JPH04284894A - Controlling method of biological treatment of sewage and its apparatus - Google Patents

Controlling method of biological treatment of sewage and its apparatus

Info

Publication number
JPH04284894A
JPH04284894A JP3073687A JP7368791A JPH04284894A JP H04284894 A JPH04284894 A JP H04284894A JP 3073687 A JP3073687 A JP 3073687A JP 7368791 A JP7368791 A JP 7368791A JP H04284894 A JPH04284894 A JP H04284894A
Authority
JP
Japan
Prior art keywords
biological treatment
tank
sludge
sewage
treated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3073687A
Other languages
Japanese (ja)
Inventor
Hitoshi Yamazaki
均 山崎
Akira Ichihara
昭 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP3073687A priority Critical patent/JPH04284894A/en
Publication of JPH04284894A publication Critical patent/JPH04284894A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To control biological treatment of sewage to stably obtain treated water with good quality by grasping the living things adhering conditions in a filled bed and carry out backwash properly in the biological treatment of sewage when the sewage is led to pass the filled bed of the living things adhering medium. CONSTITUTION:In a biological treatment apparatus like an anaerobic filtration bed tank 2, turbidity of the treated water flowing out after being brought into contact with a filtration bed 9 is measured by a turbidity meter 14 and, according to the measaured value, the treatment is controlled to carry out sludge discharge from a sludge accumulating part 11 through a sludge drawing out pipe 2 and/or to carry out back wash by sending air to a backwash pipe 10.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、汚水の生物処理を制御
する方法及び装置に関するもので、例えば小型下水処理
分野で脱窒素を行う処理設備に、接触酸化方式を用いた
生物処理施設に、あるいはし尿、下水、産業廃水の嫌気
性処理施設や好気性処理施設、それらの組合せ併用に適
用することができるものである。 【0002】 【従来の技術】汚水の生物処理においては、微生物の保
持形態から浮遊生物法と固定生物膜法の2つに大別され
、その固定生物膜法としては散水濾床法、回転円板法、
接触法などがある。これらの中、接触法は、槽の中に接
触材(これは「媒体」とも呼ばれている)を充填などし
て設け、この接触材に微生物を付着増殖させて、有機物
を分解するものである。その分解には好気的なものと嫌
気的なものとがあり、接触法は条件の設定によりそのど
ちらをも行うことができる。 【0003】そのさいに用いる接触材としては、竹篠や
砕石などの他プラスチックを素材とした粒状体や、板状
体、筒状体、網状体等生物膜の付着性のよいものが用い
られる。また、前記接触材としては、前記した以外に、
例えばひも状体なども使用することができ、このひも状
体を何本も張ってこれに微生物を付着させることができ
る。 【0004】従来は、接触消化と接触酸化を順次行う接
触法による生物処理においては、その処理槽の構造の改
良や、滞留時間の適切な設定により処理水質を向上する
ことに重点が置かれ、処理槽の処理条件の調整などは生
物処理の内容が複雑なため積極的に行うことはできず、
生物処理のさいに液中の溶存酸素濃度(DO)や酸化還
元電位(ORP)の測定によってその処理の状態を知ろ
うとし、それにより酸素の供給量を調節することが行わ
れている程度であった。 【0005】 【発明が解決しようとする課題】しかし、このような接
触材(以下「媒体」という)を用いる生物処理において
は、前述したように生物の増殖を伴うものであるために
、汚水からもたらされる固形分による媒体の目詰りの外
に、媒体上の付着生物量の増大、あるいは媒体から脱落
する微生物塊による媒体の目詰りが生じ、またその媒体
から脱落した微生物塊が槽底まで落下して処理槽底部に
おける汚泥の堆積等が生じる。そして、これらにより、
例えば付着生物量の変化による処理条件の変化、媒体の
目詰りによる流通量の低下や処理条件の変化、あるいは
汚泥の堆積量の増大や媒体からの微生物塊の脱落量の増
大による処理水の水質の悪化なしい不安定化、これらの
要因による維持管理の困難等の問題が発生していた。 【0006】これについて、従来は処理槽底部における
汚泥の堆積量を目視してその量が多いときには汚泥を排
出するとか、あるいは媒体における付着生物量を観察し
て必要により逆洗を行うことが行われているが、いずれ
も媒体外側のみの目視などによるもので、媒体内部の目
詰り状態などを正確に把握することができず、そのため
十分な生物処理を安定して行うことができず、得られる
処理水の水質も安定しなかった。 【0007】本発明は、媒体の目詰り状態を正確に把握
して汚泥の排出及び/又は媒体の逆洗を適切な時期に行
いうるようにした汚水の生物処理の制御方法及び装置を
得ることを目的とするものである。また、本発明は媒体
における生物の付着状態を適切に保って水質の良い処理
水が安定に得られる生物処理の制御方法及び装置を得る
ことを目的とするものである。 【0008】 【課題を解決するための手段】本発明者は、生物処理を
効率良く行い水質の良い処理水を得ることができる生物
処理の制御条件について種々検討し、種々の要因を測定
してきたところ、生物付着媒体の充填床を有する処理槽
からの処理水の濁度の測定値が媒体の目詰り状態と相関
関係があることを見出し、それを制御の因子とすれば良
いことがわかり、それに基づいて本発明に到達した。す
なわち、本発明は、次の手段によって前記の目的を達成
した。 【0009】1.汚水を生物付着媒体の充填床と接触さ
せて生物処理する汚水の処理方法において、前記媒体と
の接触後の処理水の濁度を測定し、その測定値が設定値
を超えた時あるいは超えると予想される時に充填床下方
の汚泥溜めからの汚泥の排出及び/又は逆洗操作を行う
ことを特徴とする汚水の生物処理の制御方法。 【0010】2.汚水流入管と処理水流出管を設けた槽
内に生物付着媒体からなる充填床と、前記充填床下方部
に洗浄用気体流入部とを設けた汚水の生物処理装置にお
いて、前記処理水流出部に濁度測定装置を設けて、濁度
測定装置からの信号を制御装置に送り、制御装置により
その測定値が設定値を超えた時あるいは超えると予想さ
れる時に槽底に設けた汚泥溜めからの汚泥の排出及び/
