JP2019175991A - Capacitor - Google Patents

Capacitor Download PDF

Info

Publication number
JP2019175991A
JP2019175991A JP2018062280A JP2018062280A JP2019175991A JP 2019175991 A JP2019175991 A JP 2019175991A JP 2018062280 A JP2018062280 A JP 2018062280A JP 2018062280 A JP2018062280 A JP 2018062280A JP 2019175991 A JP2019175991 A JP 2019175991A
Authority
JP
Japan
Prior art keywords
layer
internal electrode
electrode layer
capacitor
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018062280A
Other languages
Japanese (ja)
Inventor
岩崎 健一
Kenichi Iwasaki
健一 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2018062280A priority Critical patent/JP2019175991A/en
Publication of JP2019175991A publication Critical patent/JP2019175991A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

To provide a capacitor increasing a mechanical intensity.SOLUTION: A sinter body contains a dielectric layer 11 and a cover part 9 having a plurality of ceramic particles. When a region of the dielectric layer 11 adjacent to the cover part 9 and an inner electrode layer 13 of two layers nipping them is a cover neighbor layer, a region other than the cover part neighbor layer is a middle layer, two layers nipping the cover part neighbor layer is a first inner electrode layer 13a, and an electrode layer in the middle layer is a second inner electrode layer 13b, one part of the inner electrode layer 13 is lacked, a non-coated part 13c not partially coating the dielectric layer 11 is included, and co-material particles 13d having a main component similar to the ceramic particles in the non-coated part 13c exists in the first inner electrode layer 13a. At least one of the cover part 9 to which the co-material particles 13d is adjacent or the adjacent dielectric layers 11 is connected, and the first inner electrode layer 13a has an area rate of the non-coated part 13c higher than that of the second inner electrode layer 13b.SELECTED DRAWING: Figure 2

Description

本開示は、コンデンサに関する。   The present disclosure relates to capacitors.

近年、積層型のセラミックコンデンサ(以下、コンデンサという。)は、誘電体材料の高誘電率化、あるいは誘電体層および内部電極層の薄層化により、コンデンサの単位体積当たりの静電容量がますます高まってきている。このためコンデンサはサイズの小型化が図られている一方、3216型などサイズの大きい領域へも展開も図られている(例えば、特許文献1を参照)。   In recent years, multilayer ceramic capacitors (hereinafter referred to as “capacitors”) have higher capacitance per unit volume due to higher dielectric constants of dielectric materials or thinner dielectric layers and internal electrode layers. Increasingly. For this reason, the size of the capacitor is reduced, and the capacitor is also developed in a large size region such as the 3216 type (see, for example, Patent Document 1).

特開2015−138909号公報JP2015-138909A

本開示のコンデンサは、誘電体層と内部電極層とが交互に複数層積層され静電容量を発現する有効部と該有効部の積層方向の表面に配置されたカバー部とを有するコンデンサ本体と、該コンデンサ本体の対向する端面に設けられた一対の外部電極とを備えており、前記内部電極層は前記一対の外部電極に接続されており、前記誘電体層および前記カバー部が複数のセラミック粒子を含む焼結体であり、前記有効部のうち、前記カバー部に隣接する前記誘電体層と該誘電体層を狭持する2層の前記内部電極層との領域をカバー部近傍層とし、該カバー部近傍層以外の領域を中段層とし、前記カバー部近傍層を挟持する2層の前記内部電極層を第1内部電極層とし、前記中段層における前記内部電極層を第2内部電極層としたときに、前記内部電極層は、一部が欠損し、前記誘電体層を部分的に被覆していない非被覆部を有するとともに、前記第1内部電極層には、前記非被覆部に前記セラミック粒子と同じ主成分を有する共材粒子が存在し、該共材粒子が隣接する前記カバー部との間または隣接する前記誘電体層との間のうちの少なくとも一方と結合しており、前記第1内部電極層は前記第2内部電極層よりも前記非被覆部の面積割合が高い。   A capacitor according to the present disclosure includes a capacitor main body having an effective portion in which a plurality of dielectric layers and internal electrode layers are alternately stacked to develop a capacitance, and a cover portion disposed on the surface of the effective portion in the stacking direction. And a pair of external electrodes provided on opposing end faces of the capacitor body, the internal electrode layer is connected to the pair of external electrodes, and the dielectric layer and the cover portion are a plurality of ceramics. A sintered body including particles, and a region of the effective portion of the dielectric layer adjacent to the cover portion and the two internal electrode layers sandwiching the dielectric layer is defined as a cover portion vicinity layer. A region other than the cover portion vicinity layer is a middle layer, the two internal electrode layers sandwiching the cover portion vicinity layer are first internal electrode layers, and the internal electrode layer in the middle layer is a second internal electrode The internal power The layer has a non-coated portion that is partially missing and does not partially cover the dielectric layer, and the first internal electrode layer has the same main component as the ceramic particles in the non-coated portion. There are co-material particles having, and the co-material particles are bonded to at least one of the adjacent cover portion or the adjacent dielectric layer, and the first internal electrode layer is The area ratio of the uncovered portion is higher than that of the second internal electrode layer.

実施形態のコンデンサの外観の形状を示す斜視図である。It is a perspective view which shows the external shape of the capacitor | condenser of embodiment. 図1のii−ii線断面図である。It is the ii-ii sectional view taken on the line of FIG. 図2のA部の拡大した断面模式図である。It is the cross-sectional schematic diagram which expanded the A section of FIG. 実施形態のコンデンサを配線基板に実装し、たわみによる負荷を与えたときの状態を示す断面模式図である。It is a cross-sectional schematic diagram which shows a state when the capacitor of the embodiment is mounted on a wiring board and a load is applied by bending. 実施形態の他の態様を示すものであり、非被覆部が外部電極に近い部位に多い状態を示すコンデンサの断面模式図である。It is a cross-sectional schematic diagram of the capacitor | condenser which shows the other aspect of embodiment, and shows a state with many non-covering parts in the site | part close | similar to an external electrode. 実施形態の他の態様を示すものであり、内部電極層における非被覆部の頻度がカバー部側から有効部の中央に向けて減少している状態を成すコンデンサの断面模式図である。FIG. 10 is a schematic cross-sectional view of a capacitor showing another aspect of the embodiment and in a state in which the frequency of the uncovered portion in the internal electrode layer decreases from the cover portion side toward the center of the effective portion. 実施形態の他の態様を示す断面図であり、非被覆部を多く有する内部電極層がカバー部に隣接する位置の他に有効部の積層方向の中央にも設けられている状態を示すコンデンサの断面模式図である。FIG. 7 is a cross-sectional view showing another aspect of the embodiment of the capacitor showing a state in which the internal electrode layer having many uncovered portions is provided at the center in the stacking direction of the effective portion in addition to the position adjacent to the cover portion. It is a cross-sectional schematic diagram.

図1は、実施形態のコンデンサの外観の形状を示す斜視図である。図2は、図1のii−ii線断面図である。図3は、図2のA部の拡大した断面模式図である。
実施形態のコンデンサはコンデンサ本体1と外部電極3とを有する。コンデンサ本体1は外形が直方体状である。外部電極3はコンデンサ本体1の対向する端面5に設けられている。この場合、外部電極3はメタライズで構成される下地電極単体であっても良いが、下地電極の表面に1層以上のめっき膜を有するものであっても良い。
FIG. 1 is a perspective view illustrating an external shape of a capacitor according to an embodiment. 2 is a cross-sectional view taken along line ii-ii in FIG. FIG. 3 is an enlarged schematic cross-sectional view of a portion A in FIG.
The capacitor according to the embodiment includes a capacitor body 1 and an external electrode 3. The capacitor body 1 has a rectangular parallelepiped shape. The external electrode 3 is provided on the opposite end face 5 of the capacitor body 1. In this case, the external electrode 3 may be a single base electrode composed of metallization, or may have one or more plating films on the surface of the base electrode.

