JP2019177346A - Cleaning method of sprinkling filter bed - Google Patents

Cleaning method of sprinkling filter bed Download PDF

Info

Publication number
JP2019177346A
JP2019177346A JP2018068183A JP2018068183A JP2019177346A JP 2019177346 A JP2019177346 A JP 2019177346A JP 2018068183 A JP2018068183 A JP 2018068183A JP 2018068183 A JP2018068183 A JP 2018068183A JP 2019177346 A JP2019177346 A JP 2019177346A
Authority
JP
Japan
Prior art keywords
filter medium
filter
amount
water
washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018068183A
Other languages
Japanese (ja)
Other versions
JP6545857B1 (en
Inventor
康成 佐々木
Yasunari Sasaki
康成 佐々木
宮田 篤
Atsushi Miyata
篤 宮田
大和 信大
Nobudai Yamato
大和  信大
歩 尾崎
Ayumi Ozaki
歩 尾崎
拓 藤原
Hiroshi Fujiwara
拓 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kochi Shi
Kyushu University NUC
Japan Sewage Works Agency
Kochi University NUC
Metawater Co Ltd
Original Assignee
Kochi Shi
Kyushu University NUC
Japan Sewage Works Agency
Kochi University NUC
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kochi Shi, Kyushu University NUC, Japan Sewage Works Agency, Kochi University NUC, Metawater Co Ltd filed Critical Kochi Shi
Priority to JP2018068183A priority Critical patent/JP6545857B1/en
Application granted granted Critical
Publication of JP6545857B1 publication Critical patent/JP6545857B1/en
Publication of JP2019177346A publication Critical patent/JP2019177346A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Abstract

To provide a cleaning method of a sprinkling filter bed, capable of suppressing the occurrence of filter bed fly larvae and scallops from a sprinkling filter bed and effectively recovering the water treatment capacity of the sprinkling filter bed.SOLUTION: The present invention provides a cleaning method of a sprinkling filter bed having a filter-medium layer which consists of a plurality of filter media in a water tank. Such a cleaning method includes a measurement process for measuring the amount of biofouling (Bm) to the filter medium, and a cleaning process for cleaning the filter medium. In this cleaning step, when the amount of biofouling (Bm) is greater than a predetermined cleaning selected biofouling amount (Bw), the filter medium is agitated and cleaned, and when the amount of biofouling (Bm) is smaller than or equal to the predetermined cleaning selected biofouling amount, the filter medium is immersed and cleaned.SELECTED DRAWING: Figure 7

Description

本発明は、散水ろ床の洗浄方法に関するものである。   The present invention relates to a watering filter bed cleaning method.

従来、水処理システムにおいて、微生物を担持させたろ材からなるろ材層に対して被処理水を散布し、ろ材層に存在する微生物によって被処理水中の有機物等を好気的に生物処理する散水ろ床が用いられている。   Conventionally, in a water treatment system, water to be treated is sprayed on a filter medium layer made of a filter medium carrying microorganisms, and a watering filter that aerobically biotreats organic matter in the water to be treated by microorganisms present in the filter medium layer. Floor is used.

ここで、散水ろ床には、被処理水の処理を継続していると、ろ材に対して付着した生物膜が過剰に厚くなり、厚膜化した汚泥様の生物膜がろ材間の空隙を閉塞してしまい、散水ろ床の水処理機能を低下させる虞があった。また、散水ろ床には、散水ろ床内でろ床蠅やサカマキ貝が生育して、これらがろ材表面等に形成された生物膜を食べてしまい、結果的に散水ろ床の水処理機能が低下する虞があった。そのため、散水ろ床を用いた水処理システムでは、被処理水の効率的な処理を継続的に実施するために、適切な時期にろ材層を洗浄し、過剰に厚膜化した生物膜、汚泥、蠅の卵及び幼虫、並びに、貝及びその卵等をろ床から排除することが必要となる。   Here, if the water to be treated is continuously treated in the sprinkling filter bed, the biofilm attached to the filter medium becomes excessively thick, and the thickened sludge-like biofilm forms voids between the filter media. There was a possibility that the water treatment function of the sprinkling filter bed might be reduced due to the blockage. In addition, in the sprinkling filter bed, filter beds and scallops grow in the sprinkling filter bed and eat these biofilms formed on the filter medium surface, resulting in the water treatment function of the sprinkling filter bed. There was a risk of lowering. For this reason, in a water treatment system using a trickling filter, in order to continuously carry out efficient treatment of the treated water, the filter media layer is washed at an appropriate time, and an excessively thick biofilm or sludge is formed. It is necessary to remove eggs, larvae of moths, shellfish and eggs thereof from the filter bed.

従来、散水ろ床における悪臭及びろ床蠅等の発生の問題に対し、ろ材層を構成するろ材を、所定のタイミングで撹拌洗浄し、ろ材層に捕捉された固形物、並びに、ろ材に付着したろ床蠅の卵及び幼虫をろ材層から除去することで、悪臭及びろ床蠅の発生を抑制する方法が提案されている(例えば、特許文献1参照)。特許文献1には、水処理能力が所定の閾値以下に低下した場合、及び/又は、所定時間毎に、ろ材層を構成するろ材を撹拌洗浄することで、ろ材層からの悪臭及びろ床蠅の発生を抑制する思想が開示されている。   Conventionally, the filter medium constituting the filter medium layer was agitated and washed at a predetermined timing and adhered to the solid matter trapped in the filter medium layer and the filter medium for the problem of generation of malodor and filter bed soot in the sprinkling filter bed. There has been proposed a method for suppressing the generation of malodor and filter bed by removing the eggs and larvae of the filter bed from the filter medium layer (see, for example, Patent Document 1). In Patent Document 1, when the water treatment capacity is reduced to a predetermined threshold value or less and / or by stirring and washing the filter medium constituting the filter medium layer every predetermined time, bad smell and filter bed cake from the filter medium layer The idea of suppressing the occurrence of this is disclosed.

国際公開第2012/161339号International Publication No. 2012/161339

上記特許文献1には、撹拌洗浄を行うタイミングに関して、水処理能力が所定の閾値以下に低下した場合、及び/又は、所定時間毎という以上の詳細は開示されていない。従って、特許文献1に開示された方法には、ろ材の撹拌洗浄を行うタイミングを一層適正化するという点で改善の余地があった。ここで、実際にはろ材を撹拌洗浄するべきではないタイミングでろ材の撹拌洗浄を行ってしまえば、却って散水ろ床による水処理能力を低下させる虞がある。そのため、ろ材の状況(例えば、生物付着量)に応じた適切な方法でろ材の洗浄を行うことで、散水ろ床からのろ床蠅の幼虫及びサカマキ貝等の発生を抑制するとともに、散水ろ床の水処理能力を効果的に回復させることができる散水ろ床の洗浄方法を確立することが求められてきた。   The above-mentioned Patent Document 1 does not disclose the details of the timing of performing the agitation cleaning in the case where the water treatment capacity is reduced below a predetermined threshold and / or every predetermined time. Therefore, the method disclosed in Patent Document 1 has room for improvement in terms of further optimizing the timing for performing stirring and cleaning of the filter medium. Here, if the filter medium is agitated and washed at a timing when the filter medium should not be agitated and washed, there is a risk that the water treatment capacity of the sprinkling filter bed may be reduced. Therefore, by washing the filter medium with an appropriate method according to the condition of the filter medium (for example, the amount of living organisms), the generation of larvae and scallops from the filter bed is suppressed, and the water filter There has been a need to establish a watering filter bed cleaning method that can effectively restore the water treatment capacity of the floor.

本発明者らは、上記目的を達成するために鋭意検討を行った。そして、本発明者らは、ろ材層を洗浄する方法には、「撹拌洗浄」以外に、「浸漬洗浄」という方法があることに着目した。ここで、撹拌洗浄とは、散水ろ床を満水にした後に、撹拌によりろ材を流動させ、その後排水を行う方法である。撹拌洗浄によれば、ろ材充填層の空隙率を回復すること、被処理水の水処理効率を安定化するとともに、ろ床蠅の幼虫及びサカマキ貝の駆除を行うことができる。一方、浸漬洗浄は、散水ろ床を満水にしてろ材を一定時間浸漬し、その後排水を行う方法である。浸漬洗浄によれば、ろ材表面等に形成された生物膜が減少することを抑制しつつ、ろ床蠅の幼虫やサカマキ貝の駆除を行うことができる。   The present inventors have intensively studied to achieve the above object. The inventors of the present invention paid attention to the method of “immersion cleaning” in addition to “stir cleaning” as a method of cleaning the filter medium layer. Here, stirring washing is a method in which the filter medium is made to flow by stirring after the watering filter bed is full, and then drained. According to the agitation washing, the porosity of the filter medium packed bed can be recovered, the water treatment efficiency of the water to be treated can be stabilized, and the larvae and scallops of the filter bed can be controlled. On the other hand, the immersion cleaning is a method in which the watering filter bed is filled with water and the filter medium is immersed for a certain time and then drained. According to the immersion cleaning, it is possible to control the larvae and scallop shells of the filter bed while suppressing the decrease of the biofilm formed on the surface of the filter medium.

このように、「浸漬洗浄」及び「撹拌洗浄」は、異なる特性を有しており、ろ材層の状態を考慮して適している方の方法を選択することができれば、散水ろ床による水処理効率を一層高めうると考えられる。そこで、本発明者らは、ろ材層の状態に基づいて、行うべき洗浄の種類を、浸漬洗浄と撹拌洗浄との間で適切に切り替えることで、散水ろ床からのろ床蠅の幼虫及びサカマキ貝等の発生を抑制するとともに、散水ろ床の水処理能力を効果的に回復させることができることを新たに見出し、本発明を完成させた。   As described above, “immersion cleaning” and “stir cleaning” have different characteristics, and if a suitable method can be selected in consideration of the state of the filter medium layer, water treatment with a sprinkling filter bed is possible. It is thought that efficiency can be further increased. Therefore, the present inventors appropriately switch the type of cleaning to be performed between immersion cleaning and stirring cleaning based on the state of the filter medium layer, so that the larvae and sakamaki of the filter bed from the watering filter bed can be obtained. The present invention has been completed by newly finding that the generation of shellfish and the like can be suppressed and the water treatment capacity of the water trickling filter can be effectively recovered.

即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の散水ろ床の洗浄方法は、複数のろ材よりなるろ材層を水槽内に有する散水ろ床の洗浄方法であって、前記ろ材に対する生物付着量(Bm)を測定する測定工程と、前記ろ材を洗浄する洗浄工程と、を含み、前記洗浄工程にて、前記生物付着量(Bm)が所定の洗浄選択生物付着量(Bw)超である場合に前記ろ材を撹拌洗浄し、前記生物付着量(Bm)が前記洗浄選択生物付着量(Bw)以下である場合に前記ろ材を浸漬洗浄する、ことを特徴とする。このように、測定工程にてろ材に対する生物付着量(Bm)を測定し、かかる生物付着量(Bm)の値に基づいて、洗浄工程にて実施する洗浄方法を、浸漬洗浄及び撹拌洗浄の何れとするかを適切に選択することで、散水ろ床からのろ床蠅の幼虫及びサカマキ貝の発生を抑制するとともに、散水ろ床の水処理能力を効果的に回復させることができる。   That is, this invention aims at solving the said subject advantageously, The washing | cleaning method of the trickling filter of this invention wash | cleans the trickling filter which has the filter-medium layer which consists of several filter media in a water tank. A method comprising: a measuring step for measuring a biological adhesion amount (Bm) to the filter medium; and a cleaning step for cleaning the filter medium, wherein the biological adhesion amount (Bm) is a predetermined cleaning in the cleaning step. The filter medium is stirred and washed when the selected biological attachment amount (Bw) exceeds, and the filter medium is immersed and washed when the biological attachment amount (Bm) is equal to or less than the washing selected biological attachment amount (Bw). Features. In this way, the amount of biological attachment (Bm) to the filter medium is measured in the measurement step, and the cleaning method to be performed in the cleaning step based on the value of the amount of biological attachment (Bm) is either immersion cleaning or stirring cleaning. By appropriately selecting whether or not, it is possible to suppress the generation of larvae and scallop shells from the sprinkling filter bed and to effectively restore the water treatment ability of the sprinkling filter bed.

