JP7132486B2 - stator core and compressor - Google Patents

stator core and compressor Download PDF

Info

Publication number
JP7132486B2
JP7132486B2 JP2018062276A JP2018062276A JP7132486B2 JP 7132486 B2 JP7132486 B2 JP 7132486B2 JP 2018062276 A JP2018062276 A JP 2018062276A JP 2018062276 A JP2018062276 A JP 2018062276A JP 7132486 B2 JP7132486 B2 JP 7132486B2
Authority
JP
Japan
Prior art keywords
core body
stacking direction
insulating member
core
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018062276A
Other languages
Japanese (ja)
Other versions
JP2019176619A (en
Inventor
祥司郎 中
玲 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2018062276A priority Critical patent/JP7132486B2/en
Publication of JP2019176619A publication Critical patent/JP2019176619A/en
Application granted granted Critical
Publication of JP7132486B2 publication Critical patent/JP7132486B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

本開示は、固定子コア及び圧縮機に関するものである。 The present disclosure relates to stator cores and compressors.

従来より、例えば特許文献1には、複数枚の鋼板が積層されて構成されたコア本体とコア本体を覆うように設けられた樹脂材料を含む絶縁部材とを備えるモータの固定子が開示されている。 Conventionally, for example, Patent Document 1 discloses a stator for a motor including a core body configured by stacking a plurality of steel plates and an insulating member containing a resin material provided so as to cover the core body. there is

特開2002―084698号公報Japanese Unexamined Patent Application Publication No. 2002-084698

ところで、製造工数や部品の点数の削減のために、コア本体に絶縁部材を射出成形等により一体成形することが提案されている。しかし、絶縁部材は、コア本体とは異なる材料からできているので、線膨張係数がコア本体とは異なっている。このため、モータの温度変化によって、絶縁部材には、コア本体との線膨張係数の違いに起因する熱応力が生じる。例えば、空気調和装置の圧縮機等の温度変化が大きいものにモータが設けられている場合、絶縁部材に生じる熱応力は特に大きくなってしまい、絶縁部材のうちコア本体の積層方向中間部を覆う部分が破断してしまうおそれがあった。 By the way, in order to reduce the manufacturing man-hours and the number of parts, it has been proposed to integrally mold the insulating member with the core body by injection molding or the like. However, since the insulating member is made of a material different from that of the core body, the coefficient of linear expansion is different from that of the core body. Therefore, due to the temperature change of the motor, thermal stress is generated in the insulating member due to the difference in coefficient of linear expansion from that of the core body. For example, when a motor is installed in a compressor of an air conditioner that undergoes large temperature changes, the thermal stress generated in the insulating member becomes particularly large, and the insulating member covers the middle portion of the core body in the stacking direction. There was a risk that the part would break.

本開示の目的は、絶縁部材に生じる熱応力を低減することにある。 An object of the present disclosure is to reduce the thermal stress that occurs in the insulating member.

本開示の第1の態様は、電動機(15)に設けられる固定子コア(70)において、複数枚の鋼板が積層されて構成されたコア本体(40)と、上記コア本体(40)に一体に設けられ上記コア本体(40)と線膨張係数が異なる絶縁部材(60)とを備え、上記絶縁部材(60)は、上記コア本体(40)の積層方向一端面に設けられた第1絶縁部(61)と、上記コア本体(40)の積層方向他端面に設けられた第2絶縁部(62)と、上記第1絶縁部(61)と上記第2絶縁部(62)との間に位置し、上記第1絶縁部(61)及び上記第2絶縁部(62)と一体に設けられた第3絶縁部(63)とを備え、上記第1絶縁部(61)と上記第2絶縁部(62)との間には、上記絶縁部材(60)に生じる上記積層方向の応力を緩和する応力緩和層(80)が上記コア本体(40)と隣接するように積層配置されていることを特徴とする。 According to a first aspect of the present disclosure, in a stator core (70) provided in an electric motor (15), a core body (40) configured by stacking a plurality of steel plates, and a core body (40) integrated with the core body (40). and an insulating member (60) having a coefficient of linear expansion different from that of the core body (40), wherein the insulating member (60) is a first insulating member provided on one end surface of the core body (40) in the stacking direction. between the portion (61), a second insulating portion (62) provided on the other end face in the stacking direction of the core body (40), and the first insulating portion (61) and the second insulating portion (62) and a third insulating portion (63) provided integrally with the first insulating portion (61) and the second insulating portion (62), wherein the first insulating portion (61) and the second Between the insulating part (62) and the stress relaxation layer (80) for relieving the stress in the stacking direction generated in the insulating member (60), the stress relaxation layer (80) is laminated so as to be adjacent to the core body (40). It is characterized by

第1の態様では、応力緩和層(80)が設けられているので、絶縁部材(60)に生じるコア本体(40)の積層方向の熱応力を低減することができる。特に、第1絶縁部(61)と第2絶縁部(62)との間に位置する第3絶縁部(63)に生じる熱応力を低減することができる。 In the first aspect, since the stress relieving layer (80) is provided, the thermal stress in the stacking direction of the core body (40) generated in the insulating member (60) can be reduced. In particular, thermal stress generated in the third insulating portion (63) positioned between the first insulating portion (61) and the second insulating portion (62) can be reduced.

本開示の第2の態様は、上記第1の態様において、上記コア本体(40)の線膨張係数は、上記絶縁部材(60)の線膨張係数よりも大きく、上記応力緩和層(80)は、上記絶縁部材(60)の上記積層方向の膨張量と上記コア本体(40)の上記積層方向の膨張量との差に応じて上記積層方向に収縮し、上記絶縁部材(60)の上記積層方向の収縮量と上記コア本体(40)の上記積層方向の収縮量との差に応じて上記積層方向に膨張することを特徴とする。 A second aspect of the present disclosure is the first aspect, wherein the coefficient of linear expansion of the core body (40) is greater than the coefficient of linear expansion of the insulating member (60), and the stress relaxation layer (80) is , the insulating member (60) shrinks in the stacking direction according to the difference between the amount of expansion of the insulating member (60) in the stacking direction and the amount of expansion of the core body (40) in the stacking direction. The core body (40) expands in the stacking direction according to the difference between the amount of shrinkage in the direction and the amount of shrinkage of the core body (40) in the stacking direction.

第2の態様では、コア本体(40)の線膨張係数が、絶縁部材(60)の線膨張係数よりも大きい場合において、絶縁部材(60)に生じるコア本体(40)の積層方向の熱応力を低減することができる。 In the second aspect, when the coefficient of linear expansion of the core body (40) is larger than the coefficient of linear expansion of the insulating member (60), thermal stress in the stacking direction of the core body (40) is generated in the insulating member (60). can be reduced.

