JP5561542B2 - Permanent magnet rotor and manufacturing method thereof - Google Patents

Permanent magnet rotor and manufacturing method thereof Download PDF

Info

Publication number
JP5561542B2
JP5561542B2 JP2010203862A JP2010203862A JP5561542B2 JP 5561542 B2 JP5561542 B2 JP 5561542B2 JP 2010203862 A JP2010203862 A JP 2010203862A JP 2010203862 A JP2010203862 A JP 2010203862A JP 5561542 B2 JP5561542 B2 JP 5561542B2
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor
hollow member
magnetic core
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010203862A
Other languages
Japanese (ja)
Other versions
JP2012060839A (en
Inventor
秀樹 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2010203862A priority Critical patent/JP5561542B2/en
Publication of JP2012060839A publication Critical patent/JP2012060839A/en
Application granted granted Critical
Publication of JP5561542B2 publication Critical patent/JP5561542B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

本発明は、永久磁石電動機に用いられる永久磁石回転子及びその製造方法に関するものである。   The present invention relates to a permanent magnet rotor used in a permanent magnet motor and a method for manufacturing the same.

従来から、電気エネルギーを機械エネルギーに変換する多種の電動機が知られている。図7は、一般的な永久磁石電動機100の、回転軸101方向に垂直な横断面図である。図7に示すように、永久磁石電動機100は、固定子102と永久磁石回転子70とを備える。固定子102は、極歯部103が形成された固定子鉄心104を有し、この極歯部103に巻線105が巻き回されている。永久磁石回転子70は、磁石挿入孔72が形成された回転子磁心74を有し、この磁石挿入孔72に永久磁石76が挿入されている。   Conventionally, various electric motors that convert electrical energy into mechanical energy are known. FIG. 7 is a cross-sectional view of a general permanent magnet motor 100 perpendicular to the direction of the rotation axis 101. As shown in FIG. 7, the permanent magnet motor 100 includes a stator 102 and a permanent magnet rotor 70. The stator 102 has a stator core 104 in which a pole tooth portion 103 is formed, and a winding 105 is wound around the pole tooth portion 103. The permanent magnet rotor 70 has a rotor magnetic core 74 in which a magnet insertion hole 72 is formed, and a permanent magnet 76 is inserted into the magnet insertion hole 72.

巻線105に所定の電圧値、電流値、周波数の電流が流れると、固定子鉄心104の極歯部103に回転磁界が発生する。この回転磁界に同期して、永久磁石回転子70が回転軸101回りに回転する。永久磁石電動機100は、磁界の変化によって得た駆動力を、回転軸101を介して他の機構に伝達する。   When a current having a predetermined voltage value, current value, and frequency flows through the winding 105, a rotating magnetic field is generated in the pole tooth portion 103 of the stator core 104. In synchronization with this rotating magnetic field, the permanent magnet rotor 70 rotates around the rotating shaft 101. The permanent magnet motor 100 transmits the driving force obtained by the change of the magnetic field to another mechanism via the rotating shaft 101.

図8に示すように、回転子磁心74は、表面の絶縁された同一形状の電磁鋼板を軸方向に積層して形成される。電磁鋼板にはプレス加工で打ち抜かれた開口孔が形成されており、この開口孔を重ねて磁石挿入孔72が作られる。このため、磁石挿入孔72は寸法精度が高い。一方、永久磁石76は、成形、焼結、加工等の工程を経て形成される。このため、永久磁石76は寸法精度に個体間でばらつきが生じる。   As shown in FIG. 8, the rotor magnetic core 74 is formed by laminating electromagnetic steel plates having the same shape, whose surfaces are insulated, in the axial direction. An opening hole punched out by press working is formed in the electromagnetic steel plate, and the magnet insertion hole 72 is made by overlapping the opening holes. For this reason, the magnet insertion hole 72 has high dimensional accuracy. On the other hand, the permanent magnet 76 is formed through processes such as molding, sintering, and processing. For this reason, the permanent magnet 76 varies in dimensional accuracy among individuals.

下記の特許文献には、永久磁石の寸法のばらつきを考慮した、回転子磁心に対する永久磁石の固定方法が開示されている。例えば、接着剤を用いて固定する方法(特許文献1)、回転子磁心に設けた突起を軸方向に折り曲げて固定する方法(特許文献2)、回転子磁心の一部を変形して磁石固定用の突起を設ける固定方法(特許文献3、4)、レーザー溶接による固定方法(特許文献5)、個々の永久磁石を覆う押さえ片による固定方法(特許文献6)、回転子磁心を周方向にずらせる固定方法(特許文献7)などがある。   The following patent document discloses a method for fixing a permanent magnet to a rotor core in consideration of variations in the size of the permanent magnet. For example, a method of fixing using an adhesive (Patent Document 1), a method of fixing a projection provided on a rotor magnetic core by bending it in an axial direction (Patent Document 2), and fixing a magnet by deforming a part of the rotor magnetic core Fixing method for providing protrusions (Patent Documents 3 and 4), fixing method by laser welding (Patent Document 5), fixing method by holding pieces covering individual permanent magnets (Patent Document 6), rotor core in the circumferential direction There is a fixing method for shifting (Patent Document 7).

上述した永久磁石の固定方法は、主として径方向または周方向の固定を目的としている。これとは別に、端板78(図8(b)参照)で磁石挿入孔72を塞いで、永久磁石76が軸方向に脱落するのを防止する(特許文献8)。   The permanent magnet fixing method described above is mainly intended for fixing in the radial direction or the circumferential direction. Apart from this, the end plate 78 (see FIG. 8B) closes the magnet insertion hole 72 to prevent the permanent magnet 76 from dropping off in the axial direction (Patent Document 8).

空気調和機などに用いる密閉型あるいは半密閉型の圧縮機においては、永久磁石電動機が冷媒中に置かれる。この場合、永久磁石回転子も冷媒にさらされる。このため、永久磁石回転子には、通常の機械的強度に加えて、化学的強度および温度変化についての耐久性(耐冷媒性)が必要とされる。   In a hermetic or semi-hermetic compressor used for an air conditioner or the like, a permanent magnet motor is placed in a refrigerant. In this case, the permanent magnet rotor is also exposed to the refrigerant. For this reason, in addition to the normal mechanical strength, the permanent magnet rotor is required to have durability against chemical strength and temperature change (refrigerant resistance).

しかしながら、上述した永久磁石の固定方法では、以下に示すような原因で固定が不完全になるおそれがあるため、永久磁石回転子が冷媒中にさらされる環境下で使用するには好ましくない。例えば、冷媒および温度変化の影響による接着剤の劣化(特許文献1)、温度変化による固定手段の変形(特許文献2、3及び4)、熱膨張率の違い及び温度変化による溶接の外れ(特許文献5)、永久磁石の寸法のばらつきに起因する各永久磁石の固定強度の差異(特許文献6、7)などが主な原因として挙げられる。   However, the permanent magnet fixing method described above is not preferable for use in an environment where the permanent magnet rotor is exposed to the refrigerant because fixing may be incomplete due to the following reasons. For example, adhesive deterioration due to the influence of refrigerant and temperature change (Patent Document 1), fixing means deformation due to temperature change (Patent Documents 2, 3 and 4), difference in thermal expansion coefficient and disengagement due to temperature change (Patent Document 1) Reference 5), differences in the fixing strength of the permanent magnets due to variations in the size of the permanent magnets (Patent Documents 6 and 7), and the like are cited as main causes.

また、回転子磁心74の磁石挿入孔72は、永久磁石76の寸法のばらつきを考慮して、永久磁石76よりも大きめに形成される。そのため、固定前の永久磁石76と磁石挿入孔72の間には隙間79ができる。永久磁石76は、永久磁石回転子70が回転しても磁石挿入孔72の中で移動しないように強固に固定されている。   Further, the magnet insertion hole 72 of the rotor magnetic core 74 is formed larger than the permanent magnet 76 in consideration of variation in the dimensions of the permanent magnet 76. Therefore, a gap 79 is formed between the permanent magnet 76 and the magnet insertion hole 72 before fixing. The permanent magnet 76 is firmly fixed so that it does not move in the magnet insertion hole 72 even if the permanent magnet rotor 70 rotates.

