JP6789537B2 - Watering filter cleaning method - Google Patents

Watering filter cleaning method Download PDF

Info

Publication number
JP6789537B2
JP6789537B2 JP2016149898A JP2016149898A JP6789537B2 JP 6789537 B2 JP6789537 B2 JP 6789537B2 JP 2016149898 A JP2016149898 A JP 2016149898A JP 2016149898 A JP2016149898 A JP 2016149898A JP 6789537 B2 JP6789537 B2 JP 6789537B2
Authority
JP
Japan
Prior art keywords
filter
cleaning
sprinkling
washing water
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016149898A
Other languages
Japanese (ja)
Other versions
JP2018015740A (en
Inventor
直之 岸本
直之 岸本
崚 神田
崚 神田
日野林 譲二
譲二 日野林
橋本 敦
敦 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Plastics Co Ltd
Ryukoku University
Original Assignee
Dainippon Plastics Co Ltd
Ryukoku University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Plastics Co Ltd, Ryukoku University filed Critical Dainippon Plastics Co Ltd
Priority to JP2016149898A priority Critical patent/JP6789537B2/en
Publication of JP2018015740A publication Critical patent/JP2018015740A/en
Application granted granted Critical
Publication of JP6789537B2 publication Critical patent/JP6789537B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Description

本発明は、散水ろ床装置洗浄方法に関する。 The present invention relates to a watering filter cleaning method .

下水や工場排水などの排水を処理する方法として、微生物によって排水を処理する生物学的排水処理法が広く用いられている。生物学的排水処理法には、活性汚泥法、散水ろ床法、循環式硝化脱窒法などが知られている。活性汚泥法は、好気性微生物を含んだ活性汚泥に排水を流入させて排水中の有機物を除去するものであり、我が国における代表的な生物学的排水処理法である。活性汚泥法は、好気性微生物の活性を維持するため、活性汚泥中の排水に空気を送り込む曝気が必要である。散水ろ床法は、砕石又はプラスチック製の多数のろ材によって形成されたろ床を有する散水ろ床装置を用いて、ろ床の上側から排水を散水し、排水がろ材の表面を滴っていく過程で、ろ材の表面に繁茂した好気性微生物の膜の作用により排水中の有機物の除去を行うものである。好気性微生物の膜への酸素供給は、多数のろ材の間隙に存在する空気中の酸素の拡散移動又は溶解に依っているため、曝気が不要となる。循環式硝化脱窒法は、有機物の除去とともに、排水中のアンモニアを好気性微生物により硝酸イオンに酸化する硝化工程と、硝酸イオンを嫌気性微生物により窒素分子にまで還元する脱窒工程と、を経て、富栄養化原因物質の一つである窒素の除去を行うものである。 As a method for treating wastewater such as sewage and factory wastewater, a biological wastewater treatment method for treating wastewater by microorganisms is widely used. Known biological wastewater treatment methods include an activated sludge method, a sprinkling filter method, and a circulating nitrification denitrification method. The activated sludge method is a method of inflowing wastewater into activated sludge containing aerobic microorganisms to remove organic substances in the wastewater, and is a typical biological wastewater treatment method in Japan. The activated sludge method requires aeration to send air into the wastewater in the activated sludge in order to maintain the activity of aerobic microorganisms. The sprinkler filter method is a process in which wastewater is sprinkled from the upper side of the filter bed and the drainage drips on the surface of the filter medium by using a sprinkler filter device having a filter bed formed of a large number of crushed stone or plastic filter media. , Organic substances in wastewater are removed by the action of a film of aerobic microorganisms that grows on the surface of the filter medium. Since the supply of oxygen to the membrane of aerobic microorganisms depends on the diffusion movement or dissolution of oxygen in the air existing in the gaps of a large number of filter media, aeration becomes unnecessary. The circulating nitrification denitrification method involves removing organic substances, a nitrification step in which ammonia in wastewater is oxidized to nitrate ions by aerobic microorganisms, and a denitrification step in which nitrate ions are reduced to nitrogen molecules by anaerobic microorganisms. , It removes nitrogen, which is one of the causative substances of eutrophication.

活性汚泥法は、曝気に多量の空気が必要であり、従って、多量の電力エネルギーが消費される。循環式硝化脱窒法は、硝化工程での曝気が必要となるので、一般に、活性汚泥法で必要とする以上の多量の空気が必要であり、従って、さらに多量の電力エネルギーが消費される。これらに対し、散水ろ床法は、曝気が不要であるので、消費される電力エネルギーの削減が可能である。 The activated sludge method requires a large amount of air for aeration and therefore consumes a large amount of electric energy. Since the circulating nitrification denitrification method requires aeration in the nitrification step, it generally requires a larger amount of air than is required by the activated sludge method, and therefore consumes a larger amount of electric power energy. On the other hand, the sprinkling filter method does not require aeration, so that the power energy consumed can be reduced.

散水ろ床法は、多数のろ材の間隙に空気が出入りする状態で運転されることから、衛生害虫である蝿(いわゆる、ろ床バエ)が容易にろ材の間隙に入り込み、ろ材を産卵床として利用することで、大量に発生し易い。そのため、導入した散水ろ床装置を運転する上で蠅が大きな障害とならないようにする対策が必要である。例えば、特許文献1には、ろ材として親水性及び吸水性を有する布帛を用いた散水ろ床装置が開示されている。ここでは、布帛に形成される好気性微生物の層が水膜で覆われるため、蝿が発生しない、としている。また、例えば、特許文献2には、蝿の発生を防ぐために、装置内に洗浄水を貯留してろ材を湛水(冠水)させる洗浄水貯留機構と、湛水後に散水ろ床装置内から洗浄水を排出する排水機構と、を有した洗浄手段を備える散水ろ床装置が開示されている。 Since the watering filter method is operated with air entering and exiting the gaps between many filter media, the hygiene pests (so-called filter bed flies) easily enter the gaps between the filter media and use the filter media as a spawning bed. By using it, it tends to occur in large quantities. Therefore, it is necessary to take measures to prevent the flies from becoming a major obstacle in operating the introduced sprinkler filter. For example, Patent Document 1 discloses a sprinkling filter device using a cloth having hydrophilicity and water absorption as a filter medium. Here, it is stated that flies do not occur because the layer of aerobic microorganisms formed on the fabric is covered with a water film. Further, for example, in Patent Document 2, in order to prevent the occurrence of flies, a washing water storage mechanism that stores washing water in the device and floods (submerges) the filter medium, and a washing water storage mechanism that floods the filter medium and then cleans from the sprinkling filter bed device. A sprinkler filter device including a drainage mechanism for discharging water and a cleaning means having the same is disclosed.

特開2001−121181号公報Japanese Unexamined Patent Publication No. 2001-121181 特開2015−033666号公報JP 2015-0336666

しかしながら、特許文献1に開示される散水ろ床装置は、ろ材の洗浄手段を備えていないため、使い続けた後に蝿の発生を効果的に抑制できるかどうかが問題であり、また、ろ材としての布帛の耐用年数が長くない、と考えられる。また、特許文献2に開示される散水ろ床装置は、産み付けられた場所によっては、洗浄水による湛水とその洗浄水の排出だけでは、卵等を取り除くことが困難な場合が少なくない、と考えられる。 However, since the sprinkling filter device disclosed in Patent Document 1 does not have a means for cleaning the filter medium, it is a problem whether or not the generation of flies can be effectively suppressed after continued use, and the filter medium can be used as a filter medium. It is considered that the service life of the fabric is not long. Further, in the sprinkling filter device disclosed in Patent Document 2, depending on the place where it was laid, it is often difficult to remove eggs and the like only by flooding with washing water and discharging the washing water. it is conceivable that.

本発明は、係る事由に鑑みてなされたものであり、その目的は、蝿の発生を効果的に抑制できる散水ろ床装置洗浄方法を提供することにある。 The present invention has been made in view of the above reasons, and an object of the present invention is to provide a watering filter cleaning method capable of effectively suppressing the generation of flies.

上記目的を達成するために、請求項に記載の散水ろ床装置洗浄方法は、多数のろ材によって形成された散水ろ床を収容して排水処理時に排水処理を行って処理水を無酸素ろ床装置に排出する散水ろ床装置本体と、前記散水ろ床を洗浄時に洗浄水で湛水する洗浄用湛水設備と、前記洗浄水で湛水された前記散水ろ床を空気爆気する洗浄用空気曝気設備と、を備える散水ろ床装置を定期的に洗浄する散水ろ床装置洗浄方法であって、洗浄時に前記洗浄用湛水設備により前記洗浄水を注入して前記散水ろ床を湛水したのち、前記洗浄用空気曝気設備により前記散水ろ床を空気曝気して、前記ろ材に付着した蝿の幼虫や卵の剥離を促し、その後、前記散水ろ床の上部から前記蠅の一部を含む前記洗浄水を沈殿装置に排出し、その後、前記散水ろ床の下部から前記蠅の残りを含む前記洗浄水を前記沈殿装置に排出することを特徴とする。 In order to achieve the above object, the watering filter device cleaning method according to claim 1 accommodates a watering filter formed of a large number of filter media and performs wastewater treatment at the time of wastewater treatment to remove oxygen-free treated water. The main body of the sprinkler filter device to be discharged to the floor device, the cleaning equipment for flooding the sprinkler filter bed with cleaning water at the time of cleaning, and the cleaning of the sprinkler filter bed flooded with the wash water by air explosion. It is a method of cleaning a sprinkling filter device that periodically cleans a sprinkling filter equipped with an air aeration facility for cleaning. At the time of cleaning, the washing water is injected by the cleaning flooding facility to fill the sprinkling filter. After watering, the sprinkler filter bed is air-ventilated by the cleaning air aeration facility to promote the peeling of the larvae and eggs of the flies attached to the filter medium, and then a part of the 蠅from the upper part of the sprinkler filter bed. The washing water containing the above-mentioned washing water is discharged to the settling device, and then the washing water containing the rest of the 蠅 is discharged from the lower part of the sprinkler filter bed to the settling device .