本開示の第3の態様は、上記第1の態様において、上記コア本体(40)の線膨張係数は、上記絶縁部材(60)の線膨張係数よりも小さく、上記応力緩和層(80)は、上記絶縁部材(60)の上記積層方向の収縮量と上記コア本体(40)の上記積層方向の収縮量との差に応じて上記積層方向に収縮し、上記絶縁部材(60)の上記積層方向の膨張量と上記コア本体(40)の上記積層方向の膨張量との差に応じて上記積層方向に膨張することを特徴とする。 In a third aspect of the present disclosure, in the first aspect, the coefficient of linear expansion of the core body (40) is smaller than the coefficient of linear expansion of the insulating member (60), and the stress relaxation layer (80) has , the insulating member (60) shrinks in the stacking direction according to the difference between the amount of shrinkage in the stacking direction of the insulating member (60) and the amount of shrinkage of the core body (40) in the stacking direction. The core body (40) expands in the stacking direction according to the difference between the amount of expansion in the direction and the amount of expansion of the core body (40) in the stacking direction.

第3の態様では、コア本体(40)の線膨張係数が、絶縁部材(60)の線膨張係数よりも小さい場合において、絶縁部材(60)に生じるコア本体(40)の積層方向の熱応力を低減することができる。 In the third aspect, when the coefficient of linear expansion of the core body (40) is smaller than the coefficient of linear expansion of the insulating member (60), thermal stress in the stacking direction of the core body (40) is generated in the insulating member (60). can be reduced.

本開示の第4の態様は、上記第1~第3のいずれか一つの態様において、上記応力緩和層(80)には、弾性変形可能な応力緩和部材(81)が設けられていることを特徴とする。 According to a fourth aspect of the present disclosure, in any one of the first to third aspects, the stress relaxation layer (80) is provided with an elastically deformable stress relaxation member (81). Characterized by

第4の態様では、応力緩和部材(81)の弾性変形及び弾性復元によって、絶縁部材(60)に生じるコア本体(40)の積層方向の熱応力を低減することができる。 In the fourth aspect, the thermal stress in the stacking direction of the core body (40) generated in the insulating member (60) can be reduced by the elastic deformation and elastic restoration of the stress relaxation member (81).

本開示の第5の態様は、上記第4の態様において、上記応力緩和部材(81)は、上記コア本体(40)に対して反発するように付勢することを特徴とする。 A fifth aspect of the present disclosure is characterized in that, in the fourth aspect, the stress relaxation member (81) urges the core body (40) to repel.

第5の態様では、応力緩和層(80)が積層方向に膨張し易くなる。 In the fifth aspect, the stress relieving layer (80) expands easily in the stacking direction.

本開示の第6の態様は、上記第1~第5のいずれか一つの態様において開示された固定子コア(70)を有する電動機(15)を備えることを特徴とする圧縮機である。 A sixth aspect of the present disclosure is a compressor comprising an electric motor (15) having the stator core (70) disclosed in any one of the first to fifth aspects.

第6の態様では、圧縮機において、絶縁部材(60)に生じるコア本体(40)の積層方向の熱応力を低減することができる。 According to the sixth aspect, in the compressor, thermal stress in the stacking direction of the core body (40) generated in the insulating member (60) can be reduced.

図1は、実施形態1に係る圧縮機の断面図である。FIG. 1 is a cross-sectional view of a compressor according to Embodiment 1. FIG. 図2は、固定子コアの斜視図である。FIG. 2 is a perspective view of a stator core. 図3は、固定子コアの横断面を示す。FIG. 3 shows a cross section of the stator core. 図4は、ティース部の縦断面図を示す。FIG. 4 shows a longitudinal sectional view of the tooth portion. 図5は、固定子コアの横断面におけるティース部付近の拡大図である。FIG. 5 is an enlarged view of the vicinity of the tooth portion in the cross section of the stator core. 図6は、実施形態の変形例に係る図4相当図である。FIG. 6 is a view corresponding to FIG. 4 according to a modification of the embodiment.

《実施形態1》
本開示の実施形態1として、圧縮機用電動機の固定子コアの例を説明する。図1は、本開示の実施形態に係る圧縮機(10)の断面図である。同図に示すように、圧縮機(10)は、ケーシング(11)を有し、その内部に圧縮機構(12)、及び電動機(15)が収容されている。本実施形態の電動機(15)は、磁石埋込型の電動機である。電動機(15)の構成は、後に詳述する。また、圧縮機構(12)には、種々のものを採用可能であるが、一例としては、ロータリー式圧縮機構が挙げられる。この圧縮機構(12)と電動機(15)とは、駆動軸(13)で連結されており、電動機(15)の回転子(20)(後述)が回転すると、圧縮機構(12)が稼働する。
<<Embodiment 1>>
As Embodiment 1 of the present disclosure, an example of a stator core for a compressor motor will be described. FIG. 1 is a cross-sectional view of a compressor (10) according to an embodiment of the present disclosure. As shown in the figure, the compressor (10) has a casing (11) in which a compression mechanism (12) and an electric motor (15) are accommodated. The electric motor (15) of the present embodiment is a magnet-embedded electric motor. The configuration of the electric motor (15) will be detailed later. Various types of compression mechanism (12) can be used, and one example is a rotary compression mechanism. The compression mechanism (12) and the electric motor (15) are connected by a drive shaft (13), and when a rotor (20) (described later) of the electric motor (15) rotates, the compression mechanism (12) operates. .

圧縮機(10)では、圧縮機構(12)が稼働すると、圧縮機構(12)によって圧縮された流体(例えば冷媒)がケーシング(11)内に吐出され、ケーシング(11)内に吐出された流体は、ケーシング(11)に設けられた吐出管(14)から吐出される。圧縮機構(12)の稼働により、本実施形態では、ケーシング(11)内の温度は、例えば-30℃~150℃程度になる。すなわち、圧縮機(10)の運転中は、電動機(15)の温度も-30℃~150℃程度になる。 In the compressor (10), when the compression mechanism (12) operates, the fluid (for example, refrigerant) compressed by the compression mechanism (12) is discharged into the casing (11), and the fluid discharged into the casing (11) is discharged into the casing (11). is discharged from a discharge pipe (14) provided in the casing (11). By operating the compression mechanism (12), the temperature in the casing (11) is, for example, about -30°C to 150°C in this embodiment. That is, the temperature of the electric motor (15) is also about -30°C to 150°C during operation of the compressor (10).