ところが、上述のように永久磁石76の固定が不完全になると、永久磁石回転子70が回転したとき、永久磁石76が磁石挿入孔72の中で移動する。永久磁石76の寸法にはばらつきがあるため、隙間79の大きさ、形状は一定にはならない。このため、磁石挿入孔72の中を移動する永久磁石76の動きが不規則になり、回転軸101の円滑な回転を妨げるおそれがある。永久磁石76の移動が回転軸101の回転に与える影響は、永久磁石回転子70が大型化するほど顕著に現れる。   However, if the permanent magnet 76 is not completely fixed as described above, the permanent magnet 76 moves in the magnet insertion hole 72 when the permanent magnet rotor 70 rotates. Since the size of the permanent magnet 76 varies, the size and shape of the gap 79 are not constant. For this reason, the movement of the permanent magnet 76 moving in the magnet insertion hole 72 becomes irregular, and there is a possibility that smooth rotation of the rotating shaft 101 is hindered. The influence of the movement of the permanent magnet 76 on the rotation of the rotating shaft 101 becomes more noticeable as the size of the permanent magnet rotor 70 increases.

特開2000−197291号公報JP 2000-197291 A 特開2001−37121号公報JP 2001-37121 A 特開平9−191590号公報Japanese Patent Laid-Open No. 9-191590 特開平5−260686号公報Japanese Patent Laid-Open No. 5-260686 特開2000−83334号公報JP 2000-83334 A 特開2003−143786号公報JP 2003-143786 A 特開2007−49803号公報JP 2007-49803 A 特開2009−131026号公報JP 2009-1331026 A

本発明は、かかる事情に鑑みて為されたものであり、本発明の目的は、冷媒中で駆動する永久磁石電動機に適した永久磁石回転子を提供することにある。さらに詳しくは、冷媒にさらされた環境下であっても、回転子磁心に対する永久磁石の固定状態が経時的に変化しない永久磁石回転子を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a permanent magnet rotor suitable for a permanent magnet motor driven in a refrigerant. More specifically, an object of the present invention is to provide a permanent magnet rotor in which the fixed state of the permanent magnet with respect to the rotor core does not change with time even in an environment exposed to a refrigerant.

本発明の永久磁石回転子は、内面と外面とを有する管状の中空部材と、前記中空部材の外面側に配置され、磁石挿入孔が形成された回転子磁心と、前記磁石挿入孔に挿入される永久磁石と、を備え、前記中空部材が内面に印加される内圧によって拡管成形されるとともに、前記磁石挿入孔が変形し、前記永久磁石が前記回転子磁心に押圧固定されることを特徴とする。   The permanent magnet rotor of the present invention includes a tubular hollow member having an inner surface and an outer surface, a rotor magnetic core disposed on the outer surface side of the hollow member and having a magnet insertion hole formed therein, and inserted into the magnet insertion hole. And the hollow member is expanded by an internal pressure applied to the inner surface, the magnet insertion hole is deformed, and the permanent magnet is pressed and fixed to the rotor magnetic core. To do.

本発明の永久磁石回転子は、内面と外面とを有する管状の中空部材と、前記中空部材の外面側に配置され、磁石挿入孔が形成された回転子磁心と、前記磁石挿入孔に挿入される永久磁石と、前記回転子磁心の内面から前記磁石挿入孔に通じる貫通孔と、を備え、前記中空部材が内面に印加される内圧によって拡管成形されるとともに、該中空部材が前記貫通孔に沿って変形し、前記永久磁石を前記回転子磁心に押圧固定することを特徴とする。   The permanent magnet rotor of the present invention includes a tubular hollow member having an inner surface and an outer surface, a rotor magnetic core disposed on the outer surface side of the hollow member and having a magnet insertion hole formed therein, and inserted into the magnet insertion hole. A permanent magnet, and a through hole that leads from the inner surface of the rotor core to the magnet insertion hole, and the hollow member is expanded by internal pressure applied to the inner surface, and the hollow member is formed in the through hole. And the permanent magnet is pressed and fixed to the rotor magnetic core.

本発明の永久磁石回転子は、内面と外面とを有する管状の中空部材と、前記中空部材の外面側に配置された環状の保持部材と、前記中空部材と前記保持部材との間に配置された永久磁石と、前記中空部材の内面側に配置された回転子磁心と、を備え、前記中空部材、永久磁石、及び保持部材が、該中空部材の内面に内圧を印加する拡管成形によって一体化され、前記回転子磁心の外面に取り付けられることを特徴とする。   The permanent magnet rotor of the present invention is disposed between a tubular hollow member having an inner surface and an outer surface, an annular holding member disposed on the outer surface side of the hollow member, and the hollow member and the holding member. A permanent magnet and a rotor magnetic core disposed on the inner surface side of the hollow member, and the hollow member, the permanent magnet, and the holding member are integrated by tube expansion forming an internal pressure on the inner surface of the hollow member. And attached to the outer surface of the rotor magnetic core.

また、本発明の永久磁石回転子の製造方法は、前記拡管成形が、前記中空部材の中空部に充填された液体の液圧により内圧を印加し、該中空部材を径方向に膨張させる工程を含む。   Further, in the method of manufacturing a permanent magnet rotor according to the present invention, the tube expansion molding includes the step of applying an internal pressure by the liquid pressure of the liquid filled in the hollow portion of the hollow member to expand the hollow member in the radial direction. Including.

前記拡管成形は、前記中空部材の中空部に挿入された成形治具を該中空部材の内面に沿って軸方向に通過させて、該中空部材を拡径させる工程を含むものであってもよい。   The tube expansion molding may include a step of passing the molding jig inserted into the hollow portion of the hollow member in the axial direction along the inner surface of the hollow member to expand the diameter of the hollow member. .

本発明に係る永久磁石回転子によれば、拡管成形の工程において、中空部材の外面が回転子磁心との接触面を押圧するため磁石挿入孔が変形する。磁石挿入孔に挿入された永久磁石は、変形した磁石挿入孔の内面の一部に押圧され回転子磁心に固定される。回転子磁心は温度変化等による変形がほとんど発生しない。このため、冷媒にさらされた環境下であっても、回転子磁心に対する永久磁石の固定状態には経時的な変化がほとんど発生しない。これにより、冷媒中で駆動する永久磁石電動機に適した永久磁石回転子を提供することができる。   According to the permanent magnet rotor of the present invention, the outer surface of the hollow member presses the contact surface with the rotor core in the tube expansion forming process, so that the magnet insertion hole is deformed. The permanent magnet inserted into the magnet insertion hole is pressed by a part of the inner surface of the deformed magnet insertion hole and fixed to the rotor magnetic core. The rotor core is hardly deformed due to temperature changes. For this reason, even in an environment exposed to a refrigerant, a change with time hardly occurs in the fixed state of the permanent magnet with respect to the rotor core. Thereby, the permanent magnet rotor suitable for the permanent magnet electric motor driven in a refrigerant | coolant can be provided.

また、本発明に係る永久磁石回転子によれば、拡管成形の工程において、磁石挿入孔に挿入された永久磁石は、貫通孔に沿って変形した中空部材の外面に押圧され回転子磁心に固定される。中空部材は温度変化等による変形がほとんど発生しない。このため、冷媒にさらされた環境下であっても、回転子磁心に対する永久磁石の固定状態には経時的な変化がほとんど発生しない。これにより、冷媒中で駆動する永久磁石電動機に適した永久磁石回転子を提供することができる。   Further, according to the permanent magnet rotor according to the present invention, in the tube expansion molding process, the permanent magnet inserted into the magnet insertion hole is pressed against the outer surface of the hollow member deformed along the through hole and fixed to the rotor core. Is done. The hollow member hardly deforms due to temperature change or the like. For this reason, even in an environment exposed to a refrigerant, a change with time hardly occurs in the fixed state of the permanent magnet with respect to the rotor core. Thereby, the permanent magnet rotor suitable for the permanent magnet electric motor driven in a refrigerant | coolant can be provided.

また、本発明に係る永久磁石回転子によれば、拡管成形の工程において、中空部材、永久磁石、及び保持部材が一体化される。中空部材及び保持部材は温度変化等による変形がほとんど発生しない。このため、冷媒にさらされた環境下であっても、一体化された中空部材、永久磁石、及び保持部材の固定状態には経時的な変化がほとんど発生しない。これにより、冷媒中で駆動する永久磁石電動機に適した永久磁石回転子を提供することができる。   Further, according to the permanent magnet rotor according to the present invention, the hollow member, the permanent magnet, and the holding member are integrated in the tube expansion molding process. The hollow member and the holding member are hardly deformed by a temperature change or the like. For this reason, even in an environment exposed to a refrigerant, changes with time hardly occur in the fixed state of the integrated hollow member, permanent magnet, and holding member. Thereby, the permanent magnet rotor suitable for the permanent magnet electric motor driven in a refrigerant | coolant can be provided.