又は洗浄用気体流入部への洗浄用気体の流入を行うよう
にしたことを特徴とする汚水の生物処理装置の制御装置
。 【0011】本発明は、前記の生物処理において生物付
着媒体の目詰りが進行すると前記充填床を有する処理槽
から流出する処理水の濁度が上昇し、あるいはその上昇
が波形で、一旦減少した後また次に次の増加する波が出
るという等の変化をすることを発見し、それを利用して
制御するものである。本発明が適用される生物処理は好
気性処理あるいは嫌気性処理のいずれでもよく、その両
方を併せ行ってもよい。本発明で用いる生物を付着させ
るための媒体としては、ハニカムチューブ、ひも状体、
波形板、ボール状体などが好ましい。これらは従来生物
濾床で媒体として知られているものに含まれるが、その
媒体の中でもアンスラサイト、砂などの粒状物は本発明
には適しない。一般的には媒体から剥離した微生物塊が
前記充填床の下に落下するような間隙を有するような形
状の媒体を用いることが好ましい。以下において、本発
明の充填床を「生物濾床」ということがある。 【0012】本発明で用いる濁度測定装置としては、濁
度計、SS計、透視度計などがあるが、SS計が好まし
い。濁度の測定は、濁度の増加状態を把握する上からも
連続的に行うのが好ましいが、例えば1分おき程度の短
時間の間隔ならば間欠的に行なってもさしつかえない。 【0013】本発明の制御方法及び装置を図面を用いて
具体的に説明する。図1に示す汚水の生物処理装置は、
嫌気性濾床槽と接触ばっ気槽とを組み合せて、嫌気性処
理と酸化性処理の両方を行うものである。この生物処理
装置では、汚水1は嫌気性濾床槽2の第1室7に入り、
濾床9に保持された嫌気性菌により嫌気性処理がなされ
、濾床9を通ってその下に出た液は液管15を通って第
2室8に入り、同様に嫌気性処理がなされる。この処理
にさいして嫌気性濾床槽2では濾床9において増殖した
微生物塊などは順次室底の汚泥溜め11にたまる。この
汚泥は定期的にボンプ13を駆動して汚泥引抜管12か
ら取り出す。嫌気性処理を受けた汚水は次に接触ばっ気
槽3の第1室16へ入り、そこには濾床9が設けられ、
ばっ気用空気18が散気装置19から入ってばっ気が行
われて、生物学的酸化性処理がなされ、続いて第2室1
7で同様の処理がなされる。なお、第2室17の上部か
らその液の一部が取り出されて返送水22として嫌気性
濾床槽2の第1室7へ送られる。前記の処理を受けた液
は沈殿槽4へ入り、汚泥を沈降分離し、上澄液は消毒槽
5へ入り、消毒器24から供給される殺菌剤により殺菌
処理され、処理水6として放流される。なお、沈殿槽4
の底から汚泥23が排出される。 【0014】そして、この生物処理装置の嫌気性濾床槽
2の第1室7の液管15中及び第2室8の上部、並びに
接触ばっ気槽3の第1室16及び第2室17の各上部に
濁度記録計14を設け、ばっ気用空気18の送気管に流
量指示記録計20を設け、また接触ばっ気槽3の第1室
16及び第2室17の上部にORP記録計21を設ける
。この生物処理装置で処理を続けて行くと、嫌気性濾床
槽2に設けた濁度記録計14の測定値は図4のような曲
線となることがある。この曲線のようなパルス状のピー
ク1が表われるのは汚泥溜め11からのポンプ13によ
る汚泥の引抜量が少ないためであることがわかった。 また、さらにそのまま処理を続けて行くと、濁度の数値
が高くなりピーク2が表われるが、このときは濾床9に
おける微生物の付着量が多くなり過ぎて、前記濾床9か
らの微生物の落下量が多くなって、液中の微生物がその
まま流れてくるためと考えられる。また、ピーク1やピ
ーク2が出るのは汚泥溜め11内に多量の汚泥が堆積し
、汚泥面の上昇とともに次槽へ送られる液流により周期
的に汚泥が随伴されることによるものと考えられるが、
これはあくまでも推定であって正確な現象はわかってい
ない。 【0015】このように、濁度記録計14の測定値の曲
線にピーク1やピーク2が出た時又はそれが予想される
時には、媒体の目詰りや汚泥の堆積がおこり、処理が悪
化することを示すので、ポンプ13を駆動して汚泥溜め
11から汚泥を汚泥引抜管12を通して外へ取り出すよ
うに制御するか、及び/又はこの時点で洗浄用気体流入
部(以下「逆洗管」という)10から逆洗用気体を流入
させて濾床9を逆洗して濾床9中の余分な微生物を除去
するように制御する。この制御が人間が行なってもよい
が、電気的な制御装置を用いるのが好ましい。図1の装
置では、濁度記録計14の信号を弁別器25を経て制御
装置26へ送り、それにより弁27を開き、洗浄用気体
28を送るような制御回路が構成されている。図1では
第1室7についてのみ図示しているが他の室にも同様に
設ける。なお、第2室8にも、汚泥溜め、汚泥引抜管等
を設けるが、図1ではその図示を省略している。なお、
測定値が図4に示すような曲線とならない場合には、予
めその測定値による曲線を得て、その曲線に適合した制
御値を設定する。 【0016】また、接触ばっ気槽3の第1室16及び第
2室17での濁度記録計14の測定値は、例えば図5に
示すような曲線を示す。これは嫌気性濾床槽と同様に、
有機物の除去と共に槽内の濁度(SS)が上昇し始める
ためであって、この槽内のSSを測定することにより、
濾床の目詰り状態や汚泥の堆積状態に対応している濁度
に達したとき又は予測されるときに自動逆洗を実施する
。図2は、本発明を嫌気性濾床槽に用いた場合の例であ
って、この場合は、槽は一室のみからなっており、その
槽の構造は図1に示したものとほとんど同じであって、
各部に付した記号も図1と共通している。ただ、この槽
では濾床9の横にバッフル29を設けて濾床9を通って
処理された水の上昇路を形成してあり、この上昇路の上
部に濁度記録計14とORP記録計21とが設けられて
いる。この構造の場合、汚泥溜め11に溜っている汚泥
が上昇路に入る水流に随伴され易いので、濁度が図4に
示すようなパルス状のピークを示すことが生じ易いと考
えられる。 【0017】また、図3は、本発明を接触ばっ気槽に適
用した場合の例であって、槽は一室のみからなるもので
、槽の構造は図1に示したものとほとんど同じであって
、各部に付した符号も図1と共通している。この槽では
散気装置19から吹きこまれる空気により槽内の汚水が
流動しているため汚泥はあまり槽底に沈降しない。処理
水流出部に設けた濁度記録計14により槽内の液の濁度
を測定し、所定値に達すると、空気を逆洗管10に送っ
て濾床9の逆洗を行う。また、ORP記録計21により
液の酸化還元電位を測定し、散気装置19へ送られるば
っ気用空気の量を制御し、濾床9内で十分な酸化性生物
処理が行なわれるようにする。 【0018】いずれにせよ、嫌気性処理、好気性処理の
違い、また被処理水の違いにより設定値は変化するので
、その都度設定するのがよく、例えば嫌気性処理の場合
には、SSが100mg/リットル以上、好ましくは1
00〜150mg/リットル、好気性処理の場合にはS
Sが30mg/リットル以上、好ましくは30〜70m
g/リットルを設定値の目安とし、その値を超えた時又
は超えると予想される時に汚泥の排出及び/又は逆洗を
するように制御するのがよい。 【0019】 【実施例】以下、実施例により本発明を具体的に説明す
る。ただし、本発明はこの実施例のみに限定されるもの
ではない。 実施例1 基本的な構成が図1に示す生物処理装置と同様の生物処
理装置によって実際の汚水を処理した。ただし、嫌気性
濾床槽及び接触ばっ気槽とも3室からなっている。この
生物処理装置の具体的構成を次に示す。 【0020】(1)処理施設     嫌気性濾床槽    3.0m×4.8m×3
.6m(H)×3槽      媒体      第1
室      ひも状    ピッチ    100m
m                        
    容積                  3
1m3                 第2,3室
  ボール状    直径    150mm    
                        容
積                  39m3  
   接触ばっ気槽         第1室          4.0m
×3.0m×3.5m(H)×1槽        第
2,3室      4.0m×1.35m×3.5m
(H)×2槽        媒体種類       
 波板状      表面積    52m2 /m3
                         