〈電動機の構成〉
電動機(15)は、回転子(20)、及び固定子(30)を備えている。なお、以下の説明において、軸方向とは駆動軸(13)の軸心(O)の方向を意味し、また、径方向とは軸方向と直交する方向をそれぞれ意味する。外周側とは軸心(O)から遠離する側を意味し、また、内周側とは軸心(O)に近接する側をそれぞれ意味する。また、縦断面とは、軸心(O)に平行な断面を意味し、横断面とは軸心(O)に直交する断面を意味する。
<Electric motor configuration>
The electric motor (15) has a rotor (20) and a stator (30). In the following description, the axial direction means the direction of the axis (O) of the drive shaft (13), and the radial direction means the direction orthogonal to the axial direction. The outer peripheral side means the side farther from the axis (O), and the inner peripheral side means the side closer to the axis (O). A longitudinal section means a section parallel to the axis (O), and a transverse section means a section orthogonal to the axis (O).

-回転子-
回転子(20)は、回転子コア(21)、及び複数の永久磁石(22)を備え、それぞれの永久磁石(22)は、回転子コア(21)を軸方向に貫通している。これらの永久磁石(22)には、例えば、焼結磁石や、いわゆるボンド磁石が用いられる。
-Rotor-
The rotor (20) includes a rotor core (21) and a plurality of permanent magnets (22), each permanent magnet (22) passing axially through the rotor core (21). For these permanent magnets (22), for example, sintered magnets or so-called bonded magnets are used.

回転子コア(21)は、いわゆる積層コアである。具体的に、回転子コア(21)は、プレス加工機によって例えば厚さが0.2~0.5mmの電磁鋼板を打ち抜き加工して形成した複数のコア部材(23)が軸方向に積層されて構成されている。この例では、積層された多数枚のコア部材(23)間がカシメによって接合されることで、円筒状の回転子コア(21)が形成されている。なお、このコア部材(23)の原材料である電磁鋼板は、渦電流の発生を抑制する観点から、絶縁被覆されていることが好ましい。 The rotor core (21) is a so-called laminated core. Specifically, the rotor core (21) is formed by axially laminating a plurality of core members (23) formed by punching, for example, electromagnetic steel plates having a thickness of 0.2 to 0.5 mm using a press machine. configured as follows. In this example, a plurality of laminated core members (23) are joined by caulking to form a cylindrical rotor core (21). From the viewpoint of suppressing the generation of eddy currents, the magnetic steel sheet, which is the raw material of the core member (23), is preferably coated with an insulating material.

このコア部材(23)には、永久磁石(22)を収容する磁石用スロット(図示を省略)を形成するための貫通孔(図示を省略)が形成されている。また、回転子コア(21)には、その中心に軸穴(24)が形成されている。軸穴(24)には、負荷(ここでは、圧縮機構(12))を駆動するための駆動軸(13)が絞まり嵌め(例えば焼き嵌め)によって固定されている。したがって、回転子コア(21)の軸心と駆動軸(13)の軸心(O)とは同軸上に存在する。なお、一般的には、回転子(20)の軸方向両端には、端板(例えばステンレス鋼等の非磁性体の材料を用いて形成した円板状の部材)が設けられるが、図1等では、端板の図示を省略してある。 The core member (23) is formed with through holes (not shown) for forming magnet slots (not shown) that accommodate the permanent magnets (22). A shaft hole (24) is formed in the center of the rotor core (21). A drive shaft (13) for driving a load (here, the compression mechanism (12)) is fixed to the shaft hole (24) by interference fit (for example, shrink fit). Therefore, the axis of the rotor core (21) and the axis (O) of the drive shaft (13) are coaxial. In general, end plates (for example, disc-shaped members formed using a non-magnetic material such as stainless steel) are provided at both ends of the rotor (20) in the axial direction. etc., illustration of end plates is omitted.

-固定子-
固定子(30)は、コア本体(40)、巻線(50)、及び絶縁部材(60)を備えている。ここで、コア本体(40)に絶縁部材(60)を設けたもの(ただし巻線(50)は巻回されていない状態)を固定子コア(70)と呼ぶことにする。図2に、固定子コア(70)の斜視図を示す。また、図3に、固定子コア(70)の横断面を示す。コア本体(40)は、円筒状の、いわゆる積層コアである。具体的に、コア本体(40)は、プレス加工機によって例えば厚さが0.2~0.5mmの電磁鋼板を打ち抜き加工して形成した複数のコア部材(44)が軸方向に積層されて構成されている。積層されたコア部材(44)同士は、例えば、カシメによって接合されている。なお、コア部材(44)の原材料である電磁鋼板は、渦電流の発生を抑制する観点から、絶縁被覆されていることが好ましい。
-stator-
The stator (30) includes a core body (40), windings (50), and insulating members (60). Here, the core body (40) provided with the insulating member (60) (provided that the windings (50) are not wound) is called a stator core (70). FIG. 2 shows a perspective view of the stator core (70). Also, FIG. 3 shows a cross section of the stator core (70). The core body (40) is a cylindrical, so-called laminated core. Specifically, the core body (40) is formed by axially laminating a plurality of core members (44) formed by punching, for example, electromagnetic steel sheets having a thickness of 0.2 to 0.5 mm using a press machine. It is configured. The laminated core members (44) are joined together by caulking, for example. It is preferable that the magnetic steel sheet, which is the raw material of the core member (44), be coated with an insulation from the viewpoint of suppressing the generation of eddy currents.

図3に示すように、コア本体(40)は、1つのバックヨーク部(41)及び複数(この例では9つ)のティース部(42)を備えている。コア本体(40)は、横断面視で分割されておらず一体に形成されているいわゆる一体コアである。 As shown in FIG. 3, the core body (40) includes one back yoke portion (41) and a plurality of (nine in this example) teeth portions (42). The core body (40) is a so-called integrated core that is not divided and is integrally formed when viewed in cross section.

バックヨーク部(41)は、コア本体(40)の外周側における、横断面視で環状の部分である。バックヨーク部(41)は、分割されておらず一体に形成されている。コア本体(40)は、このバックヨーク部(41)の外周面がケーシング(11)の内周面に接触するように嵌め入れられることによって、ケーシング(11)内に固定される。 The back yoke portion (41) is an annular portion in a cross-sectional view on the outer peripheral side of the core body (40). The back yoke portion (41) is integrally formed without being divided. The core body (40) is fixed in the casing (11) by fitting the outer peripheral surface of the back yoke portion (41) into contact with the inner peripheral surface of the casing (11).