本発明に係る永久磁石回転子の製造方法によれば、中空部材の中空部に充填された液体の液圧により中空部材の内面に対して内圧を印加し、中空部材を径方向に膨張させる工程を含む拡管成形を行う。これにより、冷媒にさらされた環境下であっても、回転子磁心に対する永久磁石の固定状態に経時的な変化がほとんど発生しないように、且つ、永久磁石の寸法のばらつきに関係なく、永久磁石を強固に固定することができる。また、永久磁石を固定するための特別な部材や材料が必要ないため、製造工程を低減することができるとともに、永久磁石回転子の生産効率を向上させることができる。要するに、当該製造方法は、冷媒中で駆動する永久磁石電動機に用いられる永久磁石回転子の製造方法として、特に適した製造方法である。   According to the method of manufacturing a permanent magnet rotor according to the present invention, the step of applying an internal pressure to the inner surface of the hollow member by the liquid pressure of the liquid filled in the hollow portion of the hollow member to expand the hollow member in the radial direction. Tube expansion including As a result, even in an environment exposed to a refrigerant, the permanent magnet is hardly changed over time in the fixed state of the permanent magnet with respect to the rotor core, and regardless of variations in the size of the permanent magnet. Can be firmly fixed. In addition, since no special member or material for fixing the permanent magnet is required, the manufacturing process can be reduced and the production efficiency of the permanent magnet rotor can be improved. In short, the manufacturing method is a manufacturing method particularly suitable as a manufacturing method of a permanent magnet rotor used in a permanent magnet motor driven in a refrigerant.

拡管成形として、中空部材の中空部に挿入された成形治具を中空部材の内面に沿って軸方向に通過させて、中空部材を拡径させる工程を含む成形方法を採用しても、上記と同様の効果を得ることができる。   Even if a molding method including a step of expanding the diameter of the hollow member by passing the molding jig inserted into the hollow part of the hollow member in the axial direction along the inner surface of the hollow member as the pipe expansion molding, Similar effects can be obtained.

第一実施形態に係る永久磁石回転子を示す(a)A1−A1線に沿った横断面図及び(b)A2−A2線に沿った縦断面図である。It is the (a) cross-sectional view which followed the A1-A1 line which shows the permanent magnet rotor which concerns on 1st embodiment, and (b) the longitudinal cross-sectional view which followed the A2-A2 line. 中空部材が拡管成形される工程の説明図である。It is explanatory drawing of the process in which a hollow member is pipe-expanded. 第二実施形態に係る永久磁石回転子を示す(a)B1−B1線に沿った横断面図及び(b)B2−B2線に沿った縦断面図である。It is the (a) transverse cross-sectional view which followed the B1-B1 line which shows the permanent magnet rotor which concerns on 2nd embodiment, and (b) the longitudinal cross-sectional view along the B2-B2 line. 第二実施形態に係る永久磁石回転子の変形例を示す(a)C1−C1線に沿った横断面図及び(b)C2−C2線に沿った縦断面図である。It is the cross-sectional view along the (a) C1-C1 line which shows the modification of the permanent magnet rotor which concerns on 2nd embodiment, and the longitudinal cross-sectional view along the (b) C2-C2 line. 第二実施形態に係る永久磁石回転子の他の変形例を示す(a)D1−D1線に沿った横断面図及び(b)D2−D2線に沿った縦断面図である。It is the cross-sectional view along the (a) D1-D1 line which shows the other modification of the permanent magnet rotor which concerns on 2nd embodiment, and the longitudinal cross-sectional view along the (b) D2-D2 line. 第三実施形態に係る永久磁石回転子を示す(a)E1−E1線に沿った横断面図及び(b)E2−E2線に沿った縦断面図である。It is the (a) transverse cross section which followed the E1-E1 line which shows the permanent magnet rotor which concerns on 3rd embodiment, and (b) the longitudinal cross-sectional view along the E2-E2 line. 一般的な永久磁石電動機の横断面図である。It is a cross-sectional view of a general permanent magnet motor. 従来の永久磁石回転子を示す(a)横断面図及び(b)X−X線に沿った縦断面図である。It is the (a) cross-sectional view which shows the conventional permanent magnet rotor, and (b) the longitudinal cross-sectional view along XX.

以下、本発明に係る永久磁石回転子の実施形態について図面を用いて説明する。本明細書において、各図面は概略的に示されており、同一の符号で示されている場合は、同一の構成を示すものとする。また、各図面に示された永久磁石回転子の縦断面図において、各回転子磁心は、符号表示の便宜上、積層された電磁鋼板の表示を省略して示している。   Hereinafter, embodiments of a permanent magnet rotor according to the present invention will be described with reference to the drawings. In the present specification, each drawing is schematically shown, and when the same reference numeral is given, the same configuration is shown. Moreover, in the longitudinal cross-sectional view of the permanent magnet rotor shown in each drawing, each rotor magnetic core is abbreviate | omitting and showing the display of the laminated electromagnetic steel plate for the convenience of a code | symbol display.

図1に示すように、第一実施形態に係る永久磁石回転子10は、中空部材11と、磁石挿入孔12が形成された回転子磁心14と、磁石挿入孔12に挿入される永久磁石16と、を備える。中空部材11が内面に印加される内圧によって拡管成形される。これに伴い磁石挿入孔12が変形し、永久磁石16が回転子磁心14に押圧固定される。   As shown in FIG. 1, the permanent magnet rotor 10 according to the first embodiment includes a hollow member 11, a rotor core 14 in which a magnet insertion hole 12 is formed, and a permanent magnet 16 that is inserted into the magnet insertion hole 12. And comprising. The hollow member 11 is expanded and formed by an internal pressure applied to the inner surface. Accordingly, the magnet insertion hole 12 is deformed, and the permanent magnet 16 is pressed and fixed to the rotor magnetic core 14.

中空部材11は、内面11aと外面11bとを有する管状の部材である。中空部材11の形状は、拡管成形により変形させられるため特に限定されないが、加工作業の容易性及び作業効率の向上に関する点から、回転子磁心14の内面の形状に近い形状であるのが好ましい。本実施形態では、円筒形状の中空部材11が用いられる。中空部材11の大きさは、回転子磁心14の内面の大きさ等に応じて適宜決定される。中空部材11の材質としては、通常の機械的強度に加えて化学的強度および温度変化についての耐久性(耐冷媒性)を有する材料が用いられる。   The hollow member 11 is a tubular member having an inner surface 11a and an outer surface 11b. The shape of the hollow member 11 is not particularly limited because it can be deformed by tube expansion molding, but it is preferably a shape close to the shape of the inner surface of the rotor magnetic core 14 in terms of ease of processing work and improvement of work efficiency. In the present embodiment, a cylindrical hollow member 11 is used. The size of the hollow member 11 is appropriately determined according to the size of the inner surface of the rotor magnetic core 14 and the like. As a material of the hollow member 11, a material having chemical strength and durability against temperature change (refrigerant resistance) in addition to normal mechanical strength is used.

回転子磁心14は、表面の絶縁された同一形状(平面視円環状)の電磁鋼板を軸方向に積層して形成された円筒状の部品である。この電磁鋼板にはプレス加工で打ち抜かれた複数の開口孔が形成されている。本実施形態では、この開口孔を重ねて回転子磁心14に複数の磁石挿入孔12が形成される。このため、回転子磁心14を構成する電磁鋼板は、プレス加工時の変形(反りなど)を防止するために、十分な径方向の肉厚を有するのが望ましい。こうして回転子磁心14を形成することで、磁石挿入孔12を高い寸法精度で形成することができる。回転子磁心14は、中空部材11の外面11b側に配置される。回転子磁心14の大きさは、採用される電動機の大きさや構造、及び、対向する固定子(特に極歯部)の大きさ等に応じて適宜設計される。   The rotor magnetic core 14 is a cylindrical component formed by laminating electromagnetic steel plates having the same shape (annular shape in plan view) whose surfaces are insulated in the axial direction. A plurality of opening holes punched by press working are formed in this electromagnetic steel sheet. In the present embodiment, a plurality of magnet insertion holes 12 are formed in the rotor magnetic core 14 by overlapping the opening holes. For this reason, it is desirable that the electromagnetic steel sheet constituting the rotor magnetic core 14 has a sufficient radial thickness in order to prevent deformation (warping or the like) during press working. By forming the rotor magnetic core 14 in this way, the magnet insertion hole 12 can be formed with high dimensional accuracy. The rotor magnetic core 14 is disposed on the outer surface 11 b side of the hollow member 11. The size of the rotor magnetic core 14 is appropriately designed according to the size and structure of the electric motor employed, the size of the opposing stator (particularly the pole tooth portion), and the like.

