JP2019174351A - 測量装置 - Google Patents

測量装置 Download PDF

Info

Publication number
JP2019174351A
JP2019174351A JP2018064576A JP2018064576A JP2019174351A JP 2019174351 A JP2019174351 A JP 2019174351A JP 2018064576 A JP2018064576 A JP 2018064576A JP 2018064576 A JP2018064576 A JP 2018064576A JP 2019174351 A JP2019174351 A JP 2019174351A
Authority
JP
Japan
Prior art keywords
light
transmission
region
internal reference
reference light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018064576A
Other languages
English (en)
Inventor
達也 小嶋
Tatsuya Kojima
達也 小嶋
沙希 小高
Saki Odaka
沙希 小高
高橋 崇
Takashi Takahashi
崇 高橋
石鍋 郁夫
Ikuo Ishinabe
郁夫 石鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2018064576A priority Critical patent/JP2019174351A/ja
Publication of JP2019174351A publication Critical patent/JP2019174351A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

【課題】測距装置における内部参照光の光量の調整に関する新規な技術を提供する。【解決手段】対象物である反射プリズム200で反射した測距光と内部参照光路を伝搬した内部参照光とを比較して対象物までの距離を計測する測距装置100であって、内部参照光の光路には光量調整装置108が配置されており、光量調整装置108は、内部参照光を遮光する物質を含んだ液体の形状を変えることで内部参照光の透過領域と透過抑制領域との面積比を可変する機能を有し、前記透過領域と前記透過抑制領域の少なくとも一方は複数が設けられ、前記透過領域と前記透過抑制領域大きさおよび位置の少なくとも一方を変えることで透過する光量の調整が行なわれる。【選択図】図1

