JP2019176619A - Stator core and compressor - Google Patents
Stator core and compressor Download PDFInfo
- Publication number
- JP2019176619A JP2019176619A JP2018062276A JP2018062276A JP2019176619A JP 2019176619 A JP2019176619 A JP 2019176619A JP 2018062276 A JP2018062276 A JP 2018062276A JP 2018062276 A JP2018062276 A JP 2018062276A JP 2019176619 A JP2019176619 A JP 2019176619A
- Authority
- JP
- Japan
- Prior art keywords
- core body
- stacking direction
- insulating
- core
- insulating member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Insulation, Fastening Of Motor, Generator Windings (AREA)
- Manufacture Of Motors, Generators (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
Description
本開示は、固定子コア及び圧縮機に関するものである。 The present disclosure relates to a stator core and a compressor.
従来より、例えば特許文献1には、複数枚の鋼板が積層されて構成されたコア本体とコア本体を覆うように設けられた樹脂材料を含む絶縁部材とを備えるモータの固定子が開示されている。
Conventionally, for example,
ところで、製造工数や部品の点数の削減のために、コア本体に絶縁部材を射出成形等により一体成形することが提案されている。しかし、絶縁部材は、コア本体とは異なる材料からできているので、線膨張係数がコア本体とは異なっている。このため、モータの温度変化によって、絶縁部材には、コア本体との線膨張係数の違いに起因する熱応力が生じる。例えば、空気調和装置の圧縮機等の温度変化が大きいものにモータが設けられている場合、絶縁部材に生じる熱応力は特に大きくなってしまい、絶縁部材のうちコア本体の積層方向中間部を覆う部分が破断してしまうおそれがあった。 Incidentally, in order to reduce the number of manufacturing steps and the number of parts, it has been proposed to integrally form an insulating member on the core body by injection molding or the like. However, since the insulating member is made of a material different from that of the core body, the linear expansion coefficient is different from that of the core body. For this reason, thermal stress resulting from a difference in linear expansion coefficient from the core body is generated in the insulating member due to a temperature change of the motor. For example, when a motor is provided in a device having a large temperature change such as a compressor of an air conditioner, the thermal stress generated in the insulating member becomes particularly large, and covers the intermediate portion in the stacking direction of the core body among the insulating members. There was a possibility that the portion would break.
本開示の目的は、絶縁部材に生じる熱応力を低減することにある。 An object of the present disclosure is to reduce thermal stress generated in an insulating member.
本開示の第1の態様は、電動機(15)に設けられる固定子コア(70)において、複数枚の鋼板が積層されて構成されたコア本体(40)と、上記コア本体(40)に一体に設けられ上記コア本体(40)と線膨張係数が異なる絶縁部材(60)とを備え、上記絶縁部材(60)は、上記コア本体(40)の積層方向一端面に設けられた第1絶縁部(61)と、上記コア本体(40)の積層方向他端面に設けられた第2絶縁部(62)と、上記第1絶縁部(61)と上記第2絶縁部(62)との間に位置し、上記第1絶縁部(61)及び上記第2絶縁部(62)と一体に設けられた第3絶縁部(63)とを備え、上記第1絶縁部(61)と上記第2絶縁部(62)との間には、上記絶縁部材(60)に生じる上記積層方向の応力を緩和する応力緩和層(80)が上記コア本体(40)と隣接するように積層配置されていることを特徴とする。 According to a first aspect of the present disclosure, in a stator core (70) provided in an electric motor (15), a core body (40) configured by stacking a plurality of steel plates, and the core body (40) are integrated. Provided with an insulating member (60) having a linear expansion coefficient different from that of the core body (40), and the insulating member (60) is a first insulation provided on one end surface of the core body (40) in the stacking direction. A portion (61), a second insulating portion (62) provided on the other end surface in the stacking direction of the core body (40), and between the first insulating portion (61) and the second insulating portion (62). And a third insulating part (63) provided integrally with the first insulating part (61) and the second insulating part (62), and the first insulating part (61) and the second insulating part (63) Between the insulating portion (62), a stress relaxation layer (80) for relaxing the stress in the stacking direction generated in the insulating member (60) is adjacent to the core body (40). Characterized in that it is a layer positioned.
第1の態様では、応力緩和層(80)が設けられているので、絶縁部材(60)に生じるコア本体(40)の積層方向の熱応力を低減することができる。特に、第1絶縁部(61)と第2絶縁部(62)との間に位置する第3絶縁部(63)に生じる熱応力を低減することができる。 In the first aspect, since the stress relaxation layer (80) is provided, the thermal stress in the stacking direction of the core body (40) generated in the insulating member (60) can be reduced. In particular, the thermal stress generated in the third insulating part (63) located between the first insulating part (61) and the second insulating part (62) can be reduced.
本開示の第2の態様は、上記第1の態様において、上記コア本体(40)の線膨張係数は、上記絶縁部材(60)の線膨張係数よりも大きく、上記応力緩和層(80)は、上記絶縁部材(60)の上記積層方向の膨張量と上記コア本体(40)の上記積層方向の膨張量との差に応じて上記積層方向に収縮し、上記絶縁部材(60)の上記積層方向の収縮量と上記コア本体(40)の上記積層方向の収縮量との差に応じて上記積層方向に膨張することを特徴とする。 According to a second aspect of the present disclosure, in the first aspect, the linear expansion coefficient of the core body (40) is larger than the linear expansion coefficient of the insulating member (60), and the stress relaxation layer (80) The insulating member (60) is contracted in the stacking direction according to the difference between the expansion amount of the insulating member (60) in the stacking direction and the expansion amount of the core body (40) in the stacking direction. It expands in the laminating direction according to the difference between the shrinkage amount in the direction and the shrinkage amount in the laminating direction of the core body (40).
第2の態様では、コア本体(40)の線膨張係数が、絶縁部材(60)の線膨張係数よりも大きい場合において、絶縁部材(60)に生じるコア本体(40)の積層方向の熱応力を低減することができる。 In the second aspect, when the linear expansion coefficient of the core body (40) is larger than the linear expansion coefficient of the insulating member (60), the thermal stress in the stacking direction of the core body (40) generated in the insulating member (60). Can be reduced.