ここで、本発明の散水ろ床の洗浄方法では、前記測定工程にて前記生物付着量(Bm)を測定するにあたり、前記ろ材層の空隙率(VRo)を測定し、所定の空隙率設定値(VRi)との差を求めることが好ましい。ろ材層における空隙率に基づいて生物付着量を測定することで、ろ材に対する生物付着量を簡便かつ高精度に測定することができる。   Here, in the watering filter bed cleaning method of the present invention, when measuring the biological adhesion amount (Bm) in the measurement step, the porosity (VRo) of the filter medium layer is measured, and a predetermined porosity setting value is obtained. It is preferable to obtain a difference from (VRi). By measuring the amount of biofouling based on the porosity in the filter medium layer, the amount of biofouling on the filter medium can be measured easily and with high accuracy.

さらに、本発明の散水ろ床の洗浄方法では、前記測定工程にて、前記空隙率(VRo)を、前記ろ材層に対して洗浄液を流入させた場合の、前記ろ材層の所定区間への累積流入水量に基づいて測定することが好ましい。空隙率の測定にあたり、洗浄水の累積流入水量を用いることで、ろ材に対する生物付着量を一層簡便かつ高精度に測定することができる。   Furthermore, in the watering filter bed cleaning method of the present invention, in the measurement step, the porosity (VRo) is accumulated in a predetermined section of the filter medium layer when a cleaning liquid is caused to flow into the filter medium layer. It is preferable to measure based on the amount of inflow water. In measuring the porosity, by using the accumulated inflow amount of the washing water, it is possible to more easily and accurately measure the amount of biofouling on the filter medium.

さらに、本発明の散水ろ床の洗浄方法では、前記ろ材層の前記所定区間は、前記ろ材層の高さをHとした場合に、前記ろ材層の下端面からH/40以上H/10以下の高さ範囲に含まれる1つの測定開始高さ(Hs)と、前記ろ材層の上端面からH/40以上H/10以下の範囲に含まれる1つの測定終了高さ(He)とにより区画されることが好ましい。累積流入水量を算出する区間を、ろ材層の下端面近傍及び上端面近傍を除く所定区間とすることで、ろ材に対する生物付着量を一層高精度に測定することができる。   Furthermore, in the watering filter bed cleaning method of the present invention, the predetermined section of the filter medium layer is H / 40 or more and H / 10 or less from the lower end surface of the filter medium layer when the height of the filter medium layer is H. It is divided by one measurement start height (Hs) included in the height range and one measurement end height (He) included in the range from H / 40 to H / 10 from the upper end surface of the filter medium layer. It is preferred that By setting the section for calculating the accumulated inflowing water amount to a predetermined section excluding the vicinity of the lower end surface and the vicinity of the upper end surface of the filter medium layer, the amount of biological adhesion to the filter medium can be measured with higher accuracy.

また、本発明の散水ろ床の洗浄方法では、前記洗浄工程にて、前記生物付着量(Bm)が前記洗浄選択生物付着量(Bw)超の場合に、洗浄選択生物付着量(Bw)との差(Bd=Bm−Bw)に基づいて前記撹拌洗浄の際の洗浄強度を調節することを含むことが好ましい。生物付着量(Bm)と洗浄選択生物付着量(Bw)との差分(Bd)に基づいて、撹拌洗浄の際の洗浄強度を調節することで、散水ろ床からのろ床蠅の幼虫及びサカマキ貝の発生を一層良好に抑制するとともに、散水ろ床の水処理能力を一層効果的に回復させることができる。   Further, in the watering filter bed cleaning method of the present invention, in the cleaning step, when the biofouling amount (Bm) exceeds the cleaning selected biofouling amount (Bw), It is preferable to include adjusting the cleaning strength in the stirring cleaning based on the difference (Bd = Bm−Bw). Based on the difference (Bd) between the biofouling amount (Bm) and the washing selected biofouling amount (Bw), by adjusting the washing strength at the time of stirring and washing, the larvae and Sakamaki of the filter bed from the watering filter bed The generation of shellfish can be more effectively suppressed, and the water treatment capacity of the trickling filter can be recovered more effectively.

本発明によれば、ろ材に対する生物付着量に応じて適切な方法でろ材の洗浄を行うことで、散水ろ床からのろ床蠅の幼虫及びサカマキ貝等の発生を抑制するとともに、散水ろ床の水処理能力を効果的に回復させることができる。   According to the present invention, the filter medium is washed by an appropriate method in accordance with the amount of biofouling on the filter medium, thereby suppressing the generation of larvae and scallops from the sprinkling filter bed, and the watering filter bed. Can effectively restore the water treatment capacity.

本発明に従う代表的な散水ろ床の洗浄方法を適用し得る散水ろ床の一例の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of an example of the trickling filter which can apply the washing method of the typical trickling filter according to this invention. 図1に示す散水ろ床にてろ材層を形成しているろ材の斜視図である。It is a perspective view of the filter medium which forms the filter medium layer in the sprinkling filter bed shown in FIG. 本発明に従う代表的な散水ろ床の洗浄方法の測定工程において、ろ材層の所定区間への累積流入水量を測定する場合の説明図である。It is explanatory drawing in the case of measuring the cumulative inflow water quantity to the predetermined area of a filter medium layer in the measurement process of the washing method of the typical sprinkling filter bed according to this invention. 本発明に従う代表的な散水ろ床の洗浄方法に従って、散水ろ床を撹拌洗浄している状態を示す説明図である。It is explanatory drawing which shows the state which is stirring and washing the water trickling filter according to the washing | cleaning method of the typical water trickling filter according to this invention. ろ材への生物付着量と溶解性BOD除去量の関係を示すグラフである。It is a graph which shows the relationship between the amount of biological adhesion to a filter medium, and soluble BOD removal amount. ろ材への生物付着量とアンモニア性窒素除去量の関係を示すグラフである。It is a graph which shows the relationship between the amount of biological adhesion to a filter medium, and ammonia nitrogen removal amount. 本発明に従う代表的な散水ろ床の洗浄方法の洗浄工程において、洗浄方法を切り替える場合を説明するための図である。It is a figure for demonstrating the case where the washing | cleaning method is switched in the washing | cleaning process of the washing method of the typical sprinkling filter bed according to this invention. Bm,Bw、及びBdの関係を、図5において説明した生物付着率と溶解性BOD除去量の関係に併せて示す図である。It is a figure which shows the relationship between Bm, Bw, and Bd together with the relationship between the biological adhesion rate demonstrated in FIG. 5, and soluble BOD removal amount.

以下、本発明の実施の形態を、図面に基づき詳細に説明する。なお、各図において、同一の符号を付したものは、同一の構成要素を示すものとする。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, in each figure, what attached | subjected the same code | symbol shall show the same component.

(散水ろ床の洗浄方法)
本発明の散水ろ床の洗浄方法は、特に限定されることなく、下水などの被処理水の処理に用いられる散水ろ床を洗浄する際に用いることができる。そして、本発明の散水ろ床の洗浄方法は、ろ材に対する生物付着量(Bm)を測定する測定工程と、ろ材を洗浄する洗浄工程と、を含む。さらに、本発明の散水ろ床の洗浄方法は、洗浄工程にて、生物付着量(Bm)が所定の洗浄選択生物付着量(Bw)超である場合にろ材を撹拌洗浄し、生物付着量(Bm)が洗浄選択生物付着量(Bw)以下である場合にろ材を浸漬洗浄することを特徴とする。
(Washing filter floor cleaning method)
The washing method for the trickling filter of the present invention is not particularly limited, and can be used when washing the trickling filter used for the treatment of treated water such as sewage. And the washing method of the trickling filter bed of the present invention includes the measurement process of measuring the amount of biological adhesion (Bm) to the filter medium, and the cleaning process of cleaning the filter medium. Furthermore, in the washing method of the trickling filter of the present invention, when the biofouling amount (Bm) exceeds a predetermined washing selected biofouling amount (Bw) in the washing step, the filter medium is stirred and washed, and the biofouling amount ( The filter medium is immersed and washed when Bm) is equal to or less than the washing selected biological adhesion amount (Bw).

<散水ろ床>
ここで、本発明の散水ろ床の洗浄方法を用いて洗浄される散水ろ床は、例えば図1に示すような構成を有している。具体的には、図1に示す散水ろ床100は、水槽10内に、スクリーン20と、スクリーン20で支持され、且つろ材層上端面32の高さまで充填された複数のろ材31からなるろ材層30と、ろ材層30に対して空気を送気する曝気装置40と、ろ材層30の上方に設置されて被処理水をろ材層30に散布する散水機50とを備えている。そして、散水機50には、流量計51及び被処理水弁52を有する被処理水配管53が接続されている。また、散水ろ床100の水槽10は、スクリーン20よりも下側に設けられた流出口を有している。そして、流出口には、弁61を有する配管60が接続されている。なお、図示しないが、配管60は、図示した領域よりも下流側で、三方弁等を介して処理水配管と洗浄水配管とに分岐していても良い。さらに、水槽10は、連結部が開口となっており、水槽10内に水が溜められた場合に、その水位を示すことができる連結管70、及び当該連結管70に取り付けられた水位計71を備えている。
<Watering filter floor>
Here, the watering filter bed cleaned using the watering filter cleaning method of the present invention has a configuration as shown in FIG. Specifically, the trickling filter bed 100 shown in FIG. 1 includes a screen 20 and a filter medium layer composed of a screen 20 and a plurality of filter media 31 supported by the screen 20 and filled up to the height of the upper end face 32 of the filter medium layer. 30, an aeration apparatus 40 that feeds air to the filter medium layer 30, and a sprinkler 50 that is installed above the filter medium layer 30 and sprays water to be treated onto the filter medium layer 30. And the to-be-processed water piping 53 which has the flowmeter 51 and the to-be-processed water valve 52 is connected to the sprinkler 50. FIG. Further, the water tank 10 of the water trickling filter 100 has an outlet provided below the screen 20. A pipe 60 having a valve 61 is connected to the outlet. Although not shown, the pipe 60 may be branched into a treated water pipe and a washing water pipe via a three-way valve or the like on the downstream side of the illustrated area. Further, the water tank 10 has an opening at the connecting portion, and when water is accumulated in the water tank 10, a connecting pipe 70 that can indicate the water level, and a water level meter 71 attached to the connecting pipe 70. It has.

ここで、水槽10としては、特に限定されることなく、鋼板製の水槽、樹脂製の水槽及びコンクリート製の水槽などの既知の水槽を用いることができる。なお、水槽の形状は、矩形状や円柱状など、任意の形状とすることができる。   Here, the water tank 10 is not particularly limited, and known water tanks such as a steel tank, a resin water tank, and a concrete water tank can be used. In addition, the shape of a water tank can be made into arbitrary shapes, such as a rectangular shape and a column shape.