波板ピッチ      80mm        媒体
充填量      第1室             
 26.5m3                  
       第2,3室          11.
9m3  【0021】(2)計測器 SS測定器  :  連続式濁度計(光散乱型)ORP
測定器:  2線式絶縁型 【0022】(3)運転条件     日平均汚水供給量        77.8m
3 /日(3.24m3 /時)    時間最大汚水
供給量          9.0m3 /時    
原水、処理水の水質                          
       BOD               
 SS          原水水質        
  12.4mg/l      140mg/l  
        処理水水質          7.
0mg/l          3mg/l【0023
】以上の生物処理装置で汚水を処理した。そのさいの測
定結果を次に示す。 (4)測定結果 嫌気性濾床槽の第1室及び接触ばっ気槽の第1室からの
流出水のSS測定結果を図6及び図7に示す。嫌気性濾
床槽の流出水のSSは短期間では上昇しないため、上昇
時の前後の期間のみのデータを示す。また、接触ばっ気
槽における流出水は各室で異なるが、この場合は第1室
からの流出水のSSを代表例として用いた。 【0024】a.嫌気性濾床槽第1室流出水のSS値の
変化 この処理装置では嫌気性濾床槽第1室でのSSの除去率
が高く約2〜3ケ月程度に1度、処理水中に多量のSS
の混入がみられた。逆洗操作は、図6に見るように処理
水中のSSが100mg/リットル程度となったA点で
逆洗操作を開始した。逆洗空気量として2.0m3 /
分程度実施したところ、槽内の水のSSは逆洗により一
時的に4200mg/リットル程度迄上昇した。逆洗時
において濾床から出たSSは洗浄排水として槽外へ除去
し、濾床が安定してから処理水を流出せしめる。逆洗後
次の日にはSSは大幅に低下し、1日後には30mg/
リットル前後の値となり安定した運転が継続された。 b.接触ばっ気槽第1室流出水のSS値の変化この第1
室においては、2〜3週間に1度処理水のSS値が上昇
し、SSが70mg/リットルとなったA点で逆洗操作
を実施した。逆洗空気量は2.0m3 /分で10分間
実施した。逆洗後の槽内のSS濃度は図7のB点に示す
ように一時的に1540mg/リットル程度迄上昇した
が、2日後には正常な値に戻った。 【0025】以上のように、生物処理装置を制御するこ
とにより濾床の目詰りを生ずることなく、SS値の低い
処理水を連続的に得ることができた。 【0026】 【発明の効果】本発明は、汚水を生物付着媒体の充填床
と接触させて生物処理するさいに、前記充填床から流出
する処理水の濁度を測定することにより、汚泥の排出を
行うか、及び/又は充填床の逆洗を行うように制御する
ことにより、直接測定できない充填床の目詰り状態を生
じたり、あるいは悪化させることがないように処理する
ことができて、水質の良い処理水を長期間安定に得るこ
とができる。また、直接測定できない生物付着媒体の充
填床を用いて生物処理において、その処理を容易に制御
することができる。
Description: [Industrial Application Field] The present invention relates to a method and apparatus for controlling biological treatment of sewage. It can be applied to biological treatment facilities using oxidation methods, anaerobic treatment facilities and aerobic treatment facilities for human waste, sewage, and industrial wastewater, and combinations thereof. [0002] Biological treatment of sewage is roughly divided into two types, the suspended organism method and the fixed biofilm method, depending on the form of microbial retention.The fixed biofilm method includes the trickling filter method and the rotating circle method. plate method,
There are contact methods, etc. Among these methods, the contact method is a method in which a tank is filled with a contact material (also called a "medium"), and microorganisms adhere to and proliferate on this contact material to decompose organic matter. be. There are two types of decomposition: aerobic and anaerobic, and the contact method can perform either of these depending on the conditions. [0003] As the contact material used in this case, granular materials made of other plastic materials such as bamboo shinobu or crushed stone, and materials with good biofilm adhesion properties such as plate-like materials, cylindrical materials, and net-like materials are used. . In addition, as the contact material, in addition to the above,
For example, a string-like body can also be used, and microorganisms can be attached to a number of string-like bodies that are stretched. Conventionally, in biological treatment using a contact method in which contact digestion and catalytic oxidation are performed sequentially, emphasis has been placed on improving the quality of treated water by improving the structure of the treatment tank and setting an appropriate residence time. Due to the complexity of biological treatment, it is not possible to proactively adjust the processing conditions of the treatment tank.
During biological treatment, the state of the treatment is determined by measuring the dissolved oxygen concentration (DO) and oxidation-reduction potential (ORP) in the liquid, and the amount of oxygen supplied is adjusted accordingly. there were. [Problems to be Solved by the Invention] However, in biological treatment using such a contact material (hereinafter referred to as "medium"), as mentioned above, it is accompanied by the growth of living organisms, so In addition to the clogging of the medium due to the resulting solid content, the amount of attached organisms on the medium increases, or the medium is clogged due to microbial clumps falling off from the medium, and the microbial clumps falling from the medium fall to the bottom of the tank. As a result, sludge accumulates at the bottom of the treatment tank. And with these,
For example, changes in treatment conditions due to changes in the amount of attached organisms, decreases in flow rate or changes in treatment conditions due to clogging of the media, or quality of treated water due to increases in the amount of sludge deposited or an increase in the amount of microbial clumps falling from the media. Problems such as destabilization without deterioration and difficulty in maintenance and management due to these factors were occurring. [0006] Conventionally, methods for solving this problem include visually observing the amount of sludge deposited at the bottom of the treatment tank and discharging the sludge when the amount is large, or observing the amount of attached organisms in the medium and performing backwashing if necessary. However, these methods only involve visual inspection of the outside of the media, and it is not possible to accurately determine the clogging condition inside the media. The quality of the treated water was also unstable. [0007] The present invention provides a control method and device for biological treatment of sewage that can accurately grasp the clogging state of the medium and perform sludge discharge and/or backwashing of the medium at an appropriate time. The purpose is to Another object of the present invention is to provide a biological treatment control method and device that can maintain the adhesion state of organisms in a medium appropriately and stably obtain treated water of good quality. [Means for Solving the Problems] The present inventor has studied various control conditions for biological treatment and has measured various factors that allow biological treatment to be carried out efficiently and treated water of good quality to be obtained. However, it was discovered that the measured turbidity of treated water from a treatment tank with a packed bed of biofouling media has a correlation with the clogging state of the media, and it became clear that this could be used as a control factor. Based on this, we have arrived at the present invention. That is, the present invention achieved the above object by the following means. 