本開示の第3の態様は、上記第1の態様において、上記コア本体(40)の線膨張係数は、上記絶縁部材(60)の線膨張係数よりも小さく、上記応力緩和層(80)は、上記絶縁部材(60)の上記積層方向の収縮量と上記コア本体(40)の上記積層方向の収縮量との差に応じて上記積層方向に収縮し、上記絶縁部材(60)の上記積層方向の膨張量と上記コア本体(40)の上記積層方向の膨張量との差に応じて上記積層方向に膨張することを特徴とする。 According to a third aspect of the present disclosure, in the first aspect, the linear expansion coefficient of the core body (40) is smaller than the linear expansion coefficient of the insulating member (60), and the stress relaxation layer (80) The insulating member (60) is contracted in the stacking direction according to the difference between the contraction amount of the insulating member (60) in the stacking direction and the contraction amount of the core body (40) in the stacking direction. It expand | swells in the said lamination direction according to the difference of the expansion amount of a direction and the expansion amount of the said lamination direction of the said core main body (40), It is characterized by the above-mentioned.
第3の態様では、コア本体(40)の線膨張係数が、絶縁部材(60)の線膨張係数よりも小さい場合において、絶縁部材(60)に生じるコア本体(40)の積層方向の熱応力を低減することができる。 In the third aspect, when the linear expansion coefficient of the core body (40) is smaller than the linear expansion coefficient of the insulating member (60), the thermal stress in the stacking direction of the core body (40) generated in the insulating member (60). Can be reduced.
本開示の第4の態様は、上記第1〜第3のいずれか一つの態様において、上記応力緩和層(80)には、弾性変形可能な応力緩和部材(81)が設けられていることを特徴とする。 According to a fourth aspect of the present disclosure, in any one of the first to third aspects, the stress relaxation layer (80) includes an elastically deformable stress relaxation member (81). Features.
第4の態様では、応力緩和部材(81)の弾性変形及び弾性復元によって、絶縁部材(60)に生じるコア本体(40)の積層方向の熱応力を低減することができる。 In the fourth aspect, thermal stress in the stacking direction of the core body (40) generated in the insulating member (60) can be reduced by elastic deformation and elastic recovery of the stress relaxation member (81).
本開示の第5の態様は、上記第4の態様において、上記応力緩和部材(81)は、上記コア本体(40)に対して反発するように付勢することを特徴とする。 According to a fifth aspect of the present disclosure, in the fourth aspect, the stress relaxation member (81) is biased so as to repel the core body (40).
第5の態様では、応力緩和層(80)が積層方向に膨張し易くなる。 In the fifth aspect, the stress relaxation layer (80) easily expands in the stacking direction.
本開示の第6の態様は、上記第1〜第5のいずれか一つの態様において開示された固定子コア(70)を有する電動機(15)を備えることを特徴とする圧縮機である。 A sixth aspect of the present disclosure is a compressor including the electric motor (15) having the stator core (70) disclosed in any one of the first to fifth aspects.
第6の態様では、圧縮機において、絶縁部材(60)に生じるコア本体(40)の積層方向の熱応力を低減することができる。 In the sixth aspect, in the compressor, the thermal stress in the stacking direction of the core body (40) generated in the insulating member (60) can be reduced.
《実施形態1》
本開示の実施形態1として、圧縮機用電動機の固定子コアの例を説明する。図1は、本開示の実施形態に係る圧縮機(10)の断面図である。同図に示すように、圧縮機(10)は、ケーシング(11)を有し、その内部に圧縮機構(12)、及び電動機(15)が収容されている。本実施形態の電動機(15)は、磁石埋込型の電動機である。電動機(15)の構成は、後に詳述する。また、圧縮機構(12)には、種々のものを採用可能であるが、一例としては、ロータリー式圧縮機構が挙げられる。この圧縮機構(12)と電動機(15)とは、駆動軸(13)で連結されており、電動機(15)の回転子(20)(後述)が回転すると、圧縮機構(12)が稼働する。
As a first embodiment of the present disclosure, an example of a stator core of a compressor motor will be described. FIG. 1 is a cross-sectional view of a compressor (10) according to an embodiment of the present disclosure. As shown in the figure, the compressor (10) has a casing (11), and a compression mechanism (12) and an electric motor (15) are accommodated therein. The electric motor (15) of the present embodiment is a magnet-embedded electric motor. The configuration of the electric motor (15) will be described in detail later. Various types of compression mechanisms (12) can be employed, and a rotary type compression mechanism is an example. The compression mechanism (12) and the electric motor (15) are connected by a drive shaft (13). When the rotor (20) (described later) of the electric motor (15) rotates, the compression mechanism (12) is operated. .
圧縮機(10)では、圧縮機構(12)が稼働すると、圧縮機構(12)によって圧縮された流体(例えば冷媒)がケーシング(11)内に吐出され、ケーシング(11)内に吐出された流体は、ケーシング(11)に設けられた吐出管(14)から吐出される。圧縮機構(12)の稼働により、本実施形態では、ケーシング(11)内の温度は、例えば−30℃〜150℃程度になる。すなわち、圧縮機(10)の運転中は、電動機(15)の温度も−30℃〜150℃程度になる。 In the compressor (10), when the compression mechanism (12) is operated, fluid (for example, refrigerant) compressed by the compression mechanism (12) is discharged into the casing (11), and fluid discharged into the casing (11). Is discharged from a discharge pipe (14) provided in the casing (11). Due to the operation of the compression mechanism (12), in the present embodiment, the temperature in the casing (11) becomes, for example, about −30 ° C. to 150 ° C. That is, during the operation of the compressor (10), the temperature of the electric motor (15) is also about −30 ° C. to 150 ° C.
〈電動機の構成〉
電動機(15)は、回転子(20)、及び固定子(30)を備えている。なお、以下の説明において、軸方向とは駆動軸(13)の軸心(O)の方向を意味し、また、径方向とは軸方向と直交する方向をそれぞれ意味する。外周側とは軸心(O)から遠離する側を意味し、また、内周側とは軸心(O)に近接する側をそれぞれ意味する。また、縦断面とは、軸心(O)に平行な断面を意味し、横断面とは軸心(O)に直交する断面を意味する。
<Configuration of electric motor>
The electric motor (15) includes a rotor (20) and a stator (30). In the following description, the axial direction means the direction of the axis (O) of the drive shaft (13), and the radial direction means a direction orthogonal to the axial direction. The outer peripheral side means the side far from the axis (O), and the inner peripheral side means the side close to the axis (O). The vertical cross section means a cross section parallel to the axis (O), and the horizontal cross section means a cross section perpendicular to the axis (O).