コンデンサ本体1は、有効部7と、有効部7の上面および下面の両面に設けられたカバー部9とで構成されている。有効部7は誘電体層11と内部電極層13とが交互に積層された構成を成している。この場合、有効部7はコンデンサ本体1の中で静電容量を発現する部位となる。カバー部9は有効部7を環境的に保護するためあるいは有効部7を機械的な衝撃等から保護するために設けられている。誘電体層11およびカバー部9は複数のセラミック粒子11aを含む焼結体である。セラミック粒子11aはガラス相などの粒界相を介して結合している。   The capacitor body 1 includes an effective portion 7 and cover portions 9 provided on both the upper and lower surfaces of the effective portion 7. The effective portion 7 has a configuration in which the dielectric layers 11 and the internal electrode layers 13 are alternately stacked. In this case, the effective portion 7 is a portion that develops capacitance in the capacitor body 1. The cover portion 9 is provided to protect the effective portion 7 environmentally or to protect the effective portion 7 from mechanical impacts or the like. The dielectric layer 11 and the cover portion 9 are a sintered body including a plurality of ceramic particles 11a. The ceramic particles 11a are bonded via a grain boundary phase such as a glass phase.

実施形態のコンデンサにおいては、有効部7のうちカバー部9に隣接する誘電体層11と、その誘電体層11を狭持する2層の内部電極層13とで構成される領域をカバー部近傍層7Aとする。また、有効部7のカバー部近傍層7A以外の領域を中段層7Bとする。言い換えると、中段層7Bはカバー部近傍層7Aに挟まれている。以下、カバー部近傍層7Aにおける2層の内部電極層13を第1内部電極層13aとし、中段層7Bにおける内部電極層13を第2内部電極層13bとする場合がある。   In the capacitor according to the embodiment, the area formed by the dielectric layer 11 adjacent to the cover portion 9 and the two internal electrode layers 13 sandwiching the dielectric layer 11 in the effective portion 7 is in the vicinity of the cover portion. This is layer 7A. Further, a region other than the cover portion vicinity layer 7A of the effective portion 7 is set as a middle layer 7B. In other words, the middle layer 7B is sandwiched between the cover vicinity layers 7A. Hereinafter, the two internal electrode layers 13 in the cover portion vicinity layer 7A may be referred to as a first internal electrode layer 13a, and the internal electrode layer 13 in the middle layer 7B may be referred to as a second internal electrode layer 13b.

第1内部電極層13aおよび第2内部電極層13bはともに一部が欠損し誘電体層11を部分的に被覆していない非被覆部13cを有する。非被覆部13cには誘電体層11を構成するセラミック粒子11aと同じ主成分を有するセラミック粒子11aが存在する。以下、非被覆部13cに存在するセラミック粒子11aのことを共材粒子13dと言う場合がある。また、同じ主成分とは、非被覆部13cおよび誘電体層11に最も多く含まれる成分(ここでは、金属酸化物)が同じという意味である。共材粒子13dはカバー部近傍層7Aに隣接するカバー部9との間および隣接する誘電体層11との間のうちの少なくとも一方と結合している。さらに、第1内部電極層13aは第2内部電極層13bよりも非被覆部13cの面積割合が高い。カバー部近傍層7Aを構成している第1内部電極層13aが非被覆部13cの面積割合の高い構造であると、コンデンサ本体1の中でカバー部近傍層7A辺りの部位の機械的強度を高めることができる。   Both the first internal electrode layer 13a and the second internal electrode layer 13b have uncovered portions 13c that are partially missing and do not partially cover the dielectric layer 11. In the uncovered portion 13c, there are ceramic particles 11a having the same main component as the ceramic particles 11a constituting the dielectric layer 11. Hereinafter, the ceramic particles 11a existing in the non-covered portion 13c may be referred to as common material particles 13d. The same main component means that the components (here, metal oxides) contained most in the uncovered portion 13c and the dielectric layer 11 are the same. The common material particles 13d are bonded to at least one of the space between the cover portion 9 adjacent to the cover portion vicinity layer 7A and the space between the adjacent dielectric layers 11. Further, the area ratio of the uncovered portion 13c in the first internal electrode layer 13a is higher than that in the second internal electrode layer 13b. If the first internal electrode layer 13a constituting the cover vicinity layer 7A has a high area ratio of the uncovered portion 13c, the mechanical strength of the portion around the cover vicinity layer 7A in the capacitor body 1 is increased. Can be increased.

以下、理由を図面より説明する。以下に示すコンデンサを便宜上従来のコンデンサとする。以下の従来のコンデンサを説明する場合に符号を付していないが、従来のコンデンサにおける各部位の名称は図4に示した実施形態のコンデンサにおける各部位に対応する。従来のコンデンサは、カバー部近傍層に位置する内部電極層における非被覆部の面積割合が中段部における内部電極層(第2内部電極層13b)と同等である。つまり、従来のコンデンサの場合、図4に示した実施形態のコンデンサに比べてカバー部近傍層に位置する内部電極層における非被覆部の面積割合が低い。この従来のコンデンサは、例えば、カバー部近傍層に位置する内部電極層に設けられた非被覆部の面積割合および中段部に位置する内部電極層に設けられた非被覆部の面積割合がともに30%未満である。この場合も、非被覆部には誘電体層を構成するセラミック粒子と同じ主成分を有するセラミック粒子が共材粒子として存在している。さらに、共材粒子はカバー部近傍層に隣接するカバー部との間または隣接する誘電体層との間のうちの少なくとも一方と結合している。   The reason will be described below with reference to the drawings. The capacitor shown below is a conventional capacitor for convenience. In the following description of the conventional capacitor, reference numerals are not given, but the names of the parts in the conventional capacitor correspond to the parts in the capacitor of the embodiment shown in FIG. In the conventional capacitor, the area ratio of the uncovered portion in the internal electrode layer located in the cover portion vicinity layer is equal to the internal electrode layer (second internal electrode layer 13b) in the middle portion. That is, in the case of the conventional capacitor, the area ratio of the uncovered portion in the internal electrode layer located in the vicinity of the cover portion is lower than that of the capacitor of the embodiment shown in FIG. In this conventional capacitor, for example, the area ratio of the non-covered portion provided in the internal electrode layer located in the layer near the cover portion and the area ratio of the non-covered portion provided in the internal electrode layer located in the middle step are both 30. %. Also in this case, ceramic particles having the same main component as the ceramic particles constituting the dielectric layer are present as co-material particles in the non-covered portion. Further, the co-material particles are bonded to at least one of the space between the cover portion adjacent to the cover portion adjacent layer or the space between the adjacent dielectric layers.

このようにカバー部近傍層における非被覆部の面積割合が中段部における内部電極層と同等であり、カバー部近傍層における非被覆部の面積割合が30%未満と低い場合には、カバー部近傍層における内部電極層中にカバー部および中段層における誘電体層と結合している共材粒子の頻度が低い。このためカバー部近傍層内の誘電体層と第1内部電極層を介して積層されているカバー部および中段部における誘電体層とが強固に結合していない
状態となっている。その結果、カバー部近傍層は非被覆部の面積割合が相対的に低い中段部と同程度となり、機械的強度が低いものとなる。
Thus, when the area ratio of the non-covered part in the layer near the cover part is equivalent to the internal electrode layer in the middle part, and the area ratio of the non-covered part in the cover part near layer is as low as less than 30%, the area near the cover part The frequency of the co-material particles bonded to the cover layer and the dielectric layer in the middle layer in the internal electrode layer in the layer is low. For this reason, the dielectric layer in the cover vicinity layer and the cover layer laminated via the first internal electrode layer and the dielectric layer in the middle step are not firmly bonded. As a result, the layer near the cover part has the same level as the middle stage part in which the area ratio of the non-covering part is relatively low, and the mechanical strength is low.

具体的には、従来のコンデンサには、当該コンデンサが配線基板に実装された後に、その配線基板にたわみの変形が生じると、コンデンサの配線基板に面した方のカバー部側から端面にかけてカバー部近傍層を斜めに貫くクラックが発生しやすくなる。また、カバー部近傍層を構成する誘電体層と第1内部電極層との間においてデラミネーションも発生しやすくなる。   Specifically, in a conventional capacitor, when deformation occurs in the wiring board after the capacitor is mounted on the wiring board, the cover part extends from the cover side facing the wiring board to the end face. Cracks penetrating the neighboring layers diagonally tend to occur. Also, delamination is likely to occur between the dielectric layer constituting the cover portion vicinity layer and the first internal electrode layer.