Description

本発明は、光量を調整する技術に特徴のある測量装置に関する。
光を用いた測距装置(光波距離計)では、内部参照光と測定光との位相差に基づき、測量対象物までの距離を算出する。この際、測定光は、減衰を受けるが、内部参照光はその程度が小さい。そのため、受光した測定光と同一の光量(信号)レベルになるように内部参照光の光量が調整される。この技術については、例えば特許文献1〜3に記載されている。また、特許文献4には、液体レンズについて記載されている。
特開2004−144681号公報 特開2008−76212号公報 特開2014−149170号公報 特開2016−47900号公報
これまでの技術では、光量を調整するフィルターとして、濃度勾配を有する円板形状の光学フィルターを用い、それを回転させて、特定の光量の透過光が得られるように調整が行われていた。しかしながら、この構造は、機械的な可動部分を必要とし、コスト、信頼性、占有スペースの点で改善が求められていた。
このような背景において、本発明は、測量装置における内部参照光の光量の調整に関する新規な技術の提供を目的とする。
本発明は、対象物で反射した測距光と内部参照光路を伝搬した内部参照光とを比較して前記対象物までの距離を計測する測量装置であって、前記内部参照光の光路には光量調整装置が配置されており、前記光量調整装置は、前記内部参照光を遮光する物質を含んだ液体の形状を変えることで前記内部参照光の透過領域と透過抑制領域との面積比を可変する機能を有し、前記透過領域と前記透過抑制領域の少なくとも一方は複数が設けられ、前記透過領域と前記透過抑制領域大きさおよび位置の少なくとも一方を変えることで透過する光量の調整が行なわれる測量装置である。
本発明において、前記透過領域と前記透過抑制領域の大きさおよび位置の少なくとも一方の変化が周期的に行われる態様が挙げられる。本発明において、前記透過領域と前記透過抑制領域の大きさと位置が同時に変化する態様が挙げられる。本発明において、前記透過領域または前記透過抑制領域が回転する態様が挙げられる。本発明において、前記透過領域または前記透過抑制領域が揺動する態様が挙げられる。
本発明によれば、測量装置における内部参照光の光量の調整に関する新規な技術が提供される。
発明を利用した測距装置のブロック図である。 実施形態における光量調整装置の断面図(A)と正面図(B)である。 実施形態における光量調整装置の断面図(A)と正面図(B)である。 実施形態における光量調整装置の断面図である。 実施形態における光量調整装置の正面図である。
(全体構成)
図1は、発明を利用した測量装置の一例である測距装置100が示されている。測距装置100は、測距対象物である反射ターゲット200までの距離を計測する。勿論、反射ターゲット以外を対象に測距を行うこともできる。測距装置100は、発光部101、ハーフミラー102、直角プリズム103、対物レンズ104、ハーフミラー105、受光部106、ミラー107、光量調整装置108、ミラー109、測距値算出部110を備えている。
発光部101は、パルスレーザー光を発光する。発光部101で発光される光の波長は、特に限定されないが、例えば、800nm〜1100nm程度のものが利用される。発光部101で発光された光は、その一部がハーフミラー102を透過し、測距光として直角プリズム103に向かい、他の一部がハーフミラー102で反射され、内部参照光としてミラー107に向かう。
ハーフミラー102を透過した測距光は、直角プリズム103で反射され、対物レンズ104を介して、測距対象物である反射プリズム200に照射される。反射プリズム200で反射された測距光は、対物レンズ104を透過し、直角プリズム103で反射され、ハーフミラー105を透過して、受光部106に到る。
他方において、ハーフミラー102で反射され、ミラー107に向かった内部参照光は、光量調整装置108を透過することで光量を調整され、その後にミラー109およびハーフミラー105で反射されて、受光部106に到る。光量調整装置108は、透過する光の光量を調整する光アッテネータとしての機能に加えて、透過/非透過を選択する遮光フィルターとしても機能する。光量調整装置108については後述する。
内部参照光の光路長は予め既知の情報として取得されている。ここで、発光部101の発光タイミングを合わせて、受光部106で受光される測距光と内部参照光との受光タイミングを比較し、両者の受光タイミングの位相差(時間差)を検出する。光速度は不変なので、上記の位相差は、測距光の光路長と内部参照光の光路長の差に対応している。よって上記の位相差から、測距装置100から反射プリズム200までの距離(測距値)が算出される。この処理が測距値算出部110で行なわれる。
(光量調整装置)
以下、光量調整装置108について説明する。内部参照光は、測距光に比較して航路長が短く、また野外での減衰を受けないので、受光部106に入射する光量が相対的に大きい。つまり、参照光は、測距光に比較して強い光となる。
受光部106は、測距対象物(反射プリズム200)で反射された測距光を高感度に検出できるように設定されている。そのため、光量の調整を行わない内部参照光を受光部106に入射させると、受光部の受光素子(フォトダイオード等)が入力オーバーとなる。この問題を回避するために、内部参照光の光路に、内部参照光を減衰(調光)させるための光量調整装置108が配置されている。
図2に光量調整装置108の断面構造の概要を示す。図2(A)は、断面の概念図であり、図2(B)は光軸方向(正面)から見た遮光領域を構成する無極性液311(遮光領域(非透過領域))の状態を示す正面図である。