−回転子−
回転子(20)は、回転子コア(21)、及び複数の永久磁石(22)を備え、それぞれの永久磁石(22)は、回転子コア(21)を軸方向に貫通している。これらの永久磁石(22)には、例えば、焼結磁石や、いわゆるボンド磁石が用いられる。
-Rotor-
The rotor (20) includes a rotor core (21) and a plurality of permanent magnets (22), and each permanent magnet (22) penetrates the rotor core (21) in the axial direction. For these permanent magnets (22), for example, sintered magnets or so-called bonded magnets are used.
回転子コア(21)は、いわゆる積層コアである。具体的に、回転子コア(21)は、プレス加工機によって例えば厚さが0.2〜0.5mmの電磁鋼板を打ち抜き加工して形成した複数のコア部材(23)が軸方向に積層されて構成されている。この例では、積層された多数枚のコア部材(23)間がカシメによって接合されることで、円筒状の回転子コア(21)が形成されている。なお、このコア部材(23)の原材料である電磁鋼板は、渦電流の発生を抑制する観点から、絶縁被覆されていることが好ましい。 The rotor core (21) is a so-called laminated core. Specifically, the rotor core (21) is formed by laminating a plurality of core members (23) formed in an axial direction by punching a magnetic steel sheet having a thickness of, for example, 0.2 to 0.5 mm by a press machine. Configured. In this example, a cylindrical rotor core (21) is formed by joining a plurality of laminated core members (23) by caulking. In addition, it is preferable that the electrical steel sheet which is a raw material of this core member (23) is insulation-coated from a viewpoint of suppressing generation | occurrence | production of an eddy current.
このコア部材(23)には、永久磁石(22)を収容する磁石用スロット(図示を省略)を形成するための貫通孔(図示を省略)が形成されている。また、回転子コア(21)には、その中心に軸穴(24)が形成されている。軸穴(24)には、負荷(ここでは、圧縮機構(12))を駆動するための駆動軸(13)が絞まり嵌め(例えば焼き嵌め)によって固定されている。したがって、回転子コア(21)の軸心と駆動軸(13)の軸心(O)とは同軸上に存在する。なお、一般的には、回転子(20)の軸方向両端には、端板(例えばステンレス鋼等の非磁性体の材料を用いて形成した円板状の部材)が設けられるが、図1等では、端板の図示を省略してある。 The core member (23) is formed with a through hole (not shown) for forming a magnet slot (not shown) for accommodating the permanent magnet (22). The rotor core (21) is formed with a shaft hole (24) at the center thereof. A drive shaft (13) for driving a load (here, the compression mechanism (12)) is fixed to the shaft hole (24) by an interference fit (for example, shrink fit). Therefore, the axis of the rotor core (21) and the axis (O) of the drive shaft (13) exist on the same axis. In general, end plates (for example, disc-shaped members formed using a non-magnetic material such as stainless steel) are provided at both axial ends of the rotor (20). Etc., the illustration of the end plate is omitted.
−固定子−
固定子(30)は、コア本体(40)、巻線(50)、及び絶縁部材(60)を備えている。ここで、コア本体(40)に絶縁部材(60)を設けたもの(ただし巻線(50)は巻回されていない状態)を固定子コア(70)と呼ぶことにする。図2に、固定子コア(70)の斜視図を示す。また、図3に、固定子コア(70)の横断面を示す。コア本体(40)は、円筒状の、いわゆる積層コアである。具体的に、コア本体(40)は、プレス加工機によって例えば厚さが0.2〜0.5mmの電磁鋼板を打ち抜き加工して形成した複数のコア部材(44)が軸方向に積層されて構成されている。積層されたコア部材(44)同士は、例えば、カシメによって接合されている。なお、コア部材(44)の原材料である電磁鋼板は、渦電流の発生を抑制する観点から、絶縁被覆されていることが好ましい。
-Stator-
The stator (30) includes a core body (40), a winding (50), and an insulating member (60). Here, the core body (40) provided with the insulating member (60) (however, the winding (50) is not wound) will be referred to as a stator core (70). FIG. 2 shows a perspective view of the stator core (70). FIG. 3 shows a cross section of the stator core (70). The core body (40) is a so-called laminated core having a cylindrical shape. Specifically, the core body (40) has a plurality of core members (44) formed by stamping a magnetic steel sheet having a thickness of, for example, 0.2 to 0.5 mm by a press machine, and is laminated in the axial direction. It is configured. The laminated core members (44) are joined together by caulking, for example. In addition, it is preferable that the electrical steel sheet which is a raw material of a core member (44) is insulation-coated from a viewpoint of suppressing generation | occurrence | production of eddy current.
図3に示すように、コア本体(40)は、1つのバックヨーク部(41)及び複数(この例では9つ)のティース部(42)を備えている。コア本体(40)は、横断面視で分割されておらず一体に形成されているいわゆる一体コアである。 As shown in FIG. 3, the core main body (40) includes one back yoke portion (41) and a plurality of (in this example, nine) teeth portions (42). The core body (40) is a so-called integral core that is integrally formed without being divided in a cross-sectional view.
バックヨーク部(41)は、コア本体(40)の外周側における、横断面視で環状の部分である。バックヨーク部(41)は、分割されておらず一体に形成されている。コア本体(40)は、このバックヨーク部(41)の外周面がケーシング(11)の内周面に接触するように嵌め入れられることによって、ケーシング(11)内に固定される。 The back yoke portion (41) is an annular portion on the outer peripheral side of the core body (40) in a cross sectional view. The back yoke portion (41) is not divided and is integrally formed. The core body (40) is fixed in the casing (11) by being fitted so that the outer peripheral surface of the back yoke part (41) is in contact with the inner peripheral surface of the casing (11).
図4にティース部(42)の縦断面図を示す。図4は、図2におけるIV-IV断面に相当する。図4に示すように、コア本体(40)は、軸方向に分割されている。コア本体(40)は、図4において上側部分を構成する第1コア本体(40a)と下側部分を構成する第2コア本体(40b)とを備えている。第1コア本体(40a)と第2コア本体(40b)との間には、応力緩和層(80)が設けられている。応力緩和層(80)については後述する。 FIG. 4 shows a longitudinal sectional view of the tooth portion (42). 4 corresponds to the IV-IV cross section in FIG. As shown in FIG. 4, the core body (40) is divided in the axial direction. The core body (40) includes a first core body (40a) that constitutes the upper part in FIG. 4 and a second core body (40b) that constitutes the lower part. A stress relaxation layer (80) is provided between the first core body (40a) and the second core body (40b). The stress relaxation layer (80) will be described later.