図4は、実施形態のコンデンサを配線基板に実装し、たわみによる負荷を与えたときの状態を示す断面模式図である。図4に示した実施形態のコンデンサは、内部電極層13(第1内部電極層13aおよび第2内部電極層13b)における非被覆部13cの面積割合が例えば30%以上である。一方、中段部7Bに位置する内部電極層13(第2内部電極層13b)における非被覆部13cの面積割合は上記した従来のコンデンサと同様30%未満である。図4に示したコンデンサは、カバー部近傍層7Aにおける内部電極層13(第1内部電極層13a)中にカバー部9および中段層7Bにおける誘電体層11と結合している共材粒子13dの頻度が従来のコンデンサよりも高い。このため図4に示したコンデンサは、上記した従来のコンデンサよりもカバー部近傍層7A辺りの部位の機械的強度が高い。その結果、コンデンサが配線基板21に実装された後に、その配線基板21にたわみ変形が生じても、カバー部9から端面5にかけてカバー部近傍層7Aを斜めに貫くようなクラックCは発生し難い。また、カバー部近傍層7Aを構成する誘電体層11と第1内部電極層13aとの間におけるデラミネーションの発生も起こり難い。これはカバー部近傍層7Aを構成している第1内部電極層13aに形成された非被覆部13cに多くの共材粒子13dが含まれており、共材粒子13dが隣接するカバー部9あるいは誘電体層11との間で強固に結合し架橋しているからである。   FIG. 4 is a schematic cross-sectional view showing a state when the capacitor of the embodiment is mounted on a wiring board and a load is applied due to bending. In the capacitor of the embodiment shown in FIG. 4, the area ratio of the uncovered portion 13c in the internal electrode layer 13 (the first internal electrode layer 13a and the second internal electrode layer 13b) is, for example, 30% or more. On the other hand, the area ratio of the non-covered portion 13c in the internal electrode layer 13 (second internal electrode layer 13b) located in the middle step portion 7B is less than 30% as in the conventional capacitor described above. The capacitor shown in FIG. 4 includes the common material particles 13d bonded to the cover portion 9 and the dielectric layer 11 in the middle layer 7B in the internal electrode layer 13 (first internal electrode layer 13a) in the cover portion vicinity layer 7A. The frequency is higher than conventional capacitors. For this reason, the capacitor shown in FIG. 4 has a higher mechanical strength near the cover portion vicinity layer 7A than the conventional capacitor described above. As a result, even after the capacitor is mounted on the wiring board 21, even if the wiring board 21 is bent and deformed, the crack C that obliquely penetrates the cover portion vicinity layer 7 </ b> A from the cover portion 9 to the end surface 5 hardly occurs. . Further, delamination is unlikely to occur between the dielectric layer 11 constituting the cover vicinity layer 7A and the first internal electrode layer 13a. This is because the uncovered portion 13c formed on the first internal electrode layer 13a constituting the cover portion vicinity layer 7A includes a large amount of the common material particles 13d, and the common material particles 13d are adjacent to the cover portion 9 or This is because the dielectric layer 11 is firmly bonded and cross-linked.

実施形態のコンデンサでは、カバー部近傍層7Aを構成する第1内部電極層13aにおける非被覆部13cの面積割合は30%以上50%以下が良い。非被覆部13cの面積割合が30%以上であると、非被覆部13cに存在する共材粒子13dによって隣接するカバー部9および誘電体層11の少なくとも一方との間の接合強度を高くすることができる。一方、非被覆部13cの面積割合が50%以下であると、第1内部電極層13aの有効面積を大きくできることから静電容量の高いコンデンサを得ることができる。   In the capacitor of the embodiment, the area ratio of the uncovered portion 13c in the first internal electrode layer 13a constituting the cover portion neighboring layer 7A is preferably 30% or more and 50% or less. When the area ratio of the non-covering portion 13c is 30% or more, the joint strength between at least one of the adjacent cover portion 9 and the dielectric layer 11 is increased by the common material particles 13d existing in the non-covering portion 13c. Can do. On the other hand, when the area ratio of the uncovered portion 13c is 50% or less, the effective area of the first internal electrode layer 13a can be increased, so that a capacitor having a high capacitance can be obtained.

これに対し、有効部7のカバー部近傍層7A以外の領域に配置された第2内部電極層13bにおける非被覆部13aの面積割合はコンデンサの静電容量を高めるという理由から30%より低い方が良い。   On the other hand, the area ratio of the uncovered portion 13a in the second internal electrode layer 13b disposed in the region other than the cover portion vicinity layer 7A of the effective portion 7 is lower than 30% because the capacitance of the capacitor is increased. Is good.

また、第1内部電極層13aおよび第2内部電極層13bは、非被覆部13cに共材粒子13dを含んでいる箇所の割合が非被覆部13cの個数比でいずれも80%以上であるのが良い。   In addition, in the first internal electrode layer 13a and the second internal electrode layer 13b, the ratio of the locations where the uncoated portion 13c contains the co-material particles 13d is 80% or more in terms of the number ratio of the uncovered portion 13c. Is good.

図5は、実施形態の他の態様を示すものであり、非被覆部が外部電極に近い部位に多い状態を示すコンデンサの断面模式図である。実施形態のコンデンサでは、第1内部電極層13aの中で共材粒子13dが存在する非被覆部13cが外部電極3に近い部位に高い頻度で設けられている構造でも良い。ここで、外部電極3に近い部位とは、コンデンサを対向する一対の外部電極3の方向に3等分したときの外部電極3側の領域となる。このようなコンデンサを配線基板21に実装した後にたわみ試験を行うと、クラックは、通常、外部電極3の設けられているコンデンサ本体1の端面5に近い部位に発生しやすい。このため非被覆部13cを外部電極3に近い部位に局在化させることでクラックの発生を効果的に抑制することができる。また、外部電極3から離れた位置における非被覆部13cの頻
度を減らすことができることから、第1内部電極層13aの有効面積を高くできるためコンデンサの静電容量を高めることができる。
FIG. 5 shows another aspect of the embodiment, and is a schematic cross-sectional view of a capacitor showing a state where there are many uncovered portions near the external electrodes. The capacitor according to the embodiment may have a structure in which the non-covered portion 13c in which the common material particles 13d are present in the first internal electrode layer 13a is provided at a high frequency in a portion close to the external electrode 3. Here, the portion close to the external electrode 3 is a region on the external electrode 3 side when the capacitor is equally divided into three in the direction of the pair of external electrodes 3 facing each other. When a deflection test is performed after mounting such a capacitor on the wiring board 21, cracks are usually likely to occur near the end surface 5 of the capacitor body 1 where the external electrode 3 is provided. For this reason, generation | occurrence | production of a crack can be suppressed effectively by localizing the non-coating part 13c in the site | part close | similar to the external electrode 3. FIG. In addition, since the frequency of the non-covering portion 13c at a position away from the external electrode 3 can be reduced, the effective area of the first internal electrode layer 13a can be increased, so that the capacitance of the capacitor can be increased.

実施形態のコンデンサでは、カバー部近傍層7Aを構成する第1内部電極層13aは、誘電体層11の両面での非被覆部13cの面積割合の差が%表示で5ポイント以下であるのが良い。カバー部近傍層7Aを構成する第1内部電極層13aにおける非被覆部13cの面積割合の差が誘電体層11の両面の位置で小さいと、カバー部近傍層7Aを構成する誘電体層11と隣接するカバー部9および有効部7Bの誘電体層11との間を強固に結合することができる。これによりカバー部近傍層7Aの変形をより小さくすることができる。その結果、カバー部近傍層7Aにクラックが発生する確率をより低くすることが可能になる。   In the capacitor according to the embodiment, in the first internal electrode layer 13a constituting the cover portion vicinity layer 7A, the difference in the area ratio of the uncovered portion 13c on both surfaces of the dielectric layer 11 is 5 points or less in% display. good. If the difference in the area ratio of the uncovered portion 13c in the first internal electrode layer 13a constituting the cover portion vicinity layer 7A is small at the positions of both surfaces of the dielectric layer 11, the dielectric layer 11 constituting the cover portion vicinity layer 7A and Adjacent cover 9 and the dielectric layer 11 of the effective portion 7B can be firmly coupled. Thereby, the deformation of the cover portion vicinity layer 7A can be further reduced. As a result, it is possible to further reduce the probability that a crack will occur in the cover portion vicinity layer 7A.