1. In a wastewater treatment method in which wastewater is brought into contact with a packed bed of biofouling media for biological treatment, the turbidity of the treated water after contact with the medium is measured, and when the measured value exceeds or exceeds a set value. A method for controlling biological treatment of sewage characterized by discharging sludge from a sludge reservoir below a packed bed and/or performing a backwashing operation at a predicted time. 2. A biological treatment device for sewage comprising a packed bed made of a biofouling medium in a tank provided with a sewage inflow pipe and a treated water outflow pipe, and a cleaning gas inflow part below the packed bed, the treated water outflow part A turbidity measuring device is installed in the tank, and the signal from the turbidity measuring device is sent to the control device, and when the measured value exceeds the set value or is expected to exceed the set value, the control device sends a signal from the sludge reservoir installed at the bottom of the tank. sludge discharge and/or
Alternatively, a control device for a biological treatment device for sewage, characterized in that a cleaning gas is caused to flow into a cleaning gas inflow section. [0011] In the present invention, when the clogging of the biofouling medium progresses in the biological treatment, the turbidity of the treated water flowing out from the treatment tank having the packed bed increases, or the increase is in a waveform, and then the turbidity decreases once. It discovers that the wave changes, such as the next increasing wave, and uses this to control. The biological treatment to which the present invention is applied may be either aerobic treatment or anaerobic treatment, or both may be performed in combination. Examples of the medium for attaching organisms used in the present invention include honeycomb tubes, string-like bodies,
Corrugated plates, ball-shaped bodies, etc. are preferred. These are included in those conventionally known as media in biological filter beds, but among these media, granular materials such as anthracite and sand are not suitable for the present invention. Generally, it is preferable to use a medium having a shape that has gaps such that microbial masses separated from the medium fall below the packed bed. In the following, the packed bed of the present invention may be referred to as a "biological filter bed". [0012] The turbidity measuring device used in the present invention includes a turbidity meter, an SS meter, a fluorometer, etc., and an SS meter is preferred. Although it is preferable to measure turbidity continuously in order to understand the state of increase in turbidity, it is also possible to measure it intermittently at short intervals, such as every minute. The control method and apparatus of the present invention will be specifically explained using the drawings. The sewage biological treatment equipment shown in Figure 1 is
An anaerobic filter bed tank and a contact aeration tank are combined to perform both anaerobic treatment and oxidative treatment. In this biological treatment device, wastewater 1 enters the first chamber 7 of the anaerobic filter bed tank 2,
The anaerobic bacteria retained in the filter bed 9 perform anaerobic treatment, and the liquid that has passed through the filter bed 9 and exits below it passes through the liquid pipe 15 and enters the second chamber 8, where it is similarly subjected to anaerobic treatment. Ru. During this treatment, in the anaerobic filter bed tank 2, microorganisms that have grown on the filter bed 9 are accumulated in the sludge reservoir 11 at the bottom of the chamber. This sludge is taken out from the sludge drawing pipe 12 by periodically driving the pump 13. The anaerobically treated wastewater then enters the first chamber 16 of the contact aeration tank 3, where a filter bed 9 is provided,
Aeration air 18 enters from the diffuser 19 and is aerated, subjected to biological oxidative treatment, and then to the second chamber 1.
Similar processing is performed in step 7. Note that a part of the liquid is taken out from the upper part of the second chamber 17 and sent to the first chamber 7 of the anaerobic filter bed tank 2 as return water 22. The liquid that has undergone the above treatment enters the sedimentation tank 4, where the sludge is separated by sedimentation, and the supernatant liquid enters the disinfection tank 5, where it is sterilized with a disinfectant supplied from the disinfector 24, and is discharged as treated water 6. Ru. In addition, sedimentation tank 4