図4にティース部(42)の縦断面図を示す。図4は、図2におけるIV-IV断面に相当する。図4に示すように、コア本体(40)は、軸方向に分割されている。コア本体(40)は、図4において上側部分を構成する第1コア本体(40a)と下側部分を構成する第2コア本体(40b)とを備えている。第1コア本体(40a)と第2コア本体(40b)との間には、応力緩和層(80)が設けられている。応力緩和層(80)については後述する。 FIG. 4 shows a longitudinal sectional view of the tooth portion (42). FIG. 4 corresponds to the IV-IV cross section in FIG. As shown in FIG. 4, the core body (40) is split axially. The core body (40) includes a first core body (40a) forming an upper portion in FIG. 4 and a second core body (40b) forming a lower portion. A stress relaxation layer (80) is provided between the first core body (40a) and the second core body (40b). The stress relieving layer (80) will be described later.

各ティース部(42)は、コア本体(40)において径方向に伸びる直方体状の部分である。各ティース部(42)には、絶縁部材(60)を介して、巻線(50)が例えば集中巻方式で巻回される。相互に隣接するティース部(42)間の空間は、巻回される巻線(50)を収容するためのコイル用のスロット(45)として機能する。なお、巻線(50)は、例えば、被覆導線を用いて構成すればよい。以上により、各ティース部(42)には電磁石が構成されている。 Each tooth portion (42) is a rectangular parallelepiped portion extending radially in the core body (40). A winding (50) is wound around each tooth (42) via an insulating member (60), for example, by a concentrated winding method. The space between the teeth (42) adjacent to each other functions as a coil slot (45) for accommodating the winding (50) to be wound. In addition, the winding (50) may be configured using, for example, a coated conductor. As described above, each tooth portion (42) constitutes an electromagnet.

各ティース部(42)の先端部には、ツバ部(43)が形成されている。ツバ部(43)は、各ティース部(42)の先端部に連続して周方向に張り出した部分である。ツバ部(43)を含むティース部(42)の先端面(47)は円筒面であり、その円筒面は、回転子(20)の外周面(円筒面)と所定の距離(エアギャップ(G))をもって対向している。 A flange (43) is formed at the tip of each tooth (42). The flange portion (43) is a portion that is continuous with the tip portion of each tooth portion (42) and protrudes in the circumferential direction. The tip surface (47) of the teeth (42) including the flange (43) is a cylindrical surface, and the cylindrical surface is separated from the outer peripheral surface (cylindrical surface) of the rotor (20) by a predetermined distance (air gap (G )).

-応力緩和層-
図4に示すように、応力緩和層(80)は、第1コア本体(40a)及び第2コア本体(40b)と互いに隣接するように積層配置されている。応力緩和層(80)には、弾性変形可能な応力緩和部材(81)が設けられている。応力緩和部材(81)としては、例えば板バネが挙げられる。応力緩和部材(81)としての板バネは、積層方向(軸方向)に僅かに圧縮された状態で応力緩和層(80)に設けられているのが好ましい。このとき、応力緩和部材(81)は、第1コア本体(40a)を図4における上方に、第2コア本体(40b)を図4における下方にそれぞれ付勢している。すなわち、応力緩和部材(81)は、コア本体(40)に対して反発するように付勢する。また、応力緩和部材(81)は、積層方向に圧縮されるように弾性変形可能となっている。
-Stress relaxation layer-
As shown in FIG. 4, the stress relieving layer (80) is laminated so as to be adjacent to the first core body (40a) and the second core body (40b). The stress relaxation layer (80) is provided with an elastically deformable stress relaxation member (81). The stress relaxation member (81) may be, for example, a leaf spring. The leaf spring as the stress relaxation member (81) is preferably provided in the stress relaxation layer (80) in a state of being slightly compressed in the stacking direction (axial direction). At this time, the stress relaxation member (81) biases the first core body (40a) upward in FIG. 4 and the second core body (40b) downward in FIG. In other words, the stress relaxation member (81) repels the core body (40). Further, the stress relaxation member (81) is elastically deformable so as to be compressed in the stacking direction.

-絶縁部材-
絶縁部材(60)は、コア本体(40)と一体に設けられて、コア本体(40)を覆っている。これにより、絶縁部材(60)は、巻線(50)とコア本体(40)との間を電気的に絶縁している。本実施形態の絶縁部材(60)は、圧縮機(10)の運転中に、コア部材(44)(電磁鋼板)の積層方向において該コア部材(44)を、固定子コア(70)の軸方向両端から挟み込むように形成されている。
-Insulating material-
The insulating member (60) is provided integrally with the core body (40) to cover the core body (40). Thereby, the insulating member (60) electrically insulates between the winding (50) and the core body (40). During operation of the compressor (10), the insulating member (60) of the present embodiment is arranged such that the core member (44) (magnetic steel sheets) is aligned with the axis of the stator core (70) in the stacking direction of the core member (44). It is formed so as to be sandwiched from both ends in the direction.

図2~図5に示すように、絶縁部材(60)は、第1絶縁部(61)と、第2絶縁部(62)と、第3絶縁部(63)とを備えている。 As shown in FIGS. 2 to 5, the insulating member (60) includes a first insulating portion (61), a second insulating portion (62), and a third insulating portion (63).

第1絶縁部(61)は、コア本体(40)の図4における上端面を覆っている。具体的には、第1絶縁部(61)は、ティース部(42)の上端面全体を覆っている。第1絶縁部(61)は、バックヨーク部(41)の上端面のうち径方向内側を覆っている。なお、バックヨーク部(41)の上端面における径方向外側は、大部分が絶縁部材(60)に覆われていない。 The first insulating portion (61) covers the upper end surface of the core body (40) in FIG. Specifically, the first insulating portion (61) covers the entire upper end surfaces of the teeth (42). The first insulating portion (61) covers the radial inner side of the upper end surface of the back yoke portion (41). Most of the radially outer portion of the upper end surface of the back yoke portion (41) is not covered with the insulating member (60).

第2絶縁部(62)は、コア本体(40)の図4における下端面を覆っている。具体的には、第2絶縁部(62)は、ティース部(42)の下端面全体を覆っている。第2絶縁部(62)は、バックヨーク部(41)の下端面のうち径方向内側を覆っている。なお、バックヨーク部(41)の下端面における径方向外側は、大部分が絶縁部材(60)に覆われていない。 The second insulating portion (62) covers the lower end surface of the core body (40) in FIG. Specifically, the second insulating portion (62) covers the entire lower end surfaces of the teeth (42). The second insulating portion (62) covers the radial inner side of the lower end surface of the back yoke portion (41). Most of the radially outer portion of the lower end surface of the back yoke portion (41) is not covered with the insulating member (60).

