JP2019178634A - ピストン式圧縮機 - Google Patents

ピストン式圧縮機 Download PDF

Info

Publication number
JP2019178634A
JP2019178634A JP2018067781A JP2018067781A JP2019178634A JP 2019178634 A JP2019178634 A JP 2019178634A JP 2018067781 A JP2018067781 A JP 2018067781A JP 2018067781 A JP2018067781 A JP 2018067781A JP 2019178634 A JP2019178634 A JP 2019178634A
Authority
JP
Japan
Prior art keywords
chamber
communication path
piston
drive shaft
compression chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018067781A
Other languages
English (en)
Inventor
健一 角口
Kenichi Kadoguchi
健一 角口
明信 金井
Akinobu Kanai
明信 金井
宜典 井上
Yoshinori Inoue
井上  宜典
山本 真也
Shinya Yamamoto
真也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2018067781A priority Critical patent/JP2019178634A/ja
Publication of JP2019178634A publication Critical patent/JP2019178634A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

【課題】圧縮室から吐出室に吐出する冷媒の流量を変更可能であるとともに、低流量状態における吸入脈動、動力損失、振動及びトルク変動が生じ難く、かつ高流量状態における動力を低減可能なピストン式圧縮機を提供する。【解決手段】本発明の圧縮機では、回転体15は、駆動軸3と一体回転するとともに、制御圧力Pcに基づいて駆動軸3の駆動軸心O方向に移動可能であり、駆動軸3の回転に伴い、間欠的に第1連通路29a〜29fと連通する第2連通路15dが形成されている。回転体15には第3連通路51cが形成されている。第3連通路51cは、冷媒の流量が最大になれば、ピストン7の上死点にある圧縮室47と連通する例えば第1連通路29aと低圧領域とを連通する。また、第3連通路51cは、流量が最小になれば、ピストンの上死点にある圧縮室47と連通する例えば第1連通路29aと低圧領域とが非連通となる。【選択図】図1

