殺菌済固形食材の製造方法
Tang et al. Microwave and radio frequency in sterilization and pasteurization applications
CN115701909A (zh) 固态微波灭菌和巴氏灭菌
JP4499855B2 (ja) マイクロ波加熱殺菌方法および装置
JP2001009009A (ja) マイクロ波殺菌方法
JP2009100675A (ja) 円偏波による食品の連続均一加熱装置
Toledo et al. Emerging food processing technologies
Ansarifar et al. Thawing equipment for the food industry
JP3601570B2 (ja) 食品の殺菌方法
Kakar et al. Revolutionizing Food Processing: A Comprehensive Review of Microwave Applications
Hong Improved Performance of Microwave Assisted Thermal Processing System and Processes
Koutchma Microwave and Radio Frequency Heating in Food and Beverages
JP2000262260A (ja) マイクロ波食品加熱殺菌装置及び加熱殺菌方法
JPH06343436A (ja) 食品の加熱殺菌処理方法および装置
Therdthai Radio frequency processing equipment for the food industry
Zhang et al. Microwave Ovens: Domestic and Industrial

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200807

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210618

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210705

R150 Certificate of patent or registration of utility model

Ref document number: 6915785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350