実施形態のコンデンサでは、第2内部電極層13bよりも非被覆部13cの面積割合の高い第1内部電極層13aが有効部7の積層方向の両側に設けられているのが良い。第2内部電極層13bよりも非被覆部13cの面積割合の高い第1内部電極層13aを備えたカバー部近傍層7Aが有効部7の積層方向の両側に設けられていると、コンデンサが配線基板上に積層方向のどの方向に向けて実装されても、第2内部電極層13bよりも非被覆部13cの面積割合が高い第1内部電極層13aを有するカバー部近傍層7Aを配線基板に近い方に配置させることが可能になる。その結果、配線基板にコンデンサが実装された後にコンデンサにクラックが発生する確率を低くすることができる。   In the capacitor of the embodiment, it is preferable that the first internal electrode layer 13a having a higher area ratio of the uncovered portion 13c than the second internal electrode layer 13b is provided on both sides of the effective portion 7 in the stacking direction. When the cover vicinity layer 7A having the first internal electrode layer 13a having a higher area ratio of the uncovered portion 13c than the second internal electrode layer 13b is provided on both sides in the stacking direction of the effective portion 7, the capacitor is wired Even if it is mounted on the substrate in any direction of the stacking direction, the cover portion vicinity layer 7A having the first internal electrode layer 13a having a higher area ratio of the non-covered portion 13c than the second internal electrode layer 13b is used as the wiring substrate. It becomes possible to arrange them closer. As a result, it is possible to reduce the probability that the capacitor will crack after being mounted on the wiring board.

以上、第1内部電極層13aにおける非被覆部13cの面積割合が第2内部電極層13b側よりも高いカバー部近傍層7Aが有効部7の積層方向のカバー部9に設けられた構造を基に説明したが、実施形態のコンデンサはこれに限られない。図6は、実施形態の他の態様を示す断面図である。図6は、内部電極層における非被覆部の頻度がカバー部側から有効部の中央に向けて減少している構造を成すコンデンサの断面模式図である。実施形態のコンデンサの他の態様として、非被覆部13cの面積割合が第1内部電極層13aと同様な内部電極層13と誘電体層11とがカバー部近傍層7Aから中段部7B側にかけて複数層に亘って繰り返された構造であっても良い。中段部7Bに設けられる非被覆部13cの面積割合が第1内部電極層13aと同様な内部電極層13の層数としては1〜3層が良い。また、非被覆部13cの面積割合はカバー部9側から有効部7Bにおける積層方向の中央に向けて次第に減少する傾向を有していても良い。配線基板21に実装されてたわみ変化を受けるコンデンサでは、通常、クラックはカバー部9側から有効部7側に進展していく傾向にある。このような状況下で、非被覆部13cの面積割合をカバー部9側から有効部7Bにおける積層方向の中央に向けて次第に減少する構造にすると、コンデンサのカバー部9側から有効部7側に進展するクラックをより効率的に抑えることが可能になる。これは配線基板21のたわみに伴うコンデンサのひずみがコンデンサのカバー部9側よりも中央の方で小さいためである。この場合、逆に、カバー部9側から中央に向けて、内部電極層13の被覆率が高くなることから、コンデンサ本体1の全体において、内部電極層13の有効面積を高くすることができる。   As described above, the cover portion vicinity layer 7A in which the area ratio of the uncovered portion 13c in the first internal electrode layer 13a is higher than that on the second internal electrode layer 13b side is provided on the cover portion 9 in the stacking direction of the effective portion 7. However, the capacitor of the embodiment is not limited to this. FIG. 6 is a cross-sectional view showing another aspect of the embodiment. FIG. 6 is a schematic cross-sectional view of a capacitor having a structure in which the frequency of the uncovered portion in the internal electrode layer decreases from the cover portion side toward the center of the effective portion. As another aspect of the capacitor of the embodiment, there are a plurality of internal electrode layers 13 and dielectric layers 11 in which the area ratio of the uncovered portion 13c is the same as that of the first internal electrode layer 13a from the cover vicinity layer 7A to the middle step portion 7B side. The structure may be repeated across the layers. The number of the internal electrode layers 13 having the same area ratio of the uncovered portion 13c provided in the middle step portion 7B as that of the first internal electrode layer 13a is preferably 1 to 3 layers. Further, the area ratio of the non-covering portion 13c may have a tendency to gradually decrease from the cover portion 9 side toward the center in the stacking direction of the effective portion 7B. In a capacitor that is mounted on the wiring board 21 and undergoes a deflection change, the crack usually tends to progress from the cover portion 9 side to the effective portion 7 side. Under such circumstances, when the structure is such that the area ratio of the non-covered portion 13c gradually decreases from the cover portion 9 side toward the center in the stacking direction of the effective portion 7B, the capacitor cover portion 9 side to the effective portion 7 side. It is possible to more efficiently suppress the developing cracks. This is because the distortion of the capacitor due to the deflection of the wiring board 21 is smaller in the center than the cover portion 9 side of the capacitor. In this case, conversely, since the coverage of the internal electrode layer 13 increases from the cover portion 9 toward the center, the effective area of the internal electrode layer 13 can be increased in the entire capacitor body 1.

また、実施形態のコンデンサの場合、図7に示すように、非被覆部13cの多い内部電極層13がカバー部9に隣接する位置の他に有効部7における積層方向の中央部7cに設けられていても良い。この場合、非被覆部13cの多い内部電極層13は中央部7cの位置に2〜3層設けられているのが良い。ここでの非被覆部13cの面積割合もカバー部近傍層7Aにおける割合と同程度であるのが良い。カバー部近傍層7Aに相当する層が中段部7Bの積層方向の中央部7cに設けられている場合には、有効部7における積層方向の中央部7cに起きやすいデラミネーションの発生を抑制することができる。非被覆部13cの多い内部電極層13の層数が2〜3層であると、デラミネーションが発生する箇所をカバーできる可能性が高くなり、また、非被覆部13cの増加による内部電極層13にお
ける有効面積の低下を小さくすることができ、静電容量の低下を抑えることが可能になるからである。
In the case of the capacitor of the embodiment, as shown in FIG. 7, the internal electrode layer 13 with many uncovered portions 13 c is provided in the central portion 7 c in the stacking direction of the effective portion 7 in addition to the position adjacent to the cover portion 9. May be. In this case, it is preferable that two or three internal electrode layers 13 with many uncovered portions 13c are provided at the position of the central portion 7c. Here, the area ratio of the non-covering portion 13c may be approximately the same as the ratio in the cover portion vicinity layer 7A. When a layer corresponding to the cover portion vicinity layer 7A is provided in the central portion 7c in the stacking direction of the middle step portion 7B, the occurrence of delamination that tends to occur in the central portion 7c in the stacking direction of the effective portion 7 is suppressed. Can do. If the number of the internal electrode layers 13 with many uncovered portions 13c is 2 to 3, the possibility of covering a portion where delamination occurs is increased, and the internal electrode layers 13 due to the increase in the number of uncovered portions 13c. This is because the decrease in effective area can be reduced and the decrease in capacitance can be suppressed.

以上示した実施形態のコンデンサは、コンデンサ本体1の外形状が直方体状であるものに好適であるが、とりわけ誘電体層11および内部電極層13の積層方法の長さ(厚み)がこれら誘電体層11および内部電極層13の幅方向の長さよりも短い、いわゆる薄板状のものにより好適である。つまり、このコンデンサ本体1は対向する外部電極の方向の長さをL、当該長さLに対して垂直な方向かつ誘電体層11または内部電極層13の平面方向に沿った方向の長さを幅Wとし、誘電体層11および内部電極層13の積層方向の長さを厚みtとしたときに、厚みtが幅Wよりも短い形状であるものに適している。コンデンサの厚みtが幅Wよりも短い形状であると、コンデンサを配線基板21に実装するときに、コンデンサの積層方向を配線基板21に垂直な方向に向けて実装しやすくなる。これによりコンデンサの中で非被覆部13cの面積割合の高いカバー部近傍層7Aが配線基板21側に向いた状態に実装することが可能となり、このコンデンサの効果がより享受しやすくなる。   The capacitor according to the embodiment described above is suitable for the capacitor body 1 whose outer shape is a rectangular parallelepiped, and in particular, the length (thickness) of the lamination method of the dielectric layer 11 and the internal electrode layer 13 is such a dielectric. A so-called thin plate-like one shorter than the length in the width direction of the layer 11 and the internal electrode layer 13 is more preferable. That is, the capacitor body 1 has a length in the direction of the opposing external electrode L, a length perpendicular to the length L and a direction along the plane direction of the dielectric layer 11 or the internal electrode layer 13. It is suitable for the case where the thickness t is shorter than the width W, where the width W is the thickness t when the length in the stacking direction of the dielectric layer 11 and the internal electrode layer 13 is the thickness t. If the thickness t of the capacitor is shorter than the width W, it is easy to mount the capacitor in the direction perpendicular to the wiring substrate 21 when the capacitor is mounted on the wiring substrate 21. As a result, it is possible to mount the cover portion vicinity layer 7A having a high area ratio of the uncovered portion 13c in the capacitor in a state facing the wiring substrate 21 side, and the effect of this capacitor can be easily enjoyed.