Description

本発明はピストン式圧縮機に関する。
特許文献1〜3に従来のピストン式圧縮機が開示されている。これらの圧縮機は、ハウジングと、駆動軸と、固定斜板と、複数のピストンと、吐出弁と、制御弁とを備えている。
ハウジングは、複数のシリンダボアと、シリンダボアに連通する第1連通路とが形成されたシリンダブロックを有している。また、ハウジングには、吐出室と、斜板室と、制御圧室と、軸孔とが形成されている。斜板室が吸入室を兼ねていたり、ハウジングに形成された吸入室と連通する軸内通路が駆動軸に形成されたりする場合もある。
駆動軸は、軸孔内で回転可能に支承されている。固定斜板は、駆動軸の回転によって斜板室内で回転可能であり、駆動軸に垂直な平面に対する傾斜角度が一定である。ピストンは、シリンダボア内に圧縮室を形成し、固定斜板に連結される。圧縮室と吐出室との間には、圧縮室内の冷媒を吐出室に吐出させるリード弁式の吐出弁が設けられている。
また、これらの圧縮機では、軸孔内で駆動軸と一体又は別体の回転体が設けられている。回転体は、駆動軸と一体回転し、制御弁で制御された制御圧力と吸入圧力との差圧により、駆動軸の駆動軸心方向に移動可能である。回転体には、駆動軸の回転に伴い、間欠的に第1連通路と連通する第2連通路が形成されている。第2連通路は、回転体の駆動軸心方向の位置によって第1連通路との駆動軸心周りの連通角度が変化するように形成されている。
これらの回転体は、回転体の駆動軸心方向の位置により、第1連通路と第2連通路とが連通する。このため、斜板室又は吸入室内の冷媒が第2連通路及び第1連通路を経て圧縮室に吸入される。この際、第2連通路と第1連通路との駆動軸心周りの連通角度が変化するため、圧縮室内に吸入される冷媒の流量が変化し、圧縮室から吐出室へ吐出する冷媒の流量が変化する。こうして、これらの圧縮機では、斜板の傾斜角度を変更させて容量を変更する圧縮機と比べ、構造の簡素化を実現しようとしている。
特開平5−306680号公報 特開平5−312145号公報 特開平7−119631号公報
しかし、上記従来の圧縮機では、図9に示すように、圧縮室から吐出室に吐出する冷媒の流量が少ない低流量状態Lと、圧縮室から吐出室に吐出する冷媒の流量が多い高流量状態Hとにおいて、第1連通路と第2連通路との駆動軸の駆動軸心周りの角度と、圧縮室内の圧力との関係が異なり、回転体が第2連通路を第1連通路に連通させる好ましいタイミングはΔθだけ異なっている。
上記従来の圧縮機では、回転体において、第2連通路が第1連通路と連通するタイミングを高流量状態Hで合わせると、低流量状態Lでは未だ回転体が第2連通路を開いていないこととなり、吸入行程時における圧縮室内の圧力が過度に低くなってしまう。このため、低流量状態Lにおいて、回転体が第2連通路を開いた瞬間に大きな圧力変動を生じ、吸入脈動が悪化してしまう。また、低流量状態Lでは、高流量状態Hよりも圧縮比が高くなり、摩擦による動力損失、振動及びトルク変動が大きくなる懸念がある。
また、回転体において、第2連通路が第1連通路と連通するタイミングを低流量状態Lで合わせると、高流量状態Hにおいて、余計な動力が必要になってしまう。
本発明は、上記従来の実情に鑑みてなされたものであって、圧縮室から吐出室に吐出する冷媒の流量を変更可能であるとともに、低流量状態における吸入脈動、動力損失、振動及びトルク変動が生じ難く、かつ高流量状態における動力を低減可能なピストン式圧縮機を提供することを解決すべき課題としている。
本発明のピストン式圧縮機は、複数のシリンダボアが形成されたシリンダブロックを有し、吐出室と、斜板室と、制御圧室と、軸孔とが形成されたハウジングと、
前記軸孔内に回転可能に支承された駆動軸と、
前記駆動軸の回転によって前記斜板室内で回転可能であり、前記駆動軸に垂直な平面に対する傾斜角度が一定である固定斜板と、
前記シリンダボア内に圧縮室を形成し、前記固定斜板に連結されるピストンと、
前記圧縮室内に吸入された冷媒を前記吐出室に吐出させる吐出弁と、
前記制御圧室の制御圧力を制御可能な制御弁と、
前記シリンダブロックに設けられ、前記シリンダボアに連通する第1連通路と、
前記駆動軸に設けられ、前記駆動軸と一体回転するとともに、前記制御圧力に基づいて前記駆動軸の駆動軸心方向に移動可能であり、前記駆動軸の回転に伴い、間欠的に前記第1連通路と連通する第2連通路が形成された回転体とを備え、
前記回転体の前記駆動軸心方向の位置により、前記回転体の1回転当たりで前記第1連通路と前記第2連通路とが連通する前記駆動軸心周りの連通角度が変化し、前記圧縮室から前記吐出室に吐出される冷媒の流量が変化するピストン式圧縮機であって、
前記回転体には第3連通路が形成され、