Sludge 23 is discharged from the bottom. In the liquid pipe 15 of the first chamber 7 and the upper part of the second chamber 8 of the anaerobic filter bed tank 2 of this biological treatment apparatus, and the first chamber 16 and the second chamber 17 of the contact aeration tank 3. A turbidity recorder 14 is provided at each upper part of the tank, a flow rate indicator recorder 20 is provided at the air pipe of the aeration air 18, and an ORP recorder is provided at the upper part of the first chamber 16 and second chamber 17 of the contact aeration tank 3. A total of 21 will be provided. When the treatment is continued in this biological treatment apparatus, the measured value of the turbidity recorder 14 provided in the anaerobic filter bed tank 2 may become a curve as shown in FIG. It has been found that the reason why the pulse-like peak 1 like this curve appears is because the amount of sludge extracted by the pump 13 from the sludge reservoir 11 is small. Further, if the treatment is continued as it is, the turbidity value increases and peak 2 appears, but at this time, the amount of microorganisms attached to the filter bed 9 becomes too large, and the microorganisms from the filter bed 9 are removed. This is thought to be because the amount of water falling increases and the microorganisms in the liquid flow away. In addition, it is thought that the reason why peak 1 and peak 2 appear is that a large amount of sludge accumulates in the sludge reservoir 11, and as the sludge surface rises, the sludge is periodically entrained by the liquid flow sent to the next tank. but,
This is just an estimate, and the exact phenomenon is not known. [0015] As described above, when peak 1 or peak 2 appears on the curve of the measured values of the turbidity recorder 14, or when it is expected, clogging of the medium and accumulation of sludge occur, resulting in deterioration of the treatment. Therefore, either the pump 13 is driven to take out the sludge from the sludge reservoir 11 through the sludge withdrawal pipe 12, and/or the cleaning gas inflow section (hereinafter referred to as "backwash pipe") is ) 10 to backwash the filter bed 9 and remove excess microorganisms in the filter bed 9. Although this control may be performed by a human, it is preferable to use an electrical control device. In the apparatus shown in FIG. 1, a control circuit is configured to send a signal from the turbidity recorder 14 to a control device 26 via a discriminator 25, thereby opening a valve 27 and sending a cleaning gas 28. Although only the first chamber 7 is shown in FIG. 1, the other chambers are similarly provided. Note that the second chamber 8 is also provided with a sludge reservoir, a sludge extraction pipe, etc., but their illustration is omitted in FIG. In addition,
If the measured values do not form a curve as shown in FIG. 4, a curve based on the measured values is obtained in advance, and control values that match the curve are set. Further, the measured values of the turbidity recorder 14 in the first chamber 16 and second chamber 17 of the contact aeration tank 3 show a curve as shown in FIG. 5, for example. This is similar to an anaerobic filter bed tank,
This is because the turbidity (SS) in the tank begins to rise as organic matter is removed, and by measuring the SS in the tank,
Automatic backwashing is performed when a turbidity corresponding to filter bed clogging or sludge accumulation is reached or predicted. Figure 2 shows an example of the present invention applied to an anaerobic filter bed tank. In this case, the tank consists of only one chamber, and the structure of the tank is almost the same as that shown in Figure 1. And,
The symbols attached to each part are also the same as in FIG. However, in this tank, a baffle 29 is provided next to the filter bed 9 to form an ascending path for the treated water passing through the filter bed 9, and a turbidity recorder 14 and an ORP recorder are installed at the top of this ascending path. 21 is provided. In the case of this structure, since the sludge accumulated in the sludge reservoir 11 is likely to be accompanied by the water flow entering the ascending path, it is considered that the turbidity is likely to exhibit a pulse-like peak as shown in FIG. 4. Further, FIG. 3 shows an example in which the present invention is applied to a contact aeration tank, and the tank consists of only one chamber, and the structure of the tank is almost the same as that shown in FIG. The reference numerals given to each part are also the same as in FIG. In this tank, the sewage in the tank is fluidized by the air blown in from the air diffuser 19, so the sludge does not settle to the bottom of the tank much. The turbidity of the liquid in the tank is measured by a turbidity recorder 14 provided at the outlet of the treated water, and when it reaches a predetermined value, air is sent to the backwash pipe 10 to backwash the filter bed 9. Additionally, the oxidation-reduction potential of the liquid is measured by the ORP recorder 21, and the amount of aeration air sent to the aeration device 19 is controlled to ensure that sufficient oxidizing biological treatment is performed within the filter bed 9. . In any case, the setting value changes depending on the difference between anaerobic treatment and aerobic treatment, and the difference in the water to be treated, so it is best to set it each time.For example, in the case of anaerobic treatment, the SS 100 mg/liter or more, preferably 1
00-150mg/liter, S for aerobic treatment
S is 30 mg/liter or more, preferably 30 to 70 m
It is preferable to use g/liter as a guideline for the set value, and to perform control such that sludge is discharged and/or backwashed when the set value is exceeded or is expected to be exceeded. [Examples] The present invention will be specifically explained below with reference to Examples. However, the present invention is not limited to this example. Example 1 Actual wastewater was treated with a biological treatment device whose basic configuration is similar to the biological treatment device shown in FIG. However, both the anaerobic filter bed tank and the contact aeration tank consist of three chambers. The specific configuration of this biological treatment device is shown below. (1) Treatment facility Anaerobic filter bed tank 3.0m x 4.8m x 3
.. 6m (H) x 3 tanks Medium 1st
Chamber string-like pitch 100m
m
Volume 3
1m3 2nd and 3rd chambers ball shape diameter 150mm
Volume 39m3
Contact aeration tank 1st room 4.0m
x 3.0m x 3.5m (H) x 1 tank Rooms 2 and 3 4.0m x 1.35m x 3.5m
(H) x 2 tanks Media type
Corrugated sheet surface area 52m2/m3