第3絶縁部(63)は、第1絶縁部(61)及び上記第2絶縁部(62)と一体に設けられている。第3絶縁部(63)は、第1絶縁部(61)と第2絶縁部(62)との間を覆っている。具体的には、第3絶縁部(63)は、バックヨーク部(41)の内周面を覆っている。第3絶縁部(63)は、各ティース部(42)に対しては、スロット(45)に対向する面(側面(S1))を覆っている(図4、図5を参照)。なお、ティース部(42)の先端面(47)は、絶縁部材(60)には覆われていない(図2等を参照)。 The third insulating portion (63) is provided integrally with the first insulating portion (61) and the second insulating portion (62). The third insulating portion (63) covers between the first insulating portion (61) and the second insulating portion (62). Specifically, the third insulating portion (63) covers the inner peripheral surface of the back yoke portion (41). The third insulating portion (63) covers the surface (side surface (S1)) facing the slot (45) of each tooth (42) (see FIGS. 4 and 5). Note that the tip surfaces (47) of the teeth (42) are not covered with the insulating member (60) (see FIG. 2, etc.).

また、図5に示すように、絶縁部材(60)においてティース部(42)のツバ部(43)に対応する部分は、積層方向と直交する断面において、ティース部(42)の基端部(46)に対応する部分よりも厚くなるように形成されている。 Further, as shown in FIG. 5, the portion of the insulating member (60) corresponding to the flange (43) of the tooth (42) is the base end ( 46) is formed to be thicker than the corresponding portion.

上記構造を有する絶縁部材(60)は、いわゆるインサート成形によって、絶縁部材(60)となる樹脂材料(後述)がコア本体(40)に一体成形されることによって形成されている。 The insulating member (60) having the structure described above is formed by integrally molding a resin material (described later) that forms the insulating member (60) with the core body (40) by so-called insert molding.

絶縁部材(60)用の樹脂材料の選定においては、圧縮機(10)に組み込まれる電動機(15)では、該圧縮機(10)の運転中における電動機(15)の温度を考慮して絶縁部材(60)用の材料を選定する。絶縁部材(60)用の樹脂材料としては、積層方向における線膨張係数が、コア本体(40)の材料(電磁鋼板)より線膨張係数が小さいものを選定することが考えられる。なお、絶縁部材(60)用の樹脂材料は、樹脂温度が圧縮機(10)の運転中の温度よりも低くなった場合の強度も考慮すべきである。 In selecting the resin material for the insulating member (60), the temperature of the electric motor (15) incorporated in the compressor (10) during operation of the compressor (10) is taken into consideration when selecting the insulating member. Select the material for (60). As the resin material for the insulating member (60), it is conceivable to select a material having a coefficient of linear expansion in the stacking direction smaller than that of the material (electromagnetic steel sheet) of the core body (40). It should be noted that the resin material for the insulating member (60) should also take into consideration strength when the resin temperature becomes lower than the operating temperature of the compressor (10).

本実施形態では、一例として、絶縁部材(60)用の樹脂材料にガラス繊維を含む液晶ポリマー樹脂を挙げる。ガラス繊維の含有量は、絶縁部材(60)に求められる強度等に応じて適宜決めれば良いが、本実施形態では、一例として30%のガラス繊維を含有させた。樹脂材料にガラス繊維を含有させた場合には、インサート成形の際に、ガラス繊維が積層方向に配向した状態となるように、樹脂材料を注入するとよい。具体的には、コア本体(40)の軸方向端面側から樹脂材料を注入するとよい。 In this embodiment, liquid crystal polymer resin containing glass fiber is used as an example of the resin material for the insulating member (60). The content of the glass fiber may be appropriately determined according to the strength required for the insulating member (60), but in the present embodiment, 30% glass fiber is included as an example. When glass fibers are contained in the resin material, the resin material should be injected so that the glass fibers are oriented in the stacking direction during insert molding. Specifically, it is preferable to inject the resin material from the axial end face side of the core body (40).

-応力緩和層の動き-
上述のように、コア本体(40)の線膨張係数は、絶縁部材(60)の線膨張係数よりも大きくなっている。このため、固定子コア(70)の温度が上昇すると、コア本体(40)の積層方向の膨張量は、絶縁部材(60)の積層方向の膨張量よりも大きくなる。このとき、応力緩和部材(81)は、コア本体(40)の積層方向の膨張によって、積層方向に圧縮される。すなわち、応力緩和層(80)は絶縁部材(60)の積層方向の膨張量とコア本体(40)の積層方向の膨張量との差に応じて積層方向に収縮する。このように、応力緩和層(80)によって、コア本体(40)の積層方向の膨張が許容されて、絶縁部材(60)に生じる熱応力が緩和される。
-Movement of the stress relaxation layer-
As described above, the coefficient of linear expansion of the core body (40) is higher than that of the insulating member (60). Therefore, when the temperature of the stator core (70) rises, the amount of expansion of the core body (40) in the stacking direction becomes greater than the amount of expansion of the insulating member (60) in the stacking direction. At this time, the stress relaxation member (81) is compressed in the stacking direction due to the expansion of the core body (40) in the stacking direction. That is, the stress relaxation layer (80) contracts in the stacking direction according to the difference between the amount of expansion of the insulating member (60) in the stacking direction and the amount of expansion of the core body (40) in the stacking direction. In this way, the stress relieving layer (80) allows the core body (40) to expand in the stacking direction, thereby relieving the thermal stress generated in the insulating member (60).

一方、固定子コア(70)の温度が低下すると、コア本体(40)の積層方向の収縮量は、絶縁部材(60)の積層方向の収縮量よりも大きくなる。このとき、応力緩和部材(81)が弾性復元して、応力緩和層(80)は積層方向に膨張する。すなわち、応力緩和層(80)は絶縁部材(60)の積層方向の収縮量とコア本体(40)の積層方向の収縮量との差に応じて積層方向に膨張する。 On the other hand, when the temperature of the stator core (70) decreases, the amount of shrinkage of the core body (40) in the stacking direction becomes greater than the amount of shrinkage of the insulating member (60) in the stacking direction. At this time, the stress relaxation member (81) is elastically restored, and the stress relaxation layer (80) expands in the stacking direction. That is, the stress relaxation layer (80) expands in the stacking direction according to the difference between the amount of shrinkage of the insulating member (60) in the stacking direction and the amount of shrinkage of the core body (40) in the stacking direction.