請求項に記載の散水ろ床装置洗浄方法は、多数のろ材によって形成された散水ろ床を収容して排水処理を行う散水ろ床装置本体と、前記散水ろ床を洗浄時に洗浄水で湛水する洗浄用湛水設備と、前記洗浄水で湛水された前記散水ろ床を空気爆気する洗浄用空気曝気設備と、を備える散水ろ床装置を定期的に洗浄する散水ろ床装置洗浄方法であって、前記洗浄用湛水設備により前記洗浄水を注入して前記散水ろ床を湛水したのち、前記洗浄用空気曝気設備により前記散水ろ床を空気曝気して、前記ろ材に付着した蝿の幼虫や卵の剥離を促し、その後、前記散水ろ床の上面から深さ50mmまでに溜まる量以上の量であり、かつ、前記散水ろ床の上面から深さ400mmまでに溜まる量以下の量の前記洗浄水を前記散水ろ床の上部から排出し、その後、前記散水ろ床の下部から前記洗浄水を排出することを特徴とする。 The method for cleaning the sprinkler filter according to claim 2 is to fill the main body of the sprinkler filter device, which accommodates the sprinkler filter formed of a large number of filter media and performs wastewater treatment, and the sprinkler filter with washing water at the time of cleaning. A sprinkler filter device cleaning that periodically cleans a sprinkler filter device including a flushing facility for washing with water and an air exposure facility for cleaning that air-explodes the sprinkling filter flooded with the washing water. In this method, the washing water is injected by the cleaning equipment to flood the sprinkling filter, and then the watering filter is air-exposed by the cleaning air aeration equipment to adhere to the filter medium. The amount of the larvae and eggs of the sprinkled washer is promoted, and then the amount is more than the amount accumulated from the upper surface of the watering filter bed to a depth of 50 mm and less than the amount accumulated from the upper surface of the watering filter bed to a depth of 400 mm. The amount of the washing water is discharged from the upper part of the sprinkling filter, and then the washing water is discharged from the lower part of the sprinkling filter .

請求項に記載の散水ろ床装置洗浄方法は、請求項1又は2に記載の散水ろ床装置洗浄方法において、前記湛水に用いる前記洗浄水に水道水、井戸水または排水処理水を用いることを特徴とする。 The sprinkling filter device cleaning method according to claim 3 is the water sprinkling filter device cleaning method according to claim 1 or 2 , wherein tap water, well water, or wastewater treated water is used as the washing water used for the flooding. It is characterized by.

請求項に記載の散水ろ床装置洗浄方法は、多数のろ材によって形成された散水ろ床を収容して排水処理を行う散水ろ床装置本体と、前記散水ろ床を洗浄時に洗浄水で湛水する洗浄用湛水設備と、前記洗浄水で湛水された前記散水ろ床を空気爆気する洗浄用空気曝気設備と、を備える散水ろ床装置を定期的に洗浄する散水ろ床装置洗浄方法であって、前記ろ材は、直径10〜30mm、長さ10〜30mmの円筒状のプラスチック製であり、前記洗浄用湛水設備により前記洗浄水を注入して前記散水ろ床を湛水したのち、前記洗浄用空気曝気設備により風量を0.6〜1.0m/m・min、前記空気曝気の時間を1〜5minに設定して前記散水ろ床を空気曝気して、前記ろ材に付着した蝿の幼虫や卵の剥離を促し、その後、前記洗浄水を排出することを特徴とする。 The method for cleaning the sprinkler filter according to claim 4 is to fill the main body of the sprinkler filter device, which accommodates the sprinkler filter formed of a large number of filter media and performs wastewater treatment, and the sprinkler filter with washing water at the time of cleaning. A sprinkler filter device cleaning that periodically cleans a sprinkler filter device including a flushing facility for washing with water and an air exposure facility for cleaning that air-explodes the sprinkling filter flooded with the washing water. According to the method, the filter medium is made of a cylindrical plastic having a diameter of 10 to 30 mm and a length of 10 to 30 mm, and the washing water is injected by the washing equipment to flood the sprinkling filter bed. After that, the air volume is set to 0.6 to 1.0 m 3 / m 2 · min and the air exposure time is set to 1 to 5 min by the cleaning air aeration facility , and the sprinkler filter bed is air- exposed to the filter medium. It is characterized in that it promotes the detachment of larvae and eggs of the flies attached to the shavings, and then drains the washing water .

請求項に記載の散水ろ床装置洗浄方法は、請求項1〜4のいずれか1項に記載の散水ろ床装置洗浄方法において、定期的に前記散水ろ床部を洗浄する頻度を3日間に1回以上とすることを特徴とする。 The watering filter cleaning method according to claim 5 is the watering filter cleaning method according to any one of claims 1 to 4 , wherein the frequency of periodically cleaning the watering filter is 3 days. It is characterized in that it is performed once or more.

本発明の散水ろ床装置洗浄方法によれば、蝿の発生を効果的に抑制することが可能になる。 According to the watering filter cleaning method of the present invention, it is possible to effectively suppress the generation of flies.

本発明の実施形態に係る散水ろ床装置を含む循環式硝化脱窒システムの概略図である。It is the schematic of the circulation type nitrification denitrification system including the sprinkling filter device which concerns on embodiment of this invention. 同上の散水ろ床装置を示すものであって、(a)が正面視断面図、(b)が平面図である。The above-mentioned sprinkler filter device is shown, in which (a) is a front sectional view and (b) is a plan view. 同上の散水ろ床装置のろ材の例を拡大して示す外観図であって、(a)が正面図、(b)が側面図である。It is an enlarged external view which shows the example of the filter medium of the sprinkler filter of the same above, (a) is a front view, (b) is a side view. 同上の散水ろ床装置とともに循環式硝化脱窒システムで用いられる無酸素ろ床装置を示すものであって、(a)が平面図、(b)がA−Aで示す切断面での断面図である。The anoxic filter used in the circulation type nitrification denitrification system together with the watering filter of the above is shown, in which (a) is a plan view and (b) is a cross-sectional view on a cut surface shown by AA. Is. 同上の散水ろ床装置の実験における散水ろ床の側面部の幼虫の個体数分布を示すグラフであって、洗浄を行った散水ろ床装置についてのものである。It is a graph which shows the population distribution of the larva of the side part of the sprinkling filter in the experiment of the sprinkling filter of the same above, and is about the sprinkling filter which was washed. 同上の散水ろ床装置の実験における散水ろ床の側面部の幼虫の個体数分布を示すグラフであって、洗浄を行わなかった散水ろ床装置についてのものである。It is a graph which shows the population distribution of the larva of the side part of the sprinkling filter in the experiment of the sprinkling filter of the same above, and is about the sprinkling filter which did not wash. 同上の散水ろ床装置の実験における散水ろ床装置から排出された洗浄水に含まれる蠅について幼虫、蛹、成虫の数を示すグラフであって、洗浄水全部についてのものである。It is a graph which shows the number of larvae, pupae, and adults about the flies contained in the washing water discharged from the watering filter device in the experiment of the watering filter device as above, and is for all the washing water. 同上の散水ろ床装置の実験における散水ろ床装置から排出された洗浄水に含まれる蠅について幼虫、蛹、成虫の数を示すグラフであって、下部から排出された洗浄水のみについてのものである。It is a graph showing the number of larvae, pupae, and adults for the flies contained in the washing water discharged from the watering filter in the same experiment of the watering filter, and is only for the washing water discharged from the bottom. is there. 同上の散水ろ床装置の実験における散水ろ床装置中の月別の幼虫の個体サイズを示すグラフであって、洗浄を行った散水ろ床装置と洗浄を行わなかった散水ろ床装置について示している。It is a graph which shows the individual size of the larva by month in the sprinkling filter in the experiment of the sprinkling filter of the same above, and shows the sprinkling filter which was washed and the sprinkling filter which was not washed. .. 同上の散水ろ床装置の実験における循環式硝化脱窒システムに流入する排水中の各態窒素濃度の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the nitrogen concentration of each state in the wastewater flowing into the circulation type nitrification denitrification system in the experiment of the sprinkler filter of the same above. 同上の散水ろ床装置の実験における処理水中の各態窒素濃度の経時変化を示すグラフであって、洗浄を行った散水ろ床装置についてのものである。It is a graph which shows the time-dependent change of the nitrogen concentration of each state in treated water in the experiment of the sprinkling filter device of the same above, and is about the sprinkling filter device which performed washing. 同上の散水ろ床装置の実験における処理水中の各態窒素濃度の経時変化を示すグラフであって、洗浄を行わなかった散水ろ床装置についてのものである。It is a graph which shows the time-dependent change of the nitrogen concentration of each state in treated water in the experiment of the sprinkling filter device of the same above, and is about the sprinkling filter device which did not wash. 同上の散水ろ床装置の実験における処理水中のCOD(化学的酸素要求量)の経時変化を示すグラフであって、洗浄を行った散水ろ床装置と洗浄を行わなかった散水ろ床装置について示している。It is a graph showing the time course of COD (Chemical Oxygen Demand) in the treated water in the experiment of the sprinkler filter device as above, and shows the sprinkler filter device that was washed and the sprinkler filter device that was not washed. ing. 同上の散水ろ床装置の実験における処理水中のSS(浮遊物質量)の経時変化を示すグラフであって、洗浄を行った散水ろ床装置と洗浄を行わなかった散水ろ床装置について示している。It is a graph which shows the time-dependent change of SS (suspended solids amount) in treated water in the experiment of the sprinkling filter device of the same above, and shows the sprinkling filter device which was washed and the sprinkling filter device which was not washed. ..