Corrugated plate pitch 80mm Media filling amount 1st chamber
26.5m3
Rooms 2 and 3 11.
9m3 (2) Measuring instrument SS measuring instrument: Continuous turbidity meter (light scattering type) ORP
Measuring device: 2-wire insulated type (3) Operating conditions Average daily sewage supply amount 77.8 m
3/day (3.24m3/hour) Hourly maximum sewage supply amount 9.0m3/hour
Water quality of raw water and treated water
BOD
SS Raw water quality
12.4mg/l 140mg/l
Treated water quality 7.
0mg/l 3mg/l 0023
] Wastewater was treated with the above biological treatment equipment. The measurement results at that time are shown below. (4) Measurement Results The SS measurement results of the outflow water from the first chamber of the anaerobic filter bed tank and the first chamber of the contact aeration tank are shown in FIGS. 6 and 7. Since the SS of the effluent water from the anaerobic filter bed tank does not rise in a short period of time, data is shown only for the period before and after the rise. Further, although the outflow water in the contact aeration tank differs from room to room, in this case, the outflow water SS from the first room was used as a representative example. a. Changes in the SS value of the effluent from the first chamber of the anaerobic filter bed This treatment equipment has a high removal rate of SS in the first chamber of the anaerobic filter bed, and once every 2 to 3 months, a large amount of SS is removed from the treated water. S.S.
Contamination was observed. As shown in FIG. 6, the backwashing operation was started at point A, when the SS in the treated water was about 100 mg/liter. Backwash air volume: 2.0m3/
When this was carried out for about a minute, the SS of the water in the tank temporarily rose to about 4200 mg/liter due to backwashing. SS discharged from the filter bed during backwashing is removed to the outside of the tank as cleaning wastewater, and the treated water is allowed to flow out after the filter bed is stabilized. The next day after backwashing, SS decreased significantly, and after one day it was 30mg/
The value was around liters, and stable operation continued. b. Changes in the SS value of the outflow water from the first chamber of the contact aeration tank This first
In the chamber, the SS value of the treated water increased once every 2 to 3 weeks, and a backwash operation was performed at point A, where the SS became 70 mg/liter. Backwashing was carried out for 10 minutes at an air flow rate of 2.0 m3/min. The SS concentration in the tank after backwashing temporarily rose to about 1540 mg/liter as shown at point B in FIG. 7, but returned to the normal value two days later. As described above, by controlling the biological treatment apparatus, treated water with a low SS value could be continuously obtained without clogging the filter bed. Effects of the Invention The present invention enables biological treatment of sewage by bringing it into contact with a packed bed of biofouling media, and by measuring the turbidity of the treated water flowing out from the packed bed. By controlling the water quality and/or backwashing of the packed bed, it is possible to prevent clogging of the packed bed from occurring or worsening, which cannot be directly measured, and to improve the water quality. It is possible to stably obtain treated water with good quality over a long period of time. Furthermore, biological treatment can be easily controlled using a packed bed of biofouling media that cannot be measured directly.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一例である生物処理装置の模式図を示
す。
FIG. 1 shows a schematic diagram of a biological treatment device that is an example of the present invention.