また、ろ材層30は、水槽10内に充填した複数のろ材31で構成されている。具体的には、ろ材層30は、一端が水槽10の底面に固定された支柱21により支持された梁22の上に設置されたスクリーン20上に複数のろ材31をろ材層上端面32の高さまで充填して形成されている。ここで、ろ材層上端面32の高さは、ろ材31の充填高さであり、通常は、1〜4m程度であり、2.0〜2.5m程度が好ましい。なお、スクリーン20の網目は、ろ材31が通過しない大きさに設定されている。ここで、散水ろ床100では、ろ材31として、図2に示すような円筒形状の樹脂製ろ材を用いたが、本発明の散水ろ床では、ろ材の材質及び形状は、任意の材質及び形状とすることができる。例えば、ろ材31の材質としては、特に限定されることなく、ポリプロピレン及びポリエチレン等の樹脂が挙げられる。また、例えば、ろ材の形状としては、円筒形状以外に、鞍形状及び中空球形状等が挙げられる。   The filter medium layer 30 is composed of a plurality of filter media 31 filled in the water tank 10. Specifically, the filter medium layer 30 has a plurality of filter media 31 placed on the screen 20 installed on the beam 22 supported by a column 21 having one end fixed to the bottom surface of the water tank 10. It is filled up to this point. Here, the height of the filter medium layer upper end surface 32 is the filling height of the filter medium 31, and is usually about 1 to 4 m, preferably about 2.0 to 2.5 m. The mesh of the screen 20 is set to a size that the filter medium 31 does not pass through. Here, in the watering filter bed 100, a cylindrical resin filter material as shown in FIG. 2 was used as the filter medium 31, but in the watering filter bed of the present invention, the material and shape of the filter medium are arbitrary materials and shapes. It can be. For example, the material of the filter medium 31 is not particularly limited, and examples thereof include resins such as polypropylene and polyethylene. Further, for example, the shape of the filter medium includes a bowl shape and a hollow sphere shape in addition to the cylindrical shape.

但し、ろ材層30を構成する複数のろ材31は、浸漬洗浄が可能であるために、洗浄工程を実施する時点において平均比重が1.0超である必要がある。ろ材31の比重は、例えば、ろ材に対して付着した生物膜の質量によって変化するため、生物膜が付着する前の平均比重が1.0未満であるろ材であっても、ろ材層30を形成するためのろ材31として用いることができる。なお、浸漬容易性及び流動容易性の観点から、ろ材31の平均比重が1超1.15以下であることが好ましい。
本明細書において、ろ材31の平均比重は100個のろ材について、質量(g)/体積(cm3)を算出した場合の個数平均値を意味する。
However, since the plurality of filter media 31 constituting the filter media layer 30 can be dipped and washed, the average specific gravity needs to be more than 1.0 at the time of performing the washing step. Since the specific gravity of the filter medium 31 varies depending on, for example, the mass of the biofilm attached to the filter medium, the filter medium layer 30 is formed even if the average specific gravity before the biofilm is attached is less than 1.0. It can be used as a filter medium 31 for doing so. In addition, it is preferable that the average specific gravity of the filter medium 31 is more than 1 and 1.15 or less from the viewpoints of easy immersion and easy flow.
In the present specification, the average specific gravity of the filter medium 31 means a number average value when mass (g) / volume (cm 3 ) is calculated for 100 filter media.

曝気装置40は、ろ材層30を構成するろ材31を撹拌洗浄する際に、洗浄水中にてろ材31を撹拌させるように機能する。曝気装置40は、撹拌用空気配管81を介してブロア80と接続されている。そして、ブロア80は監視制御装置90により運転制御されうる。   The aeration apparatus 40 functions to stir the filter medium 31 in the washing water when the filter medium 31 constituting the filter medium layer 30 is stirred and washed. The aeration apparatus 40 is connected to the blower 80 via a stirring air pipe 81. The blower 80 can be controlled by the monitoring control device 90.

散水機50は、被処理水の処理時には、被処理水をろ材層30に散布する被処理水供給機構として機能する。また、散水機50は、散水ろ床100の洗浄時には、配管60に設けられた弁61と共に水槽10内に洗浄液としての被処理水を貯留する洗浄液貯留機構として機能する。   The sprinkler 50 functions as a to-be-processed water supply mechanism which sprays to-be-processed water on the filter medium layer 30 at the time of processing of to-be-processed water. The water sprinkler 50 functions as a cleaning liquid storage mechanism that stores the water to be treated as the cleaning liquid in the water tank 10 together with the valve 61 provided in the pipe 60 when the water trickling filter 100 is cleaned.

流量計51は被処理水の流量を常時測定して、一定時間(例えば1分)毎に測定値を監視制御装置90に対して発信している。
なお、この一例では散水機50を用いて洗浄液としての被処理水を貯留できるようにしたが、散水ろ床100は、被処理水以外の洗浄水(例えば、再生水、中水、河川水、水道水、工業用水、及び薬液等)を、流量計51を通過させて水槽内に供給する配管を備えていても良い。
The flow meter 51 constantly measures the flow rate of the water to be treated, and transmits the measured value to the monitoring control device 90 every predetermined time (for example, 1 minute).
In this example, the water to be treated as the cleaning liquid can be stored using the water sprinkler 50. However, the watering filter bed 100 is provided with cleaning water other than the water to be treated (for example, reclaimed water, middle water, river water, water supply). You may provide the piping which passes the flowmeter 51 and supplies water, industrial water, a chemical | medical solution, etc.) into the water tank.

そして、散水ろ床100では、以下に詳細に説明するようにして、被処理水の処理、及び、散水ろ床100のろ材層30を構成するろ材31の洗浄を行うことができる。   And in the trickling filter bed 100, as it demonstrates in detail below, the process of to-be-processed water and the washing | cleaning of the filter medium 31 which comprises the filter medium layer 30 of the trickling filter bed 100 can be performed.

なお、図1に示した散水ろ床100は、ろ材層30は下端面にてスクリーン20にて支持されてなるが、本発明の散水ろ床の洗浄方法を適用し得る他の態様にかかる散水ろ床は、スクリーン20、支柱21、及び梁22等を有さず、ろ材層の下端面が水槽の内側底面に一致又は略一致するものであっても良い。   In the sprinkling filter bed 100 shown in FIG. 1, the filter medium layer 30 is supported by the screen 20 at the lower end surface, but the sprinkling according to another embodiment to which the cleaning method of the sprinkling filter bed of the present invention can be applied. The filter bed may not have the screen 20, the column 21, the beam 22, and the like, and the lower end surface of the filter medium layer may coincide with or substantially coincide with the inner bottom surface of the water tank.

<被処理水の処理>
具体的には、散水ろ床100では、被処理水弁52及び弁61を開いた状態で、散水機50を介して被処理水をろ材層30へと散布し、被処理水を処理する。より具体的には、散水ろ床100では、被処理水配管53及び散水機50を介してろ材層30へと散布された被処理水中の有機物等が、ろ材層30に存在する微生物(例えば、ろ材31の表面等に形成された生物膜中に存在しうるBOD酸化細菌及びアンモニア酸化細菌等)によって好気的に生物処理される。また、被処理水中に含まれていた固形物が、ろ材層30で捕捉される。そして、ろ材層30で被処理水を処理して得られた処理水は、配管60を介して散水ろ床100の外へと排出される。
<Treatment of treated water>
Specifically, in the trickling filter 100, the treated water is sprayed onto the filter medium layer 30 through the sprinkler 50 with the treated water valve 52 and the valve 61 opened, thereby treating the treated water. More specifically, in the sprinkling filter bed 100, organic matter or the like in the water to be treated sprayed to the filter medium layer 30 through the water pipe 53 and the sprinkler 50 is treated with microorganisms (for example, BOD-oxidizing bacteria and ammonia-oxidizing bacteria that may exist in the biofilm formed on the surface of the filter medium 31 are aerobically biotreated. Further, the solid matter contained in the for-treatment water is captured by the filter medium layer 30. Then, the treated water obtained by treating the treated water with the filter medium layer 30 is discharged out of the sprinkling filter bed 100 through the pipe 60.

<ろ材の洗浄>
ここで、散水ろ床100において被処理水の処理を継続すると、ろ床蠅及びサカマキ貝等が発生することや、ろ材31に対して微生物が過剰に付着して生物膜が過剰に厚膜化することに起因して、水処理性能の低下が起こり得る。そこで、本発明の散水ろ床の洗浄方法に従ってろ材層30を構成するろ材31を洗浄する。ろ材31の洗浄にあたり、本発明の散水ろ床の洗浄方法では、まず、ろ材に対する生物付着量(Bm)を測定する測定工程を実施し、かかる測定工程で得られた生物付着量(Bm)の値に基づいて、撹拌洗浄と浸漬洗浄とを切り替えて実施する洗浄工程を実施する。なお、測定工程及び洗浄工程の実施頻度は、季節や被処理水の属性等に応じて任意に設定することができる。
<Washing of filter media>
Here, if the treatment of the water to be treated is continued in the sprinkling filter bed 100, filter bed straw, scallop shells, etc. are generated, or microorganisms adhere excessively to the filter medium 31 and the biofilm becomes excessively thick. As a result, the water treatment performance may be degraded. Therefore, the filter medium 31 constituting the filter medium layer 30 is cleaned according to the watering filter bed cleaning method of the present invention. In cleaning the filter medium 31, in the sprinkling filter bed cleaning method of the present invention, first, a measurement step of measuring the amount of biofouling (Bm) on the filter medium is performed, and the amount of biofouling (Bm) obtained in the measurement step is measured. Based on the value, a cleaning process is performed by switching between agitation cleaning and immersion cleaning. In addition, the implementation frequency of a measurement process and a washing | cleaning process can be arbitrarily set according to a season, the attribute of treated water, etc.

[測定工程]
測定工程では、ろ材に対する生物付着量(Bm)を測定する。測定工程における生物付着量(Bm)の測定方法は、特に限定されない。測定方法としては、例えば、ろ材層30の質量変化を検出する方法、及びろ材層30における空隙率に基づく測定方法等が挙げられる。中でも、簡便性及び測定精度の観点から、空隙率に基づく測定方法が好ましい。
[Measurement process]
In the measurement process, the amount of biological adhesion (Bm) to the filter medium is measured. The method for measuring the amount of biofouling (Bm) in the measurement process is not particularly limited. Examples of the measurement method include a method for detecting mass change of the filter medium layer 30 and a measurement method based on the porosity in the filter medium layer 30. Among these, from the viewpoint of simplicity and measurement accuracy, a measurement method based on the porosity is preferable.