実施形態のコンデンサでは、カバー部近傍層7Aにおける誘電体層11を構成するセラミック粒子は中段層7Bにおける誘電体層11を構成するセラミック粒子に比べて平均粒径が大きい方が良い。カバー部近傍層7Aにおける誘電体層11を構成するセラミック粒子のサイズが中段層7Bにおける誘電体層11を構成するセラミック粒子のサイズに比べて大きいと、カバー部9からクラックが生じてきたときに、カバー部近傍層7Aの誘電体層11において、粒界に沿って亀裂が生じる確率を低くすることができる。これによりカバー部近傍層7Aを厚み方向に貫くクラックが生じ難くなり、より耐久性の高いコンデンサを得ることが可能になる。   In the capacitor according to the embodiment, the ceramic particles constituting the dielectric layer 11 in the cover vicinity layer 7A should have a larger average particle diameter than the ceramic particles constituting the dielectric layer 11 in the middle layer 7B. When the size of the ceramic particles constituting the dielectric layer 11 in the cover portion vicinity layer 7A is larger than the size of the ceramic particles constituting the dielectric layer 11 in the middle layer 7B, when a crack occurs from the cover portion 9 In the dielectric layer 11 of the cover portion vicinity layer 7A, the probability that cracks will occur along the grain boundaries can be reduced. As a result, cracks penetrating through the cover vicinity layer 7A in the thickness direction are less likely to occur, and a more durable capacitor can be obtained.

誘電体層11およびカバー部9を形成するための材料としては、例えば、強誘電性を示すチタン酸バリウムを主成分とする誘電体材料が好適なものとなるが、これに限らず、酸化チタン、チタン酸ストロンチウムおよびチタン酸カルシウムなど常誘電性を示す誘電体材料でも同様の効果を得ることができる。この場合、誘電体材料としては、上記した主成分に対して、例えば、マグネシウム、希土類元素およびマンガンの各酸化物を含ませたものを適用しても良い。   As a material for forming the dielectric layer 11 and the cover portion 9, for example, a dielectric material mainly composed of barium titanate exhibiting ferroelectricity is suitable, but not limited thereto, titanium oxide. Similar effects can be obtained with dielectric materials exhibiting paraelectric properties such as strontium titanate and calcium titanate. In this case, as the dielectric material, for example, a material containing magnesium, rare earth element, and manganese oxides may be applied to the above-described main component.

内部電極層11および外部電極3(下地電極)に好適な材料としては、銀、パラジウムなどの貴金属材料の他、ニッケル、銅などの卑金属材料を挙げることができる。   Suitable materials for the internal electrode layer 11 and the external electrode 3 (base electrode) include base metal materials such as nickel and copper in addition to noble metal materials such as silver and palladium.

次に、実施形態のコンデンサの製造方法について説明する。実施形態のコンデンサは、誘電体グリーンシートに内部電極パターンを形成したパターンシートとして、内部電極パターンに含ませて共材となる誘電体粉末の含有量が他の層に比べて異なるパターンシートを特定の位置に配置して積層する以外は、コンデンサの慣用的な製造方法によって作製できる。具体的には、上記したカバー部近傍層7Aに対応するパターンシートには中段層7Bに用いるパターンシートに比べて誘電体粉末の含有量を多くした内部電極パターンを用いる。これによりカバー部近傍層7Aの内部電極層13(第1内部電極層13a)における非被覆部13cの面積割合が中段部7Bの内部電極層13(第2内部電極層13b)における非被覆部の面積割合よりも高いコンデンサを得ることができる。以下、実施例にて詳細に説明する。   Next, a method for manufacturing the capacitor according to the embodiment will be described. The capacitor of the embodiment specifies a pattern sheet in which the content of dielectric powder used as a co-material in the internal electrode pattern is different from that of other layers as a pattern sheet in which the internal electrode pattern is formed on the dielectric green sheet. The capacitor can be produced by a conventional manufacturing method except that it is disposed at the position of and laminated. Specifically, an internal electrode pattern in which the content of the dielectric powder is increased as compared with the pattern sheet used for the middle layer 7B is used for the pattern sheet corresponding to the cover portion vicinity layer 7A. As a result, the area ratio of the non-covered portion 13c in the internal electrode layer 13 (first internal electrode layer 13a) of the cover portion neighboring layer 7A is the same as that of the non-covered portion in the internal electrode layer 13 (second internal electrode layer 13b) of the middle step portion 7B. A capacitor higher than the area ratio can be obtained. Hereinafter, the embodiment will be described in detail.

以下、コンデンサの例として積層セラミックコンデンサを具体的に作製して特性の評価を行った。まず、原料粉末として、純度が99.9%であり、Ba/Tiのモル比が1.005のチタン酸バリウム粉末および(Ba+Ca)/Tiのモル比が1.005のカル
シウムを0.5原子%含むチタン酸バリウム粉末を準備し、これに以下の成分を添加して誘電体粉末を調製した。誘電体粉末の組成は、チタン酸バリウム粉末100モルに対して、V粉末を0.05モル、MgO粉末を0.7モル、希土類元素(Dy)の酸化物粉末を0.4モル、MnCO粉末を0.2モルとし、さらに焼結助剤(SiO=55,BaO=20,CaO=15,LiO=10(モル%)のガラス粉末)を原料粉末(チタン酸バリウム粉末またはカルシウムを含むチタン酸バリウム粉末)100質量部に対して1質量部添加したものとした。
Hereinafter, a multilayer ceramic capacitor was specifically produced as an example of the capacitor, and the characteristics were evaluated. First, as a raw material powder, 0.5 atom of purity is 99.9%, Ba / Ti molar ratio is 1.005, and (Ba + Ca) / Ti molar ratio is 1.005. % Barium titanate powder was prepared, and the following components were added thereto to prepare a dielectric powder. The composition of the dielectric powder is 0.05 mole of V 2 O 5 powder, 0.7 mole of MgO powder, and 0 rare earth element (Dy 2 O 3 ) oxide powder with respect to 100 moles of barium titanate powder. 4 mol, 0.2 mol of MnCO 3 powder, and further sintering aid (glass powder of SiO 2 = 55, BaO = 20, CaO = 15, Li 2 O = 10 (mol%)) as raw material powder ( 1 part by mass was added to 100 parts by mass of barium titanate powder or barium titanate powder containing calcium).

次に、得られた誘電体粉末を、ポリビニルブチラール樹脂と、トルエンおよびアルコールの混合溶媒中に投入し、直径0.5mmのジルコニアボールを用いて湿式混合してセラミックスラリを調製し、ドクターブレード法により平均厚みが6μmの誘電体グリーンシートを作製した。   Next, the obtained dielectric powder was put into a mixed solvent of polyvinyl butyral resin and toluene and alcohol, and wet-mixed using a zirconia ball having a diameter of 0.5 mm to prepare a ceramic slurry, doctor blade method Thus, a dielectric green sheet having an average thickness of 6 μm was produced.