【図2】本発明の一例である嫌気性濾床槽の模式図を示
す。
FIG. 2 shows a schematic diagram of an anaerobic filter bed tank that is an example of the present invention.

【図3】本発明の一例である接触ばっ気槽の模式図を示
す。
FIG. 3 shows a schematic diagram of a contact aeration tank which is an example of the present invention.

【図4】図2の嫌気性濾床槽から流出する処理水の濁度
の変化を表わしたグラフの一例を示す。
FIG. 4 shows an example of a graph showing changes in turbidity of treated water flowing out from the anaerobic filter bed tank in FIG. 2.

【図5】図3の接触ばっ気槽から流出する処理水の濁度
の変化を表わしたグラフの一例を示す。
5 shows an example of a graph showing changes in turbidity of treated water flowing out from the contact aeration tank of FIG. 3. FIG.

【図6】本発明の実施例1の生物処理装置における嫌気
性濾床槽から流出する処理水の濁度の変化を表わしたグ
ラフを示す。
FIG. 6 shows a graph showing changes in the turbidity of treated water flowing out from the anaerobic filter bed tank in the biological treatment apparatus of Example 1 of the present invention.

【図7】本発明の実施例1の生物処理装置における接触
ばっ気槽から流出する処理水の濁度の変化を表わしたグ
ラフを示す。
FIG. 7 shows a graph showing changes in the turbidity of treated water flowing out from the contact aeration tank in the biological treatment apparatus of Example 1 of the present invention.

【符号の説明】[Explanation of symbols]

1  汚水 2  嫌気性濾床槽 3  接触ばっ気槽 4  沈殿槽 5  消毒槽 6  処理水 7  第1室 8  第2室 9  濾床 10  逆洗管 11  汚泥溜め 12  汚泥引抜管 13  ポンプ 14  濁度記録計 15  液管 16  第1室 17  第2室 18  ばっ気用空気 19  散気装置 20  流量指示記録計 21  ORP記録計 22  返送水 23  汚泥 24  消毒器 25  弁別器 26  制御装置 27  弁 28  洗浄用気体 29  バッフル 1. Sewage 2 Anaerobic filter bed tank 3 Contact aeration tank 4 Sedimentation tank 5 Disinfection tank 6. Treated water 7 Room 1 8 Second room 9 Filter bed 10 Backwash pipe 11 Sludge sump 12 Sludge extraction pipe 13 Pump 14 Turbidity recorder 15 Liquid pipe 16 1st room 17 Second room 18 Aeration air 19 Air diffuser 20 Flow rate indicator recorder 21 ORP recorder 22 Returned water 23 Sludge 24 Disinfector 25 Discriminator 26 Control device 27 Valve 28 Cleaning gas 29 Baffle