ここで、従来は、処理水質等を指標として決定されたタイミングで、或いは、予め定めておいたインターバル(例えば、所定の運転日数)毎に、洗浄工程を実施することが一般的であった。しかし、こうした従来一般的に実施されてきた方法には、以下のような不都合が想定された。すなわち、処理水質の低下は、上述したような、ろ床蠅及びサカマキ貝等の発生、及び/又は、生物膜の厚膜化に起因した散水ろ床の水処理性能の低下によってのみ引き起こされるものではなく、(i)ろ材層の温度低下に起因する微生物活性の低下、(ii)低濃度の被処理水の長期流入による付着微生物の流出、及び、(iii)高濃度の被処理水の流入による過負荷等の種々の要因によっても引き起こされうる。よって、従来法に従って、処理水質の低下が検出された場合にろ材層を撹拌洗浄してしまえば、処理水質低下の原因が上記(i)〜(iii)のようなものであった場合には、ろ材層に保持されていた微生物の量を不必要に低減させることとなり、却って更なる処理水質の低下を招く虞があった。また、ろ材層の水処理性能が劣化すると想定される運転日数を予め定め、かかる運転日数毎に洗浄工程を実施する方法は、水質変動の少ない被処理水が、一定温度の条件で一定流量でろ材層に流入し、ろ材層への微生物の付着速度がほぼ一定である、という特殊な条件下でのみ良好な結果を得ることができる方法である。従って、被処理水の水質、水温、及び流入量等、種々の条件が変動し得る実際の下水処理等では、ろ材層に保持された微生物量が不十分な状況においても撹拌洗浄が実施される虞がある。その結果、更なる処理水質の低下を招く虞があった。このように、従来のような、ろ材層内の微生物量等を直接的に測定せずに、いわば、処理水質又は運転日数に基づいてろ材層内の微生物量が不適切となりうるタイミングを間接的に推定するような方法によっては、水処理性能を良好に維持することが難しかった。   Here, conventionally, the cleaning process is generally performed at a timing determined using treated water quality or the like as an index, or every predetermined interval (for example, a predetermined number of operating days). However, the following inconveniences have been assumed in the methods that have been generally performed in the past. In other words, the degradation of treated water quality is caused only by the degradation of water treatment performance of the sprinkling filter bed due to the occurrence of filter bed spiders and shellfish and / or the thickening of the biofilm as described above. Rather than (i) a decrease in microbial activity due to a decrease in temperature of the filter medium layer, (ii) an outflow of attached microorganisms due to a long-term inflow of low concentration treated water, and (iii) an inflow of high concentration treated water It can also be caused by various factors such as overloading. Therefore, according to the conventional method, if the filter medium layer is stirred and washed when a decrease in the quality of the treated water is detected, the cause of the lowered quality of the treated water is as described in (i) to (iii) above. In addition, the amount of microorganisms retained in the filter medium layer is unnecessarily reduced, and there is a possibility that the quality of the treated water is further lowered. In addition, the number of operating days in which the water treatment performance of the filter medium layer is assumed to be deteriorated is determined in advance, and the cleaning process is performed every such operating days. In this method, good results can be obtained only under a special condition of flowing into the filter medium layer and the rate of adhesion of microorganisms to the filter medium layer being substantially constant. Therefore, in the actual sewage treatment in which various conditions such as the quality of the treated water, the water temperature, and the inflow amount can fluctuate, the agitation washing is performed even in a situation where the amount of microorganisms retained in the filter medium layer is insufficient. There is a fear. As a result, there is a possibility that the quality of treated water is further deteriorated. Thus, without directly measuring the amount of microorganisms or the like in the filter medium layer as in the past, so to speak, indirectly, the timing at which the amount of microorganisms in the filter medium layer may become inappropriate based on the quality of treated water or the number of operating days. However, it was difficult to maintain good water treatment performance by some methods.

そこで、本発明のように、ろ材に対する生物付着量(Bm)を測定することで、ろ材に対して付着した微生物量が充分であるか否かを、処理水質等の間接的な指標によらず、直接的に把握することができる。さらに、ろ材に対する生物付着量(Bm)を測定するにあたり、上記のような、ろ材層30の質量又は空隙率に基づく測定方法によれば、ろ材層30内の微生物等の量を、直接的且つ高精度に測定することができる。中でも、ろ材層30の空隙率に基づく測定方法によれば、簡便且つ効率的にろ材に対する生物付着量を測定することができる。   Therefore, as in the present invention, whether or not the amount of microorganisms adhering to the filter medium is sufficient by measuring the amount of biological adhesion (Bm) to the filter medium does not depend on an indirect indicator such as the quality of treated water. Can be grasped directly. Furthermore, in measuring the amount of biological adhesion (Bm) to the filter medium, according to the measurement method based on the mass or the porosity of the filter medium layer 30 as described above, the amount of microorganisms or the like in the filter medium layer 30 is directly and It can be measured with high accuracy. Especially, according to the measuring method based on the porosity of the filter medium layer 30, it is possible to easily and efficiently measure the amount of biological adhesion to the filter medium.

―空隙率に基づく生物付着量の測定方法―
測定工程の実施時点でのろ材層30の空隙率(VRo)及び所定の空隙率設定値(VRi)の差分を、ろ材層30における生物付着量(Bm)とすることができる。所定の空隙率設定値(VRi)は、例えば、運転前のろ材層30の空隙部体積(V2)及び水槽10の一部容積(V1)を用いて、式:V2/V1×100(%)として求めることができる
。なお、所定の空隙率設定値(VRi)の値は、「式:V2/V1×100(%)」によって算出される値のみに限定されるものではなく、散水ろ床100の運転を継続していく段階において、適宜補正することができる。
―Measurement of biofouling amount based on porosity―
The difference between the porosity (VRo) of the filter medium layer 30 and the predetermined porosity setting value (VRi) at the time of carrying out the measurement step can be used as the biological adhesion amount (Bm) in the filter medium layer 30. The predetermined porosity setting value (VRi) is calculated by using, for example, the void volume (V2) of the filter medium layer 30 before operation and the partial volume (V1) of the water tank 10 by the formula: V2 / V1 × 100 (%). Can be obtained as Note that the value of the predetermined porosity setting value (VRi) is not limited to the value calculated by “formula: V2 / V1 × 100 (%)”, and the operation of the water trickling filter 100 is continued. As necessary, it can be corrected appropriately.

また、空隙率(VRo)は、測定工程の実施時点でのろ材層空隙部体積(V3)及び水槽10の一部容積(V1)を用いて、式:V3/V1×100(%)として求めることができる。以下、図3を参照して、水量に基づいて空隙率を測定する際の測定方法について説明する。なお、図3に示す散水ろ床100は図1に示した散水ろ床100と同じである。   Further, the porosity (VRo) is obtained as an expression: V3 / V1 × 100 (%) using the filter medium layer void volume (V3) and the partial volume (V1) of the water tank 10 at the time of carrying out the measurement process. be able to. Hereinafter, with reference to FIG. 3, the measuring method at the time of measuring the porosity based on the amount of water will be described. The watering filter bed 100 shown in FIG. 3 is the same as the watering filter bed 100 shown in FIG.

水槽10の一部容積(V1)は、水槽10において、ろ材31を充填する空間の少なく
とも一部を含む部分の容積に相当する。また、例えば、一部容積(V1)は、ろ材層30の底面から上端面までの位置に相当する、水槽10の一部容積であり得る。この場合、一部容積(V1)は、ろ材層30の底面位置に相当するスクリーン20から、ろ材層上端面32の高さまでの、水槽10の容積に相当する。また、例えば、一部容積(V1)は、ろ材層30の高さの一部に相当する部分を含む、水槽10の一部容積であっても良い。なお、一部容積(V1)は水槽10の内側形状が単純な形状の場合には、計算に基づいて算出することができる。勿論、一部容積(V1)の測定にあたり、ろ材31を充填しない状態で、水槽10内に水を流入させたときの、所定区間における累積流入水量として計測することも可能である。なお、この際に用いる水としては特に限定されることなく、被処理水、再生水、中水、河川水、水道水、及び工業用水等を使用することができる。また、「所定区間」とは、ろ材層30の少なくとも一部を含む限りにおいて特に限定されることなく、あらゆる区間であり得る。例えば、ろ材層30の「少なくとも一部」である所定区間とは、ろ材層30の下端面よりも上側、及び、ろ材層30の上端面よりも下側の少なくとも一方を一端とする区間であり得る。中でも、図3に示すように、スクリーン20(即ち、ろ材層30の下端面)から、ろ材層上端面32までの高さをHとした場合に、ろ材層30の下端面からH/40以上H/10以下の高さ範囲に含まれる1つの測定開始高さ(Hs)と、ろ材層上端面32からH/40以上H/10以下の範囲に含まれる1つの測定終了高さ(He)とにより区画される区間hであることが好ましい。なお、図3における縮尺、各構成部間の位置関係等は、これに限定されるものではない。「所定区間」の上下限を、ろ材層30の底面付近及び上端面付近を含まないように設定することで、繰り返し使用等に起因するろ材31の劣化、及びろ材31自体の自重等に起因して圧密等が発生することにより、測定工程を経て得られる各種測定値の精度が低下することを効果的に抑制することができるからである。特に、ろ材層30の下端面付近の領域を「所定区間」に含まないようにすることで、圧密等に起因する空隙体積の変化の、測定値に対する影響を低減することができる。また、ろ材層30の上端面32付近の領域を「所定区間」に含まないようにすることで、圧密及びろ材31の劣化等に起因するろ材層30の高さの変化によって、測定値に誤差が生じることを低減することができる。さらにまた、ろ材層30の「全部」ではなく「少なくとも一部」を累積流入水量の算出対象領域とすることで、測定工程に要する時間を短縮することができる。
The partial volume (V1) of the water tank 10 corresponds to the volume of the part including at least a part of the space filled with the filter medium 31 in the water tank 10. For example, the partial volume (V1) may be a partial volume of the water tank 10 corresponding to a position from the bottom surface to the upper end surface of the filter medium layer 30. In this case, the partial volume (V1) corresponds to the volume of the water tank 10 from the screen 20 corresponding to the bottom surface position of the filter medium layer 30 to the height of the filter medium layer upper end face 32. For example, the partial volume (V1) may be a partial volume of the water tank 10 including a portion corresponding to a part of the height of the filter medium layer 30. The partial volume (V1) can be calculated based on the calculation when the inner shape of the water tank 10 is a simple shape. Of course, in measuring the partial volume (V1), it is also possible to measure the accumulated inflow water amount in a predetermined section when water is introduced into the water tank 10 without filling the filter medium 31. In addition, it does not specifically limit as water used in this case, To-be-processed water, reclaimed water, middle water, river water, tap water, industrial water, etc. can be used. Further, the “predetermined section” is not particularly limited as long as at least a part of the filter medium layer 30 is included, and may be any section. For example, the predetermined section that is “at least a part” of the filter medium layer 30 is a section having one end at least one of the upper side of the lower end surface of the filter medium layer 30 and the lower side of the upper end surface of the filter medium layer 30. obtain. In particular, as shown in FIG. 3, when the height from the screen 20 (that is, the lower end surface of the filter medium layer 30) to the upper end surface 32 of the filter medium layer is H, H / 40 or more from the lower end surface of the filter medium layer 30. One measurement start height (Hs) included in the height range of H / 10 or less and one measurement end height (He) included in the range of H / 40 or more and H / 10 or less from the filter medium layer upper end surface 32 It is preferable that it is the area h divided by these. In addition, the scale in FIG. 3 and the positional relationship between each component are not limited to this. By setting the upper and lower limits of the “predetermined section” so as not to include the vicinity of the bottom surface and the vicinity of the upper end surface of the filter medium layer 30, it is caused by deterioration of the filter medium 31 due to repeated use, etc., and the weight of the filter medium 31 itself. It is because it can suppress effectively that the precision of the various measured values obtained through a measurement process falls because compaction etc. generate | occur | produce. In particular, by not including the region in the vicinity of the lower end surface of the filter medium layer 30 in the “predetermined section”, it is possible to reduce the influence of the change in the void volume due to consolidation or the like on the measurement value. In addition, by not including the region near the upper end surface 32 of the filter medium layer 30 in the “predetermined section”, an error may occur in the measured value due to a change in the height of the filter medium layer 30 due to compaction and deterioration of the filter medium 31. Can be reduced. Furthermore, the time required for the measurement process can be shortened by setting “at least a part” instead of “all” of the filter medium layer 30 as the calculation target region of the cumulative inflow water amount.

水位計71を用いて、測定開始高さ(Hs)から測定終了高さ(He)までの水の累積流入水量を測定する方法は、例えば、以下の通りである。上述したように、流量計51は供給水の流量を常時測定している。従って、水位計71にて検出された水位がHsとなった時点から、水位計71にて検出された水位がHeとなった時点までの、積算流量を求めることで、測定開始高さ(Hs)から測定終了高さ(He)までを「所定区間」とした場合の累積流入水量(水槽10の一部容積(V1)に相当)を得ることができる。なお、上
述した通り、水槽10の一部容積(V1)を求めるという観点からすると、水槽10の内
部形状が円筒形等の単純な形状である場合には、高さ(He−Hs)に対して、水槽10の断面積を乗じることで、水槽10の一部容積(V1)を求めることも勿論可能である。
A method for measuring the cumulative inflow amount of water from the measurement start height (Hs) to the measurement end height (He) using the water level meter 71 is, for example, as follows. As described above, the flow meter 51 constantly measures the flow rate of the supply water. Therefore, the measurement start height (Hs) is obtained by obtaining the integrated flow rate from the time when the water level detected by the water level gauge 71 becomes Hs to the time when the water level detected by the water level gauge 71 becomes He. ) To the measurement end height (He) as a “predetermined section”, the cumulative inflow water amount (corresponding to a partial volume (V1) of the water tank 10) can be obtained. As described above, from the viewpoint of obtaining the partial volume (V1) of the water tank 10, when the internal shape of the water tank 10 is a simple shape such as a cylindrical shape, the height (He-Hs) Of course, it is possible to obtain the partial volume (V1) of the water tank 10 by multiplying the cross-sectional area of the water tank 10.