光量調整装置100は、液体光学フィルター300および駆動部320を有する。液体光学フィルター300は、液体レンズの原理(例えば、特開2016−47900号公報参照)を利用して、透過する光量を制御する。液体光学フィルター300は、隙間を有して対向配置された一対のガラス基板301と302を有している。ここで、基板は、ガラスに限定されず、扱う光を透過する光透過性の材料(例えば、樹脂)を用いることができる。
ガラス基板301と302の間は、基板間隔を保ち、また封止材として機能するスペーサ303により密閉され、この密閉された空間の中に有極性液体310と無極性液体311が満たされている。有極性液体310としては、例えば、水を主成分として、不凍液が添加されたものを用いる。有極性液体310は、発光部101から発光される光を透過する。
無極性液体311には、発光部101から発光される光を遮光または減光するための色素が添加されている。この場合は、無極性液体311に炭素粉(カーボンブラック)が添加され、無極性液体311に発光部101から発光される光を抑制(この場合は遮光)する機能を付与している。
なお、無極性液体311の透過を抑制する機能は、完全な遮光の場合に限定されず、ある程度光を透過する状態(つまり減光させた状態)に調整することもできる。この場合、無極性液体311の厚みも光量の減衰の程度に寄与する形態となる。
無極性液体311としては、例えば、ヘキサン、オクタン、デカン、ドデカン、ヘキサデカン、ウンデカン、ベンゼル、トルエン、キシレン、メシチレン、ブチルベンゼン、1、1―ジフェニルエチレン等の炭化水素系の材料や、透明なシリコーンオイル(有機剤)が用いられる。
ガラス基板301のガラス基板302に対向する面には、上側電極304が形成されている。ガラス基板302のガラス基板301に対向する面には、下側電極307が形成されている。
上側電極304と下側電極307は、同様な構造を有し、それぞれ複数の電極により構成されている。この複数の電極には、駆動部320から電圧が加えられ、上下の電極間に電界が形成される。上下の複数の電極のぞれぞれは、独立に加える電圧値の調整が可能である。ガラス基板301,302は、正面から見て(図2(A)の上または下から見て)円形を有している。そして、複数の電極は、図2(B)に示すようなデザインで配置されている。
光量調整装置100の有効光学領域の径(円形の透過光量の制御が行なわれる径)は、設置された位置における内部参照光の光束径と同程度、あるいはそれより少し大きい程度に設定されている。
以下、上側電極304について説明する(下側電極307も構造は同じである)。上側電極304の各電極要素は正面から見て円形であり、厚さ1μm〜5μmの透明導電膜(この例ではITO膜)により構成されている。電極の形状は、矩形、長方形、六角形等であってもよい。上側電極304を構成する各要素電極は、下側電極307を構成する各要素電極に対向して配置されている。
上側電極304を覆って光透過性の絶縁膜となる厚さ1μm〜20μmのエレクトロウエッティング用膜305が形成されている。エレクトロウエッティング用膜305は、熱可塑性フッ素重合体としてのポリフッ化ビニリデン(PVDF)とイオン性液体との混合物をスピンコートすることで形成されている。
ここでは、エレクトロウエッティング用膜305の形成材料を、ポリフッ化ビニリデン(固形物)100重量部にイオン性液体5重量部ないし20重量部を添加して、これらを溶融化させて、撹拌混合することにより作成する。この形成材料をスピンコートすることで、エレクトロウエッティング用膜305が形成される。ここでは、イオン性液体の分子とポリフッ化ビニリデンにナノ分散処理を行うことにより、エレクトロウエッティング用膜形成材料の透明性を高めている。
上記のイオン性液体には、イミダゾール系イオン液体とピロリジニウム系イオン液体とピぺリジニウム系イオン液体とピリジニウム系イオン液体とアンモニウム系イオン液体とホスホニウム系液体とのうちのいずれか一つ又はこれらの混合物を用いることができる。すなわち、イオン性液体は、陽イオンとしてのピリジン系と、脂肪族アミン系と、脂環族アミン系とのうちの少なくとも一種類からなる構成であれば良い。特に、室温において液体で、誘電率やイオン伝導度が高いイオン性液体が望ましい。
エレクトロウエッティング用膜305の表面(互いに対向する面)には、フッ素系のポリマーやシリコン樹脂を用いた厚さ1μm〜10μmの撥水撥油膜306が形成されている。撥水撥油膜306が有極性液体310に接触する。
下側電極307についても同様に、下側電極307を覆って、エレクトロウエッティング用膜308が設けられ、その上に撥水撥油膜309が形成されている。
上側電極304と下側電極307の間には、駆動部320から電圧が加えられる。上側電極304と下側電極307の間に加えられる電圧を変化させると、無極性液体311の撥水撥油膜309に対する接触角が変化し、遮光領域の面積が変化する。これにより、液体光学フィルター300を透過する光の光量の調整が行なわれる。
上下の対向する電極間の電位差を小さくすると、無極性液体311の撥水撥油膜309に対する接触角が大きくなり、遮光領域が減少する。この場合、透過光量は減少する。この場合の一例が図3に示されている。この現象については、特開2016−47900号公報に記載されている。
また、上下の対向する電極間の電位差を大きくすると、無極性液体311の撥水撥油膜309に対する接触角が小さくなり、遮光領域が増大する。この場合、透過光量が増大する。この場合の一例が図4に示されている。
また、この例では、無極性液体311が全体を多い、全体を遮光領域とすることも可能である。この場合、液体光学フィルター300は遮光フィルターとなる。