永久磁石16は、異なる極性(N極、S極)を有する磁極面が互いに対向する板状の磁石である。永久磁石16は、回転子磁心14に形成された磁石挿入孔12に挿入される。このとき、隣り合う各永久磁石16の磁極面の極性が異なるように配置される。つまり、永久磁石16は、回転子磁心14の周方向に極性が交互に異なるように配置されている。永久磁石16の形状及び大きさは、磁石挿入孔12の形状及び大きさに合わせて適宜設計、形成される。永久磁石16は、例えば、保磁力が高く減磁しにくいネオジム磁石を用いるのが好ましいが、その他の種類の磁石(例えば、フェライト磁石、サマリウムコバルト磁石など)を用いてもよい。   The permanent magnet 16 is a plate-like magnet having magnetic pole faces having different polarities (N pole and S pole) facing each other. The permanent magnet 16 is inserted into the magnet insertion hole 12 formed in the rotor magnetic core 14. At this time, the magnetic pole surfaces of the adjacent permanent magnets 16 are arranged to have different polarities. That is, the permanent magnets 16 are arranged so that the polarities are alternately different in the circumferential direction of the rotor core 14. The shape and size of the permanent magnet 16 are appropriately designed and formed according to the shape and size of the magnet insertion hole 12. For example, a neodymium magnet having a high coercive force and not easily demagnetized is preferably used as the permanent magnet 16, but other types of magnets (for example, a ferrite magnet, a samarium cobalt magnet, etc.) may be used.

図2に示すように、本実施形態の永久磁石回転子10は、上述の中空部材11に対して拡管成形が行われる。この拡管成形の工程を以下に詳細に説明する。なお、図2(b)に示されている矢印は、中空部材11の内面11aに印加される内圧を示すものとする。   As shown in FIG. 2, the permanent magnet rotor 10 of the present embodiment is subjected to tube expansion molding on the hollow member 11 described above. The tube forming process will be described in detail below. In addition, the arrow shown by FIG.2 (b) shall show the internal pressure applied to the inner surface 11a of the hollow member 11. FIG.

図2(a)は、拡管成形の準備を行う工程を示すものである。当該工程において、中空部材11、回転子磁心14、及び永久磁石16がそれぞれ上述の所定位置に配置される。拡管成形が行われる前の状態では、中空部材11の外面11bと回転子磁心14の内面14aとの間には隙間19aが形成されている。また、磁石挿入孔12は、永久磁石16の寸法のばらつきを考慮して、永久磁石16の寸法よりも少し大きめに形成されている。したがって、磁石挿入孔12と永久磁石16との間にも隙間19bが形成されている。   FIG. 2A shows a process of preparing for tube expansion molding. In the process, the hollow member 11, the rotor magnetic core 14, and the permanent magnet 16 are each arranged at the predetermined position. In a state before the tube expansion molding is performed, a gap 19 a is formed between the outer surface 11 b of the hollow member 11 and the inner surface 14 a of the rotor magnetic core 14. Further, the magnet insertion hole 12 is formed to be slightly larger than the dimension of the permanent magnet 16 in consideration of variation in the dimension of the permanent magnet 16. Therefore, a gap 19 b is also formed between the magnet insertion hole 12 and the permanent magnet 16.

図2(b)は、中空部材11を変形させる工程を示すものである。当該工程において、中空部材11は、その内面11aに内圧が印加されることにより、外面11bの方向に膨張させられる。その後、膨張した中空部材11の外面11bと回転子磁心14の内面14bとの間には隙間19a(図2(a)参照)がなくなり、これらが互いに接触する。さらに内圧を印加すると、中空部材11の外面11bが、回転子磁心14の内面を径方向に押圧する。   FIG. 2B shows a process of deforming the hollow member 11. In this process, the hollow member 11 is expanded in the direction of the outer surface 11b by applying an internal pressure to the inner surface 11a. Thereafter, there is no gap 19a (see FIG. 2A) between the outer surface 11b of the expanded hollow member 11 and the inner surface 14b of the rotor magnetic core 14, and these contact each other. When the internal pressure is further applied, the outer surface 11b of the hollow member 11 presses the inner surface of the rotor magnetic core 14 in the radial direction.

本実施形態では、中空部材11の中空部11cに充填された液体(図示省略)の液圧により内面11aに対して内圧を印加し、中空部材11を径方向に膨張させる工程を含む拡管成形が行われる。膨張した中空部材11の外面11bは、回転子磁心14の内面14aに沿うように塑性変形する。   In the present embodiment, tube expansion molding includes a step of applying an internal pressure to the inner surface 11a by a liquid pressure of a liquid (not shown) filled in the hollow portion 11c of the hollow member 11 to expand the hollow member 11 in the radial direction. Done. The outer surface 11 b of the expanded hollow member 11 is plastically deformed along the inner surface 14 a of the rotor magnetic core 14.

図2(c)は、拡管成形後の永久磁石回転子10を示すものである。回転子磁心14の内面14aと磁石挿入孔12との距離が最も短い部分(薄肉部T(図2(b)参照))は、その他の部分に比べて、外力が加えられることにより変形しやすい。このため、図2(b)に示す工程において、中空部材11の内面11aに対する内圧がさらに印加されると、回転子磁心14の薄肉部Tが中空部材11の外面11bに押圧されて径方向に変形する。これにより、磁石挿入孔12が変形し、磁石挿入孔12の内面の一部と永久磁石16とが接触する。   FIG. 2 (c) shows the permanent magnet rotor 10 after tube expansion molding. The portion where the distance between the inner surface 14a of the rotor core 14 and the magnet insertion hole 12 is the shortest (thinned portion T (see FIG. 2B)) is more easily deformed by applying an external force than the other portions. . Therefore, in the step shown in FIG. 2B, when an internal pressure is further applied to the inner surface 11a of the hollow member 11, the thin portion T of the rotor magnetic core 14 is pressed against the outer surface 11b of the hollow member 11 in the radial direction. Deform. As a result, the magnet insertion hole 12 is deformed, and a part of the inner surface of the magnet insertion hole 12 and the permanent magnet 16 come into contact.

永久磁石16は、変形した磁石挿入孔12の内面の一部(接触面C)によって径方向に押圧され、回転子磁心14に固定される。つまり、永久磁石16は径方向に対向する磁石挿入孔12の内面に挟み込まれた状態で固定される。また、永久磁石16が軸方向に脱落するのを防止するために、端板18で磁石挿入孔12を塞ぐ(図1(b)参照)。このようにして、本実施形態に係る永久磁石回転子10が製造されるのである。   The permanent magnet 16 is pressed in the radial direction by a part of the inner surface (contact surface C) of the deformed magnet insertion hole 12 and is fixed to the rotor magnetic core 14. That is, the permanent magnet 16 is fixed in a state of being sandwiched between the inner surfaces of the magnet insertion holes 12 opposed in the radial direction. Further, in order to prevent the permanent magnet 16 from falling off in the axial direction, the end plate 18 closes the magnet insertion hole 12 (see FIG. 1B). In this way, the permanent magnet rotor 10 according to this embodiment is manufactured.

本実施形態に係る永久磁石回転子10によれば、拡管成形の工程において、中空部材11の外面11bが回転子磁心14との接触面(内面14a)を押圧することにより、磁石挿入孔12が変形する。磁石挿入孔12に挿入された永久磁石16は、変形した磁石挿入孔12の内面の一部(接触面C)に押圧され、回転子磁心14の径方向に固定される。回転子磁心14は温度変化等による変形がほとんど発生しない。このため、冷媒にさらされた環境下であっても、回転子磁心14に対する永久磁石16の固定状態には経時的な変化がほとんど発生しない。これにより、冷媒中で駆動する永久磁石電動機に適した永久磁石回転子を提供することができる。   According to the permanent magnet rotor 10 according to the present embodiment, the outer surface 11b of the hollow member 11 presses the contact surface (the inner surface 14a) with the rotor magnetic core 14 in the tube expansion molding process, whereby the magnet insertion hole 12 is formed. Deform. The permanent magnet 16 inserted into the magnet insertion hole 12 is pressed by a part of the inner surface (contact surface C) of the deformed magnet insertion hole 12 and fixed in the radial direction of the rotor core 14. The rotor magnetic core 14 hardly deforms due to a temperature change or the like. For this reason, even in an environment exposed to a refrigerant, the temporal change hardly occurs in the fixed state of the permanent magnet 16 with respect to the rotor magnetic core 14. Thereby, the permanent magnet rotor suitable for the permanent magnet electric motor driven in a refrigerant | coolant can be provided.