以下、本発明を実施するための形態を説明する。本発明の実施形態に係る散水ろ床装置1は、図1に示すように、循環式硝化脱窒システム2の一部を構成する装置である。循環式硝化脱窒システム2は、上述した循環式硝化脱窒法を実現するシステムである。循環式硝化脱窒システム2では、散水ろ床装置1は、排水W中のアンモニアを好気性微生物により硝酸イオンに酸化する硝化工程を行う。また、散水ろ床装置1は、好気性微生物により排水W中の有機物の除去にも寄与する。 Hereinafter, modes for carrying out the present invention will be described. As shown in FIG. 1, the watering filter device 1 according to the embodiment of the present invention is a device that constitutes a part of the circulation type nitrification denitrification system 2. The circulation type nitrification denitrification system 2 is a system that realizes the above-mentioned circulation type nitrification denitrification method. In the circulation type nitrification denitrification system 2, the sprinkler filter device 1 performs a nitrification step of oxidizing ammonia in the waste water W to nitrate ions by aerobic microorganisms. The watering filter device 1 also contributes to the removal of organic matter in the waste water W by aerobic microorganisms.

散水ろ床装置1は、図1に示すように、散水ろ床装置本体3と洗浄用湛水設備4と洗浄用空気曝気設備5とを備える。 As shown in FIG. 1, the sprinkling filter device 1 includes a sprinkling filter main body 3, a cleaning flooding facility 4, and a cleaning air aeration facility 5.

散水ろ床装置本体3は、図2(a)、(b)に示すように、筒状の散水ろ床外筒31の内部に、多数のろ材(担体)32aによって形成された散水ろ床32を収容する。散水ろ床32は、上方から排水Wが散水され、排水Wが内部を下方に向かってゆっくりと流れることによって排水処理を行うことができる。ろ材32aは、汚泥(堆積汚泥)を捕捉し、ろ材32aの表面には排水W中のアンモニアを硝酸イオンに酸化し得る好気性微生物が繁茂することになる。散水ろ床32は、その上面及び下面が外気に曝されて空気が供給され、空気中の酸素は、多数のろ材32aの間隙を拡散移動することになる。また、空気中の酸素は、散水ろ床32の上面から供給される排水Wに溶解しても拡散移動する。こうして、好気性微生物の膜への酸素供給が行われる。なお、図2(b)では、後述する洗浄水注入管41、空気注入管51、上部排出管44については、図示を省略している。 As shown in FIGS. 2A and 2B, the watering filter main body 3 has a watering filter 32 formed by a large number of filter media (carriers) 32a inside the tubular watering filter outer cylinder 31. To accommodate. In the watering filter bed 32, the wastewater W is sprinkled from above, and the wastewater W can slowly flow downward inside to perform the wastewater treatment. The filter medium 32a captures sludge (deposited sludge), and aerobic microorganisms capable of oxidizing ammonia in the waste water W to nitrate ions grow on the surface of the filter medium 32a. The upper surface and the lower surface of the watering filter bed 32 are exposed to the outside air to supply air, and oxygen in the air diffuses and moves through the gaps of a large number of filter media 32a. Further, oxygen in the air diffuses and moves even if it is dissolved in the waste water W supplied from the upper surface of the sprinkler bed 32. In this way, oxygen is supplied to the membrane of aerobic microorganisms. In FIG. 2B, the washing water injection pipe 41, the air injection pipe 51, and the upper discharge pipe 44, which will be described later, are not shown.

ろ材32aは、プラスチック製(例えば、高密度ポリエチレン製)の成形品である。プラスチック製のろ材32aは、砕石のろ材に比べて比重が小さい。それにより、ろ材32aは、後述する洗浄時の空気曝気によって容易に動き得、ろ材32aに付着した蝿の幼虫や卵の剥離を促すことができる。ろ材32aの比重は、0.9〜1.1とすることができる。また、ろ材32aは、様々な形状のものが可能であるが、例えば、図3に示すように、円筒状のものとすることができる。 The filter medium 32a is a molded product made of plastic (for example, made of high-density polyethylene). The plastic filter medium 32a has a smaller specific gravity than the crushed stone filter medium. As a result, the filter medium 32a can be easily moved by air aeration during washing, which will be described later, and can promote the peeling of fly larvae and eggs attached to the filter medium 32a. The specific gravity of the filter medium 32a can be 0.9 to 1.1. Further, the filter medium 32a can have various shapes, and for example, as shown in FIG. 3, it can be a cylindrical one.

散水ろ床外筒31は、その中空部の底部を塞ぐように、多数の網目の有する薄板状の支持体33を取り付けることができる。この網目状の支持体33は、散水ろ床外筒31内に収容する散水ろ床32の多数のろ材32aを支持する。従って、支持体33の網目の大きさは、ろ材32aよりも小さいものである。 The watering filter floor outer cylinder 31 can be attached with a thin plate-shaped support 33 having a large number of meshes so as to close the bottom of the hollow portion. The mesh-like support 33 supports a large number of filter media 32a of the watering filter bed 32 housed in the watering filter bed outer cylinder 31. Therefore, the mesh size of the support 33 is smaller than that of the filter medium 32a.

また、散水ろ床外筒31には、後述する下部排出管35、洗浄水注入管41、空気注入管51を取り付けるための管取付具34を散水ろ床外筒31の下側に設けることができる。管取付具34は、内部空間を有し、その内部空間に後述する下部排出管35、洗浄水注入管41、空気注入管51のそれぞれの中空部が連通する。管取付具34は、図示するように略円錐状とすることができる。また、散水ろ床外筒31と管取付具34は、それぞれにフランジ31a、34aを有するようにして、フランジ31a、34aにおいて固定具(ボルト及びナットなど)で互いに固定され、散水ろ床32の直下に管取付具34の内部空間が位置するようにできる。また、支持体33は、散水ろ床外筒31と管取付具34の間に挟み込むことで取り付けることができる。 Further, the watering filter floor outer cylinder 31 may be provided with a pipe attachment 34 for attaching the lower discharge pipe 35, the washing water injection pipe 41, and the air injection pipe 51, which will be described later, under the watering filter floor outer cylinder 31. it can. The pipe fitting 34 has an internal space, and the hollow portions of the lower discharge pipe 35, the washing water injection pipe 41, and the air injection pipe 51, which will be described later, communicate with the internal space. The tube attachment 34 may have a substantially conical shape as shown. Further, the sprinkler filter floor outer cylinder 31 and the pipe fixture 34 have flanges 31a and 34a, respectively, and are fixed to each other by fixtures (bolts, nuts, etc.) at the flanges 31a and 34a to form the sprinkler filter bed 32. The internal space of the pipe fitting 34 can be located directly below. Further, the support 33 can be attached by sandwiching it between the sprinkler filter floor outer cylinder 31 and the pipe attachment 34.

散水ろ床装置本体3は、排水処理時に散水ろ床32を通った処理水Pが排出される下部排出管35を有する。下部排出管35には、三方コック36を設け、排水処理時には後述する無酸素ろ床装置7へ処理水Pが排出されるようにし、散水ろ床装置1の洗浄時には、下部排出管35を閉じて散水ろ床32を湛水させたり後述する沈殿装置6へ洗浄水Cが排出されるようにさせたりすることができる(図1参照)。 The sprinkler filter main body 3 has a lower discharge pipe 35 through which the treated water P that has passed through the sprinkler filter 32 is discharged during wastewater treatment. The lower discharge pipe 35 is provided with a three-way cock 36 so that the treated water P is discharged to the oxygen-free filter device 7 described later at the time of wastewater treatment, and the lower discharge pipe 35 is closed at the time of cleaning the sprinkling filter device 1. The watering filter bed 32 can be flooded, or the washing water C can be discharged to the settling device 6 described later (see FIG. 1).

洗浄用湛水設備4は、散水ろ床装置1の洗浄時に、散水ろ床32を湛水するための設備である。洗浄用湛水設備4は、散水ろ床32に下方から洗浄水Cを注入することができる洗浄水注入管41を有している。洗浄水注入管41は、具体的には、上述したように、管取付具34に取り付けることができる。洗浄水注入管41には、通常、洗浄水注入管41を任意に開閉できるコック42が設けられて、上方に向かって洗浄水Cを吐出するようにポンプ43が接続されている。また、後述するように、湛水後に散水ろ床32の上部からも洗浄水Cを排出する場合は、上部排出管44を設けるようにする。 The cleaning flooding facility 4 is a facility for flooding the sprinkling filter 32 at the time of cleaning the sprinkling filter device 1. The washing water inundation facility 4 has a washing water injection pipe 41 capable of injecting washing water C into the watering filter bed 32 from below. Specifically, the wash water injection pipe 41 can be attached to the pipe fitting 34 as described above. The wash water injection pipe 41 is usually provided with a cock 42 capable of arbitrarily opening and closing the wash water injection pipe 41, and a pump 43 is connected so as to discharge the wash water C upward. Further, as will be described later, when the washing water C is also discharged from the upper part of the sprinkling filter bed 32 after flooding, the upper discharge pipe 44 is provided.

洗浄用空気曝気設備5は、散水ろ床装置1の洗浄時に、散水ろ床32を空気により爆気する設備である。洗浄用空気曝気設備5は、散水ろ床32に下方から空気Aを注入することができる空気注入管51を有している。空気注入管51は、具体的には、上述したように、管取付具34に取り付けることができる。空気注入管51には、通常、任意に開閉できるコック52が設けられ、上方に向かって空気を吐出するようにエアポンプ53が接続されている。 The cleaning air aeration facility 5 is a facility that explodes the sprinkler filter 32 with air when cleaning the sprinkler filter device 1. The cleaning air aeration facility 5 has an air injection pipe 51 capable of injecting air A into the sprinkler bed 32 from below. Specifically, the air injection pipe 51 can be attached to the pipe fitting 34 as described above. The air injection pipe 51 is usually provided with a cock 52 that can be opened and closed arbitrarily, and an air pump 53 is connected so as to discharge air upward.

循環式硝化脱窒システム2は、更に、前述した沈殿装置6と無酸素ろ床装置7を備える。沈殿装置6と無酸素ろ床装置7は、従来の機能及び構成でよいので詳細は説明しないが、基本的な機能と構成は以下の通りである。 The circulating nitrification denitrification system 2 further includes the above-mentioned precipitation device 6 and anoxic filter bed device 7. The settling device 6 and the oxygen-free filter bed device 7 may have conventional functions and configurations, and will not be described in detail, but the basic functions and configurations are as follows.