複数ある無極性領域311の大きさは、個別に調整できる。また、その大きさを動的に変化させることも可能である。複数ある無極性領域311の大きさを動的に変化させることで、光量を細かく調整(調光)するサーキュラーとして利用することもできる。
(光量調整装置の他の例)
図5には、液体光学フィルター400が示されている。液体光学フィルター400の基本的な断面構造は、図1(A)と同じである。ただし、液体光学フィルター400では、電極が液晶表示装置と同様なアクティブマトリクス型であり、上または下の光透過性の基板上には、格子状に画素を構成する電極が配置され、各画素には駆動用のアクティブ素子(例えば、TFT)が配置されている。この構造では、電圧を加える電極の組み合わせを制御することで、図5に示すような透過領域410とその他の非透過領域(遮光領域)を形成できる。
この場合、透過領域401が有極性液体で構成され、非透過領域が炭素粉を添加した無極性液体で構成される。この例では、4つの扇形の形状で構成される透過領域401を扇形の中心(扇の要の位置)を中心に回転させる。ここで、回転速度と扇形の開き角(中心角)を調整することで、透過光量も含めた調光の程度を調整できる。
また、図5の構成において、透過領域401の位置を変えながら(回転させながら)、その面積を動的に変化させる形態も可能である。この際、アクティブマトリクス電極における透過領域401の形成に寄与する電極の位置を制御することで、透過領域401の位置の制御が行なわれ、当該電極の数を制御することで、透過領域401の面積の制御が行なわれる。
図5では、非透過領域(符号401の透過領域でない領域)を遮光領域としているが、当該領域を透過が抑制され、透過光を減光する領域とすることもできる。この場合、当該領域を構成する無極性液体に添加する炭素粉の量を調整し、無極性液体を半透明な状態に調整する。
動的な変化の周波数としては、例えば、5Hz〜50Hz程度が挙げられる。これは、図1の構成の場合も同じである。
透過領域または透過が抑制される領域を回転させる態様の他に、当該領域を揺動させる形態も可能である。揺動としては、往復運動やジグザグ運動が挙げられる。
(その他)
光量調整装置108は、測距装置の内部参照光の光量を調整する用途以外に、一般的な減光フィルター、光アッテネータ、調光装置として広く利用できる。例えば、光量調整装置108を一般的なNDフィルターの代わりに利用することもできる。光量調整装置108を適用可能な光学機器としては、各種の測量装置、カメラ、光学センサの光学系、望遠鏡、顕微鏡、眼科装置等が挙げられる。
例えば、レーザースキャナは、測距光をスキャンすることで、三次元点群データを得る測量装置であり、測距の原理は、図1の測距装置100と同じである。よって、本発明は、レーザースキャナに適用することもできる。
図2(B)の場合、符号311で示される透過が抑制される領域(この例では、非透過の領域)が複数あり、符号310で示される透過の領域が一つである場合が示されているが、前者が一つで後者が複数であってもよい。また、透過が抑制される領域と透過の領域の両方が複数ある形態も可能である。
有極性液体と無極性液体の役割を逆にすることもできる。この場合、有極性液体に遮光材料を添加し、遮光性(または減光性)とし、無極性液体を透過性とする。この態様では、例えば図2(B)の場合に、符号311の複数の丸い領域が透過領域となり、その他の領域が、透過が抑制された領域となる。
有極性液体または無極性液体を、光の透過を抑制する領域とするために添加される物質は、炭素粉に限定されず、赤,青,緑といった特定の色の色素やこの色素を含む物質でもよい。また、光を反射あるいは散乱する光反射性の材料の粉(例えば金属粉)を有極性液体または無極性液体に加え、透過が抑制された領域や遮光領域を形成することも可能である。また特定の色の液体を有極性液体または無極性液体に混ぜ、透過が抑制された領域や遮光領域を形成することも可能である。
(光学フィルターの発明としての把握))
本明細書で開示する発明を光量調整装置や調光装置として把握することもできる。この場合、新規な光量調整装置や調光装置の提供を課題とした発明となる。以下、光量調整装置や調光装置として機能する光学装置の発明として把握した場合の摘要を記載する。
すなわち、本明細書で開示する光学装置は、光量を調整する機能を有する光学装置であり、透過しようとする光を遮光する物質を含んだ液体の形状を変えることで前記光の透過領域と透過抑制領域との面積比を可変する機能を有し、前記透過領域と前記透過抑制領域の少なくとも一方は複数が設けられ、前記透過領域と前記透過抑制領域の大きさおよび位置の少なくとも一方を変えることで透過する光量の調整が行なわれる。
上記の光学装置において、前記透過領域と前記透過抑制領域の大きさおよび位置の少なくとも一方の変化が周期的に行われる態様が挙げられる。また、上記の光学装置において、前記透過領域と前記透過抑制領域の大きさと位置が同時に変化する態様が挙げられる。また上記の光学装置において、前記透過領域または前記透過抑制領域が回転する態様が挙げられる。また、上記の光学装置において、前記透過領域または前記透過抑制領域が揺動する態様が挙げられる。
100…測距装置、101…発光部、102…ハーフミラー、103…直角プリズム、103、104…対物レンズ、105…ハーフミラー、106…受光部、107…ミラー、108…光量調整装置、109…ミラー、110…測距値算出部、200…反射プリズム、300…液体光学フィルター、301,302…ガラス基板、303…スペーサ、304…上側電極、305…エレクトロウエッティング用膜、306…撥水撥油膜、307…下側電極、308…エレクトロウエッティング用膜、309…撥水撥油膜、310…有極性液体、311…無極性液体。