前記第3連通路は、前記圧縮室から前記吐出室に吐出される冷媒の流量が最大になれば、前記ピストンが前記ピストンの上死点にある前記圧縮室と連通する前記第1連通路と、前記ピストンの上死点にある前記圧縮室よりも低圧な低圧領域とを連通し、
前記圧縮室から前記吐出室に吐出される冷媒の流量が最小になれば、前記ピストンの上死点にある前記圧縮室と連通する前記第1連通路と、前記低圧領域とが非連通となることを特徴とする。
本発明の圧縮機では、圧縮室から吐出室に吐出する冷媒の流量が最大になれば、回転体の第3連通路は、ピストンがピストンの上死点にある圧縮室と連通する第1連通路と、低圧領域とを連通する。このため、圧縮室内に残留する高圧の冷媒が第1連通路を経て低圧領域に流れ、圧縮室内で再膨張することが防止される。このため、圧縮室から吐出室に吐出する冷媒の流量が少ない低流量状態と、圧縮室から吐出室に吐出する冷媒の流量が多い高流量状態とにおいて、同等のタイミングで、回転体が第2連通路を第1連通路に連通させることができる。
このため、この圧縮機では、第2連通路と第1連通路とが連通するタイミングを高流量状態に合わせたとしても、低流量状態に第2連通路と第1連通路とが連通し、吸入行程時における圧縮室内の圧力が過度に低くなることがない。このため、低流量状態において、第2連通路と第1連通路とが連通した瞬間に圧力変動を生じ難く、吸入脈動が抑制される。また、低流量状態での圧縮比が大きくなり過ぎず、低流量状態における動力損失、振動及びトルク変動も抑制される。
また、回転体において、第2連通路が第1連通路と連通するタイミングを高流量状態で合わせているため、高流量状態において、余計な動力も生じない。
したがって、本発明の圧縮機では、圧縮室から吐出室に吐出する冷媒の流量を変更可能であるとともに、低流量状態における吸入脈動、動力損失、振動及びトルク変動が生じ難く、かつ高流量状態における動力を低減可能である。
低圧領域は、ピストンが下死点から上死点の手前まで移動する圧縮室と連通する第1連通路であることが好ましい。この場合、高圧の冷媒が移動先の圧縮室に回収されることとなり、体積効率が向上する。
低圧領域は、制御圧室であることも好ましい。この場合、第3連通路を簡素化することができる。また、圧縮室内に残留する高圧の冷媒によって制御圧室を昇圧することができるため、制御弁によって制御圧力を制御するために用いる吐出室と制御圧室とを接続する通路を簡略化することも可能となる。こうして、製造コストの低廉化を実現することができる。
本発明の圧縮機では、圧縮室から吐出室に吐出する冷媒の流量を変更可能であるとともに、低流量状態における吸入脈動、動力損失、振動及びトルク変動が生じ難く、かつ高流量状態における動力を低減可能である。
図1は、実施例1のピストン式圧縮機の断面図である。 図2は、実施例1に係り、高流量状態のピストン式圧縮機の要部断面図である。 図3は、実施例1のピストン式圧縮機に係り、図2の状態における第1連通路の軌跡を示す回転体の展開図である。 図4は、実施例1に係り、低流量状態のピストン式圧縮機の要部断面図である。 図5は、実施例1のピストン式圧縮機に係り、図4の状態における第1連通路の軌跡を示す回転体の展開図である。 図6は、実施例1のピストン式圧縮機における駆動軸の回転角度と圧縮室内の圧力との関係を示すグラフである。 図7は、実施例2のピストン式圧縮機に係り、図3と同様の展開図である。 図8は、実施例2のピストン式圧縮機に係り、図5と同様の展開図である。 図9は、従来のピストン式圧縮機における駆動軸の回転角度と圧縮室内の圧力との関係を示すグラフである。
以下、本発明を具体化した実施例1、2を図面を参照しつつ説明する。
(実施例1)
実施例1のピストン式圧縮機は、図1に示すように、ハウジング1と、駆動軸3と、固定斜板5と、6個のピストン7(図3及び図5参照)と、吐出弁11と、制御弁13と、回転体15とを備えている。
ハウジング1は、フロントハウジング17、シリンダブロック19及びリヤハウジング21を有している。以下、フロントハウジング17側を圧縮機の前方とし、リヤハウジング21側を圧縮機の後方とするとともに、図1のように圧縮機の上下を規定する。
フロントハウジング17とシリンダブロック19とは互いに締結され、両者間に斜板室23を形成している。リヤハウジング21には、中央に吸入室21aが形成され、吸入室21aの外周側に環状の吐出室21bが形成されている。斜板室23は図示しない通路によって吸入室21aに連通している。リヤハウジング21には、吸入室21aを外部に開く吸入口21cと、吐出室21bを外部に開く吐出口21dとが形成されている。