沈殿装置6は、処理する前の生の排水Wが流入し、その排水W中の大きな固形物Sを沈殿分離させる。固形物Sが分離され取り除かれた排水Wは、ポンプ6Aにより、無酸素ろ床装置7に送られる。固形物Sは、所定の機構でもって排出される。 In the settling device 6, the raw wastewater W before the treatment flows in, and the large solid matter S in the wastewater W is settled and separated. The drainage W from which the solid matter S has been separated and removed is sent to the oxygen-free filter device 7 by the pump 6A. The solid matter S is discharged by a predetermined mechanism.

無酸素ろ床装置7は、排水W中の硝酸イオンを嫌気性脱窒微生物により窒素分子にまで還元する脱窒工程を行う。また、無酸素ろ床装置7は、嫌気性微生物により排水W中の有機物の除去を行うこともできる。無酸素ろ床装置7は、図4に示すように、無酸素ろ床槽71の内部に、嫌気性微生物が繁茂したろ材(担体)によって形成されたろ床72と、ろ床72の中に設けられた複数の仕切板73と、を有している。また、無酸素ろ床装置7は、排水流入管74と排水流出管75と処理水流出管76と、を有している。また、無酸素ろ床装置7は、排水Wと処理水Pを隔絶する隔絶板77を有している。排水流入管74から流入した排水Wは、複数の仕切板73の間を上下に迂流しながら、ろ床72を通って有機物の除去及び脱窒が行われる。ろ床72を通った排水Wは、排水流出管75から流出し、ポンプ7Aにより散水ろ床装置1に送られる(図1参照)。また、散水ろ床装置1から排出された処理水Pは、上方から流入し、処理水Pの一部は、最終の処理水Pとして処理水流出管76から流出し、残りは、再度、ろ床72を通過して散水ろ床装置1へ循環する。 The anoxic filter bed device 7 performs a denitrification step of reducing nitrate ions in the waste water W to nitrogen molecules by anaerobic denitrifying microorganisms. Further, the oxygen-free filter device 7 can also remove organic substances in the waste water W by anaerobic microorganisms. As shown in FIG. 4, the anaerobic filter device 7 is provided inside the anaerobic filter tank 71, in a filter bed 72 formed of a filter medium (carrier) overgrown with anaerobic microorganisms, and in the filter bed 72. It has a plurality of partition plates 73 and the like. Further, the oxygen-free filter bed device 7 has a drainage inflow pipe 74, a drainage outflow pipe 75, and a treated water outflow pipe 76. Further, the oxygen-free filter device 7 has an isolation plate 77 that isolates the drainage W and the treated water P. The drainage W flowing from the drainage inflow pipe 74 bypasses up and down between the plurality of partition plates 73, and organic substances are removed and denitrified through the filter bed 72. The drainage W that has passed through the filter bed 72 flows out from the drainage outflow pipe 75 and is sent to the sprinkler bed device 1 by the pump 7A (see FIG. 1). Further, the treated water P discharged from the sprinkler bed device 1 flows in from above, a part of the treated water P flows out from the treated water outflow pipe 76 as the final treated water P, and the rest is again filtered. It passes through the floor 72 and circulates to the watering filter bed device 1.

次に、散水ろ床装置1の操作及び動作を詳細に説明する。 Next, the operation and operation of the watering filter device 1 will be described in detail.

先ず、排水処理時について述べる。排水処理時には、散水ろ床装置1は、散水ろ床装置1、洗浄用湛水設備4の洗浄水注入管41のコック42及び洗浄用空気曝気設備5の空気注入管51のコック52は閉じられている。散水ろ床装置1は、散水ろ床32の上方から排水Wが散水され、排水Wがろ材32aの表面を滴っていく過程で、ろ材32aの表面に繁茂した好気性微生物の膜の作用により排水W中のアンモニアを好気性微生物により硝酸イオンに酸化する。また、排水W中の有機物の除去も行われる。散水ろ床装置1からの処理水Pは、下部排出管35(及び三方コック36)を通じて無酸素ろ床装置7に排出される。 First, the time of wastewater treatment will be described. At the time of wastewater treatment, in the sprinkler filter device 1, the cock 42 of the flush water injection pipe 41 of the sprinkler filter device 1 and the cleaning flooding facility 4 and the cock 52 of the air injection pipe 51 of the cleaning air aeration facility 5 are closed. ing. In the sprinkler filter device 1, drainage W is sprinkled from above the sprinkler filter 32, and in the process of the drainage W dripping on the surface of the filter medium 32a, the drainage W is drained by the action of a film of aerobic microorganisms growing on the surface of the filter medium 32a. The ammonia in W is oxidized to nitrate ions by aerobic microorganisms. In addition, organic substances in the wastewater W are also removed. The treated water P from the sprinkler filter device 1 is discharged to the oxygen-free filter device 7 through the lower discharge pipe 35 (and the three-way cock 36).

次に、散水ろ床装置1の洗浄について述べる。散水ろ床装置1は、定期的に、排水処理を一時止めて洗浄が行われる。 Next, cleaning of the sprinkler filter device 1 will be described. The water sprinkler bed device 1 is periodically washed by temporarily stopping the wastewater treatment.

散水ろ床装置1の洗浄時には、下部排出管35(三方コック36)を閉じ、洗浄水注入管41(コック42)を開き、洗浄水Cを注入して散水ろ床32を湛水する。その後、空気注入管51(コック52)を開き、散水ろ床32を空気曝気する。空気曝気により、ろ材32aを細かく動かして、ろ材32aに付着した蝿の幼虫や卵の剥離を促す。このとき、ろ材32aに付着した蝿の幼虫や卵の剥離を効果的に促すには、プラスチック製のろ材32aは、直径10〜30mm、長さ10〜30mmの円筒状のものを用い、空気曝気の風量を0.6〜1.0m/m・minとし、空気曝気の時間を1〜5minに設定するのが好ましい。なお、洗浄水注入管41によって洗浄水Cを注入しながら、空気注入管51によって空気曝気してもよい。 At the time of cleaning the sprinkling filter device 1, the lower discharge pipe 35 (three-way cock 36) is closed, the washing water injection pipe 41 (cock 42) is opened, and the washing water C is injected to flood the sprinkling filter 32. After that, the air injection pipe 51 (cock 52) is opened to aerate the sprinkler bed 32 with air. By air aeration, the filter medium 32a is finely moved to promote the peeling of fly larvae and eggs attached to the filter medium 32a. At this time, in order to effectively promote the peeling of the fly larvae and eggs attached to the filter medium 32a, the plastic filter medium 32a is a cylindrical one having a diameter of 10 to 30 mm and a length of 10 to 30 mm, and is aerated with air. It is preferable that the air volume of the air is 0.6 to 1.0 m 3 / m 2 · min and the air aeration time is set to 1 to 5 min. In addition, air aeration may be performed by the air injection pipe 51 while injecting the washing water C by the washing water injection pipe 41.

散水ろ床32を湛水し空気曝気した後には、散水ろ床32に溜まった洗浄水Cを排出する。この場合、沈殿装置6へ洗浄水Cが排出されるように下部排出管35(三方コック36)を開いて散水ろ床32の下部からのみ洗浄水Cを排出することも可能であるが、散水ろ床32の下部から洗浄水Cを排出する前に、上部排出管44を通して散水ろ床32の上部から洗浄水Cの一部を排出するのが好ましい。これは、後述する実験結果で示すように、散水ろ床32の上部で蠅の幼虫の存在割合が大きく、そのため、散水ろ床32の上部から排出された洗浄水Cには、下部から排出された洗浄水Cに比較して、極めて多くの蠅が含まれるからである。散水ろ床32の上部から洗浄水Cの一部を排出するには、洗浄水注入管41を開いて洗浄水Cを注入して散水ろ床32に溜まった洗浄水Cを上方に押し出すようにすればよい。 After the watering filter bed 32 is flooded and aerated with air, the washing water C accumulated in the watering filter bed 32 is discharged. In this case, it is possible to open the lower discharge pipe 35 (three-way cock 36) so that the washing water C is discharged to the settling device 6 and discharge the washing water C only from the lower part of the watering filter bed 32. Before discharging the washing water C from the lower part of the filter bed 32, it is preferable to discharge a part of the washing water C from the upper part of the sprinkling filter bed 32 through the upper discharge pipe 44. This is because, as shown in the experimental results described later, the abundance ratio of fly larvae is large in the upper part of the sprinkling filter 32, and therefore, the washing water C discharged from the upper part of the sprinkling filter 32 is discharged from the lower part. This is because it contains an extremely large amount of flies as compared with the washing water C. To discharge a part of the washing water C from the upper part of the sprinkling filter 32, open the washing water injection pipe 41, inject the washing water C, and push the washing water C accumulated in the sprinkling filter 32 upward. do it.

散水ろ床32の上部から排出する洗浄水Cは、散水ろ床32の上面から深さ50mmまでに溜まる量以上の量であるのが好ましい。これは、散水ろ床32の上面から深さ50mmまでに溜まる量の洗浄水Cを散水ろ床32の上部から排出する後述する実験結果により、効果が確認された事実に基づく。また、散水ろ床32の上部から排出する洗浄水Cは、散水ろ床32の上面から深さ400mmまでに溜まる量以下の量であるのが好ましい。これは、後述する実験結果により、蠅の幼虫が散水ろ床32の上部、特に0〜400mmの深さの区間に集中している事実と、散水ろ床32の上部から排出する洗浄水Cを余り多くすると経済的でなくなる事実と、に基づいている。 The amount of wash water C discharged from the upper part of the sprinkling filter 32 is preferably an amount equal to or more than the amount accumulated from the upper surface of the sprinkling filter 32 to a depth of 50 mm. This is based on the fact that the effect was confirmed by the experimental results described later in which the amount of washing water C accumulated from the upper surface of the sprinkling filter 32 to a depth of 50 mm is discharged from the upper part of the sprinkling filter 32. Further, the amount of wash water C discharged from the upper part of the sprinkling filter 32 is preferably an amount equal to or less than the amount accumulated from the upper surface of the sprinkling filter 32 to a depth of 400 mm. This is because, according to the experimental results described later, the fly larvae are concentrated in the upper part of the sprinkling filter 32, particularly in the section having a depth of 0 to 400 mm, and the washing water C discharged from the upper part of the sprinkling filter 32. It is based on the fact that too much is not economical.