次に、この誘電体グリーンシートの上面にニッケル(Ni)を主成分とする導体ペーストを矩形状の内部電極パターンとなるように複数形成した。内部電極パターンを形成するための導体ペーストには平均粒径が0.2μmのニッケル粉末を用いた。このニッケル100質量部に対してチタン酸バリウム粉末を共材粒子として10〜20質量部添加したものを用いた。被覆率の低い内部電極パターン用には共材粒子の含有量が10%の導体ペーストを用いた。被覆率の高い内部電極パターン用には共材粒子の含有量が20%の導体ペーストを用いた。共材粒子の含有量はニッケル粉末と共材粒子との合計量を100質量%としたときの値である。共材粒子となるチタン酸バリウム粉末としては、平均粒径が0.1μmおよび0.3μmのものを用いた。表1に示した試料No.3については、カバー部近傍層7Aとなるパターンシートに、平均粒径が0.1μmのチタン酸バリウム粉末と平均粒径が0.3μmのチタン酸バリウム粉末とを混合した混合粉末を用いた。この場合、配合量は両粉末を等分量とした。試料No.1、2、4および5の積層セラミックコンデンサの有効部に用いたパターンシートおよび試料No.3の積層セラミックコンデンサの中段部7Bに用いたパターンシートには、平均粒径が0.1μmのチタン酸バリウム粉末を用いた。   Next, a plurality of conductor pastes mainly composed of nickel (Ni) were formed on the upper surface of the dielectric green sheet so as to form a rectangular internal electrode pattern. Nickel powder having an average particle size of 0.2 μm was used as the conductor paste for forming the internal electrode pattern. What added 10-20 mass parts of barium titanate powder as a co-material particle | grain with respect to 100 mass parts of this nickel was used. For the internal electrode pattern having a low coverage, a conductive paste having a content of co-material particles of 10% was used. For internal electrode patterns having a high coverage, a conductor paste having a common material particle content of 20% was used. The content of the common material particles is a value when the total amount of the nickel powder and the common material particles is 100% by mass. As the barium titanate powder used as the co-material particles, those having an average particle diameter of 0.1 μm and 0.3 μm were used. Sample No. shown in Table 1 For No. 3, a mixed powder obtained by mixing barium titanate powder having an average particle size of 0.1 μm and barium titanate powder having an average particle size of 0.3 μm was used for the pattern sheet to be the cover portion vicinity layer 7A. In this case, both powders were equally divided. Sample No. Pattern sheets and sample Nos. 1 and 2 used for the effective portions of the multilayer ceramic capacitors of 1, 2, 4, and 5 Barium titanate powder having an average particle size of 0.1 μm was used for the pattern sheet used for the middle step 7B of the multilayer ceramic capacitor 3.

次に、セラミックグリーンシートに内部電極パターンを形成したパターンシートを200枚積層し、その上下面に内部電極パターンを印刷していないセラミックグリーンシートをそれぞれ20枚積層し、仮積層体を作製した。この後、仮積層体をプレス機を用いて温度60℃、圧力10Pa、時間10分の条件で密着させて積層体を作製し、しかる後、この積層体を所定の寸法に切断してコンデンサ本体となる生の成形体を形成した。 Next, 200 pattern sheets on which internal electrode patterns were formed were laminated on ceramic green sheets, and 20 ceramic green sheets on which the internal electrode patterns were not printed were laminated on the upper and lower surfaces, respectively, to prepare a temporary laminate. Thereafter, the temporary laminate is closely adhered using a press machine at a temperature of 60 ° C., a pressure of 10 7 Pa, and a time of 10 minutes to produce a laminate, and then the laminate is cut into predetermined dimensions. A green molded body to be a capacitor body was formed.

次に、生の成形体を、窒素中にて脱脂を行った後、フォーミングガスによって調整した還元雰囲気中、最高温度1200℃とし、最高温度での保持時間を2時間として焼成を行い、コンデンサ本体を作製した。この焼成にはバッチ式焼成炉を用いた。フォーミングガスは湿潤装置を通過させた後に焼成炉内に導入した。   Next, the raw molded body was degreased in nitrogen, then fired at a maximum temperature of 1200 ° C. in a reducing atmosphere adjusted with a forming gas, and a holding time at the maximum temperature of 2 hours. Was made. A batch firing furnace was used for this firing. The forming gas was introduced into the firing furnace after passing through the wetting device.

次に、作製したコンデンサ本体に対して再酸化処理を行った。再酸化処理の条件は、窒素雰囲気中、最高温度を1000℃に設定し、保持時間を5時間とした。   Next, reoxidation treatment was performed on the manufactured capacitor body. The conditions for the reoxidation treatment were set to a maximum temperature of 1000 ° C. and a holding time of 5 hours in a nitrogen atmosphere.

焼成後に得られたコンデンサ本体は、長さが3.2mm、幅が1.6mm、厚みが1.6mmであった。誘電体層の平均厚みは5μmであった。内部電極層の平均厚みは1μmであった。内部電極層の1層当たりの有効面積は1.78mmであった。ここで有効面積とは、コンデンサ本体の異なる端面にそれぞれ露出するように積層方向に交互に形成された内部電極層同士の重なる部分の面積のことである。 The capacitor body obtained after firing had a length of 3.2 mm, a width of 1.6 mm, and a thickness of 1.6 mm. The average thickness of the dielectric layer was 5 μm. The average thickness of the internal electrode layer was 1 μm. The effective area per internal electrode layer was 1.78 mm 2 . Here, the effective area is an area of overlapping portions of the internal electrode layers formed alternately in the stacking direction so as to be exposed at different end faces of the capacitor body.

次に、コンデンサ本体をバレル研磨した後、コンデンサ本体の両端部にCu粉末とガラ
スとを含んだ下地電極用ペーストを塗布し、850℃で焼き付けを行って下地電極を形成した。その後、電解バレル機を用いて、この下地電極の表面に、順にNiメッキ及びSnメッキ膜を形成し、積層セラミックコンデンサを作製した。
Next, after barrel-polishing the capacitor body, a base electrode paste containing Cu powder and glass was applied to both ends of the capacitor body and baked at 850 ° C. to form a base electrode. Then, using an electrolytic barrel machine, Ni plating and Sn plating films were sequentially formed on the surface of the base electrode to produce a multilayer ceramic capacitor.

作製した試料は、いずれも非被覆部の面積割合の高いカバー部近傍層を有効部の上下両面に設けた構造とした。   Each of the produced samples had a structure in which layers near the cover part having a high area ratio of the non-covered part were provided on both upper and lower surfaces of the effective part.

非被覆部をコンデンサ本体の端面側に偏らせた試料(表1の試料No.3)は、共材粒子として、ニッケル粉末よりも平均粒径の大きい共材粒子を用い、また、面内の位置で開口率が異なる印刷用スクリーンを用いて作製した。積層セラミックコンデンサを製造する際には、1個の内部電極パターンについて言えば、その長手方向の中央部を切断箇所とする。このため、印刷用スクリーンとしては、内部電極パターンを長手方向に3等分したときに、中央部の開口率がその両脇の部分の開口率よりも高いものを用いた。この場合、開口率の大きい方にニッケル粉末よりも平均粒径の大きい共材粒子が突出することを利用した。   The sample (sample No. 3 in Table 1) in which the uncovered portion is biased toward the end face side of the capacitor body uses co-material particles having an average particle size larger than that of the nickel powder as co-material particles. It produced using the screen for printing from which an aperture ratio differs in a position. When manufacturing a multilayer ceramic capacitor, if it says about one internal electrode pattern, let the center part of the longitudinal direction be a cutting location. For this reason, the screen used for printing was such that when the internal electrode pattern was divided into three equal parts in the longitudinal direction, the opening ratio of the central part was higher than the opening ratios of both sides. In this case, it was utilized that the common material particles having a larger average particle diameter than the nickel powder protrude toward the larger opening ratio.

作製した試料(試料No.2〜5)は、いずれの試料においても、カバー部近傍層の誘電体層を構成するセラミック粒子の平均粒径が中段層における誘電体層を構成するセラミック粒子の平均粒径よりも大きかった。試料No.1のカバー部近傍層の誘電体層を構成するセラミック粒子の平均粒径および中段層における誘電体層を構成するセラミック粒子の平均粒径、ならびに試料No.2〜5の積層セラミックコンデンサの中段層における誘電体層を構成するセラミック粒子の平均粒径はいずれの試料も0.4μmであった。この場合、非被覆部に共材粒子が存在し、その共材粒子が誘電体層と結合した誘電体層側のセラミック粒子とともに、その共材粒子が結合したセラミック粒子から誘電体層の厚み方向に2〜3個のセラミック粒子の範囲において、これらのセラミック粒子は他の領域のセラミック粒子よりも粒成長し、平均粒径が大きくなっていることが確認された。また、作製したいずれの試料もカバー部近傍層を構成する第1内部電極層は、誘電体層の両面での非被覆部の面積割合の差が%表示で5ポイント以下であった。   The produced samples (sample Nos. 2 to 5) are the average of the ceramic particles constituting the dielectric layer in the middle layer in which the average particle diameter of the ceramic particles constituting the dielectric layer in the cover portion vicinity layer is the average in all the samples. It was larger than the particle size. Sample No. 1 and the average particle diameter of the ceramic particles constituting the dielectric layer in the middle layer, and the sample no. The average particle diameter of the ceramic particles constituting the dielectric layer in the middle layer of 2 to 5 multilayer ceramic capacitors was 0.4 μm for all the samples. In this case, co-material particles exist in the non-covered part, and the thickness of the dielectric layer from the ceramic particles combined with the co-material particles together with the ceramic particles on the dielectric layer side combined with the dielectric layer. In the range of 2 to 3 ceramic particles, it was confirmed that these ceramic particles grew more than the ceramic particles in other regions, and the average particle size was larger. Further, in any of the prepared samples, the difference in the area ratio of the non-covered portion on both surfaces of the dielectric layer was 5 points or less in the first internal electrode layer constituting the layer near the cover portion.