また、運転前のろ材層30の空隙部体積(V2)は、新品ろ材を水槽10内に充填した状態で、弁61を閉じて水槽10内に水を流入させ、ろ材層30の所定区間への累積流入水量として計測することができる。空隙部体積(V2)は、ろ材31に対して生物膜が全く付着していない状態における、ろ材層30の空隙の全体積を表している。累積流入水量に基づく空隙部体積(V2)の測定方法は、水槽10の一部容積(V1)を求める際と同
様である。
Further, the void volume (V2) of the filter medium layer 30 before operation is such that a new filter medium is filled in the water tank 10 and the valve 61 is closed to allow water to flow into the water tank 10 and to the predetermined section of the filter medium layer 30. It can be measured as the accumulated inflow of water. The void volume (V2) represents the total volume of voids in the filter medium layer 30 in a state where no biofilm is attached to the filter medium 31. The method for measuring the void volume (V2) based on the accumulated inflow water amount is the same as that for obtaining the partial volume (V1) of the water tank 10.

測定工程の実施時点でのろ材層空隙部体積(V3)は、散水ろ床100の運転を開始した後に測定工程を実施する際に、弁61を閉じて水槽10内に洗浄液を流入させ、ろ材層30の所定区間への累積流入水量として計測することができる。換言すれば、ろ材層空隙部体積(V3)は、ろ材31に対して生物膜が付着している状態における、ろ材層30の空隙の全体積を表している。洗浄液としては、液体である限りにおいて特に限定されることなく、被処理水、再生水、中水、河川水、水道水、工業用水、及び薬液等を用いることができる。中でも、コスト低減及び散水ろ床の構造の簡素化の観点から、洗浄液としては被処理水を用いることが好ましい。なお、累積流入水量に基づくろ材層空隙部体積(V3)の測定方法は、水槽10の一部容積(V1)を求める際と同様である。   The filter medium layer void volume (V3) at the time of carrying out the measurement step is such that when the measurement step is carried out after the operation of the sprinkling filter bed 100 is started, the valve 61 is closed and the cleaning liquid is caused to flow into the water tank 10. It can be measured as the accumulated inflow water amount to a predetermined section of the layer 30. In other words, the filter medium layer void volume (V3) represents the entire volume of the voids of the filter medium layer 30 in a state where the biofilm is attached to the filter medium 31. The cleaning liquid is not particularly limited as long as it is a liquid, and water to be treated, reclaimed water, middle water, river water, tap water, industrial water, chemical liquid, and the like can be used. Especially, it is preferable to use to-be-processed water as a washing | cleaning liquid from a viewpoint of cost reduction and the simplification of the structure of a trickling filter bed. In addition, the measuring method of the filter medium layer space | gap part volume (V3) based on accumulated inflow water amount is the same as when calculating | requiring the partial volume (V1) of the water tank 10. FIG.

これらの、水槽10の一部容積(V1)及び運転前のろ材層30の空隙部体積(V2)
に基づいて、式:V2/V1×100(%)に従って算出される所定の空隙率設定値(VRi)は、ろ材31に対して生物膜が全く付着していない状態における、ろ材層30における空隙の割合(%)を示している。また、水槽10の一部容積(V1)及び測定工程の
実施時点でのろ材層空隙部体積(V3)に基づいて、式:V3/V1×100(%)に従って算出される空隙率(VRo)は、ろ材31に対して生物膜が付着している状態における、ろ材層30における空隙の割合(%)を示している。従って、空隙率(VRo)と所定の空隙率設定値(VRi)との差分を求めることで、ろ材31に対して付着した生物膜等によって、ろ材層30における空隙率がどの程度減少したかを把握することができる。減少した空隙の分だけ、生物膜等の量が増えているということになり、従って、(VRo−VRi)の値は、ろ材層30の状態を直接的に表す指標であるといえる。なお、(VRo−VRi)の値には、生物膜の厚膜化だけではなく、ろ材層30にて捕捉された被処理水中の固形分量や、ろ材層30中にて発生したろ床蠅の幼虫やサカマキ貝等の影響も反映されうる。
These partial volume (V1) of the water tank 10 and the void volume (V2) of the filter medium layer 30 before operation.
The predetermined porosity setting value (VRi) calculated in accordance with the formula: V2 / V1 × 100 (%) is a void in the filter medium layer 30 in a state where no biofilm is attached to the filter medium 31. The ratio (%) is shown. Moreover, based on the partial volume (V1) of the water tank 10 and the filter medium layer void volume (V3) at the time of carrying out the measurement step, the porosity (VRo) calculated according to the formula: V3 / V1 × 100 (%) These show the ratio (%) of the space | gap in the filter medium layer 30 in the state in which the biofilm has adhered with respect to the filter medium 31. FIG. Therefore, by calculating the difference between the porosity (VRo) and the predetermined porosity setting value (VRi), it is possible to determine how much the porosity in the filter medium layer 30 is reduced by the biofilm attached to the filter medium 31. I can grasp it. This means that the amount of the biofilm and the like is increased by the amount of the decreased gap, and therefore the value of (VRo−VRi) can be said to be an index that directly represents the state of the filter medium layer 30. In addition, the value of (VRo−VRi) includes not only the thickening of the biofilm but also the solid content in the water to be treated captured by the filter medium layer 30, and the amount of filter bed cake generated in the filter medium layer 30. The effects of larvae and scallops can also be reflected.

ここで、上記では、生物付着量(Bm)の好適な取得方法である空隙率を用いた測定方法について具体的に説明した。これとは別に、生物付着量(Bm)をろ材層30の質量変化に基づいて測定する場合には、生物付着量は、測定時点におけるろ材層30の少なくとも一部の質量(Mo)から、所定の質量設定値(Mi)を差し引いた差分の値として算出することができる。なお、例えば、所定の質量設定値(Mi)は、質量(Mo)を算出した際に含まれていたろ材の個数に、新品ろ材の質量をかけ合わせることで算出することができる。   Here, in the above description, the measurement method using the porosity, which is a preferable method for obtaining the biological adhesion amount (Bm), has been specifically described. Separately from this, when measuring the amount of biological adhesion (Bm) based on the mass change of the filter medium layer 30, the amount of biological adhesion is determined from the mass (Mo) of at least a part of the filter medium layer 30 at the time of measurement. Can be calculated as a difference value obtained by subtracting the mass set value (Mi). For example, the predetermined mass setting value (Mi) can be calculated by multiplying the number of filter media included when calculating the mass (Mo) by the mass of the new filter media.

[洗浄工程]
洗浄工程ではろ材31を洗浄する。より具体的には、洗浄工程では、上述した測定工程にて得た生物付着量(Bm)が所定の洗浄選択生物付着量(Bw)超である場合にろ材31を「撹拌洗浄」し、生物付着量(Bm)が所定の洗浄選択生物付着量(Bw)以下である場合にろ材31を「浸漬洗浄」する。ここで、「洗浄選択生物付着量(Bw)」とは、洗浄工程における洗浄方法を選択する際の閾値となる値である。以下、洗浄工程における洗浄操作、及び、洗浄選択生物付着量(Bw)の設定方法について具体的に説明する。なお、例えば、上述した測定工程にて、洗浄水の累積流入水量に基づいて、生物付着量(Bm)を測定した場合には、以下に説明する「洗浄操作」における洗浄水を流入させる操作は、測定工程にて洗浄水を水槽10に対して流入させる操作にて代用することができる。即ち、測定工程にて、空隙率を用いた測定方法にて生物付着量(Bm、即ち、VRo−VRi)を得た場合には、測定工程にて用いた洗浄水を、そのまま洗浄工程にて用いることができる。このような態様は、水処理の効率性等の観点から、非常に有利且つ合理的である。
[Washing process]
In the washing step, the filter medium 31 is washed. More specifically, in the washing step, when the biological adhesion amount (Bm) obtained in the above-described measurement step exceeds a predetermined washing selected biological adhesion amount (Bw), the filter medium 31 is “stir washed” When the adhesion amount (Bm) is equal to or less than the predetermined washing selected organism adhesion amount (Bw), the filter medium 31 is “immersed and washed”. Here, the “cleaning-selected biological adhesion amount (Bw)” is a value serving as a threshold when selecting a cleaning method in the cleaning process. Hereinafter, a cleaning operation in the cleaning process and a method of setting the cleaning selected biological attachment amount (Bw) will be described in detail. For example, in the measurement step described above, when the biological adhesion amount (Bm) is measured based on the accumulated inflow water amount of the wash water, the operation for flowing the wash water in the “washing operation” described below is performed. In the measurement process, the operation can be substituted by an operation of flowing the washing water into the water tank 10. That is, in the measurement process, when the amount of biological adhesion (Bm, that is, VRo-VRi) is obtained by the measurement method using the porosity, the washing water used in the measurement process is directly used in the washing process. Can be used. Such an embodiment is very advantageous and rational from the viewpoint of the efficiency of water treatment.

―洗浄操作―
――浸漬洗浄
まず、散水ろ床100を浸漬洗浄する場合には、配管60に設けられた弁61を閉じた後に、散水機50を用いて水槽10内に洗浄液としての被処理水をろ材層30を超える高さまで流入させる。次いで散水機50からの被処理水の散水を停止して、所定の時間(例えば、12時間)にわたり、ろ材層30を浸漬させる。そして、所定時間経過後に弁61を開いて、水槽10内に貯留してあった被処理水を排水し、排水が終われば散水機50からの散水を開始して散水ろ床100の運転を再開する。このように、浸漬洗浄は、水槽10内に水を張り一定時間保持した後に排水するという洗浄方法であり、蝿の卵及び幼虫並びに貝の卵等の駆除効果があるが、ろ材31を搖動させないためろ材31からの生物膜の剥離は少ない、弱い洗浄方法である。
―Cleaning operation―
--Immersion cleaning First, in the case of immersing and cleaning the sprinkling filter bed 100, after closing the valve 61 provided in the pipe 60, the water to be treated as a cleaning liquid is put into the water tank 10 using the sprinkler 50. Let it flow to a height above 30. Next, watering of the water to be treated from the watering machine 50 is stopped, and the filter medium layer 30 is immersed for a predetermined time (for example, 12 hours). Then, after the predetermined time has elapsed, the valve 61 is opened to drain the water to be treated stored in the water tank 10, and when the drainage is completed, watering from the water sprinkler 50 is started and the operation of the watering filter bed 100 is resumed. To do. As described above, the immersion cleaning is a cleaning method in which water is filled in the water tank 10 and then drained after being held for a certain period of time, and has an effect of extermination of eggs, larvae, shellfish eggs, etc., but does not perturb the filter medium 31. This is a weak cleaning method with little peeling of the biofilm from the filter medium 31.