また、本実施形態に係る永久磁石回転子10によれば、磁石挿入孔12が径方向に変形しているため、永久磁石16が磁石挿入孔12の中で移動することがない。このため、永久磁石16の寸法のばらつきに起因する隙間19bの大きさや形状の違いに関係なく、回転軸101を円滑に回転させることができる。また、磁石挿入孔12を変形させることにより、永久磁石16との間に形成される隙間19bの面積(体積)を低減することができる。これにより、透磁率の低減を防止することができる。   Further, according to the permanent magnet rotor 10 according to the present embodiment, since the magnet insertion hole 12 is deformed in the radial direction, the permanent magnet 16 does not move in the magnet insertion hole 12. For this reason, the rotating shaft 101 can be smoothly rotated irrespective of the difference in the size and shape of the gap 19b caused by the variation in the dimensions of the permanent magnets 16. In addition, by deforming the magnet insertion hole 12, the area (volume) of the gap 19b formed between the permanent magnet 16 can be reduced. Thereby, the reduction of magnetic permeability can be prevented.

さらに、本実施形態に係る永久磁石回転子10によれば、回転子磁心14の一部を変形させて永久磁石16を固定するため、各永久磁石16の寸法のばらつきに関係なく、永久磁石16を強固に固定することができる。このような永久磁石16の固定方法は、永久磁石16を固定するための特別な部材や材料が必要ないため、製造工程を低減することができるとともに、永久磁石回転子10の生産効率を向上させることができる。   Furthermore, according to the permanent magnet rotor 10 according to the present embodiment, a part of the rotor magnetic core 14 is deformed to fix the permanent magnet 16, so that the permanent magnet 16 is independent of the dimensional variation of each permanent magnet 16. Can be firmly fixed. Such a fixing method of the permanent magnet 16 does not require a special member or material for fixing the permanent magnet 16, so that the manufacturing process can be reduced and the production efficiency of the permanent magnet rotor 10 is improved. be able to.

また、本実施形態に係る永久磁石回転子10の製造方法によれば、中空部材11の中空部11cに充填された液体の液圧により中空部材11の内面11aに対して内圧を印加し、中空部材11を径方向に膨張させる工程を含む拡管成形を行う。これより、上述のとおり、永久磁石16を冷媒環境下に適した固定方法で回転子磁心14に対して固定することができる。つまり、当該製造方法は、冷媒中で駆動する永久磁石電動機に用いられる永久磁石回転子の製造方法として、特に適した製造方法であるといえる。   Further, according to the method for manufacturing the permanent magnet rotor 10 according to the present embodiment, the internal pressure is applied to the inner surface 11a of the hollow member 11 by the liquid pressure of the liquid filled in the hollow portion 11c of the hollow member 11, and the hollow member 11 is hollow. Tube expansion forming including a step of expanding the member 11 in the radial direction is performed. Thus, as described above, the permanent magnet 16 can be fixed to the rotor core 14 by a fixing method suitable for the refrigerant environment. That is, it can be said that this manufacturing method is a particularly suitable manufacturing method as a manufacturing method of the permanent magnet rotor used for the permanent magnet motor driven in the refrigerant.

本実施形態に係る永久磁石回転子10を冷媒中で駆動する永久磁石電動機に用いれば、冷媒にさらされた環境下であっても、回転子磁心14に対する永久磁石16の固定状態に経時的な変化がほとんど発生せず、永久磁石16が磁石挿入孔12の中で移動することもない。このため、永久磁石回転子10を大型化しても円滑な回転を得ることができる。したがって、永久磁石電動機を大型化することができる。   If the permanent magnet rotor 10 according to the present embodiment is used in a permanent magnet motor that is driven in a refrigerant, the permanent magnet 16 is fixed to the rotor core 14 over time even in an environment exposed to the refrigerant. The change hardly occurs and the permanent magnet 16 does not move in the magnet insertion hole 12. For this reason, smooth rotation can be obtained even if the permanent magnet rotor 10 is enlarged. Therefore, the permanent magnet motor can be increased in size.

以上、本発明の第一実施形態に係る永久磁石回転子10について説明したが、本発明に係る永久磁石回転子は、その他の形態で実施することができる。   As mentioned above, although the permanent magnet rotor 10 which concerns on 1st embodiment of this invention was demonstrated, the permanent magnet rotor which concerns on this invention can be implemented with another form.

例えば、第二実施形態として図3に示す永久磁石回転子20のような実施形態であってもよい。永久磁石回転子20は、中空部材11と、磁石挿入孔12が形成された回転子磁心24と、磁石挿入孔12に挿入される永久磁石16と、回転子磁心24の内面24aから磁石挿入孔12に通じる貫通孔23と、を備える。本実施形態において、中空部材11が内面に印加される内圧によって拡管成形される。これに伴い、中空部材11が貫通孔23に沿って変形し、永久磁石16を回転子磁心24に押圧固定する。   For example, an embodiment like the permanent magnet rotor 20 shown in FIG. 3 may be used as the second embodiment. The permanent magnet rotor 20 includes a hollow member 11, a rotor magnetic core 24 in which the magnet insertion hole 12 is formed, a permanent magnet 16 inserted into the magnet insertion hole 12, and a magnet insertion hole from the inner surface 24 a of the rotor magnetic core 24. And a through-hole 23 communicating with 12. In the present embodiment, the hollow member 11 is expanded by an internal pressure applied to the inner surface. Along with this, the hollow member 11 is deformed along the through hole 23, and the permanent magnet 16 is pressed and fixed to the rotor magnetic core 24.

回転子磁心24は、表面の絶縁された同一形状(平面視円環状)の電磁鋼板を軸方向に積層して形成された円筒状の部品である。この電磁鋼板にはプレス加工で打ち抜かれた複数の開口孔が形成されている。本実施形態では、この開口孔を重ねて回転子磁心24に複数の磁石挿入孔12が形成される。ここで、開口孔が形成された電磁鋼板のうち、その一部の電磁鋼板には、回転子磁心24の内面24aから開口部に通じる貫通部が形成されている。この貫通部を重ねて回転子磁心24に貫通孔23が形成される。   The rotor magnetic core 24 is a cylindrical part formed by laminating electromagnetic steel plates having the same shape (annular shape in plan view) whose surfaces are insulated in the axial direction. A plurality of opening holes punched by press working are formed in this electromagnetic steel sheet. In the present embodiment, a plurality of magnet insertion holes 12 are formed in the rotor magnetic core 24 by overlapping the opening holes. Here, among the electromagnetic steel sheets in which the opening holes are formed, a part of the electromagnetic steel sheets is formed with a through portion that leads from the inner surface 24a of the rotor magnetic core 24 to the opening. A through hole 23 is formed in the rotor magnetic core 24 by overlapping the through portions.

本実施形態においても、上述した中空部材11の拡管成形の工程と同様の工程が行われる。このため、以下の説明においては、本実施形態に係る永久磁石回転子20の特徴点に関する説明のみを行い、上記拡管成形と同様の作用を奏する同一の工程については説明を省略する。これは、後述する他の実施形態の説明においても同様とする。   Also in this embodiment, the process similar to the process of pipe expansion molding of the hollow member 11 mentioned above is performed. For this reason, in the following description, only the feature point of the permanent magnet rotor 20 according to the present embodiment will be described, and the description of the same process that exhibits the same operation as the tube expansion molding will be omitted. The same applies to the description of other embodiments described later.

中空部材11を変形させる工程(図2(b)参照)において、内面11aに内圧を印加された中空部材11は径方向に膨張し、外面11bが回転子磁心24の内面24aと接触する。この内圧をさらに印加すると、中空部材11は回転子磁心24の内面24aに沿って塑性変形するとともに、外面11bが貫通孔23に沿って変形し、磁石挿入孔12に挿入された永久磁石16と接触する。ここから内圧をさらに印加すると、中空部材11の外面11bが永久磁石16を径方向に押圧し、永久磁石16が回転子磁心24に固定される。   In the step of deforming the hollow member 11 (see FIG. 2B), the hollow member 11 to which the internal pressure is applied to the inner surface 11a expands in the radial direction, and the outer surface 11b contacts the inner surface 24a of the rotor magnetic core 24. When this internal pressure is further applied, the hollow member 11 is plastically deformed along the inner surface 24 a of the rotor magnetic core 24, and the outer surface 11 b is deformed along the through hole 23, and the permanent magnet 16 inserted into the magnet insertion hole 12. Contact. When an internal pressure is further applied from here, the outer surface 11 b of the hollow member 11 presses the permanent magnet 16 in the radial direction, and the permanent magnet 16 is fixed to the rotor magnetic core 24.