シリンダブロック19とリヤハウジング21とは、両者間に弁ユニット25を有して互いに締結されている。シリンダブロック19には、前後に貫通する6個のシリンダボア19a〜19fが形成されている。シリンダブロック19は、弁ユニット25を貫通してリヤハウジング21内まで延びている。フロントハウジング17及びシリンダブロック19には駆動軸3の駆動軸心O方向に延びる軸孔27が形成されている。軸孔27は、フロントハウジング17内に位置する小孔27aと、シリンダブロック19内で小孔27aから切り替わり、小孔27aより大径の大孔27bとからなる。大孔27bは、リヤハウジング21内で吸入室21aと連通している。シリンダブロック19は斜板室23と大孔27bとの間に支持壁19gを有している。
シリンダブロック19には、シリンダボア19a〜19fから駆動軸心Oに向かって形成され、大孔27bと連通する第1連通路29a〜29fが形成されている。第1連通路29a〜29fは、弁ユニット25に最も近い位置から、駆動軸心Oに近づくにつれて前方に傾斜している。
駆動軸3は軸孔27内で回転可能に支承されている。駆動軸3は、前方に位置してフロントハウジング17に支持されているとともに固定斜板5が圧入された大径部3aと、大径部3aと一体をなして後方に位置し、大径部3aより小径の小径部3bとを有している。駆動軸3は、固定斜板5が圧入されている部分を除いて外周面に図示しない摺動層を有しており、大径部3aがフロントハウジング17及びシリンダブロック19に直接支持されている。フロントハウジング17と駆動軸3との間には軸封装置31が設けられている。軸封装置31はハウジング1の内部と外部とを封止している。
軸孔27の大孔27b内には回転体15が設けられている。回転体15と駆動軸3の小径部3bとには互いに嵌合する図示しないスプラインが形成されており、回転体15は、駆動軸3の小径部3bとともに駆動軸心O周りで回転可能であり、小径部3bに対して駆動軸心O方向に移動可能となっている。
支持壁19gの後面と、大孔27bの内周面と、回転体15の前面と、大径部3aの後方の外周面と、小径部3bの外周面とによって制御圧室37が形成されている。制御圧室37内には、駆動軸3の大径部3aと小径部3bとがなす段部3dが位置する。この段部3dは、回転体15が駆動軸心O方向の前方に移動する際に位置を規制する。駆動軸3の小径部3bの後端にはサークリップ41が設けられている。回転体15とサークリップ41との間には、回転体15を制御圧室37に向けて付勢する第1バネ39が設けられている。
回転体15の外周面には、図3及び図5に示すように、凹部15dが凹設されている。凹部15dは回転体15の後端に開放され、軸孔27の大孔27bによって吸入室21aと連通するようになっている。また、凹部15dは、回転体15の前方では駆動軸心O周りの幅が狭く、後方ではその幅が長くなっている。こうして、この圧縮機8では、回転体15が制御圧室37の制御圧力Pcと吸入室21aの吸入圧力Psとの差圧ΔPにより駆動軸心O方向に移動することにより、1回転当たりで第1連通路29a〜29fと凹部15dとが連通する駆動軸心O周りの連通角度θ1、θ2を変化させることが可能になっている。凹部15dが第2連通路に相当する。
また、回転体15の外周面には、回転体15の展開図においてコ字状をなす連通溝51が凹設されている。連通溝51は、回転体15の回転方向の後方側で駆動軸心O方向に延びる回収溝51aと、回転体15の回転方向の前方側で駆動軸心O方向に延びる供給溝51bと、回収溝51aと供給溝51bとを回転体15の回転方向で接続する接続溝51cとからなる。回収溝51a及び供給溝51bの駆動軸心O方向の後端は、図2に示すように、回転体15がサークリップ41に当接することによって、連通角度θ1が最小値になれば、図3に示すように、第1連通路29a〜29fと連通するようになっている。図4に示すように、回転体15が段部3dに当接することによって、連通角度θ2が最大値になれば、回収溝51a及び供給溝51bの駆動軸心O方向の後端は第1連通路29a〜29fと連通しないようになっている。接続溝51cは、回収溝51a及び供給溝51bの駆動軸心O方向の前端に位置している。回収溝51aと供給溝51bとは、回転体15の回転方向の駆動軸心O周りで例えば240°ずれている。
図1に示すように、固定斜板5は駆動軸3の大径部3aに圧入されて固定されている。フロントハウジング17と固定斜板5との間にはスラスト軸受45が設けられている。固定斜板5は駆動軸心O方向と直交する面に対してなす傾斜角度が一定である。
シリンダボア19a〜19f内にピストン7が設けられている。ピストン7は、シリンダボア19a〜19f内に圧縮室47を形成する。ピストン7の前部には凹部7aが形成され、凹部7aの前後面と固定斜板5との間には前後で対をなすそれぞれ半球状のシュー49が設けられている。ピストン7は、シュー49によって固定斜板5に連結されている。