各ティース部(42)は、コア本体(40)において径方向に伸びる直方体状の部分である。各ティース部(42)には、絶縁部材(60)を介して、巻線(50)が例えば集中巻方式で巻回される。相互に隣接するティース部(42)間の空間は、巻回される巻線(50)を収容するためのコイル用のスロット(45)として機能する。なお、巻線(50)は、例えば、被覆導線を用いて構成すればよい。以上により、各ティース部(42)には電磁石が構成されている。 Each teeth portion (42) is a rectangular parallelepiped portion extending in the radial direction in the core body (40). A winding (50) is wound around each tooth part (42) through an insulating member (60), for example, by a concentrated winding method. The space between the teeth portions (42) adjacent to each other functions as a coil slot (45) for accommodating the wound winding (50). In addition, what is necessary is just to comprise a coil | winding (50), for example using a covered conducting wire. As described above, an electromagnet is configured in each tooth portion (42).
各ティース部(42)の先端部には、ツバ部(43)が形成されている。ツバ部(43)は、各ティース部(42)の先端部に連続して周方向に張り出した部分である。ツバ部(43)を含むティース部(42)の先端面(47)は円筒面であり、その円筒面は、回転子(20)の外周面(円筒面)と所定の距離(エアギャップ(G))をもって対向している。 A brim portion (43) is formed at the tip of each tooth portion (42). The brim portion (43) is a portion that protrudes in the circumferential direction continuously from the tip portion of each tooth portion (42). The tip surface (47) of the teeth portion (42) including the flange portion (43) is a cylindrical surface, and the cylindrical surface is a predetermined distance (air gap (G) from the outer peripheral surface (cylindrical surface) of the rotor (20). )).
−応力緩和層−
図4に示すように、応力緩和層(80)は、第1コア本体(40a)及び第2コア本体(40b)と互いに隣接するように積層配置されている。応力緩和層(80)には、弾性変形可能な応力緩和部材(81)が設けられている。応力緩和部材(81)としては、例えば板バネが挙げられる。応力緩和部材(81)としての板バネは、積層方向(軸方向)に僅かに圧縮された状態で応力緩和層(80)に設けられているのが好ましい。このとき、応力緩和部材(81)は、第1コア本体(40a)を図4における上方に、第2コア本体(40b)を図4における下方にそれぞれ付勢している。すなわち、応力緩和部材(81)は、コア本体(40)に対して反発するように付勢する。また、応力緩和部材(81)は、積層方向に圧縮されるように弾性変形可能となっている。
-Stress relaxation layer-
As shown in FIG. 4, the stress relaxation layer (80) is laminated and disposed so as to be adjacent to the first core body (40a) and the second core body (40b). The stress relaxation layer (80) is provided with an elastically deformable stress relaxation member (81). Examples of the stress relaxation member (81) include a leaf spring. The leaf spring as the stress relaxation member (81) is preferably provided on the stress relaxation layer (80) in a slightly compressed state in the stacking direction (axial direction). At this time, the stress relaxation member (81) urges the first core body (40a) upward in FIG. 4 and the second core body (40b) downward in FIG. That is, the stress relaxation member (81) is urged so as to repel the core body (40). The stress relaxation member (81) is elastically deformable so as to be compressed in the stacking direction.
−絶縁部材−
絶縁部材(60)は、コア本体(40)と一体に設けられて、コア本体(40)を覆っている。これにより、絶縁部材(60)は、巻線(50)とコア本体(40)との間を電気的に絶縁している。本実施形態の絶縁部材(60)は、圧縮機(10)の運転中に、コア部材(44)(電磁鋼板)の積層方向において該コア部材(44)を、固定子コア(70)の軸方向両端から挟み込むように形成されている。
-Insulation member-
The insulating member (60) is provided integrally with the core body (40) and covers the core body (40). Thereby, the insulating member (60) electrically insulates between the coil | winding (50) and a core main body (40). The insulating member (60) of the present embodiment is configured so that the core member (44) is connected to the axis of the stator core (70) in the stacking direction of the core member (44) (magnetic steel plate) during the operation of the compressor (10). It is formed so as to be sandwiched from both ends in the direction.
図2〜図5に示すように、絶縁部材(60)は、第1絶縁部(61)と、第2絶縁部(62)と、第3絶縁部(63)とを備えている。 As shown in FIGS. 2 to 5, the insulating member (60) includes a first insulating portion (61), a second insulating portion (62), and a third insulating portion (63).
第1絶縁部(61)は、コア本体(40)の図4における上端面を覆っている。具体的には、第1絶縁部(61)は、ティース部(42)の上端面全体を覆っている。第1絶縁部(61)は、バックヨーク部(41)の上端面のうち径方向内側を覆っている。なお、バックヨーク部(41)の上端面における径方向外側は、大部分が絶縁部材(60)に覆われていない。 The first insulating portion (61) covers the upper end surface of the core body (40) in FIG. Specifically, the 1st insulating part (61) has covered the whole upper end surface of the teeth part (42). The first insulating portion (61) covers the radially inner side of the upper end surface of the back yoke portion (41). Note that most of the radially outer side of the upper end surface of the back yoke portion (41) is not covered with the insulating member (60).
第2絶縁部(62)は、コア本体(40)の図4における下端面を覆っている。具体的には、第2絶縁部(62)は、ティース部(42)の下端面全体を覆っている。第2絶縁部(62)は、バックヨーク部(41)の下端面のうち径方向内側を覆っている。なお、バックヨーク部(41)の下端面における径方向外側は、大部分が絶縁部材(60)に覆われていない。 The second insulating portion (62) covers the lower end surface of the core body (40) in FIG. Specifically, the 2nd insulating part (62) has covered the whole lower end surface of the teeth part (42). The second insulating portion (62) covers the radially inner side of the lower end surface of the back yoke portion (41). Note that most of the radially outer side of the lower end surface of the back yoke portion (41) is not covered with the insulating member (60).