――撹拌洗浄
次に、図4を参照して、散水ろ床100を撹拌洗浄する場合について説明する。図4は散水ろ床100を空気曝気により撹拌洗浄している状態を示している。配管60に設けられた弁61を閉じた後に、散水機50を用いて水槽10内に洗浄液としての被処理水をろ材層30を超える高さまで流入させ、次いで散水機50からの被処理水の散水を停止する。続いて曝気装置40から空気を噴出させて曝気を行いその空気の浮上力によりろ材31を流動させる。このように、撹拌洗浄はろ材に付着して厚膜化した生物膜の一部、ろ材層30に蓄積した汚泥、固形分、蝿の卵、蠅の幼虫、貝、及びその卵等を除去することができる、強力な洗浄方法である。
—Agitating and Washing Next, a case where the watering filter bed 100 is agitated and washed will be described with reference to FIG. FIG. 4 shows a state where the watering filter bed 100 is stirred and washed by air aeration. After closing the valve 61 provided in the pipe 60, the water to be treated as the cleaning liquid is caused to flow into the water tank 10 using the sprinkler 50 to a height exceeding the filter medium layer 30, and then the water to be treated from the water sprinkler 50 is used. Stop watering. Subsequently, air is ejected from the aeration apparatus 40 to perform aeration, and the filter medium 31 is caused to flow by the levitation force of the air. In this way, the agitation washing removes a part of the biofilm that has become thicker by adhering to the filter medium, the sludge accumulated in the filter medium layer 30, solids, cocoon eggs, moth larvae, shellfish, and eggs thereof. It is a powerful cleaning method that can.

図4では、曝気装置40を用いてろ材31の撹拌を行う態様を図示したが、洗浄液に浸漬されたろ材31の撹拌は、特に限定されることなく、撹拌機などの物理的な撹拌装置を用いて水槽内に水流を発生させることにより行っても良い。しかし、散水ろ床100の構造の簡素化及びろ材31の破損防止の観点からは、ろ材31の撹拌は、曝気により行うことが好ましく、図4に示すように、ろ材層30の下側に設置した曝気装置40から空気等の気体を曝気してろ材31及び洗浄液を流動させることにより行うことがより好ましい。曝気によりろ材を撹拌する際の曝気風量は、0.25m3/m2・分以上1.5m3/m2・分以下であることが好ましく、0.25m3/m2・分以上0.5m3/m2・分以下であることがより好ましい。 In FIG. 4, a mode in which the filter medium 31 is stirred using the aeration apparatus 40 is illustrated, but the stirring of the filter medium 31 immersed in the cleaning liquid is not particularly limited, and a physical stirring device such as a stirrer is used. It may be performed by generating a water flow in the water tank. However, from the viewpoint of simplifying the structure of the sprinkling filter bed 100 and preventing the filter medium 31 from being damaged, the filter medium 31 is preferably agitated by aeration, and is installed below the filter medium layer 30 as shown in FIG. More preferably, the aeration apparatus 40 is used to aerate a gas such as air and cause the filter medium 31 and the cleaning liquid to flow. Aeration amount when stirring the filter medium by aeration is preferably 0.25 m 3 / m is 2 · min or more 1.5 m 3 / m or less 2 · min, 0.25 m 3 / m 2 · min or more 0. More preferably, it is 5 m 3 / m 2 · min or less.

―洗浄選択生物付着量(Bw)―
洗浄選択生物付着量(Bw)は、散水ろ床100の水処理性能を良好に維持しつつ散水ろ床100を運転していく上で、非常に重要な閾値である。かかる洗浄選択生物付着量(Bw)は、例えば、ろ材層30における空隙率に基づいて生物付着「量」を算出する場合には、空隙率に基づいて算出される生物付着量である「生物付着率」と、散水ろ床の水処理性能との関係に基づいて、決定することができる。なお、図5及び図6を参照した説明における「生物付着率」は、上述した「空隙率(VRo):測定工程の時点におけるろ材層30の空隙率と空隙率設定値(VRi):運転前のろ材層30の空隙率との差分」に相当する。図5は、水槽断面積56.25m2、ろ材充填高さ2.5mの散水ろ床における、生物付着率と溶解性BOD(Biochemical oxygen demand)除去量との関係を示すグラフであり、図6は同形状の散水ろ床における、生物付着率とアンモニア性窒素除去量の関係を示すグラフである。なお、図5〜6に示すグラフは、本発明者らが取得した、散水ろ床の処理性能の実測データである。実測データを取得した際の条件は、散水ろ床の水槽断面積56.25m2、ろ材充填高さ2.5mであり、被処理水が都市下水、処理水量が1100m3/日であった。
―Washing amount of selected organisms (Bw) ―
The washing selected biological adhesion amount (Bw) is a very important threshold for operating the water trickling filter 100 while maintaining the water treatment performance of the water trickling filter 100 well. For example, in the case of calculating the biological attachment “amount” based on the porosity in the filter medium layer 30, the cleaning-selected biological adhesion amount (Bw) is “the biological attachment amount calculated based on the porosity. It can be determined based on the relationship between the “rate” and the water treatment performance of the trickling filter. In addition, the “bioadhesion rate” in the description with reference to FIGS. 5 and 6 is the above-mentioned “porosity (VRo): porosity and porosity set value (VRi) of the filter medium layer 30 at the time of the measurement step: before operation. This corresponds to “the difference from the porosity of the filter medium layer 30”. FIG. 5 is a graph showing the relationship between the biofouling rate and the amount of soluble BOD (Biochemical oxygen demand) removed in a water trickling filter having a water tank cross-sectional area of 56.25 m 2 and a filter medium filling height of 2.5 m. These are the graphs which show the relationship between the biofouling rate and the amount of ammonia nitrogen removal in the sprinkling filter of the same shape. In addition, the graph shown to FIGS. 5-6 is the measurement data of the processing performance of the trickling filter which the present inventors acquired. The conditions for obtaining the measured data were a water tank cross-sectional area of 56.25 m 2 and a filter medium filling height of 2.5 m, water to be treated was city sewage, and the amount of treated water was 1100 m 3 / day.

まず、図5を参照して説明する。図5より明らかなように、溶解性BOD除去量は生物付着率(%)の増加に伴って増大し、生物付着率が10%〜20%において最大となり、さらに生物付着率が増加すると溶解性BOD除去量が低下する傾向を示す。   First, a description will be given with reference to FIG. As is clear from FIG. 5, the amount of soluble BOD removed increases with an increase in the bioadhesion rate (%), the bioadhesion rate reaches its maximum at 10% to 20%, and the solubility increases when the bioadhesion rate further increases. BOD removal amount tends to decrease.

また、図6から、アンモニア性窒素除去量が、生物付着率の増加に伴って増大し、生物付着率が10%〜20%において最大となり、さらに生物付着率が増加すると低下する傾向を示すことが分かる。   Moreover, from FIG. 6, the amount of ammonia nitrogen removal increases with an increase in the biofouling rate, the biofouling rate becomes maximum at 10% to 20%, and further shows a tendency to decrease as the biofouling rate increases. I understand.

これらの、図5〜6に示した実測データから、溶解性BOD除去量やアンモニア性窒素除去量として示される散水ろ床の処理性能は、生物付着率が5%〜25%において良好であり、特に10%〜20%の範囲で性能が高く、5%未満又は25%超では処理性能は低下するということがいえる。   From these measured data shown in FIGS. 5 to 6, the treatment performance of the sprinkling filter bed shown as soluble BOD removal amount or ammonia nitrogen removal amount is good when the biofouling rate is 5% to 25%, In particular, it can be said that the performance is high in the range of 10% to 20%, and that the processing performance is deteriorated when it is less than 5% or more than 25%.

このように処理性能が変化する理由は、以下の通りであると推察される。まず、生物付着率が5%未満の場合には、被処理水に含まれる汚濁物質の量に対してろ材層30内に保持されている微生物の量が不足しており、処理性能が低いと考えられる。一方、生物付着率が25%超である場合には、ろ材層に充填したろ材に対して付着した生物膜が過剰に厚く、ろ材の空隙にて、過剰な量の汚泥が堆積し、且つこれに伴って汚泥腐敗が生じ、結果的に腐敗汚泥からの有機物質及びアンモニア等の溶出が生じて、散水ろ床の処理性能が低下すると考えられる。   It is assumed that the reason why the processing performance changes in this way is as follows. First, when the biofouling rate is less than 5%, the amount of microorganisms retained in the filter medium layer 30 is insufficient with respect to the amount of pollutant contained in the water to be treated, and the treatment performance is low. Conceivable. On the other hand, when the bioadhesion rate is more than 25%, the biofilm adhered to the filter medium packed in the filter medium layer is excessively thick, and an excessive amount of sludge accumulates in the voids of the filter medium. As a result, sludge decay occurs, and as a result, elution of organic substances, ammonia and the like from the decayed sludge occurs, and it is considered that the treatment performance of the sprinkling filter is lowered.

従って、図5〜6に示した実測データを取得した散水ろ床の運転にあたり、生物付着率を5%〜25%に維持することが重要であり、生物付着率を10%〜20%の範囲に維持することが好ましいと考えられる。そして、生物付着率を10%〜20%の範囲に維持するために設定すべき洗浄選択生物付着量(Bw)の値は、生物付着率10%であり得る。即ち、生物付着率10%という値が、図5〜6に示した実測データを取得した散水ろ床内に最低限維持したい微生物量であり得る。以下、生物付着率10%を洗浄選択生物付着量(Bw)として設定した場合の洗浄工程における洗浄方法の選択について、具体的に説明する。   Therefore, it is important to maintain the biofouling rate in the range of 10% to 20% in the operation of the trickling filter that has obtained the actual measurement data shown in FIGS. It is thought that it is preferable to maintain the above. And the value of the washing | cleaning selection biofouling amount (Bw) which should be set in order to maintain a biofouling rate in the range of 10%-20% may be 10% of a biofouling rate. That is, the value of 10% of the biofouling rate may be the amount of microorganisms that is desired to be maintained at a minimum in the trickling filter that has obtained the actual measurement data shown in FIGS. Hereinafter, the selection of the cleaning method in the cleaning process when the biological adhesion rate of 10% is set as the cleaning selection biological adhesion amount (Bw) will be specifically described.

―洗浄選択生物付着量(Bw)に基づく洗浄方法の選択―
ろ材層の空隙率に基づいて得た生物付着率を利用した洗浄方法の選択について図7を参照して説明する。図7に、先に図5にかかる生物付着率と溶解性BOD除去量の関係を示すグラフに対して、洗浄選択生物付着量(Bw)である生物付着率10%を重ねて示す。図7より明らかなように、生物付着率10%を境界として、洗浄工程において実施すべき洗浄を浸漬洗浄と撹拌洗浄とで切り替える。
-Selection of cleaning method based on the amount of attached biological organisms (Bw)-
Selection of a cleaning method using the bioadhesion rate obtained based on the porosity of the filter medium layer will be described with reference to FIG. FIG. 7 is a graph showing the relationship between the biofouling rate and the soluble BOD removal amount previously shown in FIG. As is clear from FIG. 7, the cleaning to be performed in the cleaning process is switched between the immersion cleaning and the agitation cleaning with the biofouling rate of 10% as a boundary.