本実施形態に係る永久磁石回転子20によれば、拡管成形の工程において、磁石挿入孔12に挿入された永久磁石16は、貫通孔23に沿って変形した中空部材11の外面11bに押圧され回転子磁心24に固定される。中空部材11は温度変化等による変形がほとんど発生しない。このため、冷媒にさらされた環境下であっても、回転子磁心24に対する永久磁石16の固定状態には経時的な変化がほとんど発生しない。これにより、冷媒中で駆動する永久磁石電動機に適した永久磁石回転子を提供することができる。   According to the permanent magnet rotor 20 according to the present embodiment, the permanent magnet 16 inserted into the magnet insertion hole 12 is pressed by the outer surface 11b of the hollow member 11 deformed along the through hole 23 in the tube expansion molding process. Fixed to the rotor magnetic core 24. The hollow member 11 hardly deforms due to a temperature change or the like. For this reason, even in an environment exposed to a refrigerant, the temporal change hardly occurs in the fixed state of the permanent magnet 16 with respect to the rotor magnetic core 24. Thereby, the permanent magnet rotor suitable for the permanent magnet electric motor driven in a refrigerant | coolant can be provided.

また、本実施形態に係る永久磁石回転子20の製造方法によれば、貫通孔23を含む回転子磁心24の内面24aが、金型としての機能を果たすため、回転子磁心24が本実施形態のような複雑な内面形状であっても、これに沿って中空部材11を変形させることができる。中空部材11で永久磁石16を直接押圧するため、中空部材11を変形させるための圧力調整が上述の永久磁石回転子10に比べて容易であり、より確実且つ強固に永久磁石16を固定することができる。   Further, according to the method for manufacturing the permanent magnet rotor 20 according to the present embodiment, the inner surface 24a of the rotor magnetic core 24 including the through holes 23 functions as a mold, and therefore the rotor magnetic core 24 is used in the present embodiment. Even with such a complicated inner surface shape, the hollow member 11 can be deformed along this shape. Since the permanent magnet 16 is directly pressed by the hollow member 11, the pressure adjustment for deforming the hollow member 11 is easier than that of the permanent magnet rotor 10 described above, and the permanent magnet 16 is fixed more securely and firmly. Can do.

上述の貫通孔23の数及び貫通孔23が形成される位置については特に制限されない。例えば、第二実施形態の変形例として図4に示す永久磁石回転子30のように、一の磁石挿入孔12に対して貫通孔23が軸方向に複数形成された回転子磁心34を備えた実施形態であってもよい。永久磁石回転子30によれば、永久磁石16を回転子磁心34の軸方向に対して、より強固に固定することができる。   The number of the through holes 23 and the position where the through holes 23 are formed are not particularly limited. For example, as a modification of the second embodiment, a rotor core 34 having a plurality of through holes 23 formed in the axial direction with respect to one magnet insertion hole 12 is provided, as in a permanent magnet rotor 30 shown in FIG. It may be an embodiment. According to the permanent magnet rotor 30, the permanent magnet 16 can be more firmly fixed with respect to the axial direction of the rotor magnetic core 34.

図示しないが、貫通孔23が周方向に複数形成された回転子磁心を用いることもできる。この場合、永久磁石16を回転子磁心の周方向に対してより強固に固定することができる。あるいは、これらの配置を適宜組み合せた貫通孔23が設けられた回転子磁心を用いてもよい。   Although not shown, a rotor core having a plurality of through holes 23 formed in the circumferential direction can also be used. In this case, the permanent magnet 16 can be more firmly fixed with respect to the circumferential direction of the rotor magnetic core. Or you may use the rotor magnetic core provided with the through-hole 23 which combined these arrangement | positioning suitably.

ところで、回転子磁心の内面形状が複雑になるほど、中空部材11の拡管成形も困難になる。特に、膨張させられた中空部材11の肉厚は、回転子磁心24、34の内面のどの位置と接触しているかによって厚みに差異が生じる。このような場合は、中空部材11を変形させる工程において、中空部材11の両端を軸方向に圧縮して肉厚を調整する軸押し工程を含めてもよい。これにより、変形させられる中空部材11の肉厚をより均一にすることが可能となり、各貫通孔23に沿って変形した中空部材11が、永久磁石16を押圧する圧力を均一にすることができる。   By the way, the more complicated the inner surface shape of the rotor magnetic core, the more difficult the tube expansion of the hollow member 11 becomes. In particular, the thickness of the expanded hollow member 11 varies in thickness depending on which position on the inner surface of the rotor magnetic cores 24 and 34 is in contact. In such a case, the step of deforming the hollow member 11 may include a shaft pressing step of adjusting the thickness by compressing both ends of the hollow member 11 in the axial direction. Thereby, it becomes possible to make the thickness of the hollow member 11 to be deformed more uniform, and the hollow member 11 deformed along each through hole 23 can make the pressure for pressing the permanent magnet 16 uniform. .

また、貫通孔23の数が増えるほど回転子磁心24、34の剛性が低下し、永久磁石回転子20、30の機械的強度が低下し過ぎるおそれがある。貫通孔23が大きくなる場合も同様のおそれがある。機械的強度が過度に低下すると、永久磁石回転子20、30が回転するときに回転子磁心24、34にかかる力によって回転子磁心24、34が変形し、永久磁石16の固定が不十分になる可能性がある。したがって、貫通孔23の数、貫通孔23が形成される位置、及び貫通孔23の大きさについては、例えば、回転子磁心24、34の大きさ、採用する永久磁石電動機の性能などに応じて適宜設計される。   Further, as the number of through holes 23 increases, the rigidity of the rotor magnetic cores 24 and 34 decreases, and the mechanical strength of the permanent magnet rotors 20 and 30 may be excessively decreased. There is a similar risk when the through-hole 23 becomes large. If the mechanical strength is excessively reduced, the rotor magnetic cores 24 and 34 are deformed by the force applied to the rotor magnetic cores 24 and 34 when the permanent magnet rotors 20 and 30 rotate, and the permanent magnets 16 are not sufficiently fixed. There is a possibility. Therefore, the number of the through holes 23, the positions where the through holes 23 are formed, and the size of the through holes 23 depend on, for example, the size of the rotor magnetic cores 24 and 34, the performance of the permanent magnet motor to be employed, and the like. It is designed appropriately.

また、第二実施形態の他の変形例として図5に示す永久磁石回転子40のような実施形態であってもよい。永久磁石回転子40は、貫通孔43が、回転子磁心44の内面44aから磁石挿入孔12に通じるとともに、回転子磁心44の軸方向にも連通する溝状に形成されている。貫通孔43の周方向の幅は、永久磁石回転子40の機械的強度が低下し過ぎない程度に適宜設計される。   Moreover, embodiment like the permanent magnet rotor 40 shown in FIG. 5 as another modification of 2nd embodiment may be sufficient. In the permanent magnet rotor 40, the through hole 43 is formed in a groove shape that communicates from the inner surface 44 a of the rotor magnetic core 44 to the magnet insertion hole 12 and also communicates in the axial direction of the rotor magnetic core 44. The circumferential width of the through-hole 43 is appropriately designed to such an extent that the mechanical strength of the permanent magnet rotor 40 does not decrease excessively.

永久磁石回転子40によれば、中空部材11は軸方向に連通する溝状に形成された貫通孔44に沿って変形する。このため、変形した中空部材11の外面11bが、永久磁石16の軸方向の両端の一部を覆う。したがって、拡管成形された中空部材11によって、永久磁石16を径方向に押圧し回転子磁心44に固定するのみならず、永久磁石16を軸方向に対しても回転子磁心44に固定することができる。   According to the permanent magnet rotor 40, the hollow member 11 is deformed along the through hole 44 formed in a groove shape communicating in the axial direction. For this reason, the deformed outer surface 11 b of the hollow member 11 covers a part of both ends of the permanent magnet 16 in the axial direction. Therefore, not only the permanent magnet 16 is pressed in the radial direction and fixed to the rotor magnetic core 44 by the hollow member 11 formed by the tube expansion, but the permanent magnet 16 can be fixed to the rotor magnetic core 44 also in the axial direction. it can.