第3絶縁部(63)は、第1絶縁部(61)及び上記第2絶縁部(62)と一体に設けられている。第3絶縁部(63)は、第1絶縁部(61)と第2絶縁部(62)との間を覆っている。具体的には、第3絶縁部(63)は、バックヨーク部(41)の内周面を覆っている。第3絶縁部(63)は、各ティース部(42)に対しては、スロット(45)に対向する面(側面(S1))を覆っている(図4、図5を参照)。なお、ティース部(42)の先端面(47)は、絶縁部材(60)には覆われていない(図2等を参照)。 The third insulating portion (63) is provided integrally with the first insulating portion (61) and the second insulating portion (62). The third insulating part (63) covers the space between the first insulating part (61) and the second insulating part (62). Specifically, the third insulating portion (63) covers the inner peripheral surface of the back yoke portion (41). The third insulating portion (63) covers the surface (side surface (S1)) facing the slot (45) for each tooth portion (42) (see FIGS. 4 and 5). In addition, the front end surface (47) of the teeth part (42) is not covered with the insulating member (60) (see FIG. 2 etc.).
また、図5に示すように、絶縁部材(60)においてティース部(42)のツバ部(43)に対応する部分は、積層方向と直交する断面において、ティース部(42)の基端部(46)に対応する部分よりも厚くなるように形成されている。 Further, as shown in FIG. 5, in the insulating member (60), the portion corresponding to the brim portion (43) of the tooth portion (42) is a base end portion of the tooth portion (42) (in the cross section orthogonal to the stacking direction). It is formed to be thicker than the part corresponding to 46).
上記構造を有する絶縁部材(60)は、いわゆるインサート成形によって、絶縁部材(60)となる樹脂材料(後述)がコア本体(40)に一体成形されることによって形成されている。 The insulating member (60) having the above structure is formed by integrally molding a resin material (described later) to be the insulating member (60) into the core body (40) by so-called insert molding.
絶縁部材(60)用の樹脂材料の選定においては、圧縮機(10)に組み込まれる電動機(15)では、該圧縮機(10)の運転中における電動機(15)の温度を考慮して絶縁部材(60)用の材料を選定する。絶縁部材(60)用の樹脂材料としては、積層方向における線膨張係数が、コア本体(40)の材料(電磁鋼板)より線膨張係数が小さいものを選定することが考えられる。なお、絶縁部材(60)用の樹脂材料は、樹脂温度が圧縮機(10)の運転中の温度よりも低くなった場合の強度も考慮すべきである。 In the selection of the resin material for the insulating member (60), in the electric motor (15) incorporated in the compressor (10), the insulating member is considered in consideration of the temperature of the electric motor (15) during the operation of the compressor (10). Select materials for (60). As the resin material for the insulating member (60), it is conceivable to select a resin material whose linear expansion coefficient in the stacking direction is smaller than that of the core body (40) (magnetic steel sheet). The resin material for the insulating member (60) should also take into account the strength when the resin temperature becomes lower than the temperature during operation of the compressor (10).
本実施形態では、一例として、絶縁部材(60)用の樹脂材料にガラス繊維を含む液晶ポリマー樹脂を挙げる。ガラス繊維の含有量は、絶縁部材(60)に求められる強度等に応じて適宜決めれば良いが、本実施形態では、一例として30%のガラス繊維を含有させた。樹脂材料にガラス繊維を含有させた場合には、インサート成形の際に、ガラス繊維が積層方向に配向した状態となるように、樹脂材料を注入するとよい。具体的には、コア本体(40)の軸方向端面側から樹脂材料を注入するとよい。 In the present embodiment, as an example, a liquid crystal polymer resin containing glass fibers in the resin material for the insulating member (60) is given. The glass fiber content may be appropriately determined according to the strength and the like required for the insulating member (60), but in this embodiment, 30% glass fiber is contained as an example. When glass fiber is contained in the resin material, the resin material may be injected so that the glass fiber is oriented in the stacking direction during insert molding. Specifically, the resin material may be injected from the axial end face side of the core body (40).
−応力緩和層の動き−
上述のように、コア本体(40)の線膨張係数は、絶縁部材(60)の線膨張係数よりも大きくなっている。このため、固定子コア(70)の温度が上昇すると、コア本体(40)の積層方向の膨張量は、絶縁部材(60)の積層方向の膨張量よりも大きくなる。このとき、応力緩和部材(81)は、コア本体(40)の積層方向の膨張によって、積層方向に圧縮される。すなわち、応力緩和層(80)は絶縁部材(60)の積層方向の膨張量とコア本体(40)の積層方向の膨張量との差に応じて積層方向に収縮する。このように、応力緩和層(80)によって、コア本体(40)の積層方向の膨張が許容されて、絶縁部材(60)に生じる熱応力が緩和される。
-Movement of stress relaxation layer-
As described above, the linear expansion coefficient of the core body (40) is larger than the linear expansion coefficient of the insulating member (60). For this reason, when the temperature of the stator core (70) rises, the expansion amount of the core body (40) in the stacking direction becomes larger than the expansion amount of the insulating member (60) in the stacking direction. At this time, the stress relaxation member (81) is compressed in the stacking direction by the expansion of the core body (40) in the stacking direction. That is, the stress relaxation layer (80) contracts in the stacking direction according to the difference between the expansion amount of the insulating member (60) in the stacking direction and the expansion amount of the core body (40) in the stacking direction. In this way, the stress relaxation layer (80) allows expansion of the core body (40) in the stacking direction, and thermal stress generated in the insulating member (60) is relaxed.
一方、固定子コア(70)の温度が低下すると、コア本体(40)の積層方向の収縮量は、絶縁部材(60)の積層方向の収縮量よりも大きくなる。このとき、応力緩和部材(81)が弾性復元して、応力緩和層(80)は積層方向に膨張する。すなわち、応力緩和層(80)は絶縁部材(60)の積層方向の収縮量とコア本体(40)の積層方向の収縮量との差に応じて積層方向に膨張する。 On the other hand, when the temperature of the stator core (70) decreases, the contraction amount in the stacking direction of the core body (40) becomes larger than the contraction amount in the stacking direction of the insulating member (60). At this time, the stress relaxation member (81) is elastically restored, and the stress relaxation layer (80) expands in the stacking direction. That is, the stress relaxation layer (80) expands in the stacking direction according to the difference between the contraction amount in the stacking direction of the insulating member (60) and the contraction amount in the stacking direction of the core body (40).