次に、作製した積層セラミックコンデンサについて以下の評価を行った。非被覆部の評価は作製したコンデンサを研磨し、図2に示すような断面を露出させた後、走査型電子顕微鏡により所定の範囲について観察および写真撮影を行い、撮影した写真から非被覆部の個数、共材粒子の存在割合、非被覆部の面積割合、ならびに共材粒子がカバー部および誘電体層と結合しているか否かの評価を行った。これらの評価は各試料から1個抽出して評価した。表1における「第1内部電極層」との表記はカバー部近傍層における非被覆部の面積割合の高い内部電極層を意味する。「第2内部電極層」との表記は中段部における非被覆部の面積割合が第1内部電極層よりも低い内部電極層を意味する。写真を撮影した範囲はコンデンサの長手方向(対向する外部電極の方向)の中央部における長さ100μmの範囲とした。非被覆部の面積割合は撮影した写真における内部電極層の全体長さを1としたときの非被覆部の長さの総和との割合から求めた。共材粒子の存在割合は、撮影した領域に存在する非被覆部の総数を1としたときに、非被覆部に共材粒子が存在している個数の割合から求めた。作製した試料はいずれの試料においても非被覆部に存在している共材粒子が隣接しているカバー部および誘電体層に結合していた。   Next, the following evaluation was performed on the produced multilayer ceramic capacitor. The evaluation of the non-covered portion is performed by polishing the produced capacitor and exposing the cross section as shown in FIG. 2, and then observing and photographing a predetermined range with a scanning electron microscope. The number, the presence ratio of the co-material particles, the area ratio of the uncovered portion, and whether or not the co-material particles are bonded to the cover portion and the dielectric layer were evaluated. These evaluations were performed by extracting one from each sample. The notation “first internal electrode layer” in Table 1 means an internal electrode layer having a high area ratio of the non-covered portion in the cover portion vicinity layer. The expression “second internal electrode layer” means an internal electrode layer in which the area ratio of the uncovered portion in the middle step is lower than that of the first internal electrode layer. The range in which the photograph was taken was a range having a length of 100 μm at the center in the longitudinal direction of the capacitor (the direction of the opposing external electrode). The area ratio of the non-covered portion was determined from the ratio with the total length of the non-covered portion when the total length of the internal electrode layer in the photographed image was 1. The presence ratio of the co-material particles was determined from the ratio of the number of the co-material particles existing in the non-covered portion when the total number of the non-cover portions existing in the photographed area was 1. In any of the samples prepared, the co-material particles present in the uncoated portion were bonded to the adjacent cover portion and dielectric layer.

カバー部近傍層におけるセラミック粒子の平均粒径は非被覆部の評価を行うために撮影した写真から求めた。この場合、コンデンサの長手方向(対向する外部電極の方向)の中央部における長さ20μmの範囲に存在するセラミック粒子の輪郭から面積を求め、求めた面積を円の面積とし、その面積から直径を算出してそれぞれのセラミック粒子の粒径とした。次いで、それぞれのセラミック粒子について求めた粒径を平均して平均粒径を求めた。   The average particle size of the ceramic particles in the cover portion vicinity layer was obtained from a photograph taken for evaluating the uncoated portion. In this case, the area is determined from the outline of the ceramic particles existing in the range of 20 μm in the center in the longitudinal direction of the capacitor (in the direction of the opposing external electrode), the obtained area is defined as the area of the circle, and the diameter is determined from the area. The particle size of each ceramic particle was calculated. Next, the average particle size was determined by averaging the particle sizes determined for each ceramic particle.

コンデンサの静電容量は、室温(25℃)において、LCRメータを用いて、温度25℃、周波数1.0kHz、AC電圧を1.0Vrmsの条件にて測定した。試料数は10個とし、平均値を求めた。   The capacitance of the capacitor was measured at room temperature (25 ° C.) using an LCR meter under the conditions of a temperature of 25 ° C., a frequency of 1.0 kHz, and an AC voltage of 1.0 Vrms. The number of samples was 10 and the average value was obtained.

また、作製したコンデンサをFR−4製の配線基板に半田付けしてたわみ試験用の試料を作製した。たわみ試験の試料数は100個とした。たわみ試験でのたわみ量は5mmおよび10mmとした。たわみ試験後にコンデンサにクラックまたはでラミネーションが発生していた試料を不良としてカウントした。   Moreover, the capacitor | condenser produced was soldered to the wiring board made from FR-4, and the sample for a bending test was produced. The number of samples in the deflection test was 100. The amount of deflection in the deflection test was 5 mm and 10 mm. Samples that had cracks or lamination in the capacitor after the deflection test were counted as defective.

Figure 2019175991
Figure 2019175991

Figure 2019175991
Figure 2019175991

表1、2の結果から明らかなように、カバー部近傍層における内部電極層の非被覆部の面積割合を中段部における同面積割合よりも高くした試料(試料No.2〜5)は、カバー部近傍層における同面積割合と中段部における同面積割合とが同等である試料(試料No.1)に比べてたわみ試験での不良数が少なかった。これらの試料(試料No.2〜5)は、静電容量が2.05μF以上であった。   As is clear from the results of Tables 1 and 2, samples (sample Nos. 2 to 5) in which the area ratio of the non-covered portion of the internal electrode layer in the cover vicinity layer is higher than the same area ratio in the middle stage portion are covered. The number of defects in the deflection test was smaller than that of the sample (sample No. 1) in which the same area ratio in the part vicinity layer and the same area ratio in the middle stage part were equivalent. These samples (Sample Nos. 2 to 5) had a capacitance of 2.05 μF or more.

これらの試料の中で、非被覆部の位置を外部電極側に偏る配置にした試料(試料No.3)、非被覆部の面積割合の高い内部電極層を有効部の上下両面に3層づつ設けた試料(試料No.4)、非被覆部の面積割合の高い内部電極層をカバー部近傍層に加えて有効部の積層方向の中央にも配置した試料(試料No.5)は、非被覆部の面積割合の高い内部電極層を有効部の上下両面に2層づつ設けた試料(試料No.2)に比較して、たわみ量10mmで評価したときの不良数が少なかった。   Among these samples, a sample (sample No. 3) in which the position of the non-covered portion is biased toward the external electrode side, and three internal electrode layers with a high area ratio of the non-covered portion are provided on both the upper and lower surfaces of the effective portion. The provided sample (sample No. 4), the sample (sample No. 5) in which the internal electrode layer having a high area ratio of the non-covered portion is added to the cover vicinity layer and is also arranged in the center in the stacking direction of the effective portion, Compared with the sample (sample No. 2) in which two internal electrode layers having a high area ratio of the covering portion were provided on both the upper and lower surfaces of the effective portion, the number of defects when the deflection amount was 10 mm was small.

カバー部近傍層における内部電極層の非被覆部の面積割合を中段部における同面積割合と同等とした試料(試料No.1)は、静電容量が2.2μFと高かったが、たわみ試験での不良数が試料No.2〜5に比べて20個/100個以上と多かった。   The sample (sample No. 1) in which the area ratio of the non-covered portion of the internal electrode layer in the cover vicinity layer was equivalent to the same area ratio in the middle stage portion had a high capacitance of 2.2 μF. The number of defects of Sample No. The number was 20/100 or more compared to 2-5.