Claims (5)

  1. 対象物で反射した測距光と内部参照光路を伝搬した内部参照光とを比較して前記対象物までの距離を計測する測量装置であって、
    前記内部参照光の光路には光量調整装置が配置されており、
    前記光量調整装置は、前記内部参照光を遮光する物質を含んだ液体の形状を変えることで前記内部参照光の透過領域と透過抑制領域との面積比を可変する機能を有し、
    前記透過領域と前記透過抑制領域の少なくとも一方は複数が設けられ、
    前記透過領域と前記透過抑制領域大きさおよび位置の少なくとも一方を変えることで透過する光量の調整が行なわれる測量装置。
  2. 前記透過領域と前記透過抑制領域の大きさおよび位置の少なくとも一方の変化が周期的に行われる請求項1に記載の測量装置。
  3. 前記透過領域と前記透過抑制領域の大きさと位置が同時に変化する請求項1または2に記載の測量装置。
  4. 前記透過領域または前記透過抑制領域が回転する請求項1〜3のいずれか一項に記載の測量装置。
  5. 前記透過領域または前記透過抑制領域が揺動する請求項1〜3のいずれか一項に記載の測量装置。
JP2018064576A 2018-03-29 2018-03-29 測量装置 Pending JP2019174351A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018064576A JP2019174351A (ja) 2018-03-29 2018-03-29 測量装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018064576A JP2019174351A (ja) 2018-03-29 2018-03-29 測量装置