図7に示す場合において、測定工程で得られた生物付着量(Bm)が洗浄選択生物付着量(Bw)以下である場合、即ち、空隙率を用いて測定した測定工程の実施時点でのろ材層の空隙率(VRo)と所定の空隙率設定値(VRi)の差分が、10%以下である場合には、ろ材からの生物剥離が少ない浸漬洗浄を選択する。また、測定工程で得られた生物付着量(Bm)が洗浄選択生物付着量(Bw)超である場合、即ち、空隙率を用いて測定した測定工程の実施時点でのろ材層の空隙率(VRo)と所定の空隙率設定値(VRi)の差分が、10%超である場合には、ろ材からの生物剥離が多く汚泥の排出が可能となる撹拌洗浄を選択するようにする。なお、これらの判定及び選択操作は、例えば、図1等に示す散水ろ床100であれば、監視制御装置90に備えられた中央演算装置等を備えるコンピュータにより、自動的に実施することができる。勿論、運用者(人)が生物付着量(Bm)と洗浄選択生物付着量(Bw)との大小関係を判断し、手動で洗浄方法を切り替えて実施することも可能である。特に、本発明の散水ろ床の洗浄方法によれば、一つの閾値である「洗浄選択生物付着量(Bw)」と、測定工程で得られた生物付着量(Bm)との単純比較により、その時行うべき洗浄方法を一義的に決定することができる。従って、運用者の経験を問わず、更には、人による判断を介在させる必要無く、散水ろ床内に保持される微生物量を、常に最適化することができる。このため、散水ろ床の維持管理が容易となる。   In the case shown in FIG. 7, when the biofouling amount (Bm) obtained in the measurement step is less than or equal to the washing selected biofouling amount (Bw), that is, the filter medium at the time of performing the measurement step measured using the porosity. When the difference between the layer porosity (VRo) and the predetermined porosity setting value (VRi) is 10% or less, dip cleaning with less biological separation from the filter medium is selected. In addition, when the amount of biofouling (Bm) obtained in the measurement step is greater than the amount of selected biofouling (Bw), that is, the porosity of the filter medium layer at the time of the measurement step measured using the porosity ( When the difference between VRo) and the predetermined porosity setting value (VRi) is more than 10%, the agitation cleaning is selected so that biological separation from the filter medium is large and sludge can be discharged. Note that these determination and selection operations can be automatically performed by, for example, a computer equipped with a central processing unit and the like provided in the monitoring control device 90 in the case of the trickling filter 100 shown in FIG. . Of course, the operator (person) can determine the magnitude relationship between the biological attachment amount (Bm) and the cleaning-selected biological attachment amount (Bw), and manually switch the cleaning method. In particular, according to the method for cleaning a trickling filter of the present invention, a simple comparison between a “thickness of selected biofouling (Bw)” that is one threshold value and a biofouling amount (Bm) obtained in the measurement step, The cleaning method to be performed at that time can be uniquely determined. Therefore, it is possible to always optimize the amount of microorganisms retained in the sprinkling filter bed regardless of the operator's experience and without the need for human judgment. For this reason, the maintenance of the sprinkling filter bed becomes easy.

なお、洗浄選択生物付着量(Bw)の具体的な数値は、本発明による散水ろ床の洗浄方法を適用する散水ろ床における散水負荷、目標処理水質、被処理水の水質、被処理水等の温度、及び被処理水のBOD等の、ろ材層における汚泥の蓄積し易さに影響し得る種々のパラメータに基づいて、適宜変更することができる。また、例えば、洗浄選択生物付着量(Bw)の具体的な数値を、季節に応じて変更することも勿論可能である。洗浄選択生物付着量(Bw)の数値を適切な値とすることで、例えば、蠅の卵が幼虫又は成虫になるまでに要する期間、及び/又は、サカマキ貝の幼生が成貝になるまでに要する期間よりも短い期間で適切な洗浄方法に従う洗浄工程を実施することができ、散水ろ床からのろ床蠅の幼虫及びサカマキ貝等の発生を効果的に抑制することが可能となる。   In addition, the specific value of the washing selected biological attachment amount (Bw) is the watering load, the target treated water quality, the treated water quality, the treated water, etc. in the trickling filter bed to which the washing method of the trickling filter according to the present invention is applied The temperature can be appropriately changed based on various parameters that can affect the ease of accumulation of sludge in the filter medium layer, such as the BOD of the water to be treated. In addition, for example, it is of course possible to change the specific numerical value of the washing selected organism adhesion amount (Bw) according to the season. By setting the appropriate value for the amount of selected organisms to be washed (Bw), for example, the period required for the eggs of the pupa to become larvae or adults, and / or until the larvae of Sakimakai become adults. A cleaning step according to an appropriate cleaning method can be carried out in a shorter period than the required period, and the occurrence of filter bed larvae, scallops, and the like from the sprinkling filter bed can be effectively suppressed.

さらに、洗浄工程では、測定工程で測定した生物付着量(Bm)(例えば、上述したような空隙率を用いて測定した測定工程の実施時点でのろ材層30の空隙率(VRo)と所定の空隙率設定値(VRi)との差分)が、洗浄選択生物付着量(Bw)超の場合に、洗浄選択生物付着量(Bw)との差(Bd=Bm−Bw)に基づいて撹拌洗浄の際の洗浄強度を調節することが好ましい。図8に、Bm,Bw、及びBdの関係を、図5と同じ生物付着率と溶解性BOD除去量との関係を示すグラフに重ねて示す。なお、図8では、各種生物付着量及び差分は、空隙率に基づく生物付着量を意味する。   Further, in the washing process, the amount of biological adhesion (Bm) measured in the measurement process (for example, the porosity (VRo) of the filter medium layer 30 at the time of the measurement process measured using the porosity as described above and a predetermined value) When the porosity setting value (VRi) is more than the washing selected biological attachment amount (Bw), the stirring washing based on the difference (Bd = Bm−Bw) from the washing selected biological attachment amount (Bw) It is preferable to adjust the cleaning strength. FIG. 8 shows the relationship between Bm, Bw, and Bd superimposed on the graph showing the relationship between the same bioadhesion rate and soluble BOD removal amount as in FIG. In FIG. 8, the various biological attachment amounts and the difference mean biological attachment amounts based on the porosity.

ここで、測定工程で測定した生物付着量(Bm)と洗浄選択生物付着量(Bw)との差分(Bm)−(Bw)=(Bd)を計算すると、差分(Bd)の値が大きい場合は、ろ材層を構成するろ材に付着した生物膜及び汚泥等の量が多く、ろ材層内に保持された微生物量が多いと判断することができる。従って、差分(Bd)の値が大きい場合には、Bdの値が小さい場合よりも、強力な撹拌処理を行って、強力な力でろ材から生物膜及び汚泥などを剥離することが好ましい。その一方で、差分(Bd)の値が小さい場合には、ろ材層内に保持された微生物量が比較的少なく、洗浄選択生物付着量(Bw)よりも僅かに多いのみと判断できるので、弱い撹拌処理を行って、緩やかな力でろ材からの生物膜及び汚泥の剥離処理を行うことが好ましい。   Here, when the difference (Bm) − (Bw) = (Bd) between the biological adhesion amount (Bm) measured in the measurement process and the washing selected biological adhesion amount (Bw) is calculated, the difference (Bd) is large. It can be determined that the amount of biofilm and sludge adhering to the filter medium constituting the filter medium layer is large, and the amount of microorganisms retained in the filter medium layer is large. Therefore, when the value of the difference (Bd) is large, it is preferable to perform a powerful stirring process and peel off the biological film and sludge from the filter medium with a strong force, compared to the case where the value of Bd is small. On the other hand, when the value of the difference (Bd) is small, the amount of microorganisms retained in the filter medium layer is relatively small, and it can be determined that it is only slightly larger than the washing selected organism adhesion amount (Bw). It is preferable to perform the agitation treatment to remove the biofilm and the sludge from the filter medium with a gentle force.

より具体的には、代表的な空気曝気による撹拌洗浄で説明すると、洗浄強度を空気流量(Q)と曝気時間(t)の積(Qt)で定義し、測定及び算出により得られた生物付着量の差分(Bd)の値に応じて(Qt)を調節することが好ましい。(Qt)を変えることによって、撹拌洗浄によって剥離される汚泥量を調節し、散水ろ床内に保持される微生物量を適切な範囲に調節することができる。   More specifically, in the case of agitation cleaning by typical air aeration, the cleaning strength is defined by the product (Qt) of the air flow rate (Q) and the aeration time (t), and the biofouling obtained by measurement and calculation It is preferable to adjust (Qt) according to the value of the amount difference (Bd). By changing (Qt), it is possible to adjust the amount of sludge to be peeled off by stirring and washing, and to adjust the amount of microorganisms retained in the sprinkling filter bed to an appropriate range.

以下、実施例により本発明を更に詳細に説明するが、本発明は下記の実施例に何ら限定されるものではない。実施例にて用いた散水ろ床は、図1等を参照して説明した散水ろ床100と同様の構成を有するものであった。また、生物付着量は、上述したような、空隙率に基づく生物付着率(%)として測定した。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to the following Example at all. The trickling filter used in the examples had the same configuration as the trickling filter 100 described with reference to FIG. Moreover, the amount of biofouling was measured as the biofouling rate (%) based on the porosity as described above.

(実施例1)
水槽断面積56.25m2、ろ材充填高さ2.5mの散水ろ床に対して、都市下水を1100m3/日の流量で流入させて処理を行った。未使用のろ材の平均比重は、1.03(100個の個数平均値)であった。洗浄選択生物付着量(Bw)は、空隙率に基づく生物付着率で、10%に設定した。洗浄工程にてろ材を撹拌洗浄する際の曝気強度は0.25m3/m2・分で一定とした。また、洗浄工程では、以下の基準に従って、VRd:(測定工程の実施時点での生物付着率(%)−10%)の値に応じて、撹拌洗浄と浸漬洗浄とを切り替え、更に、撹拌洗浄を行う場合には、曝気時間を自動的に変えることとした。
VRd≧15%:曝気5分
10%≦VRd<15%:曝気3分
5%≦VRd<10%:曝気2分
0%≦VRd<5%:曝気1分
VRd<0%:浸漬洗浄(曝気0分)
Example 1
Treatment was performed by flowing municipal sewage at a flow rate of 1100 m 3 / day into a sprinkling filter bed having a water tank cross-sectional area of 56.25 m 2 and a filter medium filling height of 2.5 m. The average specific gravity of the unused filter medium was 1.03 (100 number average value). The washing selected biofouling amount (Bw) was a biofouling rate based on the porosity and was set to 10%. The aeration intensity when the filter medium was stirred and washed in the washing step was constant at 0.25 m 3 / m 2 · min. Further, in the cleaning process, according to the following criteria, switching between stirring cleaning and immersion cleaning is performed according to the value of VRd: (biological adhesion rate (%)-10% at the time of performing the measuring process), and stirring cleaning is further performed. When performing, the aeration time was automatically changed.
VRd ≧ 15%: aeration 5 minutes 10% ≦ VRd <15%: aeration 3 minutes 5% ≦ VRd <10%: aeration 2 minutes 0% ≦ VRd <5%: aeration 1 minute VRd <0%: immersion cleaning (aeration 0 minutes)

実施例1の実施期間は、下水の有機物濃度が比較的高い時期であった。散水ろ床により処理して得られた処理水のBODを測定すると、12.3mg/Lであった。そこで、BODを測定した時点の直後に測定工程を行い、散水ろ床のろ材層について、空隙率に基づく生物付着量である生物付着率を測定すると、27.3%であった。そうすると、測定工程を実施した時点における生物付着率と、洗浄選択生物付着量(Bw)としての生物付着率10%との差は、17.3%となる。そこで、上記基準に従い、曝気時間を5分として、ろ材の撹拌洗浄を行った。洗浄工程の完了した1週間後に、処理水のBODを測定したところ、8mg/Lに低下していた。従って、上記洗浄工程において、曝気時間を5分とした撹拌洗浄を行ったことで、散水ろ床の水処理性能が向上したことが確認された。また、上記洗浄工程を行ったことで、洗浄前よりもろ床蠅及びサカマキ貝の発生数が明らかに少なく、ろ床蠅及びサカマキ貝の増殖が抑制されたことが確認された。   The implementation period of Example 1 was a period when the organic matter concentration of sewage was relatively high. It was 12.3 mg / L when BOD of the treated water obtained by processing with a trickling filter was measured. Therefore, the measurement process was performed immediately after the BOD was measured, and the bioadhesion rate, which is the amount of bioadhesion based on the porosity, of the filter medium layer of the watering filter bed was 27.3%. Then, the difference between the biofouling rate at the time when the measurement process is performed and the biofouling rate of 10% as the washing selected biofouling amount (Bw) is 17.3%. Therefore, according to the above criteria, the filter medium was stirred and washed with an aeration time of 5 minutes. One week after the completion of the washing step, the BOD of the treated water was measured and found to be 8 mg / L. Therefore, in the said washing | cleaning process, it was confirmed that the water treatment performance of the sprinkling filter bed improved by performing the stirring washing | cleaning which made the aeration time 5 minutes. Moreover, it was confirmed that by performing the above washing step, the numbers of filter bed cocoons and scallop shells were clearly smaller than before washing, and the growth of filter bed cocoons and scallop shells was suppressed.