−実施形態1の効果−
本実施形態の固定子コア(70)は、電動機(15)に設けられる固定子コア(70)において、複数枚のコア部材(44)が積層されて構成されたコア本体(40)と、コア本体(40)に一体に設けられコア本体(40)と線膨張係数が異なる絶縁部材(60)とを備え、絶縁部材(60)は、コア本体(40)の図4における積層方向上端面に設けられた第1絶縁部(61)と、コア本体(40)の図4における積層方向下端面に設けられた第2絶縁部(62)と、第1絶縁部(61)と第2絶縁部(62)との間に位置し、第1絶縁部(61)及び第2絶縁部(62)と一体に設けられた第3絶縁部(63)とを備え、第1絶縁部(61)と第2絶縁部(62)との間には、絶縁部材(60)に生じる積層方向の応力を緩和する応力緩和層(80)がコア本体(40)と隣接するように積層配置されている。
-Effect of Embodiment 1-
The stator core (70) of the present embodiment includes a core body (40) configured by stacking a plurality of core members (44) in a stator core (70) provided in the electric motor (15), and a core The main body (40) is provided with an insulating member (60) which is provided integrally with the core main body (40) and has a linear expansion coefficient different from that of the core main body (40). The first insulating portion (61) provided, the second insulating portion (62) provided on the lower end surface in the stacking direction in FIG. 4 of the core body (40), the first insulating portion (61), and the second insulating portion (62) and a third insulating part (63) provided integrally with the first insulating part (61) and the second insulating part (62), the first insulating part (61) Between the second insulating portion (62), a stress relaxation layer (80) for relaxing the stress in the stacking direction generated in the insulating member (60) is disposed so as to be adjacent to the core body (40). Yes.
本実施形態では、応力緩和層(80)が設けられているので、絶縁部材(60)に生じるコア本体(40)の積層方向の熱応力を低減することができる。特に、第1絶縁部(61)と第2絶縁部(62)との間に位置する第3絶縁部(63)に生じる熱応力を低減することができる。 In the present embodiment, since the stress relaxation layer (80) is provided, the thermal stress in the stacking direction of the core body (40) generated in the insulating member (60) can be reduced. In particular, the thermal stress generated in the third insulating part (63) located between the first insulating part (61) and the second insulating part (62) can be reduced.
また、本実施形態の固定子コア(70)において、コア本体(40)の線膨張係数は、絶縁部材(60)の線膨張係数よりも大きく、応力緩和層(80)は、絶縁部材(60)の積層方向の膨張量とコア本体(40)の積層方向の膨張量との差に応じて積層方向に収縮し、絶縁部材(60)の積層方向の収縮量とコア本体(40)の積層方向の収縮量との差に応じて積層方向に膨張する。 Further, in the stator core (70) of the present embodiment, the linear expansion coefficient of the core body (40) is larger than the linear expansion coefficient of the insulating member (60), and the stress relaxation layer (80) is formed of the insulating member (60). ) In the laminating direction and the expansion amount in the laminating direction of the core body (40) are contracted in the laminating direction, and the shrinkage amount in the laminating direction of the insulating member (60) and the lamination of the core body (40) It expands in the stacking direction according to the difference from the shrinkage amount in the direction.
本実施形態では、固定子コア(70)の温度上昇時において、絶縁部材(60)の積層方向の収縮量とコア本体(40)の積層方向の収縮量との差に応じて生じる第1絶縁部(61)と第2絶縁部(62)とが離れる方向に生じる熱応力を低減することができる。このため、第3絶縁部(63)が熱応力により破断することを抑えることができる。 In the present embodiment, when the temperature of the stator core (70) rises, the first insulation generated according to the difference between the shrinkage amount in the stacking direction of the insulating member (60) and the shrinkage amount in the stacking direction of the core body (40). The thermal stress generated in the direction in which the portion (61) and the second insulating portion (62) are separated can be reduced. For this reason, it can suppress that a 3rd insulating part (63) fractures | ruptures by a thermal stress.
また、本実施形態の固定子コア(70)において、応力緩和層(80)には、弾性変形可能な例えば板バネからなる応力緩和部材(81)が設けられている。 In the stator core (70) of the present embodiment, the stress relaxation layer (80) is provided with a stress relaxation member (81) made of, for example, a leaf spring that can be elastically deformed.
本実施形態では、応力緩和部材(81)の弾性変形及び弾性復元によって、絶縁部材(60)に生じる積層方向の熱応力を低減することができる。 In the present embodiment, the thermal stress in the stacking direction generated in the insulating member (60) can be reduced by elastic deformation and elastic recovery of the stress relaxation member (81).
また、本実施形態の固定子コア(70)において、応力緩和部材(81)は、コア本体(40)に対して反発するように付勢する。 Further, in the stator core (70) of the present embodiment, the stress relaxation member (81) is biased so as to repel the core body (40).
本実施形態では、応力緩和層(80)が積層方向に膨張し易くなる。 In this embodiment, the stress relaxation layer (80) is easily expanded in the stacking direction.
−実施形態1の変形例−
上記実施形態では、コア本体(40)は、第1コア本体(40a)と第2コア本体(40b)とに軸方向に分割されており、応力緩和層(80)は、第1コア本体(40a)と第2コア本体(40b)との間に設けられていた。しかし、図6に示すように、本変形例では、コア本体(40)は分割されずに1つ設けられている。応力緩和層(80)は、第1絶縁部(61)とコア本体(40)との間及び第2絶縁部(62)とコア本体(40)との間に積層配置されている。
-Modification of Embodiment 1-
In the said embodiment, the core main body (40) is divided | segmented into the 1st core main body (40a) and the 2nd core main body (40b) in the axial direction, and the stress relaxation layer (80) is the 1st core main body ( 40a) and the second core body (40b). However, as shown in FIG. 6, in the present modification, one core body (40) is provided without being divided. The stress relaxation layer (80) is laminated and disposed between the first insulating part (61) and the core body (40) and between the second insulating part (62) and the core body (40).
本変形例においても、絶縁部材(60)に生じるコア本体(40)の積層方向の熱応力を低減することができる。 Also in this modification, the thermal stress in the stacking direction of the core body (40) generated in the insulating member (60) can be reduced.
また、応力緩和層(80)は、第1絶縁部(61)とコア本体(40)との間及び第2絶縁部(62)とコア本体(40)との間のいずれか一方に積層配置されていてもよい。 Further, the stress relaxation layer (80) is laminated and disposed between the first insulating portion (61) and the core body (40) and between the second insulating portion (62) and the core body (40). May be.