Publications (1)

Publication Number Publication Date
JP2019174351A true JP2019174351A (ja) 2019-10-10

Family

ID=68170249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018064576A Pending JP2019174351A (ja) 2018-03-29 2018-03-29 測量装置

Country Status (1)

Country Link
JP (1) JP2019174351A (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062549A (ja) * 1996-08-15 1998-03-06 Nikon Corp 距離測定装置
US20040070745A1 (en) * 2002-04-15 2004-04-15 Robert Lewis Distance measurement device with short distance optics
JP2005148140A (ja) * 2003-11-11 2005-06-09 Fuji Photo Film Co Ltd 撮像装置
JP2007328233A (ja) * 2006-06-09 2007-12-20 Toyota Central Res & Dev Lab Inc 光学素子
JP2009211047A (ja) * 2008-02-05 2009-09-17 Sony Corp 液体光学素子
JP2014137511A (ja) * 2013-01-17 2014-07-28 Sharp Corp 立体画像表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062549A (ja) * 1996-08-15 1998-03-06 Nikon Corp 距離測定装置
US20040070745A1 (en) * 2002-04-15 2004-04-15 Robert Lewis Distance measurement device with short distance optics
JP2005148140A (ja) * 2003-11-11 2005-06-09 Fuji Photo Film Co Ltd 撮像装置
JP2007328233A (ja) * 2006-06-09 2007-12-20 Toyota Central Res & Dev Lab Inc 光学素子
JP2009211047A (ja) * 2008-02-05 2009-09-17 Sony Corp 液体光学素子
JP2014137511A (ja) * 2013-01-17 2014-07-28 Sharp Corp 立体画像表示装置

Similar Documents

Publication Publication Date Title
CN104823096B (zh) 光调制元件
TWI437264B (zh) 半反射半穿透式電溼潤之顯示裝置
US20180299688A1 (en) Particles, optical sheet, screen, display device, particle inspection device, particle manufacturing device, particle inspection method, particle manufacturing method, screen inspection method, and screen manufacturing method
JP2013195565A (ja) 走査型表示装置およびスペックル低減方法
US10267997B2 (en) Infrared scene projector with per-pixel spectral and polarisation capability
WO2019073896A1 (ja) 位相変調装置
KR101928434B1 (ko) 전기 습윤 소자 및 그 제조 방법
JP2019174351A (ja) 測量装置
JP6959745B2 (ja) 光学装置および眼科装置
JP2010039365A (ja) 表示素子および表示装置
CN208654318U (zh) 一种基于lcos技术的固态扫描激光雷达
JP5914979B2 (ja) 光走査装置および画像形成装置
JP2007316484A (ja) 透過型表示装置、及びカメラ
JP2011070155A (ja) 光シャッタ、光シャッタの動作方法、カメラ、ディスプレイ装置、及び光学装置
KR102607856B1 (ko) 2차원 빔 스티어링 소자
JP5838585B2 (ja) 光走査装置及び画像形成装置
US20190250497A1 (en) Optical sheet, screen, and display device
JP7176331B2 (ja) 光走査装置
TWI716872B (zh) 光偏向裝置
KR20170090123A (ko) 목표 지향적 발광 장치 및 광학 모듈
US20210341130A1 (en) Light-emitting component and method of operating a light-emitting component
JP6812180B2 (ja) 光学装置を使用した光路長変更装置および偏向装置、眼科装置
JP2019135517A (ja) スクリーン、表示装置、スクリーンの使用方法、および、表示装置の使用方法
JP2019148706A (ja) スクリーンおよび表示装置
KR102181867B1 (ko) 무회전 스캐닝라이다 및 그것을 이용한 하이브리드 라이다

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220812