(実施例2)
実施例1と同じ散水ろ床を用い、実施例1と同じ基準に従って下水処理を行った。
実施例2の実施期間は、下水の有機物濃度が比較的低い時期であった。散水ろ床により処理して得られた処理水のBODを測定すると、9.8mg/Lであった。また、処理水についてアンモニア性窒素の濃度を測定すると、6.5mg/Lと、比較的低濃度であった。そして、BOD及びアンモニア性窒素の濃度を測定した時点の直後に測定工程を行い、散水ろ床のろ材層について、空隙率に基づく生物付着量である生物付着率を測定すると、8.8%であった。そうすると、測定工程を実施した時点における生物付着率と、洗浄選択生物付着量(Bw)としての生物付着率10%との差は、−1.2%となる。そこで、上記規準に従い、洗浄方法として浸漬洗浄を選択し、曝気は行わなかった。その結果、ろ材に付着した微生物の剥離及び流出が抑制され、洗浄後に次第に処理水質が向上し、1週間後には処理水のBODが7.4mg/Lに、処理水のアンモニア性窒素濃度が4.5mg/Lに低下した。また、上記洗浄工程を行ったことで、洗浄前よりもろ床蠅及びサカマキ貝の発生数が明らかに少なく、ろ床蠅及びサカマキ貝の増殖が抑制されたことが確認された。
(Example 2)
Using the same sprinkling filter bed as in Example 1, sewage treatment was performed according to the same criteria as in Example 1.
The implementation period of Example 2 was a period when the organic matter concentration of sewage was relatively low. It was 9.8 mg / L when BOD of the treated water obtained by processing with a trickling filter was measured. Moreover, when the density | concentration of ammonia nitrogen was measured about treated water, it was 6.5 mg / L and it was a comparatively low density | concentration. And immediately after the time of measuring the concentrations of BOD and ammonia nitrogen, the bioadhesion rate, which is the bioadhesion amount based on the porosity, is measured at 8.8% for the filter medium layer of the watering filter bed. there were. Then, the difference between the biofouling rate at the time when the measurement step is performed and the biofouling rate of 10% as the washing selected biofouling amount (Bw) is −1.2%. Therefore, in accordance with the above criteria, immersion cleaning was selected as the cleaning method, and aeration was not performed. As a result, separation and outflow of microorganisms adhering to the filter medium are suppressed, the quality of the treated water gradually improves after washing, the BOD of the treated water is 7.4 mg / L after one week, and the ammonia nitrogen concentration of the treated water is 4 Reduced to 5 mg / L. Moreover, it was confirmed that by performing the above washing step, the numbers of filter bed cocoons and scallop shells were clearly smaller than before washing, and the growth of filter bed cocoons and scallop shells was suppressed.

本発明によれば、ろ材に対する生物付着量に応じて適切な方法でろ材の洗浄を行うことで、散水ろ床からのろ床蠅の幼虫及びサカマキ貝等の発生を抑制するとともに、散水ろ床の水処理能力を効果的に回復させることができる。   According to the present invention, the filter medium is washed by an appropriate method in accordance with the amount of biofouling on the filter medium, thereby suppressing the generation of larvae and scallops from the sprinkling filter bed, and the watering filter bed. Can effectively restore the water treatment capacity.

10 水槽
20 スクリーン
21 支柱
22 梁
30 ろ材層
31 ろ材
32 ろ材層上端面
40 曝気装置
50 散水機
51 流量計
52 被処理水弁
53 被処理水配管
60 配管
61 弁
70 連結管
71 水位計
80 ブロア
81 撹拌用空気配管
90 監視制御装置
100 散水ろ床
DESCRIPTION OF SYMBOLS 10 Water tank 20 Screen 21 Column 22 Beam 30 Filter medium layer 31 Filter medium 32 Filter medium layer upper end surface 40 Aeration apparatus 50 Sprinkler 51 Flow meter 52 Processed water valve 53 Processed water pipe 60 Pipe 61 Valve 70 Connection pipe 71 Water level gauge 80 Blower 81 Air piping for stirring 90 Monitoring and control device 100 Sprinkling filter

Claims (5)

複数のろ材よりなるろ材層を水槽内に有する散水ろ床の洗浄方法であって、
前記ろ材に対する生物付着量(Bm)を測定する測定工程と、
前記ろ材を洗浄する洗浄工程と、を含み、
前記洗浄工程にて、前記生物付着量(Bm)が所定の洗浄選択生物付着量(Bw)超である場合に前記ろ材を撹拌洗浄し、前記生物付着量(Bm)が前記洗浄選択生物付着量(Bw)以下である場合に前記ろ材を浸漬洗浄する、
散水ろ床の洗浄方法。
A watering filter bed cleaning method having a filter medium layer comprising a plurality of filter media in a water tank,
A measurement step of measuring the amount of biological adhesion (Bm) to the filter medium;
A washing step of washing the filter medium,
In the washing step, when the biofouling amount (Bm) exceeds a predetermined washing selected biofouling amount (Bw), the filter medium is stirred and washed, and the biofouling amount (Bm) is the washing selected biofouling amount. (Bw) If it is below, the filter medium is immersed and washed,
How to wash the sprinkling filter.
前記測定工程にて前記生物付着量(Bm)を測定するにあたり、前記ろ材層の空隙率(VRo)を測定し、所定の空隙率設定値(VRi)との差を求める、
請求項1に記載の散水ろ床の洗浄方法。
In measuring the biological adhesion amount (Bm) in the measurement step, the porosity (VRo) of the filter medium layer is measured, and a difference from a predetermined porosity setting value (VRi) is obtained.
The watering filter bed washing method according to claim 1.
前記測定工程にて、前記空隙率(VRo)を、前記ろ材層に対して洗浄液を流入させた場合の、前記ろ材層の所定区間への累積流入水量に基づいて測定する、請求項2に記載の散水ろ床の洗浄方法。   3. The measurement according to claim 2, wherein, in the measurement step, the porosity (VRo) is measured based on a cumulative inflow water amount to a predetermined section of the filter medium layer when a cleaning liquid is caused to flow into the filter medium layer. How to clean the sprinkling filter floor. 前記ろ材層の前記所定区間は、前記ろ材層の高さをHとした場合に、前記ろ材層の下端面からH/40以上H/10以下の高さ範囲に含まれる1つの測定開始高さ(Hs)と、前記ろ材層の上端面からH/40以上H/10以下の範囲に含まれる1つの測定終了高さ(He)とにより区画される、請求項3に記載の散水ろ床の洗浄方法。   The predetermined section of the filter medium layer is one measurement start height included in a height range from H / 40 to H / 10 from the lower end surface of the filter medium layer, where H is the height of the filter medium layer. The sprinkling filter bed according to claim 3, which is partitioned by (Hs) and one measurement end height (He) included in a range of H / 40 or more and H / 10 or less from the upper end surface of the filter medium layer. Cleaning method. 前記洗浄工程にて、
前記生物付着量(Bm)が前記洗浄選択生物付着量(Bw)超の場合に、洗浄選択生物付着量(Bw)との差(Bd=Bm−Bw)に基づいて前記撹拌洗浄の際の洗浄強度を調節することを含む、
請求項1〜4の何れかに記載の散水ろ床の洗浄方法。
In the washing step,
When the biofouling amount (Bm) exceeds the washing selected biofouling amount (Bw), the washing at the time of the agitation washing based on the difference (Bd = Bm−Bw) from the washing selected biofouling amount (Bw) Including adjusting the intensity,
The washing method of the trickling filter bed in any one of Claims 1-4.
JP2018068183A 2018-03-30 2018-03-30 Washing method of water filter bed Active JP6545857B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018068183A JP6545857B1 (en) 2018-03-30 2018-03-30 Washing method of water filter bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018068183A JP6545857B1 (en) 2018-03-30 2018-03-30 Washing method of water filter bed

Publications (2)

Publication Number Publication Date
JP6545857B1 JP6545857B1 (en) 2019-07-17
JP2019177346A true JP2019177346A (en) 2019-10-17

Family

ID=67297670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018068183A Active JP6545857B1 (en) 2018-03-30 2018-03-30 Washing method of water filter bed

Country Status (1)

Country Link
JP (1) JP6545857B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784788A (en) * 1980-11-13 1982-05-27 Ebara Infilco Co Ltd Trickling filter method for organic waste water and apparatus therefor
JP2015033666A (en) * 2013-08-08 2015-02-19 メタウォーター株式会社 Water treatment system
JP2018015740A (en) * 2016-07-29 2018-02-01 学校法人 龍谷大学 Sprinkling filter bed device and sprinkling filter bed device cleaning method
JP2018030070A (en) * 2016-08-23 2018-03-01 水ing株式会社 Water treatment apparatus and water treatment method
JP2019058860A (en) * 2017-09-26 2019-04-18 メタウォーター株式会社 Washing method of trickling filter and trickling filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784788A (en) * 1980-11-13 1982-05-27 Ebara Infilco Co Ltd Trickling filter method for organic waste water and apparatus therefor
JP2015033666A (en) * 2013-08-08 2015-02-19 メタウォーター株式会社 Water treatment system
JP2018015740A (en) * 2016-07-29 2018-02-01 学校法人 龍谷大学 Sprinkling filter bed device and sprinkling filter bed device cleaning method
JP2018030070A (en) * 2016-08-23 2018-03-01 水ing株式会社 Water treatment apparatus and water treatment method
JP2019058860A (en) * 2017-09-26 2019-04-18 メタウォーター株式会社 Washing method of trickling filter and trickling filter

Also Published As

Publication number Publication date
JP6545857B1 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
TW445168B (en) Slow sand filter for use with intermittently flowing water supply and method of use thereof
JP2019177346A (en) Cleaning method of sprinkling filter bed
JP5550965B2 (en) Sludge control method in sprinkling water treatment system
JP5714419B2 (en) Long fiber filtration device backwash method and long fiber filtration device backwash device
CN207100130U (en) A kind of big ear sheep cultivation automatic drinking bowl
JP6652898B2 (en) Water treatment device and water treatment method
JP6912987B2 (en) How to clean the watering filter and the watering filter
JP2009050249A (en) Aquarium with sloped bottom and provided with drainage system
JP6789537B2 (en) Watering filter cleaning method
JP2017051922A (en) Wastewater treatment method and apparatus
JP4339186B2 (en) Wastewater septic tank
JPH07232188A (en) Method for controlling biological activated carbon equipment
CN214990600U (en) On-line cleaning system of ozone aerator and ozone contact tank
JPH04284894A (en) Controlling method of biological treatment of sewage and its apparatus
JP2022147719A (en) Water sprinkling biofiltration method
JP2006095374A (en) Wet microorganism circulating garbage treatment apparatus
JP2001269695A (en) Domestic animal urine and domestic animal barn waste water cleaning method, and domestic animal urine and domestic animal barn waste water cleaning device
JP2023139591A (en) Biological filtration device and cleaning method thereof
JP4168309B2 (en) Middle water facilities
JP2803851B2 (en) Filter media rehabilitation method for seawater filtration equipment for aquaculture
CN114602568A (en) Water bath management device
JP2023149455A (en) Separation membrane operation method, separation membrane device and operation condition determination program for the membrane
JPS5919583A (en) Apparatus for water disposal
FR2553751A1 (en) Process for biological purification of waste water by trickling over bacterial beds and device employed.
JP2021079323A (en) Denitriding material, manufacturing method of nitriding material, nitrification method and denitrification treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190619

R150 Certificate of patent or registration of utility model

Ref document number: 6545857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250