弁ユニット25は、リテーナ25a、吐出リード弁25b及び弁板25cがこの順で積層されたものである。リテーナ25aがリヤハウジング21側に位置する。弁板25cには、吐出リード弁25bが開けば、吐出室21bと圧縮室47とを連通させる吐出ポート25fが形成されている。弁ユニット25及び吐出ポート25fが吐出弁11を構成している。
リヤハウジング21には制御弁13が設けられている。制御弁13と吸入室21aとは低圧通路13aによって接続され、制御弁13と吐出室21bとは高圧通路13bによって接続され、制御弁13と制御圧室37とは制御通路13cによって接続されている。低圧通路13a及び高圧通路13bは、リヤハウジング21に形成されており、制御通路13cはリヤハウジング21及びシリンダブロック19に形成されている。制御弁13は、吸入室21a内の吸入圧力Psを感知することで、弁開度が調整され、吐出室21b内の吐出圧力Pdによって制御圧室37内の制御圧力Pcに制御可能である。また、制御圧室37は図示しない抽気通路により制御圧室37内の制御圧力を低減可能である。制御弁13は、最高で吐出圧力Pdとなる制御圧力Pcの冷媒を制御通路13cに供給する。
この圧縮機は車両の空調装置に用いられる。駆動軸3がエンジンやモータによって駆動されれば、固定斜板5が斜板室23内で駆動軸3によって回転する。このため、ピストン7がそれぞれ下死点から上死点まで移動するとともに、上死点から下死点まで移動する。
そして、制御弁13が制御通路13cによって高圧の制御圧力Pcを制御圧室37に供給しておれば、図2に示すように、回転体15は、第1バネ39の付勢力に抗し、サークリップ41と当接する後端に位置する。この状態では、ピストン7が上死点から下死点まで移動している圧縮室47は容積が拡大している。図3に示すように、圧縮室47に連通する例えば第1連通路29b〜29dは間欠的に回転体15の凹部15dに連通しているため、それらの圧縮室47には、軸孔27の大孔27を介して吸入室21aから吸入圧力Psの冷媒が吸入される。
この間、回転体15から見れば、第1連通路29a〜29fは駆動軸3及び回転体15の回転に応じて移動する。このため、回転体15の1回転当たりで第1連通路29a〜29fと凹部15dとは、駆動軸3及び回転体15の回転に伴い、間欠的に駆動軸心O周りで連通角度θ1で連通している。連通角度θ1は最小値である。
そして、ピストン7が下死点から上死点まで移動すると、圧縮室47は容積が縮小する。このため、圧縮室47内の圧力が吐出室21bより高くなれば、吐出リード弁25bが開いて吐出室21bと圧縮室47とが連通し、圧縮室47から吐出圧力Pdの冷媒が吐出室21bに吐出される。このため、この状態では、圧縮機は、駆動軸3の1回転当たりに吐出室21bから外部に吐出する冷媒の流量が最大となっている。なお、吸入室21aには吸入口21cから蒸発器を経た冷媒が供給される。また、吐出室21b内の冷媒は吐出口21dを経て凝縮器に向かって吐出される。
この際、図3に示すように、回転体15の回収溝51aは、ピストン7が上死点にある圧縮室47と連通する例えば第1連通路29aに連通する。また、回転体15の供給溝51bは、ピストン7が下死点から上死点の手前まで移動する圧縮室47と連通する例えば第1連通路29eに連通する。接続溝51cは回収溝51aと供給溝51bとを接続しているため、連通溝51が第1連通路29aと第1連通路29eとを連通する。このため、圧縮室47内に残留する高圧の冷媒が第1連通路29a、回収溝51a、接続溝51c、供給溝51b及び第1連通路29eを経て、圧縮行程初期の圧縮室47に流れる。このため、圧縮室47内で残留する高圧の冷媒が再膨張することが防止される。
制御弁13が制御通路13cによって高圧の制御圧力Pcを制御圧室37に供給せず、制御圧室37内の制御圧力Pcが徐々に低くなれば、図4に示すように、回転体15は、第1バネ39の付勢力に屈し、段部3dに当接する前端に位置する。この状態では、圧縮室47は、ピストン7が上死点から下死点まで移動して容積が拡大している間だけでなく、図5に示すように、ピストン7が下死点から一定位置まで移動して容積が縮小を始めても、第1連通路29b〜29eは間欠的に回転体15の凹部15dに連通している。このため、圧縮室47は、一旦は軸孔27の大孔27を介して吸入室21aから吸入圧力Psの冷媒を吸入するものの、容積の縮小に伴ってその冷媒を圧縮室47の上流側に還流する。
この間、回転体15の1回転当たりで第1連通路29a〜29fと凹部15dとは、駆動軸3及び回転体15の回転に伴い、回転体15の駆動軸心O方向の位置により、間欠的に駆動軸心O周りで連通角度θ2で連通している。連通角度θ2は、連通角度θ1よりも大きく、最大値である。