湛水に用いる洗浄水Cには、水道水、井戸水、又は、上記処理水Pを貯留したものなどの排水処理水を用いることができる。 As the wash water C used for flooding, tap water, well water, or wastewater treated water such as the one storing the treated water P can be used.

蠅(ろ床バエ)には、チョウバエ科のPsychoda albipunctataやPsychoda alternataなどの複数種類がいる。散水ろ床32に産み付けられた蠅の卵は48時間以内に孵化し、1〜3週間で成虫になる。成長し大きくなった幼虫はろ材32aに物理的に捕捉されやすく、洗浄による除去効果が小さくなるから、卵や孵化直後の小型の幼虫段階での除去を想定し、洗浄頻度は3日に1回以上とするのが好ましい。 There are several types of flies, such as Psychoda albipunchata and Psychoda alternata of the Psychodidae family. Fly eggs laid on the sprinkler bed 32 hatch within 48 hours and become adults within 1-3 weeks. The grown and grown larvae are easily physically captured by the filter medium 32a, and the removal effect by washing is small. Therefore, it is assumed that the eggs and small larvae immediately after hatching will be removed, and the washing frequency is once every 3 days. The above is preferable.

このように、散水ろ床装置1は、定期的に、排水処理を一時止め、上述した洗浄を行うことで、蝿の発生を効果的に抑制することが可能になる。 As described above, the sprinkling filter device 1 can effectively suppress the generation of flies by periodically suspending the wastewater treatment and performing the above-mentioned cleaning.

なお、散水ろ床32の洗浄によりろ材32aに捕捉されている堆積汚泥も少し除去されることになる。その結果として、ろ材32aの表面の好気性微生物の量が減少し、散水ろ床装置1の本来の機能である水処理能力に悪影響を及ぼす可能性が懸念されるが、後述する実験結果(図8A〜図10参照。)で示すように、水処理能力が低下することはない。逆に、散水ろ床32の洗浄は、排水処理中での堆積汚泥の剥離及びその流出を防止し、ろ材32aの表面の好気性微生物の膜を適切な状態に維持し。水処理能力を維持することができる。 By cleaning the watering filter bed 32, the accumulated sludge trapped in the filter medium 32a is also slightly removed. As a result, there is a concern that the amount of aerobic microorganisms on the surface of the filter medium 32a may decrease, which may adversely affect the water treatment capacity, which is the original function of the watering filter bed device 1, but the experimental results described later (FIG. As shown in 8A to FIG. 10), the water treatment capacity does not decrease. On the contrary, cleaning the watering filter bed 32 prevents exfoliation of accumulated sludge and its outflow during wastewater treatment, and maintains an aerobic microbial film on the surface of the filter medium 32a in an appropriate state. Water treatment capacity can be maintained.

また、散水ろ床装置1は、このように循環式硝化脱窒システム2の一部を構成する装置とする他、他のシステムの一部を構成する装置としたり、或いは、単体として上述した散水ろ床法を実現する装置としたりすることが可能である。この場合、当然であるが、好気性微生物は様々なものが可能である。 Further, the sprinkling filter device 1 is a device that constitutes a part of the circulation type nitrification denitrification system 2 in this way, is a device that constitutes a part of another system, or is a sprinkling device described above as a single unit. It can be used as a device that realizes the filter bed method. In this case, of course, various aerobic microorganisms are possible.

次に、本願発明者が行った散水ろ床装置1及びその洗浄方法の実験について以下説明する。この実験では、図1に示した循環式硝化脱窒システム2を用いた。散水ろ床装置1の散水ろ床外筒31は、透明アクリル製の円筒状であり、高さ1000mm、内径80mmとした。 Next, the experiment of the sprinkling filter device 1 and the cleaning method thereof performed by the inventor of the present application will be described below. In this experiment, the circulating nitrification denitrification system 2 shown in FIG. 1 was used. The sprinkling filter outer cylinder 31 of the sprinkling filter device 1 has a cylindrical shape made of transparent acrylic, and has a height of 1000 mm and an inner diameter of 80 mm.

ろ材32aは、直径15mm、長さ15mmの円筒状の高密度ポリエチレン製の成形品(比重0.98)(大日本プラスチックス株式会社製のラメールチューブLT−15)を用いた。これらのろ材32aを散水ろ床外筒31に約540g(嵩容積4.5L、充填高さ約900mm)充填して散水ろ床32を形成した。 As the filter medium 32a, a cylindrical high-density polyethylene molded product (specific gravity 0.98) (Lamer tube LT-15 manufactured by Dainippon Plastics Co., Ltd.) having a diameter of 15 mm and a length of 15 mm was used. About 540 g (bulk volume 4.5 L, filling height about 900 mm) of these filter media 32a was filled in the sprinkling filter bed outer cylinder 31 to form the sprinkling filter bed 32.

散水ろ床外筒31の底部には、網目状の支持体33が取り付けられている。また、支持体33には、下部排出管35、洗浄水注入管41、空気注入管51が設けられている。下部排出管35には三方コック36が設けられ、排水処理時には処理水Pが無酸素ろ床装置7へ、散水ろ床装置1の洗浄時には沈殿装置6へ洗浄水Cが排出される。洗浄水注入管41にはコック42、空気注入管51にはコック52が設けられ、任意に開閉できるようになっている。また、空気注入管51には吐出量3L/minのエアポンプ53が接続されている。 A mesh-like support 33 is attached to the bottom of the watering filter floor outer cylinder 31. Further, the support 33 is provided with a lower discharge pipe 35, a washing water injection pipe 41, and an air injection pipe 51. A three-way cock 36 is provided in the lower discharge pipe 35, and the treated water P is discharged to the anoxic filter bed device 7 at the time of wastewater treatment, and the washing water C is discharged to the settling device 6 at the time of cleaning the sprinkling filter bed device 1. The washing water injection pipe 41 is provided with a cock 42, and the air injection pipe 51 is provided with a cock 52 so that it can be opened and closed arbitrarily. Further, an air pump 53 having a discharge rate of 3 L / min is connected to the air injection pipe 51.

無酸素ろ床装置7は幅70mm、高さ125mm、奥行320mmの槽型で、槽内に紐状接触材(大日本プラスチックス株式会社製クレオコードKC−30)を180cm充填している。 The oxygen-free filter bed device 7 is a tank type having a width of 70 mm, a height of 125 mm, and a depth of 320 mm, and the tank is filled with a string-shaped contact material (Cleocord KC-30 manufactured by Dainippon Plastics Co., Ltd.) by 180 cm.

実験用の循環式硝化脱窒システム2は、2個(循環式硝化脱窒システム2A及び2B)用意し、実験は次のように行った。 Two circulating nitrification denitrification systems 2 (circulation nitrification denitrification systems 2A and 2B) were prepared for the experiment, and the experiment was conducted as follows.

実験の開始日(2015年4月25日)から2015年5月31日までは、循環式硝化脱窒システム2A及び2Bにおいて、排水処理のみを行い、散水ろ床装置1の洗浄は行わなかった。2015年6月1日に、蠅の発生が確認されたので、それ以降、循環式硝化脱窒システム2Aでは、以下に述べる洗浄を一定の頻度で行った。循環式硝化脱窒システム2Bでは、2015年6月1日以降も、洗浄は行わず、排水処理のみを継続して行った。 From the start date of the experiment (April 25, 2015) to May 31, 2015, only wastewater treatment was performed in the circulating nitrification denitrification systems 2A and 2B, and the watering filter device 1 was not washed. .. Since the occurrence of flies was confirmed on June 1, 2015, the circulation type nitrification denitrification system 2A has been subjected to the following washings at a constant frequency since then. In the circulation type nitrification denitrification system 2B, even after June 1, 2015, cleaning was not performed and only wastewater treatment was continued.

2015年6月1日〜7月16日の期間(期間1)、循環式硝化脱窒システム2Aでは、3日に1回の頻度で、排水処理を一時止め以下に述べるような散水ろ床装置1の洗浄を行った。すなわち、下部排出管35を閉じ、洗浄水注入管41を開き、洗浄水Cを散水ろ床32の高さ990mmまで供給して、散水ろ床32を湛水した。次に、洗浄水注入管41を閉じ、空気注入管51を開いて3L/minの空気流量(曝気風量0.6m/m・min)で空気曝気を3分間行った。曝気終了後、空気注入管51を閉じ、下部排出管35を開いて散水ろ床32の下部からの洗浄水Cを排出した。 During the period from June 1st to July 16th, 2015 (period 1), in the circulation type nitrification denitrification system 2A, the wastewater treatment is temporarily stopped once every three days. 1 was washed. That is, the lower discharge pipe 35 was closed, the washing water injection pipe 41 was opened, and the washing water C was supplied to the height of the watering filter bed 32 up to 990 mm, and the watering filter bed 32 was flooded. Next, the washing water injection pipe 41 was closed, the air injection pipe 51 was opened, and air aeration was performed for 3 minutes at an air flow rate of 3 L / min (aeration air volume 0.6 m 3 / m 2 min). After the completion of aeration, the air injection pipe 51 was closed, the lower discharge pipe 35 was opened, and the washing water C was discharged from the lower part of the sprinkler filter bed 32.