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  汚水を生物付着媒体の充填床と接触さ
せて生物処理する汚水の処理方法において、前記媒体と
の接触後の処理水の濁度を測定し、その測定値が設定値
を超えた時あるいは超えると予想される時に充填床下方
の汚泥溜めからの汚泥の排出及び/又は逆洗操作を行う
ことを特徴とする汚水の生物処理の制御方法。
Claim 1: A method for treating wastewater in which wastewater is brought into contact with a packed bed of biofouling media for biological treatment, wherein the turbidity of the treated water after contact with the medium is measured, and the measured value exceeds a set value. A method for controlling biological treatment of sewage characterized by discharging sludge from a sludge reservoir below a packed bed and/or performing a backwashing operation when the level exceeds the level or is expected to exceed the level.
【請求項2】  汚水流入管と処理水流出管を設けた槽
内に生物付着媒体からなる充填床と、前記充填床下方部
に洗浄用気体流入部とを設けた汚水の生物処理装置にお
いて、前記処理水流出部に濁度測定装置を設けて、濁度
測定装置からの信号を制御装置に送り、制御装置により
その測定値が設定値を超えた時あるいは超えると予想さ
れる時に槽底に設けた汚泥溜めからの汚泥の排出及び/
又は洗浄用気体流入部への洗浄用気体の流入を行うよう
にしたことを特徴とする汚水の生物処理装置の制御装置
2. A biological treatment device for sewage comprising: a packed bed made of a biofouling medium in a tank provided with a sewage inflow pipe and a treated water outflow pipe; and a cleaning gas inflow section below the packed bed. A turbidity measuring device is installed at the outflow of the treated water, and a signal from the turbidity measuring device is sent to a control device, and when the measured value exceeds the set value or is expected to exceed the set value, the control device sends a signal to the bottom of the tank. Discharge of sludge from established sludge basin and/or
Alternatively, a control device for a biological treatment device for sewage, characterized in that a cleaning gas is caused to flow into a cleaning gas inflow section.
JP3073687A 1991-03-14 1991-03-14 Controlling method of biological treatment of sewage and its apparatus Pending JPH04284894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3073687A JPH04284894A (en) 1991-03-14 1991-03-14 Controlling method of biological treatment of sewage and its apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3073687A JPH04284894A (en) 1991-03-14 1991-03-14 Controlling method of biological treatment of sewage and its apparatus

Publications (1)

Publication Number Publication Date
JPH04284894A true JPH04284894A (en) 1992-10-09

Family

ID=13525376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3073687A Pending JPH04284894A (en) 1991-03-14 1991-03-14 Controlling method of biological treatment of sewage and its apparatus

Country Status (1)

Country Link
JP (1) JPH04284894A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142664A (en) * 1992-11-10 1994-05-24 Taiei Shoko Kk Tank and system for purifying sewage
JPH06142692A (en) * 1992-11-02 1994-05-24 Ebara Infilco Co Ltd Method and device for purifying organic sewage
JP2015016436A (en) * 2013-07-11 2015-01-29 水ing株式会社 Method and apparatus for biological denitrification

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142692A (en) * 1992-11-02 1994-05-24 Ebara Infilco Co Ltd Method and device for purifying organic sewage
JPH06142664A (en) * 1992-11-10 1994-05-24 Taiei Shoko Kk Tank and system for purifying sewage
JP2015016436A (en) * 2013-07-11 2015-01-29 水ing株式会社 Method and apparatus for biological denitrification

Similar Documents

Publication Publication Date Title
US7931808B2 (en) Sequencing batch reactor with continuous membrane filtration and solids reduction
KR900006437B1 (en) Water purifying apparatus
KR101125165B1 (en) Method and installation for the biological treatment of water using activated sludge and comprising aeration regulation
JPH06285496A (en) Hollow fiber membrane separation biological treatment and device for organic drainage
JPH06509274A (en) Fluid processing method and device
US20220024796A1 (en) Waste water treatment system using aerobic granular sludge gravity-driven membrane system
CN107055932A (en) A kind of marine domestic sewage processing system
EP2319808A2 (en) Method for treatment of water
JPH04284894A (en) Controlling method of biological treatment of sewage and its apparatus
US7077952B2 (en) Aerobic wastewater treatment system
CN206494810U (en) A kind of marine sewage treatment system
JPH0957289A (en) Biological treating device of fluidized bed type
CN212076748U (en) AAO + BAF sewage treatment system
RU70512U1 (en) COMPACT INSTALLATION OF BIOLOGICAL CLEANING AND DISINFECTION OF SEWAGE WATER USING MEMBRANE FILTRATION
JPH11197685A (en) Method for treating membrane-separated activated sludge
JPS61271090A (en) Treating device for waste water using immobilized microorganism
CN111732271B (en) Decentralized and alternating type sewage treatment device and method
JPH0141520Y2 (en)
JPH0338289A (en) Biologically activated carbon water-treatment apparatus
JPH04317796A (en) Purifying vessel for sewage and its driving method
JPH04197484A (en) Method for controlling backwashing of descending flow type biological activated carbon treatment tower
JPH06182396A (en) Biological treatment of waste water by membrane separation and equipment therefor
CN204281508U (en) A kind of without the need to repeating the domestic sewage processing system adding bacterial classification
KR100305361B1 (en) Household sewage treatment device
JPS62204896A (en) Household combined purifying tank