また、永久磁石回転子40の製造方法によれば、上述の拡管成形を行うことにより、回転子磁心44に対する永久磁石16の径方向及び軸方向の固定を一つの工程で達成することができる。これにより、永久磁石回転子40の生産効率が向上するとともに、永久磁石16をより確実且つ強固に固定することができる。中空部材11及び回転子磁心44は耐冷媒性を有するため、冷媒にさらされた環境であっても固定状態は劣化しない。   Moreover, according to the manufacturing method of the permanent magnet rotor 40, the radial and axial fixation of the permanent magnet 16 with respect to the rotor magnetic core 44 can be achieved in one step by performing the above-described tube expansion molding. As a result, the production efficiency of the permanent magnet rotor 40 can be improved, and the permanent magnet 16 can be more reliably and firmly fixed. Since the hollow member 11 and the rotor magnetic core 44 have refrigerant resistance, the fixed state does not deteriorate even in an environment exposed to the refrigerant.

第三実施形態として図6に示す永久磁石回転子50のような実施形態であってもよい。永久磁石回転子50は、中空部材11と、保持部材57と、中空部材11と保持部材57との間に配置された永久磁石56と、回転子磁心54とを備える。本実施形態において、中空部材11、永久磁石56、及び保持部材57は、中空部材11の内面11aに内圧を印加する拡管成形によって一体化され、回転子磁心54の外面54bに取り付けられる。   The third embodiment may be an embodiment such as the permanent magnet rotor 50 shown in FIG. The permanent magnet rotor 50 includes a hollow member 11, a holding member 57, a permanent magnet 56 disposed between the hollow member 11 and the holding member 57, and a rotor magnetic core 54. In the present embodiment, the hollow member 11, the permanent magnet 56, and the holding member 57 are integrated by tube expansion forming an internal pressure on the inner surface 11 a of the hollow member 11 and attached to the outer surface 54 b of the rotor magnetic core 54.

永久磁石56は、異なる極性(N極、S極)を有する磁極面が互いに対向し、平面形状が1/4円弧状に形成された板状の磁石を環状に配置したものである。永久磁石56は、隣り合う各永久磁石56の磁極面の極性が異なるように配置されている。永久磁石56の大きさは、回転子磁心54の大きさ等に合わせて適宜設計される。永久磁石56は、例えば、保磁力が高く減磁しにくいネオジム磁石を用いるのが好ましいが、その他の種類の磁石(例えば、フェライト磁石、サマリウムコバルト磁石など)を用いてもよい。   The permanent magnet 56 is formed by annularly arranging plate-like magnets having magnetic pole faces having different polarities (N pole, S pole) facing each other and having a planar shape of a quarter arc. The permanent magnets 56 are arranged so that the polarities of the magnetic pole surfaces of the adjacent permanent magnets 56 are different. The size of the permanent magnet 56 is appropriately designed according to the size of the rotor magnetic core 54 and the like. As the permanent magnet 56, for example, a neodymium magnet having a high coercive force and not easily demagnetized is preferably used, but other types of magnets (for example, a ferrite magnet, a samarium cobalt magnet, etc.) may be used.

保持部材57は、永久磁石56を保持するために設けられる環状部材である。保持部材57の内径は、環状に配置した永久磁石56の外径とほぼ等しい。保持部材57の材質としては、通常の機械的強度に加えて化学的強度および温度変化についての耐久性(耐冷媒性)を有する材料が用いられる。   The holding member 57 is an annular member provided to hold the permanent magnet 56. The inner diameter of the holding member 57 is substantially equal to the outer diameter of the annular permanent magnet 56. As the material of the holding member 57, a material having chemical strength and durability against temperature change (refrigerant resistance) in addition to normal mechanical strength is used.

回転子磁心54は、中空部材11、永久磁石56、及び保持部材57を外面54bで支持するための支持部材である。回転子磁心54は円筒状又は円柱状に形成されており、回転軸心Oが中心を通る仮想直線と一致するように回転軸101が取り付けられている。   The rotor magnetic core 54 is a support member for supporting the hollow member 11, the permanent magnet 56, and the holding member 57 with the outer surface 54b. The rotor magnetic core 54 is formed in a cylindrical shape or a columnar shape, and the rotation shaft 101 is attached so that the rotation axis O coincides with a virtual straight line passing through the center.

中空部材11を変形させる工程(図2(b)参照)において、内面11aに内圧を印加された中空部材11は径方向に膨張し、外面11bが永久磁石56の内面56aと接触する。この内圧をさらに印加すると、中空部材11の外面11bが永久磁石56の内面56aを押圧する。これに伴い、永久磁石56の外面56bが保持部材57の内面57aを押圧し、中空部材11、永久磁石56、及び保持部材57が一体化される。これらは、一体化された後、回転子磁心54の外面54bに固定される。   In the step of deforming the hollow member 11 (see FIG. 2B), the hollow member 11 to which the internal pressure is applied to the inner surface 11 a expands in the radial direction, and the outer surface 11 b comes into contact with the inner surface 56 a of the permanent magnet 56. When this internal pressure is further applied, the outer surface 11 b of the hollow member 11 presses the inner surface 56 a of the permanent magnet 56. Accordingly, the outer surface 56b of the permanent magnet 56 presses the inner surface 57a of the holding member 57, and the hollow member 11, the permanent magnet 56, and the holding member 57 are integrated. After these are integrated, they are fixed to the outer surface 54 b of the rotor magnetic core 54.

本実施形態に係る永久磁石回転子50によれば、拡管成形の工程において、中空部材11、永久磁石16、及び保持部材57が一体化される。中空部材11及び保持部材57は温度変化等による変形がほとんど発生しない。このため、冷媒にさらされた環境下であっても、一体化された中空部材11、永久磁石16、及び保持部材57の固定状態には経時的な変化がほとんど発生しない。これにより、冷媒中で駆動する永久磁石電動機に適した永久磁石回転子を提供することができる。   According to the permanent magnet rotor 50 according to the present embodiment, the hollow member 11, the permanent magnet 16, and the holding member 57 are integrated in the tube expansion molding process. The hollow member 11 and the holding member 57 are hardly deformed by a temperature change or the like. For this reason, even in an environment exposed to a refrigerant, the temporal change hardly occurs in the fixed state of the integrated hollow member 11, permanent magnet 16, and holding member 57. Thereby, the permanent magnet rotor suitable for the permanent magnet electric motor driven in a refrigerant | coolant can be provided.

本発明の実施形態に係る永久磁石回転子10〜50の製造方法において、中空部材11の拡管成形は、中空部材11の中空部11cに挿入された成形治具を中空部材11の内面11aに沿って軸方向に通過させて、中空部材11を拡径させる工程を含む成形方法であってもよい。成形治具として、先端部に拡管部材を備えたマンドレルなどを用いることができる。例えば、永久磁石回転子10、50を製造する場合は、テーパー状の拡管部材を備えたマンドレルを使用すればよい。また、永久磁石回転子20、30、40を製造する場合は、内面11aに対する局所的な拡径を可能にするために、拡管部材の一部が部分的に張り出す開きマンドレルを使用すればよい。これにより、中空部材11を貫通孔23、43に沿って塑性変形させ、永久磁石16を押圧固定することができる。このような工程を含む拡管成形を採用しても永久磁石回転子10〜50を製造することができる。   In the manufacturing method of the permanent magnet rotors 10 to 50 according to the embodiment of the present invention, the tube forming of the hollow member 11 is performed by using a forming jig inserted into the hollow portion 11 c of the hollow member 11 along the inner surface 11 a of the hollow member 11. Thus, a molding method including a step of expanding the diameter of the hollow member 11 by passing in the axial direction may be used. As the forming jig, a mandrel having a tube expansion member at the tip can be used. For example, when the permanent magnet rotors 10 and 50 are manufactured, a mandrel having a tapered pipe expanding member may be used. Moreover, when manufacturing the permanent magnet rotor 20, 30, 40, in order to enable local diameter expansion with respect to the inner surface 11a, an open mandrel in which a part of the tube expansion member partially protrudes may be used. . Thereby, the hollow member 11 can be plastically deformed along the through holes 23 and 43 and the permanent magnet 16 can be pressed and fixed. The permanent magnet rotors 10 to 50 can be manufactured even if tube expansion including such steps is employed.

尚、本発明は、その趣旨を逸脱しない範囲で当業者の知識に基づいて種々なる改良、修正、又は変形を加えた態様でも実施できる。また、同一の作用又は効果が生じる範囲内で、何れかの発明特定事項を他の技術に置換した形態で実施しても良い。   It should be noted that the present invention can be implemented in a mode in which various improvements, modifications, or variations are added based on the knowledge of those skilled in the art without departing from the spirit of the present invention. Moreover, you may implement with the form which substituted any invention specific matter to the other technique within the range which the same effect | action or effect produces.