そして、ピストン7が一定位置から上死点まで移動すると、圧縮室47は容積が縮小する。このため、圧縮室47内の圧力が吐出室21bより高くなれば、圧縮室47から吐出圧力Pdの冷媒が吐出室21bに吐出される。この際、圧縮室47内には少量の冷媒しか吸入していないため、圧縮室47からは少量の冷媒しか吐出室21bに吐出されないこととなる。このため、この状態では、圧縮機は圧縮室47から吐出室21bへ吐出する冷媒の流量が最小となっている。
この際には、回転体15が駆動軸心O方向に移動しているため、連通溝51の回収溝51a及び供給溝51bの駆動軸心O方向の後端は第1連通路29a〜29fと連通しない。
こうして、この圧縮機では、図6に示すように、圧縮室47から吐出室21bに吐出する冷媒の流量が少ない低流量状態Lと、圧縮室47から吐出室21bに吐出する冷媒の流量が多い高流量状態H1とにおいて、同等のタイミングで、回転体15が凹部15dを第1連通路29a〜29fに連通させることができる。
このため、この圧縮機では、凹部15dと第1連通路29a〜29fとが連通するタイミングを高流量状態H1で合わせれば、低流量状態Lに凹部15dと第1連通路29a〜29fとが連通し、吸入行程時における圧縮室47内の圧力が過度に低くなることがない。このため、低流量状態Lにおいて、第2連通路15dと第1連通路29a〜29fとが連通した瞬間に圧力変動を生じ難く、吸入脈動が抑制される。また、低流量状態Lでの圧縮比が大きくなり過ぎず、低流量状態Lにおける動力損失、振動及びトルク変動も抑制される。
また、回転体15において、凹部15dが第1連通路29a〜29fと連通するタイミングを高流量状態Hで合わせているため、高流量状態Hにおいて、余計な動力も生じない。
したがって、この圧縮機では、圧縮室47から吐出室21bに吐出する冷媒の流量を変更可能であるとともに、低流量状態Lにおける吸入脈動、動力損失、振動及びトルク変動が生じ難く、かつ高流量状態Hにおける動力を低減可能である。
また、この圧縮機では、供給溝51bが圧縮行程初期の圧縮室47に連通するため、高圧の冷媒が移動先の圧縮室47に回収されることとなり、体積効率が向上する。
(実施例2)
実施例2の圧縮機では、図7及び図8に示すように、回転体53の連通溝55が実施例1と異なる。他の構成は実施例1と同一であり、同一の構成については同一の符号を付して詳細な説明を省略する。
回転体53の外周面には、回転体53の展開図においてI字状をなす連通溝55が凹設されている。図7に示すように、連通溝55の駆動軸心O方向の後端は、連通角度θ1が最小値になれば、第1連通路29a〜29fと連通するようになっている。図8に示すように、連通角度θ2が最大値になれば、連通溝55の駆動軸心O方向の後端は第1連通路29a〜29fと非連通となる。
この圧縮機では、連通角度θ1が最小値になれば、ピストン7が上死点にある圧縮室47内に残留する高圧の冷媒が例えば第1連通路29aを経て制御圧室37に流れ、圧縮室47内で再膨張することが防止される。このため、連通溝55を簡略化することができる。
また、この圧縮機では、圧縮室47内に残留する高圧の冷媒によって制御圧室37を昇圧することができるため、吐出室21bと制御圧室37とを接続する制御通路13cを廃止することも可能となる。こうして、製造コストの低廉化を実現することができる。他の作用効果は実施例1と同様である。
以上において、本発明を実施例1、2に即して説明したが、本発明は上記実施例1、2に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用できることはいうまでもない。
例えば、上記実施例1、2の圧縮機では、吸入室21aを斜板室23とは別に設けたが、斜板室が吸入室を兼ねていてもよい。
上記実施例1、2の圧縮機では、制御圧室37が斜板室23と吸入室21aとの間にあるが、斜板室を吸入室とし、制御圧室を回転体の後方に配置することも可能である。
上記実施例1、2の圧縮機では、連通角度が小さくなることにより圧縮室47から吐出室21bに吐出する冷媒の流量が多くなるが、連通角度が小さくなることにより圧縮室47から吐出室21bに吐出する冷媒の流量が少なくなるものであってもよい。
本発明を両頭ピストンを用いた両頭ピストン式圧縮機に具体化してもよい。また、本発明をワッブル型のピストン式圧縮機に具体化してもよい。
本発明は車両の空調装置に利用可能である。
19a〜19f…シリンダボア
1…ハウジング(17…フロントハウジング、19…シリンダブロック、21…リヤハウジング)
21b…吐出室
23…斜板室
37…制御圧室
27…軸孔
3…駆動軸
5…固定斜板
47…圧縮室
7…ピストン
11…吐出弁
Pc…制御圧力
13…制御弁
29a〜29f…第1連通路
O…駆動軸心
15d…第2連通路(凹部)
15…回転体
θ1、θ2…連通角度
51、55…第3連通路(連通溝)