-実施形態1の効果-
本実施形態の固定子コア(70)は、電動機(15)に設けられる固定子コア(70)において、複数枚のコア部材(44)が積層されて構成されたコア本体(40)と、コア本体(40)に一体に設けられコア本体(40)と線膨張係数が異なる絶縁部材(60)とを備え、絶縁部材(60)は、コア本体(40)の図4における積層方向上端面に設けられた第1絶縁部(61)と、コア本体(40)の図4における積層方向下端面に設けられた第2絶縁部(62)と、第1絶縁部(61)と第2絶縁部(62)との間に位置し、第1絶縁部(61)及び第2絶縁部(62)と一体に設けられた第3絶縁部(63)とを備え、第1絶縁部(61)と第2絶縁部(62)との間には、絶縁部材(60)に生じる積層方向の応力を緩和する応力緩和層(80)がコア本体(40)と隣接するように積層配置されている。
-Effect of Embodiment 1-
A stator core (70) of the present embodiment is a stator core (70) provided in an electric motor (15). An insulating member (60) is provided integrally with the main body (40) and has a coefficient of linear expansion different from that of the core main body (40). A first insulating portion (61) provided, a second insulating portion (62) provided on the lower end face of the core body (40) in the stacking direction in FIG. 4, the first insulating portion (61) and the second insulating portion (62) and provided integrally with the first insulating portion (61) and the second insulating portion (62); Between the second insulating portion (62), a stress relaxation layer (80) for relaxing stress in the stacking direction of the insulating member (60) is laminated so as to be adjacent to the core body (40).

本実施形態では、応力緩和層(80)が設けられているので、絶縁部材(60)に生じるコア本体(40)の積層方向の熱応力を低減することができる。特に、第1絶縁部(61)と第2絶縁部(62)との間に位置する第3絶縁部(63)に生じる熱応力を低減することができる。 In the present embodiment, since the stress relaxation layer (80) is provided, the thermal stress generated in the insulating member (60) in the lamination direction of the core body (40) can be reduced. In particular, thermal stress generated in the third insulating portion (63) located between the first insulating portion (61) and the second insulating portion (62) can be reduced.

また、本実施形態の固定子コア(70)において、コア本体(40)の線膨張係数は、絶縁部材(60)の線膨張係数よりも大きく、応力緩和層(80)は、絶縁部材(60)の積層方向の膨張量とコア本体(40)の積層方向の膨張量との差に応じて積層方向に収縮し、絶縁部材(60)の積層方向の収縮量とコア本体(40)の積層方向の収縮量との差に応じて積層方向に膨張する。 Further, in the stator core (70) of the present embodiment, the coefficient of linear expansion of the core body (40) is greater than the coefficient of linear expansion of the insulating member (60), and the stress relaxation layer (80) ) shrinks in the stacking direction according to the difference between the amount of expansion in the stacking direction of the core body (40) and the amount of expansion in the stacking direction of the core body (40). It expands in the stacking direction according to the difference from the amount of contraction in the direction.

本実施形態では、固定子コア(70)の温度上昇時において、絶縁部材(60)の積層方向の収縮量とコア本体(40)の積層方向の収縮量との差に応じて生じる第1絶縁部(61)と第2絶縁部(62)とが離れる方向に生じる熱応力を低減することができる。このため、第3絶縁部(63)が熱応力により破断することを抑えることができる。 In the present embodiment, when the temperature of the stator core (70) rises, the first insulating material is generated according to the difference between the amount of shrinkage of the insulating member (60) in the stacking direction and the amount of shrinkage of the core body (40) in the stacking direction. Thermal stress generated in the direction in which the portion (61) and the second insulating portion (62) move away from each other can be reduced. Therefore, breakage of the third insulating portion (63) due to thermal stress can be suppressed.

また、本実施形態の固定子コア(70)において、応力緩和層(80)には、弾性変形可能な例えば板バネからなる応力緩和部材(81)が設けられている。 In addition, in the stator core (70) of the present embodiment, the stress relaxation layer (80) is provided with a stress relaxation member (81) made of, for example, a plate spring that is elastically deformable.

本実施形態では、応力緩和部材(81)の弾性変形及び弾性復元によって、絶縁部材(60)に生じる積層方向の熱応力を低減することができる。 In the present embodiment, the elastic deformation and elastic restoration of the stress relaxation member (81) can reduce thermal stress in the stacking direction occurring in the insulating member (60).

また、本実施形態の固定子コア(70)において、応力緩和部材(81)は、コア本体(40)に対して反発するように付勢する。 In addition, in the stator core (70) of the present embodiment, the stress relaxation member (81) urges the core body (40) to repel.

本実施形態では、応力緩和層(80)が積層方向に膨張し易くなる。 In this embodiment, the stress relieving layer (80) expands easily in the stacking direction.

-実施形態1の変形例-
上記実施形態では、コア本体(40)は、第1コア本体(40a)と第2コア本体(40b)とに軸方向に分割されており、応力緩和層(80)は、第1コア本体(40a)と第2コア本体(40b)との間に設けられていた。しかし、図6に示すように、本変形例では、コア本体(40)は分割されずに1つ設けられている。応力緩和層(80)は、第1絶縁部(61)とコア本体(40)との間及び第2絶縁部(62)とコア本体(40)との間に積層配置されている。
-Modification of Embodiment 1-
In the above embodiment, the core body (40) is axially divided into the first core body (40a) and the second core body (40b), and the stress relaxation layer (80) is the first core body ( 40a) and the second core body (40b). However, as shown in FIG. 6, in this modification, one core body (40) is provided without being divided. The stress relaxation layer (80) is laminated between the first insulating portion (61) and the core body (40) and between the second insulating portion (62) and the core body (40).

本変形例においても、絶縁部材(60)に生じるコア本体(40)の積層方向の熱応力を低減することができる。 Also in this modification, the thermal stress in the lamination direction of the core body (40) generated in the insulating member (60) can be reduced.

また、応力緩和層(80)は、第1絶縁部(61)とコア本体(40)との間及び第2絶縁部(62)とコア本体(40)との間のいずれか一方に積層配置されていてもよい。 In addition, the stress relaxation layer (80) is laminated and arranged either between the first insulating part (61) and the core body (40) or between the second insulating part (62) and the core body (40). may have been

《実施形態2》
実施形態2について説明する。本実施形態の固定子コア(70)は、実施形態1の固定子コア(70)において絶縁部材(60)の材料を変更したものである。ここでは、本実施形態の固定子コア(70)について、実施形態1の固定子コア(70)と異なる点を説明する。
<<Embodiment 2>>
A second embodiment will be described. The stator core (70) of the present embodiment is obtained by changing the material of the insulating member (60) from the stator core (70) of the first embodiment. Here, the stator core (70) of the present embodiment will be described with respect to the differences from the stator core (70) of the first embodiment.