2015年7月17日〜8月22日の期間(期間2)、循環式硝化脱窒システム2Aでは、3日に1回の頻度で、排水処理を一時止め以下に述べる散水ろ床装置1の洗浄を行った。すなわち、下部排出管35を閉じ、洗浄水注入管41を開いて、洗浄水Cを散水ろ床32の高さ990mmまで供給して、散水ろ床32を湛水した。次に洗浄水注入管41を閉じ、空気注入管51を開いて3L/minの空気流量(曝気風量0.6m/m・min)で空気曝気を3分間行った。曝気終了後、空気注入管51を閉じ、上部排出管44を通して散水ろ床32の上部から200mL(全洗浄水の5%)(散水ろ床32の上面から深さ50mmまでに溜まる量)の洗浄水Cを排出した後、下部排出管35を開いて散水ろ床32の下部からの残りの洗浄水Cを排出した。 During the period from July 17th to August 22nd, 2015 (period 2), in the circulating nitrification denitrification system 2A, the wastewater treatment is temporarily stopped once every three days. Cleaning was performed. That is, the lower discharge pipe 35 was closed, the washing water injection pipe 41 was opened, and the washing water C was supplied to the height of the watering filter bed 32 up to 990 mm, and the watering filter bed 32 was flooded. Next, the washing water injection pipe 41 was closed, the air injection pipe 51 was opened, and air aeration was performed for 3 minutes at an air flow rate of 3 L / min (aeration air volume 0.6 m 3 / m 2 min). After the aeration is completed, the air injection pipe 51 is closed, and 200 mL (5% of the total washing water) (the amount accumulated from the upper surface of the sprinkling filter 32 to a depth of 50 mm) is washed from the upper part of the sprinkling filter 32 through the upper discharge pipe 44. After discharging the water C, the lower discharge pipe 35 was opened to discharge the remaining washing water C from the lower part of the sprinkling filter bed 32.

実験期間中、排出された洗浄水C中の蠅の幼虫、蛹、成虫を計数するとともに、散水ろ床32の側面写真を定期的に撮影し、写真に記録された蠅の幼虫の数を計数した。 During the experiment period, the number of fly larvae, pupae, and adults in the discharged wash water C was counted, and the side photographs of the watering filter bed 32 were taken regularly to count the number of fly larvae recorded in the photographs. did.

実験結果は、以下の通りである。なお、蠅として、Psychoda albipunctataとPsychoda alternataの2種類が観測されたが、実験結果を示す以下に説明する各図では両者をまとめて示している。 The experimental results are as follows. Two types of flies, Psychoda albipunktata and Psychoda alternata, were observed, but both are shown together in the figures described below showing the experimental results.

図5A、図5Bに、上記の期間1及び期間2での散水ろ床32の側面部の蠅の幼虫の分布(側面積3.85×10−3に観測された個体数)を示す。横軸は月日、縦軸は棒グラフで示す、上部から0〜200mmの区間a、200〜400mmの区間b、400〜600mmの区間c、600〜800mmの区間d、800〜1000mmの区間e、における幼虫の数である。図5Aは、循環式硝化脱窒システム2Aでのもの、図5Bは、循環式硝化脱窒システム2Bでのものである。 5A and 5B show the distribution of fly larvae on the side surface of the watering filter bed 32 during the above periods 1 and 2 (the number of individuals observed in a side area of 3.85 × 10 -3 m 2 ). .. The horizontal axis is the month and day, and the vertical axis is a bar graph. Section a from the top to 200 mm, section b from 200 to 400 mm, section c from 400 to 600 mm, section d from 600 to 800 mm, section e from 800 to 1000 mm, The number of larvae in. FIG. 5A shows the circulation type nitrification denitrification system 2A, and FIG. 5B shows the circulation type nitrification denitrification system 2B.

図5A、図5Bより、期間1においては、循環式硝化脱窒システム2Aでは、循環式硝化脱窒システム2Bと比較して蠅の幼虫の個体数が大幅に減っているのが分かる(より詳細には66.0%減)。これは、3日に1回の頻度で洗浄し、散水ろ床32の下部から排出された洗浄水Cによって幼虫又は卵を除去した結果である。また、循環式硝化脱窒システム2Aでは、目視で判る程度にろ材32aに捕捉されている堆積汚泥の量も減少しており、幼虫の餌となる汚泥の減少も幼虫の低減に貢献していたものと考えられる。 From FIGS. 5A and 5B, it can be seen that in period 1, the number of fly larvae in the circulating nitrification denitrification system 2A is significantly reduced as compared with the circulation nitrification denitrification system 2B (more details). 66.0% decrease). This is a result of washing once every three days and removing the larvae or eggs with the washing water C discharged from the lower part of the watering filter bed 32. Further, in the circulation type nitrification denitrification system 2A, the amount of accumulated sludge trapped in the filter medium 32a was reduced to the extent that it could be visually recognized, and the reduction of sludge that feeds the larvae also contributed to the reduction of larvae. It is considered to be.

また、図5A、図5Bより、期間1においては、循環式硝化脱窒システム2A、2Bともに、散水ろ床32の上部、特に0〜400mmの区間に、幼虫が集中していることが分かる。また循環式硝化脱窒システム2Aでは、散水ろ床32の上部から600〜1000mmの区間でほとんど幼虫が確認されなかった。蠅の成虫が散水ろ床32の上部から侵入して産卵することと、散水ろ床32の洗浄により散水ろ床32の下部の卵や幼虫が優先的に洗浄水Cに含まれて除去されることとが、要因として考えられる。 Further, from FIGS. 5A and 5B, it can be seen that in the period 1, the larvae are concentrated in the upper part of the watering filter 32, particularly in the section of 0 to 400 mm in both the circulating nitrification denitrification systems 2A and 2B. Further, in the circulation type nitrification denitrification system 2A, almost no larvae were confirmed in the section of 600 to 1000 mm from the upper part of the watering filter bed 32. Adult flies invade from the upper part of the watering filter 32 and lay eggs, and by washing the watering filter 32, eggs and larvae in the lower part of the watering filter 32 are preferentially contained in the washing water C and removed. That is considered to be a factor.

また、図5A、図5Bより、期間2においては、循環式硝化脱窒システム2Aでは、循環式硝化脱窒システム2Bと比較して、蠅の幼虫が15.5%にまで減っている。これは、期間2では、3日に1回の頻度で洗浄し、散水ろ床32の下部から排出された洗浄水Cによって幼虫又は卵を除去する前に、散水ろ床32の上部から排出された洗浄水Cによって幼虫又は卵を除去した結果であり、散水ろ床32の下部からと上部から排出された洗浄水Cを併用した場合の効果が確認された。 Further, from FIGS. 5A and 5B, in the period 2, the number of fly larvae in the circulating nitrification denitrification system 2A was reduced to 15.5% as compared with the circulation nitrification denitrification system 2B. It was washed once every three days during period 2 and drained from the top of the sprinkler bed 32 before the larvae or eggs were removed by the wash water C drained from the bottom of the sprinkler bed 32. This is the result of removing the larvae or eggs with the washing water C, and the effect of using the washing water C discharged from the lower part and the upper part of the watering filter 32 in combination was confirmed.

次に、図6A、図6Bに、循環式硝化脱窒システム2Aにおいて散水ろ床装置1から排出された洗浄水Cに含まれる蠅について幼虫、蛹、成虫の数を示す。横軸は月日、右側の縦軸は折れ線グラフfで示す幼虫の数、左側の縦軸は棒グラフで示す蛹(符号gの部分)と成虫(符号hの部分)の数である。図6Aは、洗浄水C全部(下部から排出された洗浄水Cと上部から排出された洗浄水Cの合計)についてのもの、図6Bは、下部から排出された洗浄水Cのみについてのものである。下部から排出された洗浄水Cには成虫は観察されていない。なお、図6Aおいては、期間1のデータは、図6Bと同じであるので省略している。 Next, FIGS. 6A and 6B show the numbers of larvae, pupae, and adults of the flies contained in the washing water C discharged from the sprinkler bed device 1 in the circulating nitrification denitrification system 2A. The horizontal axis is the month and day, the vertical axis on the right side is the number of larvae shown in the line graph f, and the vertical axis on the left side is the number of pupae (part of code g) and adults (part of code h) shown in the bar graph. FIG. 6A shows the entire washing water C (the total of the washing water C discharged from the lower part and the washing water C discharged from the upper part), and FIG. 6B shows only the washing water C discharged from the lower part. is there. No adults were observed in the washing water C discharged from the lower part. In FIG. 6A, the data in period 1 is the same as in FIG. 6B, so it is omitted.

図6A、図6Bより、散水ろ床装置1の上部から排出された洗浄水Cに含まれる蠅(幼虫、蛹、成虫)の数は、下部から排出された洗浄水Cに比較して極めて多く、従って、上部からの洗浄水Cの排出による蠅の除去効果は、下部からの洗浄水Cの排出に比較して極めて大きいことが分かる。詳細には、上部から排出された洗浄水Cに含まれる蠅の数は、下部から排出された洗浄水Cに含まれる蠅の数の860±176倍にも達していた。なお、図6A、図6Bより、期間2の初めから2週間後の8月1日頃より洗浄水Cに含まれる蠅の数が減少しているが、これは散水ろ床装置1の洗浄により、卵が効果的に除去されたこと、及び散水ろ床装置1の洗浄に伴う成虫の減少により産卵数が抑制されたためであると考えられる。 From FIGS. 6A and 6B, the number of pupae (larvae, pupae, adults) contained in the washing water C discharged from the upper part of the watering filter 1 is extremely large as compared with the washing water C discharged from the lower part. Therefore, it can be seen that the effect of removing the pupae by discharging the washing water C from the upper part is extremely large as compared with the discharging of the washing water C from the lower part. Specifically, the number of flies contained in the washing water C discharged from the upper part reached 860 ± 176 times the number of flies contained in the washing water C discharged from the lower part. From FIGS. 6A and 6B, the number of flies contained in the washing water C decreased from around August 1st, two weeks after the beginning of the period 2, due to the washing of the sprinkler filter 1. It is considered that this is because the eggs were effectively removed and the number of eggs laid was suppressed by the decrease of adults due to the washing of the sprinkler bed device 1.