Claims (3)

  1. 複数のシリンダボアが形成されたシリンダブロックを有し、吐出室と、斜板室と、制御圧室と、軸孔とが形成されたハウジングと、
    前記軸孔内に回転可能に支承された駆動軸と、
    前記駆動軸の回転によって前記斜板室内で回転可能であり、前記駆動軸に垂直な平面に対する傾斜角度が一定である固定斜板と、
    前記シリンダボア内に圧縮室を形成し、前記固定斜板に連結されるピストンと、
    前記圧縮室内に吸入された冷媒を前記吐出室に吐出させる吐出弁と、
    前記制御圧室の制御圧力を制御可能な制御弁と、
    前記シリンダブロックに設けられ、前記シリンダボアに連通する第1連通路と、
    前記駆動軸に設けられ、前記駆動軸と一体回転するとともに、前記制御圧力に基づいて前記駆動軸の駆動軸心方向に移動可能であり、前記駆動軸の回転に伴い、間欠的に前記第1連通路と連通する第2連通路が形成された回転体とを備え、
    前記回転体の前記駆動軸心方向の位置により、前記回転体の1回転当たりで前記第1連通路と前記第2連通路とが連通する前記駆動軸心周りの連通角度が変化し、前記圧縮室から前記吐出室に吐出される冷媒の流量が変化するピストン式圧縮機であって、
    前記回転体には第3連通路が形成され、
    前記第3連通路は、前記圧縮室から前記吐出室に吐出される冷媒の流量が最大になれば、前記ピストンが前記ピストンの上死点にある前記圧縮室と連通する前記第1連通路と、前記ピストンの上死点にある前記圧縮室よりも低圧な低圧領域とを連通し、
    前記圧縮室から前記吐出室に吐出される冷媒の流量が最小になれば、前記ピストンの上死点にある前記圧縮室と連通する前記第1連通路と、前記低圧領域とが非連通となることを特徴とするピストン式圧縮機。
  2. 前記低圧領域は、前記ピストンが前記下死点から前記上死点の手前まで移動する前記圧縮室と連通する前記第1連通路である請求項1記載のピストン式圧縮機。
  3. 前記低圧領域は、前記制御圧室である請求項1記載のピストン式圧縮機。
JP2018067781A 2018-03-30 2018-03-30 ピストン式圧縮機 Pending JP2019178634A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018067781A JP2019178634A (ja) 2018-03-30 2018-03-30 ピストン式圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018067781A JP2019178634A (ja) 2018-03-30 2018-03-30 ピストン式圧縮機