本実施形態では、絶縁部材(60)用の材料として、積層方向における線膨張係数が、コア本体(40)の材料(電磁鋼板)より線膨張係数が大きいものが用いられる。このような材料として例えば、ポリブチレンテレフタラート(PBT)を挙げる。 In the present embodiment, the insulating member (60) is made of a material having a higher linear expansion coefficient in the lamination direction than the material (electromagnetic steel sheet) of the core body (40). An example of such a material is polybutylene terephthalate (PBT).

このような固定子コア(70)では、固定子コア(70)の温度が低下すると、絶縁部材(60)の積層方向の収縮量は、コア本体(40)の積層方向の収縮量よりも大きくなる。このとき、応力緩和部材(81)は、絶縁部材(60)の積層方向の収縮によって、積層方向に圧縮される。すなわち、応力緩和層(80)は絶縁部材(60)の積層方向の収縮量とコア本体(40)の積層方向の収縮量との差に応じて積層方向に収縮する。このように、応力緩和層(80)によって、絶縁部材(60)の積層方向の収縮が許容されて、絶縁部材(60)に生じる熱応力が緩和される。 In such a stator core (70), when the temperature of the stator core (70) decreases, the amount of shrinkage of the insulating member (60) in the stacking direction is greater than the amount of shrinkage of the core body (40) in the stacking direction. Become. At this time, the stress relaxation member (81) is compressed in the stacking direction by contraction of the insulating member (60) in the stacking direction. That is, the stress relieving layer (80) shrinks in the stacking direction according to the difference between the amount of shrinkage of the insulating member (60) in the stacking direction and the amount of shrinkage of the core body (40) in the stacking direction. Thus, the stress relieving layer (80) allows the insulating member (60) to contract in the stacking direction, thereby relieving the thermal stress generated in the insulating member (60).

一方、固定子コア(70)の温度が上昇すると、絶縁部材(60)の積層方向の膨張量は、コア本体(40)の積層方向の膨張量よりも大きくなる。このとき、応力緩和部材(81)が弾性復元して、応力緩和層(80)は積層方向に膨張する。すなわち、応力緩和層(80)は絶縁部材(60)の積層方向の膨張量とコア本体(40)の積層方向の膨張量との差に応じて積層方向に膨張する。 On the other hand, when the temperature of the stator core (70) rises, the amount of expansion of the insulating member (60) in the stacking direction becomes greater than the amount of expansion of the core body (40) in the stacking direction. At this time, the stress relaxation member (81) is elastically restored, and the stress relaxation layer (80) expands in the stacking direction. That is, the stress relieving layer (80) expands in the stacking direction according to the difference between the amount of expansion of the insulating member (60) in the stacking direction and the amount of expansion of the core body (40) in the stacking direction.

-実施形態2の効果-
本実施形態では、固定子コア(70)の温度低下時においてコア本体(40)の積層方向の収縮量と絶縁部材(60)の積層方向の収縮量との差に応じて生じる第1絶縁部(61)と第2絶縁部(62)とが近付く方向に生じる熱応力を低減することができる。このため、第3絶縁部(63)が熱応力により破断することを抑えることができる。
-Effect of Embodiment 2-
In the present embodiment, when the temperature of the stator core (70) drops, the first insulating portion is generated according to the difference between the amount of shrinkage of the core body (40) in the stacking direction and the amount of shrinkage of the insulating member (60) in the stacking direction. Thermal stress generated in the direction in which (61) and the second insulating portion (62) approach can be reduced. Therefore, breakage of the third insulating portion (63) due to thermal stress can be suppressed.

《その他の実施形態》
上記実施形態については、以下のような構成としてもよい。
<<Other embodiments>>
The above embodiment may be configured as follows.

上記各実施形態では、応力緩和部材(81)として板バネを挙げたが、応力緩和部材(81)はゴムや発泡材などでもよい。すなわち、応力緩和部材(81)は弾性変形可能なものであればよい。また、応力緩和部材(81)は、応力緩和層(80)内の一部に設けられて、応力緩和層(80)内における応力緩和部材(81)が設けられていない部分を空隙にしてもよい。 In each of the above embodiments, the stress relaxation member (81) is a leaf spring, but the stress relaxation member (81) may be made of rubber, foam, or the like. That is, the stress relaxation member (81) should be elastically deformable. In addition, the stress relaxation member (81) is provided in a part of the stress relaxation layer (80), and even if the stress relaxation member (81) is not provided in the stress relaxation layer (80), the gap is left. good.

以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態および変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。 Although embodiments and variations have been described above, it will be appreciated that various changes in form and detail may be made without departing from the spirit and scope of the claims. In addition, the embodiments and modifications described above may be appropriately combined or replaced as long as the functions of the object of the present disclosure are not impaired.

以上説明したように、本開示は、固定子コア及び圧縮機について有用である。 As explained above, the present disclosure is useful for stator cores and compressors.

15 電動機
40 コア本体
60 絶縁部材
61 第1絶縁部
62 第2絶縁部
63 第3絶縁部
70 固定子コア
80 応力緩和層
81 応力緩和部材
15 Electric motor
40 core body
60 Insulation material
61 First insulation part
62 Second insulation
63 Third insulation
70 stator core
80 Stress relief layer
81 Stress relief member

Claims (6)