また、下記の表1に、期間2において上部から排出された洗浄水C及び下部から排出された洗浄水Cの各1Lに含まれる幼虫、蛹、成虫の数(平均と標準偏差)を示す。 In addition, Table 1 below shows the numbers (mean and standard deviation) of larvae, pupae, and adults contained in each 1 L of the wash water C discharged from the upper part and the wash water C discharged from the lower part in the period 2.

Figure 0006789537
Figure 0006789537

次に、図7に、散水ろ床装置1中の月別の幼虫の個体サイズを示す。各月において、左側が循環式硝化脱窒システム2A、右側が循環式硝化脱窒システム2Bにおけるものである。散水ろ床装置1の洗浄を開始した6月には循環式硝化脱窒システム2A、2Bの間で幼虫の個体サイズに有意差は認められなかった。7月以降、循環式硝化脱窒システム2Bについては個体サイズに変化はなかったが、循環式硝化脱窒システム2Aでは平均個体サイズが1.95倍に上昇した。これは、個体サイズの大きな幼虫は散水ろ床32内のろ材32aに物理的に捕捉されやすいことから、循環式硝化脱窒システム2Aでは洗浄により個体サイズの小さな幼虫が優先的に除去されたことによる結果であると考えられる。 Next, FIG. 7 shows the individual size of the larvae by month in the watering filter device 1. In each month, the left side is for the circulating nitrification denitrification system 2A and the right side is for the circulating nitrification denitrification system 2B. In June, when the washing of the watering filter device 1 was started, no significant difference was observed in the individual size of the larvae between the circulating nitrification denitrification systems 2A and 2B. Since July, the individual size of the circulating nitrification denitrification system 2B has not changed, but the average individual size of the circulating nitrification denitrification system 2A has increased 1.95 times. This is because larvae with a large individual size are easily physically captured by the filter medium 32a in the watering filter bed 32, so that the larvae with a small individual size were preferentially removed by washing in the circulating nitrification denitrification system 2A. It is considered that this is the result of.

以上の図5A〜図7で示した実験結果より、散水ろ床装置1の上記の洗浄を行うことで蠅の発生を効果的に抑制できることが分かる。 From the experimental results shown in FIGS. 5A to 7 above, it can be seen that the generation of flies can be effectively suppressed by performing the above-mentioned cleaning of the watering filter device 1.

次に、散水ろ床装置1の洗浄による水処理能力への影響についての実験結果を述べる。水処理能力の指標として、処理水P中の各態窒素濃度、COD(化学的酸素要求量)、SS(浮遊物質量)のそれぞれの経時変化を調べた。 Next, the experimental results on the effect of cleaning the watering filter 1 on the water treatment capacity will be described. As an index of water treatment capacity, changes over time in each state nitrogen concentration, COD (chemical oxygen demand), and SS (suspended solids amount) in the treated water P were investigated.

図8A〜図8Cに各態窒素濃度の経時変化を示す。図8Aは、循環式硝化脱窒システム2A又は2Bに流入する排水W中の各態窒素濃度の経時変化を示し、図8Bは、循環式硝化脱窒システム2Aにおける処理水P中の各態窒素濃度の経時変化を示し、図8Cは、循環式硝化脱窒システム2Bにおける処理水P中の各態窒素濃度の経時変化を示す。図8B及び図8Cの符号lの部分は、亜硝酸イオンの濃度を示す。図8B及び図8Cの符号mの部分は、硝酸イオンの濃度を示す。図8Aの符号iの部分、図8B及び図8Cの符号nの部分は、アンモニアイオンの濃度を示す。図8Aの符号jの部分、図8B及び図8Cの符号oの部分は、その他の態様を示す。また、図8B及び図8Cの曲線kは、循環式硝化脱窒システム2A又は2Bに流入する排水Wの窒素濃度(各態窒素濃度の合計)から処理水P中の窒素濃度(各態窒素濃度の合計)を引いて求めた窒素の除去効率である。 8A-8C show the time course of nitrogen concentration in each state. FIG. 8A shows the time course of the concentration of nitrogen in each state in the wastewater W flowing into the circulating nitrification denitrification system 2A or 2B, and FIG. 8B shows the nitrogen in each state in the treated water P in the circulating nitrification denitrification system 2A. The time course of the concentration is shown, and FIG. 8C shows the time course of the nitrogen concentration of each state in the treated water P in the circulating nitrification denitrification system 2B. The part of the symbol l in FIGS. 8B and 8C indicates the concentration of nitrite ion. The part of the symbol m in FIGS. 8B and 8C indicates the concentration of nitrate ion. The part with reference numeral i in FIG. 8A and the part with reference numeral n in FIGS. 8B and 8C indicate the concentration of ammonia ions. The portion of reference numeral j in FIG. 8A, the portion of reference numeral o in FIGS. 8B and 8C shows other aspects. Further, the curves k in FIGS. 8B and 8C show the nitrogen concentration in the treated water P (the nitrogen concentration in each state) from the nitrogen concentration (total of the nitrogen concentration in each state) of the waste water W flowing into the circulating nitrification denitrification system 2A or 2B. It is the nitrogen removal efficiency obtained by subtracting).

図8A〜図8Cより、循環式硝化脱窒システム2Aにおいて水処理性能の低下は認められなかった。従って、各態窒素濃度の点から、散水ろ床装置1の洗浄によって水処理能力への悪影響はないことが分かる。 From FIGS. 8A to 8C, no deterioration in water treatment performance was observed in the circulating nitrification denitrification system 2A. Therefore, from the viewpoint of the concentration of nitrogen in each state, it can be seen that the cleaning of the sprinkler filter device 1 does not adversely affect the water treatment capacity.

また、図9に、CODの経時変化を示す。曲線pは、循環式硝化脱窒システム2A及び2Bに流入する排水Wにおける濃度、曲線qは、循環式硝化脱窒システム2Aでの処理水Pにおける濃度、曲線rは、循環式硝化脱窒システム2Bでの処理水Pにおける濃度である。また、図10に、SSの経時変化を示す。曲線sは、循環式硝化脱窒システム2A及び2Bに流入する排水Wにおける濃度、曲線tは、循環式硝化脱窒システム2Aでの処理水Pにおける濃度、曲線uは、循環式硝化脱窒システム2Bでの処理水Pにおける濃度である。 In addition, FIG. 9 shows the change over time in COD. Curve p is the concentration in the wastewater W flowing into the circulating nitrification denitrification system 2A and 2B, curve q is the concentration in the treated water P in the circulating nitrification denitrification system 2A, and curve r is the concentration in the circulating nitrification denitrification system. It is the concentration in the treated water P in 2B. Further, FIG. 10 shows the change over time of SS. The curve s is the concentration in the waste water W flowing into the circulating nitrification denitrification system 2A and 2B, the curve t is the concentration in the treated water P in the circulating nitrification denitrification system 2A, and the curve u is the circulation nitrification denitrification system. It is the concentration in the treated water P in 2B.

図9、図10より、循環式硝化脱窒システム2Aにおいて水処理性能の低下は認められなかった。従って、COD及びSSの点からも、散水ろ床装置1の洗浄によって水処理能力への悪影響はないことが分かる。また、循環式硝化脱窒システム2Bでは、散水ろ床32中のろ材32aに捕捉されている堆積汚泥の剥離及びその流出が途中起こり、それに伴うCOD及びSSの一時的な悪化が観測されたが、循環式硝化脱窒システム2Aでは、それは起こらず、ろ材32aの表面の好気性微生物の膜を適切な状態に維持し、水処理能力を維持していた。 From FIGS. 9 and 10, no deterioration in water treatment performance was observed in the circulating nitrification denitrification system 2A. Therefore, from the viewpoint of COD and SS, it can be seen that the cleaning of the sprinkler filter device 1 does not adversely affect the water treatment capacity. Further, in the circulation type nitrification denitrification system 2B, the accumulated sludge trapped in the filter medium 32a in the watering filter bed 32 was peeled off and its outflow occurred on the way, and the temporary deterioration of COD and SS was observed. In the circulation type nitrification denitrification system 2A, this did not occur, and the film of aerobic microorganisms on the surface of the filter medium 32a was maintained in an appropriate state, and the water treatment capacity was maintained.

以上、本発明の実施形態に係る散水ろ床装置及びその洗浄方法について説明したが、本発明は、上述の実施形態に記載したものに限られることなく、特許請求の範囲に記載した事項の範囲内でのさまざまな設計変更が可能である。 The sprinkling filter device and the cleaning method thereof according to the embodiment of the present invention have been described above, but the present invention is not limited to the one described in the above-described embodiment, and the scope of the matters described in the claims. Various design changes are possible within.