Publications (1)

Publication Number Publication Date
JP2019178634A true JP2019178634A (ja) 2019-10-17

Family

ID=68278184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018067781A Pending JP2019178634A (ja) 2018-03-30 2018-03-30 ピストン式圧縮機

Country Status (1)

Country Link
JP (1) JP2019178634A (ja)

Similar Documents

Publication Publication Date Title
EP1918583A2 (en) Suction throttle valve of a compressor
KR101735176B1 (ko) 용량 가변형 사판식 압축기
CN110318970B (zh) 活塞式压缩机
JP2019178634A (ja) ピストン式圧縮機
KR102169408B1 (ko) 피스톤식 압축기
US20040194209A1 (en) Piston compressor
KR102547593B1 (ko) 가변 용량 사판식 압축기
KR101599547B1 (ko) 사판식 압축기
CN110318973B (zh) 活塞式压缩机
JP7120103B2 (ja) ピストン式圧縮機
JP7056615B2 (ja) ピストン式圧縮機
CN110318969B (zh) 活塞式压缩机
CN110318974B (zh) 活塞式压缩机
CN111749866B (zh) 活塞式压缩机
JP7151037B2 (ja) ピストン式圧縮機
US20060222513A1 (en) Swash plate type variable displacement compressor
JP7160001B2 (ja) ピストン式圧縮機
JP4304544B2 (ja) ピストン式圧縮機における冷媒吸入構造
JP2019183837A (ja) ピストン式圧縮機
WO2020196577A1 (ja) ピストン式圧縮機
JP2017150315A (ja) 可変容量型斜板式圧縮機
JP2019178647A (ja) ピストン式圧縮機
JP2019183836A (ja) ピストン式圧縮機
JP2000297745A (ja) 圧縮機
KR101261136B1 (ko) 압축기