電動機(15)に設けられる固定子コア(70)において、
複数枚の鋼板が積層されて構成されたコア本体(40)と、
上記コア本体(40)に一体に設けられ上記コア本体(40)と線膨張係数が異なる絶縁部材(60)とを備え、
上記絶縁部材(60)は、
上記コア本体(40)の積層方向一端面に設けられた第1絶縁部(61)と、
上記コア本体(40)の積層方向他端面に設けられた第2絶縁部(62)と、
上記第1絶縁部(61)と上記第2絶縁部(62)との間に位置し、上記第1絶縁部(61)及び上記第2絶縁部(62)と一体に設けられた第3絶縁部(63)とを備え、
上記第1絶縁部(61)と上記第2絶縁部(62)との間には、上記絶縁部材(60)に生じる上記積層方向の応力を緩和する応力緩和層(80)が上記コア本体(40)と隣接するように積層配置され
上記絶縁部材(60)は、上記コア本体(40)のティース部(42)の積層方向における端面全体を覆っている
ことを特徴とする固定子コア。
In a stator core (70) provided in the electric motor (15),
a core body (40) configured by laminating a plurality of steel plates;
An insulating member (60) provided integrally with the core body (40) and having a coefficient of linear expansion different from that of the core body (40),
The insulating member (60) is
a first insulating portion (61) provided on one end face in the stacking direction of the core body (40);
a second insulating portion (62) provided on the other end face in the stacking direction of the core body (40);
A third insulation located between the first insulation portion (61) and the second insulation portion (62) and provided integrally with the first insulation portion (61) and the second insulation portion (62) (63) and
Between the first insulating part (61) and the second insulating part (62), a stress relaxation layer (80) for relaxing the stress in the lamination direction generated in the insulating member (60) is provided in the core body ( 40) are stacked adjacent to each other ,
The insulating member (60) covers the entire end face in the stacking direction of the teeth (42) of the core body (40).
A stator core characterized by:
請求項1において、
上記コア本体(40)の線膨張係数は、上記絶縁部材(60)の線膨張係数よりも大きく、
上記応力緩和層(80)は、
上記絶縁部材(60)の上記積層方向の膨張量と上記コア本体(40)の上記積層方向の膨張量との差に応じて上記積層方向に収縮し、
上記絶縁部材(60)の上記積層方向の収縮量と上記コア本体(40)の上記積層方向の収縮量との差に応じて上記積層方向に膨張することを特徴とする固定子コア。
In claim 1,
The coefficient of linear expansion of the core body (40) is greater than the coefficient of linear expansion of the insulating member (60),
The stress relaxation layer (80) is
contracting in the stacking direction according to the difference between the amount of expansion of the insulating member (60) in the stacking direction and the amount of expansion of the core body (40) in the stacking direction;
A stator core, wherein the stator core expands in the stacking direction according to the difference between the shrinkage amount of the insulating member (60) in the stacking direction and the shrinkage amount of the core body (40) in the stacking direction.
請求項1において、
上記コア本体(40)の線膨張係数は、上記絶縁部材(60)の線膨張係数よりも小さく、
上記応力緩和層(80)は、
上記絶縁部材(60)の上記積層方向の収縮量と上記コア本体(40)の上記積層方向の収縮量との差に応じて上記積層方向に収縮し、
上記絶縁部材(60)の上記積層方向の膨張量と上記コア本体(40)の上記積層方向の膨張量との差に応じて上記積層方向に膨張することを特徴とする固定子コア。
In claim 1,
The coefficient of linear expansion of the core body (40) is smaller than the coefficient of linear expansion of the insulating member (60),
The stress relaxation layer (80) is
shrinks in the stacking direction according to the difference between the amount of shrinkage of the insulating member (60) in the stacking direction and the amount of shrinkage of the core body (40) in the stacking direction;
A stator core, wherein the stator core expands in the stacking direction according to the difference between the amount of expansion of the insulating member (60) in the stacking direction and the amount of expansion of the core body (40) in the stacking direction.
請求項1乃至3の何れか1つにおいて、
上記応力緩和層(80)には、弾性変形可能な応力緩和部材(81)が設けられていることを特徴とする固定子コア。
In any one of claims 1 to 3,
A stator core, wherein the stress relaxation layer (80) is provided with an elastically deformable stress relaxation member (81).
請求項4において、
上記応力緩和部材(81)は、上記コア本体(40)に対して反発するように付勢することを特徴とする固定子コア。
In claim 4,
A stator core, wherein the stress relaxation member (81) biases the core body (40) so as to repel the core body (40).
請求項1乃至5の何れか1つに記載の固定子コア(70)を有する電動機(15)を備えることを特徴とする圧縮機。 A compressor comprising an electric motor (15) having a stator core (70) according to any one of claims 1 to 5.
JP2018062276A 2018-03-28 2018-03-28 stator core and compressor Active JP7132486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018062276A JP7132486B2 (en) 2018-03-28 2018-03-28 stator core and compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018062276A JP7132486B2 (en) 2018-03-28 2018-03-28 stator core and compressor

Publications (2)

Publication Number Publication Date
JP2019176619A JP2019176619A (en) 2019-10-10
JP7132486B2 true JP7132486B2 (en) 2022-09-07

Family

ID=68167853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018062276A Active JP7132486B2 (en) 2018-03-28 2018-03-28 stator core and compressor

Country Status (1)

Country Link
JP (1) JP7132486B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177895A (en) 2008-01-23 2009-08-06 Mitsubishi Electric Corp Laminated core, method of manufacturing laminated core, device for manufacturing laminated core, and stator
JP2009225588A (en) 2008-03-17 2009-10-01 Denso Corp Rotating machine
WO2011101985A1 (en) 2010-02-22 2011-08-25 トヨタ自動車株式会社 Stator and method for producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177895A (en) 2008-01-23 2009-08-06 Mitsubishi Electric Corp Laminated core, method of manufacturing laminated core, device for manufacturing laminated core, and stator
JP2009225588A (en) 2008-03-17 2009-10-01 Denso Corp Rotating machine
WO2011101985A1 (en) 2010-02-22 2011-08-25 トヨタ自動車株式会社 Stator and method for producing same

Also Published As

Publication number Publication date
JP2019176619A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
JP5958502B2 (en) Rotor and rotating electric machine using the same
JP5040988B2 (en) Stator and motor provided with the stator
CN113196616A (en) Laminated iron core and rotating electrical machine
EP1855369A2 (en) Stator core of an electric motor
CN107580743B (en) Improved stator for an electric machine and electric machine
JP2001268831A (en) Permanent magnet rotor
US20220216775A1 (en) Rotating electric machine, compressor, and method of manufacturing rotating electric machine
US11916454B2 (en) Stator and motor
KR20060112310A (en) Stator assembly for motor and manufacture method thereof
JP2009177957A (en) Permanent magnet field motor
JP7132486B2 (en) stator core and compressor
JP5900180B2 (en) Rotor core of rotating electrical machine
JP2012065510A (en) Stator
JP2007318924A (en) Stator fixing structure of electric motor
JP2007318924A5 (en)
CN108604845B (en) Axial gap type rotating electric machine
JP5626159B2 (en) Rotating electric machine for vehicles
KR20160139285A (en) Rotor assembly and Motor using the same
JP5665362B2 (en) Rotating electric machine
JP7054028B2 (en) Stator core and compressor
JP2015061374A (en) Stator
JP6685166B2 (en) Axial gap type rotating electric machine
JP2012050178A (en) Stator core, stator and method of attaching the stator core
JP2019054681A (en) Method of manufacturing stator core
US12009699B2 (en) Rotor and brushless motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220808

R151 Written notification of patent or utility model registration

Ref document number: 7132486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151