本発明の永久磁石回転子10、20、30、40はIPM型(埋込み磁石型)同期電動機に用いられ、永久磁石回転子50はSPM型(表面磁石型)同期電動機に用いられる。これらの永久磁石回転子10〜50を用いた電動機は、冷媒にさらされる環境であっても高い信頼性を有するため、特に、空気調和機などに用いられる密閉型あるいは半密閉型の圧縮機に好適である。   The permanent magnet rotor 10, 20, 30, 40 of the present invention is used in an IPM type (embedded magnet type) synchronous motor, and the permanent magnet rotor 50 is used in an SPM type (surface magnet type) synchronous motor. Since the electric motor using these permanent magnet rotors 10 to 50 has high reliability even in an environment exposed to a refrigerant, it is particularly suitable for a hermetic or semi-hermetic compressor used in an air conditioner or the like. Is preferred.

10、20、30、40、50:永久磁石回転子
11:中空部材
11a:中空部材の内面
11b:中空部材の外面
12:磁石挿入孔
14、24、34、44、54:回転子磁心
14a、24a、44a:回転子磁心の内面
16、56:永久磁石
23、43:貫通孔
57:保持部材
10, 20, 30, 40, 50: Permanent magnet rotor 11: Hollow member 11a: Inner surface of hollow member 11b: Outer surface of hollow member 12: Magnet insertion hole 14, 24, 34, 44, 54: Rotor magnetic core 14a, 24a, 44a: Inner surface of rotor magnetic core 16, 56: Permanent magnet 23, 43: Through hole 57: Holding member

Claims (4)

内面と外面とを有する管状の中空部材と、
前記中空部材の外面を取り囲むように配置され、複数の磁石挿入孔が形成されているとともに、その内面と該磁石挿入孔各々との距離が最も短い複数の薄肉部を有する円筒状の回転子磁心と、
前記磁石挿入孔の各々に挿入された複数の永久磁石と、を備え、
前記永久磁石の各々は、
前記中空部材が内面に印加される内圧によって拡管成形されたことで前記薄肉部の各々が該中空部材の外面に押圧され、前記回転子磁心の径方向への変形が生じた前記磁石挿入孔の該径方向に対向する内面に挟み込まれた状態で、前記回転子磁心に押圧固定されていることを特徴とする永久磁石回転子。
A tubular hollow member having an inner surface and an outer surface;
A cylindrical rotor magnetic core that is disposed so as to surround the outer surface of the hollow member, has a plurality of magnet insertion holes, and has a plurality of thin-walled portions with the shortest distance between the inner surface and each of the magnet insertion holes. When,
A plurality of permanent magnets inserted into each of the magnet insertion holes,
Each of the permanent magnets is
Each of the thin portions is pressed against the outer surface of the hollow member as a result of the hollow member being expanded by an internal pressure applied to the inner surface, and the rotor core is deformed in the radial direction. in a state of being sandwiched on the inner surface facing the該径direction, the permanent magnet rotor, characterized in Tei Rukoto is pressed and fixed to the rotor core.
内面と外面とを有する管状の中空部材と、
前記中空部材の外面を取り囲むように配置され、複数の磁石挿入孔が形成されているとともに、その内面から該磁石挿入孔の各々に通じる複数の貫通孔が設けられた円筒状の回転子磁心と、
前記磁石挿入孔の各々に挿入された複数の永久磁石と、を備え、
前記永久磁石の各々は、
前記中空部材が内面に印加される内圧によって拡管成形されたことで前記貫通孔に沿って変形した該中空部材の外面に押圧され、前記回転子磁心の径方向の外側に位置する前記磁石挿入孔の内面に押し付けられた状態で、前記回転子磁心に押圧固定されていることを特徴とする永久磁石回転子。
A tubular hollow member having an inner surface and an outer surface;
A cylindrical rotor magnetic core disposed so as to surround the outer surface of the hollow member, a plurality of magnet insertion holes being formed, and a plurality of through holes extending from the inner surface to each of the magnet insertion holes; ,
And a plurality of permanent magnets inserted into each of the magnet insertion holes,
Each of the permanent magnets is
The magnet insertion hole located on the outer side in the radial direction of the rotor magnetic core is pressed against the outer surface of the hollow member deformed along the through-hole as a result of the hollow member being expanded by an internal pressure applied to the inner surface. in a state pressed against the inner surface, the permanent magnet rotor characterized that you have been pressed and fixed to the rotor core.
一の前記磁石挿入孔に対して前記貫通孔が複数形成されていることを特徴とする請求項2に記載の永久磁石回転子。The permanent magnet rotor according to claim 2, wherein a plurality of the through holes are formed with respect to one magnet insertion hole. 前記貫通孔が、前記回転子磁心の軸方向に連通する溝状に形成されていることを特徴とする請求項2又は請求項3に記載の永久磁石回転子。4. The permanent magnet rotor according to claim 2, wherein the through hole is formed in a groove shape communicating in the axial direction of the rotor magnetic core. 5.
JP2010203862A 2010-09-13 2010-09-13 Permanent magnet rotor and manufacturing method thereof Active JP5561542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010203862A JP5561542B2 (en) 2010-09-13 2010-09-13 Permanent magnet rotor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010203862A JP5561542B2 (en) 2010-09-13 2010-09-13 Permanent magnet rotor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012060839A JP2012060839A (en) 2012-03-22
JP5561542B2 true JP5561542B2 (en) 2014-07-30

Family

ID=46057261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010203862A Active JP5561542B2 (en) 2010-09-13 2010-09-13 Permanent magnet rotor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5561542B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107994701A (en) * 2017-12-12 2018-05-04 泛仕达机电股份有限公司 A kind of novel motor rotor structure
WO2024195747A1 (en) * 2023-03-20 2024-09-26 ニデック株式会社 Rotor and method for manufacturing rotor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09331657A (en) * 1996-06-10 1997-12-22 Denso Corp Manufacture of yoke of magnet-type motor
JP3659012B2 (en) * 1998-08-21 2005-06-15 神鋼電機株式会社 Rotor for permanent magnet type rotating electrical machine and method for manufacturing the same
JP2000069720A (en) * 1998-08-24 2000-03-03 Honda Motor Co Ltd Sealing method and mechanism at the time of applying tubular member to rotor magnet
JP3752927B2 (en) * 1999-11-05 2006-03-08 いすゞ自動車株式会社 Claw pole type rotating machine
JP2007267520A (en) * 2006-03-29 2007-10-11 Aisin Seiki Co Ltd Rotor for brushless motor and brushless motor
JP5190318B2 (en) * 2008-09-02 2013-04-24 株式会社三井ハイテック Permanent magnet type laminated iron core and manufacturing method thereof

Also Published As

Publication number Publication date
JP2012060839A (en) 2012-03-22

Similar Documents

Publication Publication Date Title
JP6656428B2 (en) Stator, electric motor, compressor, and refrigeration air conditioner
US11088577B2 (en) Permanent magnet synchronous machine and method for manufacturing permanent magnet synchronous machine stator
JP5929561B2 (en) Electric rotating machine and manufacturing method thereof
JP6444497B2 (en) Rotating electric machine and manufacturing method thereof
JP5040988B2 (en) Stator and motor provided with the stator
JP2008104325A (en) Stator core and rotary electric machine
WO2013187050A1 (en) Rotary electric machine
JP2012023861A (en) Armature core and motor
US10985637B2 (en) Laminated core manufacturing method
JP2014011890A5 (en)
JP2008086187A (en) End plate of electric motor
JP5638705B2 (en) Electric motor laminated core
JPWO2018138866A1 (en) Stator, electric motor, compressor, and refrigeration air conditioner
CN109687656B (en) Method for manufacturing core of rotating electrical machine and core of rotating electrical machine
JP5561542B2 (en) Permanent magnet rotor and manufacturing method thereof
JP2012151970A (en) Magnet embedded type rotor and motor
JP5033320B2 (en) Method for manufacturing stator of electric motor
JP5274496B2 (en) Magnetic metal body and method for manufacturing rotating electrical machine using magnetic metal body
JP2005168127A (en) Permanent magnet type rotor
JP5919629B2 (en) Method for manufacturing permanent magnet rotor
JP6057777B2 (en) Stator, hermetic compressor and rotary machine including the stator, and mold
JP2009060754A (en) Core for stator, the stator, method for assembling the core and motor
JP2003264944A (en) Stator core assembly of motor, and method of mounting stator assembly
JP2010063205A (en) Rotor and method for manufacturing the rotor
JP5109737B2 (en) Method for manufacturing split stator core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140528

R151 Written notification of patent or utility model registration

Ref document number: 5561542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151