1・・・・・・・・・・・・・・コンデンサ本体
3・・・・・・・・・・・・・・外部電極
5・・・・・・・・・・・・・・端面
7・・・・・・・・・・・・・・有効部
7A・・・・・・・・・・・・・カバー部近傍層
7B・・・・・・・・・・・・・中段部
9・・・・・・・・・・・・・・カバー部
11・・・・・・・・・・・・・誘電体層
11a・・・・・・・・・・・・セラミック粒子
13・・・・・・・・・・・・・内部電極層
13a・・・・・・・・・・・・第1内部電極層
13b・・・・・・・・・・・・第2内部電極層
13c・・・・・・・・・・・・非被覆部
13d・・・・・・・・・・・・共材粒子
21・・・・・・・・・・・・・配線基板
1 ... Capacitor body 3 ... External electrode 5 ... End face 7 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Part 9 ············································· Dielectric layer 11a 13... Internal electrode layer 13 a... First internal electrode layer 13 b. Internal electrode layer 13c ···································································· Wiring substrate

Claims (5)

誘電体層と内部電極層とが交互に複数層積層され静電容量を発現する有効部と該有効部の積層方向の表面に配置されたカバー部とを有するコンデンサ本体と、
該コンデンサ本体の対向する端面に設けられた一対の外部電極とを備えており、
前記内部電極層は前記一対の外部電極に接続されており、
前記誘電体層および前記カバー部が複数のセラミック粒子を含む焼結体であり、
前記有効部のうち、前記カバー部に隣接する前記誘電体層と該誘電体層を狭持する2層の前記内部電極層との領域をカバー部近傍層とし、該カバー部近傍層以外の領域を中段層とし、前記カバー部近傍層を挟持する2層の前記内部電極層を第1内部電極層とし、前記中段層における前記内部電極層を第2内部電極層としたときに、
前記内部電極層は、一部が欠損し、前記誘電体層を部分的に被覆していない非被覆部を有するとともに、
前記第1内部電極層には、前記非被覆部に前記セラミック粒子と同じ主成分を有する共材粒子が存在し、該共材粒子が隣接する前記カバー部との間または隣接する前記誘電体層との間のうちの少なくとも一方と結合しており、
前記第1内部電極層は前記第2内部電極層よりも前記非被覆部の面積割合が高い、
コンデンサ。
A capacitor body having an effective portion in which a plurality of dielectric layers and internal electrode layers are alternately stacked to develop a capacitance, and a cover portion disposed on the surface of the effective portion in the stacking direction;
A pair of external electrodes provided on opposite end faces of the capacitor body,
The internal electrode layer is connected to the pair of external electrodes;
The dielectric layer and the cover part are sintered bodies containing a plurality of ceramic particles,
Of the effective portion, a region between the dielectric layer adjacent to the cover portion and the two internal electrode layers sandwiching the dielectric layer is defined as a cover portion vicinity layer, and a region other than the cover portion vicinity layer. Is the middle layer, the two internal electrode layers sandwiching the cover vicinity layer are the first internal electrode layers, and the internal electrode layer in the middle layer is the second internal electrode layer,
The internal electrode layer has a non-coated portion that is partially missing and does not partially cover the dielectric layer,
In the first internal electrode layer, co-material particles having the same main component as the ceramic particles are present in the uncovered portion, and the dielectric layer is adjacent to or adjacent to the cover portion where the co-material particles are adjacent. And at least one of
The first internal electrode layer has a higher area ratio of the uncovered portion than the second internal electrode layer,
Capacitor.
前記第1内部電極層を有する前記カバー部近傍層が前記有効部の積層方向の両側に設けられている、請求項1に記載のコンデンサ。   The capacitor according to claim 1, wherein the cover portion vicinity layer having the first internal electrode layer is provided on both sides in the stacking direction of the effective portion. 前記第1内部電極層は、前記カバー部近傍層を挟んだ2つの前記内部電極層間における前記非被覆部の被覆率差が%表示で5ポイント以下である、請求項1または2に記載のコンデンサ。   3. The capacitor according to claim 1, wherein the first internal electrode layer has a coverage difference of the uncovered portion between the two internal electrode layers sandwiching the cover portion vicinity layer, which is 5 points or less in% display. 4. . 前記カバー部近傍層における前記誘電体層を構成する前記セラミック粒子は前記中段層における前記誘電体層を構成する前記セラミック粒子に比べて平均粒径が大きい、請求項1乃至3のうちいずれかに記載のコンデンサ。   4. The ceramic particle constituting the dielectric layer in the cover portion vicinity layer has an average particle size larger than that of the ceramic particle constituting the dielectric layer in the middle layer. 5. The capacitor described. 前記コンデンサ本体は、対向する前記外部電極の方向の長さをL、該長さLに対して垂直な方向かつ前記誘電体層または前記内部電極層の平面方向に沿った方向の長さを幅Wとし、前記誘電体層および前記内部電極層の積層方向の長さを厚みtとしたときに、前記厚みtが前記幅Wよりも短い形状である、請求項1乃至4のうちいずれかに記載のコンデンサ。   The capacitor body has a width in a direction perpendicular to the length L and a direction in a direction perpendicular to the length L and along the planar direction of the dielectric layer or the internal electrode layer. 5. The thickness according to claim 1, wherein the thickness t is shorter than the width W, where W is the thickness t of the dielectric layer and the internal electrode layer in the stacking direction. The capacitor described.
JP2018062280A 2018-03-28 2018-03-28 Capacitor Pending JP2019175991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018062280A JP2019175991A (en) 2018-03-28 2018-03-28 Capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018062280A JP2019175991A (en) 2018-03-28 2018-03-28 Capacitor

Publications (1)

Publication Number Publication Date
JP2019175991A true JP2019175991A (en) 2019-10-10

Family

ID=68167300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018062280A Pending JP2019175991A (en) 2018-03-28 2018-03-28 Capacitor

Country Status (1)

Country Link
JP (1) JP2019175991A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179675A (en) * 2004-12-22 2006-07-06 Kyocera Corp Multilayer ceramic capacitor and its manufacturing method
JP2007335726A (en) * 2006-06-16 2007-12-27 Tdk Corp Multilayer ceramic capacitor
JP2014146654A (en) * 2013-01-28 2014-08-14 Kyocera Corp Laminated electronic component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179675A (en) * 2004-12-22 2006-07-06 Kyocera Corp Multilayer ceramic capacitor and its manufacturing method
JP2007335726A (en) * 2006-06-16 2007-12-27 Tdk Corp Multilayer ceramic capacitor
JP2014146654A (en) * 2013-01-28 2014-08-14 Kyocera Corp Laminated electronic component

Similar Documents

Publication Publication Date Title
JP6686676B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
WO2011071144A1 (en) Lamination type ceramic electronic part
JP4782598B2 (en) Multilayer ceramic capacitor
KR102388227B1 (en) Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor
WO2009131221A1 (en) Laminated ceramic capacitor
US12014877B2 (en) Ceramic electronic device and manufacturing method of the same
JP2020155523A (en) Multilayer ceramic capacitor
JP2012033621A (en) Multilayer ceramic capacitor
JP2007123835A (en) Laminated ceramic capacitor and manufacturing method thereof
JP2012169620A (en) Multilayer ceramic electronic component and method for manufacturing the same
JP5838968B2 (en) Dielectric ceramic, multilayer ceramic electronic component, and manufacturing method thereof
CN115403370B (en) Dielectric composition and laminated ceramic electronic component
JP5780856B2 (en) Multilayer ceramic capacitor
JP5773726B2 (en) Multilayer ceramic capacitor
JP2007123389A (en) Laminated electronic component
US11626249B2 (en) Ceramic electronic device and manufacturing method of the same
JP2022154959A (en) Ceramic electronic component and manufacturing method thereof
JP2019145684A (en) Ceramic capacitor and manufacturing method thereof
JP6940398B2 (en) Capacitor
JP6781065B2 (en) Capacitor
JPWO2011162044A1 (en) Dielectric ceramic composition and multilayer ceramic electronic component
US11557432B2 (en) Ceramic electronic device, circuit substrate and manufacturing method of ceramic electronic device
US11721482B2 (en) Method of producing ceramic electronic component and ceramic electronic component
JP7427460B2 (en) Ceramic electronic components, circuit boards, and methods of manufacturing ceramic electronic components
KR20150093022A (en) Multi-layered ceramic electronic part, manufacturing method thereof and board having the same mounted thereon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210802

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210831