《実施形態2》
実施形態2について説明する。本実施形態の固定子コア(70)は、実施形態1の固定子コア(70)において絶縁部材(60)の材料を変更したものである。ここでは、本実施形態の固定子コア(70)について、実施形態1の固定子コア(70)と異なる点を説明する。
<< Embodiment 2 >>
Embodiment 2 will be described. The stator core (70) of this embodiment is obtained by changing the material of the insulating member (60) in the stator core (70) of the first embodiment. Here, the difference between the stator core (70) of the present embodiment and the stator core (70) of the first embodiment will be described.
本実施形態では、絶縁部材(60)用の材料として、積層方向における線膨張係数が、コア本体(40)の材料(電磁鋼板)より線膨張係数が大きいものが用いられる。このような材料として例えば、ポリブチレンテレフタラート(PBT)を挙げる。 In the present embodiment, as the material for the insulating member (60), a material whose linear expansion coefficient in the stacking direction is larger than that of the core body (40) (magnetic steel sheet) is used. An example of such a material is polybutylene terephthalate (PBT).
このような固定子コア(70)では、固定子コア(70)の温度が低下すると、絶縁部材(60)の積層方向の収縮量は、コア本体(40)の積層方向の収縮量よりも大きくなる。このとき、応力緩和部材(81)は、絶縁部材(60)の積層方向の収縮によって、積層方向に圧縮される。すなわち、応力緩和層(80)は絶縁部材(60)の積層方向の収縮量とコア本体(40)の積層方向の収縮量との差に応じて積層方向に収縮する。このように、応力緩和層(80)によって、絶縁部材(60)の積層方向の収縮が許容されて、絶縁部材(60)に生じる熱応力が緩和される。 In such a stator core (70), when the temperature of the stator core (70) decreases, the shrinkage amount in the stacking direction of the insulating member (60) is larger than the shrinkage amount in the stacking direction of the core body (40). Become. At this time, the stress relaxation member (81) is compressed in the stacking direction by contraction in the stacking direction of the insulating member (60). That is, the stress relaxation layer (80) contracts in the stacking direction according to the difference between the contraction amount in the stacking direction of the insulating member (60) and the contraction amount in the stacking direction of the core body (40). Thus, the stress relaxation layer (80) allows the insulation member (60) to contract in the stacking direction, and the thermal stress generated in the insulation member (60) is relaxed.
一方、固定子コア(70)の温度が上昇すると、絶縁部材(60)の積層方向の膨張量は、コア本体(40)の積層方向の膨張量よりも大きくなる。このとき、応力緩和部材(81)が弾性復元して、応力緩和層(80)は積層方向に膨張する。すなわち、応力緩和層(80)は絶縁部材(60)の積層方向の膨張量とコア本体(40)の積層方向の膨張量との差に応じて積層方向に膨張する。 On the other hand, when the temperature of the stator core (70) rises, the expansion amount of the insulating member (60) in the stacking direction becomes larger than the expansion amount of the core body (40) in the stacking direction. At this time, the stress relaxation member (81) is elastically restored, and the stress relaxation layer (80) expands in the stacking direction. That is, the stress relaxation layer (80) expands in the stacking direction according to the difference between the expansion amount of the insulating member (60) in the stacking direction and the expansion amount of the core body (40) in the stacking direction.
−実施形態2の効果−
本実施形態では、固定子コア(70)の温度低下時においてコア本体(40)の積層方向の収縮量と絶縁部材(60)の積層方向の収縮量との差に応じて生じる第1絶縁部(61)と第2絶縁部(62)とが近付く方向に生じる熱応力を低減することができる。このため、第3絶縁部(63)が熱応力により破断することを抑えることができる。
-Effect of Embodiment 2-
In the present embodiment, when the temperature of the stator core (70) is lowered, the first insulating portion generated according to the difference between the shrinkage amount in the stacking direction of the core body (40) and the shrinkage amount in the stacking direction of the insulating member (60). The thermal stress generated in the direction in which (61) and the second insulating portion (62) approach each other can be reduced. For this reason, it can suppress that a 3rd insulating part (63) fractures | ruptures by a thermal stress.
《その他の実施形態》
上記実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
About the said embodiment, it is good also as the following structures.
上記各実施形態では、応力緩和部材(81)として板バネを挙げたが、応力緩和部材(81)はゴムや発泡材などでもよい。すなわち、応力緩和部材(81)は弾性変形可能なものであればよい。また、応力緩和部材(81)は、応力緩和層(80)内の一部に設けられて、応力緩和層(80)内における応力緩和部材(81)が設けられていない部分を空隙にしてもよい。 In each of the above embodiments, a leaf spring is used as the stress relaxation member (81). However, the stress relaxation member (81) may be rubber, foam material, or the like. That is, the stress relaxation member (81) may be any member that can be elastically deformed. Further, the stress relaxation member (81) is provided in a part of the stress relaxation layer (80), and a portion of the stress relaxation layer (80) where the stress relaxation member (81) is not provided is a gap. Good.
以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態および変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。 While the embodiments and modifications have been described above, it will be understood that various changes in form and details are possible without departing from the spirit and scope of the claims. In addition, the above embodiments and modifications may be appropriately combined or replaced as long as the functions of the subject of the present disclosure are not impaired.
以上説明したように、本開示は、固定子コア及び圧縮機について有用である。 As described above, the present disclosure is useful for a stator core and a compressor.
15 電動機
40 コア本体
60 絶縁部材
61 第1絶縁部
62 第2絶縁部
63 第3絶縁部
70 固定子コア
80 応力緩和層
81 応力緩和部材
15 Electric motor
40 core body
60 Insulation material
61 First insulation
62 Second insulation
63 3rd insulation
70 Stator core
80 Stress relaxation layer
81 Stress relaxation member
Claims (6)
複数枚の鋼板が積層されて構成されたコア本体(40)と、
上記コア本体(40)に一体に設けられ上記コア本体(40)と線膨張係数が異なる絶縁部材(60)とを備え、
上記絶縁部材(60)は、
上記コア本体(40)の積層方向一端面に設けられた第1絶縁部(61)と、
上記コア本体(40)の積層方向他端面に設けられた第2絶縁部(62)と、
上記第1絶縁部(61)と上記第2絶縁部(62)との間に位置し、上記第1絶縁部(61)及び上記第2絶縁部(62)と一体に設けられた第3絶縁部(63)とを備え、
上記第1絶縁部(61)と上記第2絶縁部(62)との間には、上記絶縁部材(60)に生じる上記積層方向の応力を緩和する応力緩和層(80)が上記コア本体(40)と隣接するように積層配置されていることを特徴とする固定子コア。 In the stator core (70) provided in the electric motor (15),
A core body (40) configured by laminating a plurality of steel plates;
An insulating member (60) provided integrally with the core body (40) and having a different linear expansion coefficient from the core body (40);
The insulating member (60)
A first insulating portion (61) provided on one end surface of the core body (40) in the stacking direction;
A second insulating portion (62) provided on the other end surface of the core body (40) in the stacking direction;
The third insulation provided between the first insulation part (61) and the second insulation part (62) and provided integrally with the first insulation part (61) and the second insulation part (62). Part (63),
Between the first insulating part (61) and the second insulating part (62), a stress relaxation layer (80) for relaxing stress in the stacking direction generated in the insulating member (60) is provided in the core body ( 40) A stator core characterized by being laminated so as to be adjacent to.