1 散水ろ床装置
2 循環式硝化脱窒システム
3 散水ろ床装置本体
31 散水ろ床外筒
32 散水ろ床
32a ろ材
33 支持体
34 管取付具
35 下部排出管
36 三方コック
4 洗浄用湛水設備
41 洗浄水注入管
42 コック
43 ポンプ
44 上部排出管
5 洗浄用空気曝気設備
51 空気注入管
52 コック
53 エアポンプ
6 沈殿装置
7 無酸素ろ床装置
A 空気
C 洗浄水
P 処理水
W 排水
1 Watering filter 2 Water circulation type nitrification and denitrification system 3 Watering filter body 31 Watering filter outer cylinder 32 Sprinkling filter 32a Filter material 33 Support 34 Pipe fixture 35 Lower discharge pipe 36 Three-way cock 4 Water flooding equipment 41 Washing water injection pipe 42 Cock 43 Pump 44 Upper discharge pipe 5 Cleaning air aeration equipment 51 Air injection pipe 52 Cock 53 Air pump 6 Settling device 7 Anoxic filter A A Air C Washing water P Treated water W Drainage

Claims (5)

多数のろ材によって形成された散水ろ床を収容して排水処理時に排水処理を行って処理水を無酸素ろ床装置に排出する散水ろ床装置本体と、前記散水ろ床を洗浄時に洗浄水で湛水する洗浄用湛水設備と、前記洗浄水で湛水された前記散水ろ床を空気爆気する洗浄用空気曝気設備と、を備える散水ろ床装置を定期的に洗浄する散水ろ床装置洗浄方法であって、
洗浄時に前記洗浄用湛水設備により前記洗浄水を注入して前記散水ろ床を湛水したのち、前記洗浄用空気曝気設備により前記散水ろ床を空気曝気して、前記ろ材に付着した蝿の幼虫や卵の剥離を促し、その後、前記散水ろ床の上部から前記蠅の一部を含む前記洗浄水を沈殿装置に排出し、その後、前記散水ろ床の下部から前記蠅の残りを含む前記洗浄水を前記沈殿装置に排出することを特徴とする散水ろ床装置洗浄方法。
The main body of the sprinkler filter that accommodates the sprinkler filter formed of a large number of filter media, performs waste treatment during wastewater treatment, and discharges the treated water to the oxygen-free filter device, and the sprinkler filter with washing water during cleaning. A sprinkler filter device that periodically cleans a sprinkler filter device including a flooding facility for cleaning that is flooded and an air exposure facility for cleaning that air-explodes the sprinkling filter that is flooded with the wash water. It ’s a cleaning method,
At the time of cleaning, the cleaning water is injected by the cleaning equipment to flood the sprinkler filter bed, and then the water sprinkler filter bed is air-exposed by the cleaning air aeration equipment to adhere to the filter medium. The larvae and eggs are promoted to peel off, and then the washing water containing a part of the 蠅 is discharged from the upper part of the watering filter bed to the settling device, and then the washing water containing the rest of the 蠅 is discharged from the lower part of the watering filter bed. A method for cleaning a sprinkler filter device, which comprises discharging washing water to the settling device .
多数のろ材によって形成された散水ろ床を収容して排水処理を行う散水ろ床装置本体と、前記散水ろ床を洗浄時に洗浄水で湛水する洗浄用湛水設備と、前記洗浄水で湛水された前記散水ろ床を空気爆気する洗浄用空気曝気設備と、を備える散水ろ床装置を定期的に洗浄する散水ろ床装置洗浄方法であって、
前記洗浄用湛水設備により前記洗浄水を注入して前記散水ろ床を湛水したのち、前記洗浄用空気曝気設備により前記散水ろ床を空気曝気して、前記ろ材に付着した蝿の幼虫や卵の剥離を促し、その後、前記散水ろ床の上面から深さ50mmまでに溜まる量以上の量であり、かつ、前記散水ろ床の上面から深さ400mmまでに溜まる量以下の量の前記洗浄水を前記散水ろ床の上部から排出し、その後、前記散水ろ床の下部から前記洗浄水を排出することを特徴とする散水ろ床装置洗浄方法。
A main body of a sprinkling filter device that accommodates a sprinkling filter formed of a large number of filter media and performs wastewater treatment, a cleaning flooding facility that floods the sprinkling filter with washing water at the time of washing, and a flooding facility using the washing water. A method for cleaning a sprinkling filter, which periodically cleans a sprinkling filter equipped with an air aeration device for cleaning that blows air on the sprinkled filter.
After the washing water is injected by the washing water flooding facility to flood the watering filter bed, the watering filter bed is air-exposed by the washing air aeration facility, and the larvae of the flies attached to the filter medium The amount of washing that promotes the peeling of eggs and then accumulates from the upper surface of the watering filter bed to a depth of 50 mm or more and is equal to or less than the amount accumulated from the upper surface of the watering filter bed to a depth of 400 mm. A method for cleaning a sprinkling filter device , which comprises discharging water from the upper part of the sprinkling filter and then discharging the washing water from the lower part of the sprinkling filter.
請求項1又は2に記載の散水ろ床装置洗浄方法において、
前記湛水に用いる前記洗浄水に水道水、井戸水または排水処理水を用いることを特徴とする散水ろ床装置洗浄方法。
In the watering filter cleaning method according to claim 1 or 2 .
A method for cleaning a sprinkler filter device, which comprises using tap water, well water, or treated wastewater as the washing water used for flooding.
多数のろ材によって形成された散水ろ床を収容して排水処理を行う散水ろ床装置本体と、前記散水ろ床を洗浄時に洗浄水で湛水する洗浄用湛水設備と、前記洗浄水で湛水された前記散水ろ床を空気爆気する洗浄用空気曝気設備と、を備える散水ろ床装置を定期的に洗浄する散水ろ床装置洗浄方法であって、
前記ろ材は、直径10〜30mm、長さ10〜30mmの円筒状のプラスチック製であり、
前記洗浄用湛水設備により前記洗浄水を注入して前記散水ろ床を湛水したのち、前記洗浄用空気曝気設備により風量を0.6〜1.0m/m・min、前記空気曝気の時間を1〜5minに設定して前記散水ろ床を空気曝気して、前記ろ材に付着した蝿の幼虫や卵の剥離を促し、その後、前記洗浄水を排出することを特徴とする散水ろ床装置洗浄方法。
A main body of a sprinkling filter device that accommodates a sprinkling filter formed of a large number of filter media and performs wastewater treatment, a cleaning flooding facility that floods the sprinkling filter with washing water at the time of washing, and a flooding facility using the washing water. A method for cleaning a sprinkling filter, which periodically cleans a sprinkling filter equipped with an air aeration device for cleaning that blows air on the sprinkled filter.
The filter medium is made of a cylindrical plastic having a diameter of 10 to 30 mm and a length of 10 to 30 mm.
After injecting the washing water by the washing water flooding facility and flooding the sprinkling filter bed, the air volume is 0.6 to 1.0 m 3 / m 2 · min by the washing air air exposure facility, and the air exposure is performed. The watering filter is characterized in that the watering filter bed is air- exposed to promote the peeling of the larvae and eggs of the flies attached to the filter medium, and then the washing water is discharged. Floor equipment cleaning method.
請求項1〜4のいずれか1項に記載の散水ろ床装置洗浄方法において、
定期的に前記散水ろ床部を洗浄する頻度を3日間に1回以上とすることを特徴とする散水ろ床装置洗浄方法。
In the watering filter cleaning method according to any one of claims 1 to 4 ,
A method for cleaning a sprinkling filter device, which comprises periodically cleaning the sprinkling filter portion at least once every three days.
JP2016149898A 2016-07-29 2016-07-29 Watering filter cleaning method Active JP6789537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016149898A JP6789537B2 (en) 2016-07-29 2016-07-29 Watering filter cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016149898A JP6789537B2 (en) 2016-07-29 2016-07-29 Watering filter cleaning method

Publications (2)

Publication Number Publication Date
JP2018015740A JP2018015740A (en) 2018-02-01
JP6789537B2 true JP6789537B2 (en) 2020-11-25

Family

ID=61081156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016149898A Active JP6789537B2 (en) 2016-07-29 2016-07-29 Watering filter cleaning method

Country Status (1)

Country Link
JP (1) JP6789537B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6545857B1 (en) * 2018-03-30 2019-07-17 メタウォーター株式会社 Washing method of water filter bed

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108665A (en) * 1977-03-03 1978-09-21 Mitsubishi Electric Corp Water treating apparatus
JPS5784788A (en) * 1980-11-13 1982-05-27 Ebara Infilco Co Ltd Trickling filter method for organic waste water and apparatus therefor
JPS58114792A (en) * 1981-12-29 1983-07-08 Kobe Steel Ltd Aerobic biological treating device for waste water
JP3586745B2 (en) * 1995-12-04 2004-11-10 東急建設株式会社 Sprinkling filter bed device and cleaning method thereof
MY161771A (en) * 2011-05-26 2017-05-15 Metawater Co Ltd Sewage treatment system
JP6383725B2 (en) * 2013-07-03 2018-08-29 メタウォーター株式会社 Water treatment equipment
JP2015077551A (en) * 2013-10-16 2015-04-23 株式会社東芝 Phosphorus elimination-type wastewater treatment process, and phosphorus elimination-type wastewater treatment system

Also Published As

Publication number Publication date
JP2018015740A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
JP4920990B2 (en) Separation membrane cleaning method
US8758620B2 (en) Decanted bio-balanced reactor and method
JP2000325976A (en) Biological oxidative filter apparatus
KR101767032B1 (en) Wastewater Treatment System For Dairy Farming
DE202006020262U1 (en) Faecal wastewater treatment plant by biofiltration (BFBA)
KR20150064914A (en) Recirculating rearing system
AU2008271639A1 (en) Apparatus and method for the purification of grey water
JP6789537B2 (en) Watering filter cleaning method
KR101346604B1 (en) Bio-film water treatment apparatus capable of back washing without power
JP2008283873A (en) Purification apparatus and method for operating the purification apparatus
CN105753142B (en) A kind of the in-situ activation agent and in-situ activation method of aerating biological filter pool filler biomembrane
CN100569678C (en) A kind of eutrophic water process technique
KR100547463B1 (en) Nitrogen removal system in aeration tank using sulfur packed MBR reactor
JP3045661B2 (en) Breeding filtration equipment
JP6253442B2 (en) Biological treatment reactor, water treatment facility, and biological treatment reactor operating method
KR20030094810A (en) Method and apparatus for the treatment of contaminated water by submersible biological aerated filter
JP2003010871A (en) Sewage treatment apparatus and its operating method
JP6652898B2 (en) Water treatment device and water treatment method
JP7274702B1 (en) Float trapping tank, flotage trapping system, toilet system and pretreatment method for treated water containing flotation
JP6059868B2 (en) Washing water circulation type bio toilet
CN210885489U (en) Ammonia nitrogen sewage emergency treatment BAF integrated equipment
JP7378370B2 (en) Water treatment method and water treatment equipment
KR102614611B1 (en) Toilet purifier
JP2601391B2 (en) Biological nitrification denitrification equipment
JP2640672B2 (en) Water purification device

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20160824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201023

R150 Certificate of patent or registration of utility model

Ref document number: 6789537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250