上記コア本体(40)の線膨張係数は、上記絶縁部材(60)の線膨張係数よりも大きく、
上記応力緩和層(80)は、
上記絶縁部材(60)の上記積層方向の膨張量と上記コア本体(40)の上記積層方向の膨張量との差に応じて上記積層方向に収縮し、
上記絶縁部材(60)の上記積層方向の収縮量と上記コア本体(40)の上記積層方向の収縮量との差に応じて上記積層方向に膨張することを特徴とする固定子コア。 In claim 1,
The linear expansion coefficient of the core body (40) is larger than the linear expansion coefficient of the insulating member (60),
The stress relaxation layer (80)
Depending on the difference between the expansion amount of the insulating member (60) in the stacking direction and the expansion amount of the core body (40) in the stacking direction;
A stator core that expands in the stacking direction according to a difference between a contraction amount of the insulating member (60) in the stacking direction and a contraction amount of the core body (40) in the stacking direction.
上記コア本体(40)の線膨張係数は、上記絶縁部材(60)の線膨張係数よりも小さく、
上記応力緩和層(80)は、
上記絶縁部材(60)の上記積層方向の収縮量と上記コア本体(40)の上記積層方向の収縮量との差に応じて上記積層方向に収縮し、
上記絶縁部材(60)の上記積層方向の膨張量と上記コア本体(40)の上記積層方向の膨張量との差に応じて上記積層方向に膨張することを特徴とする固定子コア。 In claim 1,
The linear expansion coefficient of the core body (40) is smaller than the linear expansion coefficient of the insulating member (60),
The stress relaxation layer (80)
Depending on the difference between the shrinkage amount of the insulating member (60) in the stacking direction and the shrinkage amount of the core body (40) in the stacking direction,
A stator core that expands in the stacking direction according to a difference between an expansion amount in the stacking direction of the insulating member (60) and an expansion amount in the stacking direction of the core body (40).
上記応力緩和層(80)には、弾性変形可能な応力緩和部材(81)が設けられていることを特徴とする固定子コア。 In any one of Claims 1 thru | or 3,
The stator core according to claim 1, wherein the stress relaxation layer (80) is provided with a stress relaxation member (81) capable of elastic deformation.
上記応力緩和部材(81)は、上記コア本体(40)に対して反発するように付勢することを特徴とする固定子コア。 In claim 4,
The stator core according to claim 1, wherein the stress relaxation member (81) is urged so as to repel the core body (40).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018062276A JP7132486B2 (en) | 2018-03-28 | 2018-03-28 | stator core and compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018062276A JP7132486B2 (en) | 2018-03-28 | 2018-03-28 | stator core and compressor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019176619A true JP2019176619A (en) | 2019-10-10 |
JP7132486B2 JP7132486B2 (en) | 2022-09-07 |
Family
ID=68167853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018062276A Active JP7132486B2 (en) | 2018-03-28 | 2018-03-28 | stator core and compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7132486B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009177895A (en) * | 2008-01-23 | 2009-08-06 | Mitsubishi Electric Corp | Laminated core, method of manufacturing laminated core, device for manufacturing laminated core, and stator |
JP2009225588A (en) * | 2008-03-17 | 2009-10-01 | Denso Corp | Rotating machine |
WO2011101985A1 (en) * | 2010-02-22 | 2011-08-25 | トヨタ自動車株式会社 | Stator and method for producing same |
-
2018
- 2018-03-28 JP JP2018062276A patent/JP7132486B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009177895A (en) * | 2008-01-23 | 2009-08-06 | Mitsubishi Electric Corp | Laminated core, method of manufacturing laminated core, device for manufacturing laminated core, and stator |
JP2009225588A (en) * | 2008-03-17 | 2009-10-01 | Denso Corp | Rotating machine |
WO2011101985A1 (en) * | 2010-02-22 | 2011-08-25 | トヨタ自動車株式会社 | Stator and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JP7132486B2 (en) | 2022-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5958502B2 (en) | Rotor and rotating electric machine using the same | |
JP5741826B2 (en) | motor | |
WO2015075813A1 (en) | Axial gap type rotating electric machine | |
JP4863061B2 (en) | Electric motor | |
KR100517923B1 (en) | Stator assembly for electric motor and manufacturing method thereof | |
CN111446790A (en) | Rotor | |
JP6901035B2 (en) | Manufacturing methods for rotating electric machines, compressors, and rotating electric machines | |
KR100677274B1 (en) | Stator assembly for motor | |
KR20070092816A (en) | Stator of a motor | |
JP2007318924A (en) | Stator fixing structure of electric motor | |
JP2009177957A (en) | Permanent magnet field motor | |
JP2007318924A5 (en) | ||
JP2008206318A (en) | Armature insulator and armature | |
JP5900180B2 (en) | Rotor core of rotating electrical machine | |
JP5033320B2 (en) | Method for manufacturing stator of electric motor | |
CN108604845B (en) | Axial gap type rotating electric machine | |
JP2019176619A (en) | Stator core and compressor | |
CN108370192B (en) | Motor with a stator having a stator core | |
JP7054028B2 (en) | Stator core and compressor | |
JP2012105543A (en) | Stator for electric motor | |
JP5561542B2 (en) | Permanent magnet rotor and manufacturing method thereof | |
JP2019054681A (en) | Method of manufacturing stator core | |
JP6197497B2 (en) | Stator of rotating electric machine and electric motor using this stator | |
WO2024105990A1 (en) | Electric machine | |
JP5892886B2 (en) | Armature, armature manufacturing method, and rotating electric machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210105 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220405 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220530 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220726 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220808 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7132486 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |