JP2019165078A - 成膜方法及び成膜装置 - Google Patents

成膜方法及び成膜装置 Download PDF

Info

Publication number
JP2019165078A
JP2019165078A JP2018051271A JP2018051271A JP2019165078A JP 2019165078 A JP2019165078 A JP 2019165078A JP 2018051271 A JP2018051271 A JP 2018051271A JP 2018051271 A JP2018051271 A JP 2018051271A JP 2019165078 A JP2019165078 A JP 2019165078A
Authority
JP
Japan
Prior art keywords
gas
plasma
region
plasma processing
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018051271A
Other languages
English (en)
Other versions
JP7002970B2 (ja
Inventor
繁博 三浦
Shigehiro Miura
繁博 三浦
貴司 千葉
Takashi Chiba
貴司 千葉
健宏 深田
Takehiro Fukada
健宏 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2018051271A priority Critical patent/JP7002970B2/ja
Priority to KR1020190029726A priority patent/KR102430799B1/ko
Priority to US16/357,285 priority patent/US20190284691A1/en
Publication of JP2019165078A publication Critical patent/JP2019165078A/ja
Application granted granted Critical
Publication of JP7002970B2 publication Critical patent/JP7002970B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45534Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/4554Plasma being used non-continuously in between ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/507Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using external electrodes, e.g. in tunnel type reactors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68771Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by supporting more than one semiconductor substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

【課題】本発明は、処理室内の基板を交換して成膜装置の運転を開始する際、プラズマ着火遅れを防止し、安定的にプラズマ着火を行いつつ、各運転間のプラズマの着火時間を略一定とすることができる成膜方法及び成膜装置を提供することを目的とする。【解決手段】処理室内の所定のプラズマ処理領域でプラズマ源により生成された酸素ラジカルを用いて基板上に成膜された酸化膜を改質する改質工程と、前記基板上への酸化膜の成膜が終了したら、前記プラズマ処理領域内をプラズマが着火し易い状態にする着火準備工程と、を有する。【選択図】図13

Description

本発明は、成膜方法及び成膜装置に関する。
従来から、半導体ウェハ等の基板上に、シリコン酸化膜等の薄膜を成膜する方法の1つとして、互いに反応する複数種類の処理ガスを基板の表面に順番に供給して反応生成物の原子層を堆積させるALD(Atomic Layer Deposition)が知られている(例えば、特許文献1参照)。例えば、特許文献1には、基板を載置する回転テーブルを回転させてALDにより成膜を行う回転テーブル式のALD成膜装置が記載されている。具体的には、特許文献1に記載の成膜装置では、回転テーブル上に5枚又は6枚のウェハを周方向に沿って載置し、回転テーブルの回転により移動(公転)するウェハの軌道に対向するように、原料ガス供給部やガスをプラズマ化するためのアンテナを配置している。
かかる特許文献1に記載されたALD成膜装置を用いて高品質なシリコン酸化膜(SiO膜)を成膜する場合、回転テーブルの回転方向に沿って原料ガス吸着領域、酸化領域、プラズマ処理領域を設ける。そして、原料ガス吸着領域では3DMA(トリス・ジメチルアミノ・シラン、tris(dimethylamino)silane)、有機アミノシランガス等のシリコン含有ガス、酸化領域ではオゾン等の酸化ガス、プラズマ処理領域ではアルゴン、酸素、水素等の混合ガスプラズマを供給し、回転テーブルの回転により、ウェハが原料ガス吸着領域、酸化領域、プラズマ処理領域を高速で順に通過するようにし、高品質のシリコン酸化膜を成膜している。かかる成膜方法では、原料ガス吸着領域でウェハに吸着したSiソースは、酸化領域で1層分酸化されてSiO分子層が堆積し、堆積したSiO分子層がプラズマ処理領域でプラズマにより改質される。そして、回転テーブルの継続的な回転により再び同じサイクルが繰り返され、シリコン酸化膜が成膜される。特許文献1に記載の成膜装置では、例えば、1分間に100〜300回程度の1層毎のプラズマ改質を行う高速ALD成膜が可能である。
特開2013−45903号公報
しかしながら、特許文献1に記載されたALD成膜装置では、上述の原料ガス吸着領域、酸化領域、プラズマ処理領域を、完全に壁等で分離している訳ではなく、分離ガスの圧力壁で各領域を分離している。具体的には、原料ガス吸着領域と酸化領域との間、及びプラズマ処理領域と原料ガス吸着領域との間に、処理室の天井面から下方に突出して天井面と回転テーブルの上面との間を狭くした分離領域を形成するとともに、分離領域の中央付近から分離ガスを回転テーブルに向かって供給し、分離ガスによる高圧の圧力壁を形成して各領域を分離している。よって、1つの処理室内に、複数の処理領域が圧力壁を隔てて形成されている構成であるので、原料ガス吸着領域を吸着に有利な数Torrレベルの高圧帯に設定し、プラズマ処理領域をプラズマ放電及び改質に有利な数10mmTorrレベルの低圧帯に設定するような圧力の制御は困難である。実際には、プラズマ処理領域も1Torr以上の高圧帯で使用されている場合が多い。1Torr以上の高圧帯では、誘導結合プラズマ(ICP、Inductively-Coupled Plasma)のような高密度プラズマの場合、放電に不利に働く場合が多い。また、プラズマによるデバイスウェハへのチャージアップダメージ対策として、特許文献1に記載されているようなファラデーシールドを設置し、電界成分をカットして磁界成分主体の誘導結合プラズマを利用する場合には、更に高圧放電が困難となる。
このため、処理室内でウェハを処理して搬出し、次のウェハを処理室内に搬入して処理を開始する際に、プラズマの着火時間が長くなる場合があった。このような着火遅れは、スループットを低下させ、生産性を悪化させてしまう。また、特許文献1に記載した回転テーブル式のALD成膜装置以外の成膜装置の場合でも、プラズマ処理領域の放電環境が良好でない場合には、同様の現象が発生し得る。
そこで、本発明は、処理室内の基板を交換して成膜装置の運転を開始する際、プラズマ着火遅れを防止し、安定的にプラズマ着火を行いつつ、各運転間のプラズマの着火時間を略一定とすることができる成膜方法及び成膜装置を提供することを目的とする。
上記目的を達成するため、本発明の一態様に係る成膜方法は、処理室内の所定のプラズマ処理領域でプラズマ源により生成された酸素ラジカルを用いて基板上に成膜された酸化膜を改質する改質工程と、
前記基板上への酸化膜の成膜が終了したら、前記プラズマ処理領域内をプラズマが着火し易い状態にする着火準備工程と、を有する。
本発明によれば、成膜装置を連続運転する際に、各運転におけるプラズマ着火遅れを防止することができる。
本発明の実施形態に係る成膜装置の一例の概略縦断面図を示した図である。 本実施形態に係る成膜装置の一例の概略平面図を示した図である。 分離領域から第1の処理領域を経て分離領域までの断面図である。 本実施形態におけるプラズマ源の一例の縦断面図である。 本実施形態におけるプラズマ源の一例の分解斜視図である。 本実施形態におけるプラズマ源に設けられる筐体の一例の斜視図を示す。 回転テーブルの回転方向に沿って真空容器を切断した縦断面図を示した図である。 プラズマ処理領域に設けられたプラズマ処理ガスノズルを拡大して示した斜視図である。 プラズマ源の一例の平面図である。 プラズマ源に設けられるファラデーシールドの一部を示す斜視図を示す。 アルゴンガスのイオン化電子エネルギーを示した図である。 酸素ガスのイオン化電子エネルギーを示した図である。 本実施形態に係る成膜方法の処理フロー図である。 本実施形態に係る成膜方法を実施した実施例1〜4についての実施条件と結果を示した図である。
以下、図面を参照して、本発明を実施するための形態の説明を行う。
[成膜装置]
図1は、本発明の実施形態に係る成膜装置の一例の概略縦断面図を示す。また、図2に、本実施形態に係る成膜装置の一例の概略平面図を示す。なお、図2では、説明の便宜上、天板11の描画を省略している。
図1に示すように、本実施形態に係る成膜装置は、平面形状が概ね円形である真空容器1と、この真空容器1内に設けられ、真空容器1の中心に回転中心を有すると共にウェハWを公転させるための回転テーブル2と、を備えている。
真空容器1は、ウェハWを収容してウェハWの表面上に成膜処理を施し、薄膜を堆積させるための処理室である。真空容器1は、回転テーブル2の後述する凹部24に対向する位置に設けられた天板(天井部)11と、容器本体12とを備えている。また、容器本体12の上面の周縁部には、リング状に設けられたシール部材13が設けられている。そして、天板11は、容器本体12から着脱可能に構成されている。平面視における真空容器1の直径寸法(内径寸法)は、限定されないが、例えば1100mm程度とすることができる。
真空容器1内の上面側における中央部には、真空容器1内の中心部領域Cにおいて互いに異なる処理ガス同士が混ざり合うことを抑制するために分離ガスを供給する、分離ガス供給管51が接続されている。
回転テーブル2は、中心部にて概略円筒形状のコア部21に固定されており、このコア部21の下面に接続されると共に鉛直方向に伸びる回転軸22に対して、鉛直軸周り、図2に示す例では時計回りに、駆動部23によって回転自在に構成されている。回転テーブル2の直径寸法は、限定されないが、例えば1000mm程度とすることができる。
回転軸22及び駆動部23は、ケース体20に収納されており、このケース体20は、上面側のフランジ部分が真空容器1の底面部14の下面に気密に取り付けられている。また、このケース体20には、回転テーブル2の下方領域にArガス等をパージガス(分離ガス)として供給するためのパージガス供給管72が接続されている。
真空容器1の底面部14におけるコア部21の外周側は、回転テーブル2に下方側から近接するようにリング状に形成されて突出部12aをなしている。
回転テーブル2の表面部には、直径寸法が例えば300mmのウェハWを載置するための円形状の凹部24が基板載置領域として形成されている。この凹部24は、回転テーブル2の回転方向に沿って、複数個所、例えば5箇所に設けられている。凹部24は、ウェハWの直径よりも僅かに、具体的には1mm乃至4mm程度大きい内径を有する。また、凹部24の深さは、ウェハWの厚さにほぼ等しいか、又はウェハWの厚さよりも大きく構成される。したがって、ウェハWが凹部24に収容されると、ウェハWの表面と、回転テーブル2のウェハWが載置されない平坦領域の表面とが同じ高さになるか、ウェハWの表面が回転テーブル2の表面よりも低くなる。また、凹部24の底面には、ウェハWを下方側から突き上げて昇降させるための例えば後述する3本の昇降ピンが貫通する、図示しない貫通孔が形成されている。
図2に示すように、回転テーブル2の回転方向に沿って、第1の処理領域P1と、第2の処理領域P2と、第3の処理領域P3とが互いに離間して設けられる。また、回転テーブル2における凹部24の通過領域と対向する位置には、例えば石英からなる複数本、例えば7本のガスノズル31、32、33、34、35、41、42が真空容器1の周方向に互いに間隔をおいて放射状に配置されている。これら各々のガスノズル31〜35、41、42は、回転テーブル2と天板11との間に配置される。また、これら各々のガスノズル31〜34、41、42は、例えば真空容器1の外周壁から中心部領域Cに向かって回転テーブル2に対向して水平に伸びるように取り付けられている。一方、ガスノズル35は、真空容器1の外周壁から中心領域Cに向かって延びた後、屈曲して直線的に中心部領域Cに沿うように反時計回り(回転テーブル2の回転方向の反対方向)に延びている。図2に示す例では、後述する搬送口15から時計回り(回転テーブル2の回転方向)に、プラズマ処理ガスノズル33、34、プラズマ処理ガスノズル35、分離ガスノズル41、第1の処理ガスノズル31、分離ガスノズル42、第2の処理ガスノズル32がこの順番で配列されている。なお、第2の処理ガスノズル32で供給されるガスは、プラズマ処理ガスノズル33〜35で供給されるガスと同質のガスが供給される場合が多いが、プラズマ処理ガスノズル33〜35で当該ガスの供給が十分な場合には、必ずしも設けられなくてもよい。
また、プラズマ処理ガスノズル33〜35は、1本のプラズマ処理ガスノズルで代用してもよい。この場合、例えば、第2の処理ガスノズル32と同様に、真空容器1の外周壁から中心領域Cに向かって延びたプラズマ処理ガスノズルを設けるようにしてもよい。
第1の処理ガスノズル31は、第1の処理ガス供給部をなしている。また、第2の処理ガスノズル32は、第2の処理ガス供給部をなしている。更に、プラズマ処理ガスノズル33〜35は、各々プラズマ処理用ガス供給部をなしている。また、分離ガスノズル41、42は、各々分離ガス供給部をなしている。
各ガスノズル31〜35、41、42は、流量調整バルブを介して、図示しない各々のガス供給源に接続されている。
これらのガスノズル31〜35、41、42の下面側(回転テーブル2に対向する側)には、前述の各ガスを吐出するためのガス吐出孔36が回転テーブル2の半径方向に沿って複数箇所に例えば等間隔に形成されている。各ガスノズル31〜35、41、42の各々の下端縁と回転テーブル2の上面との離間距離が例えば1〜5mm程度となるように配置されている。
第1の処理ガスノズル31の下方領域は、原料ガスをウェハWに吸着させるための第1の処理領域P1であり、第2の処理ガスノズル32の下方領域は、原料ガスを酸化して酸化物を生成可能な酸化ガスをウェハWに供給する第2の処理領域P2である。また、プラズマ処理ガスノズル33〜35の下方領域は、ウェハW上の膜の改質処理を行うための第3の処理領域P3となる。
なお、第1の処理ガスノズル31は、シリコン酸化膜を成膜する場合にはシリコン含有ガス、金属酸化膜を成膜する場合には金属含有ガス、というように、薄膜の主成分となる原料を含んだ原料ガス(プリカーサ)を供給するノズルである。よって、第1の処理ガスノズル31を、原料ガスノズル31と呼んでもよいこととする。また、第1の処理領域P1は、原料ガスをウェハW上に吸着させる領域であるから、原料ガス吸着領域P1と呼んでもよいこととする。
同様に、第2の処理ガスノズル32は、酸化膜を成膜する場合に、酸素、オゾン、水、過酸化水素といった酸化ガスをウェハWに供給するので、酸化ガスノズル32と呼んでもよいこととする。また、第2の処理領域P2は、第1の処理領域P1で原料ガスが吸着したウェハWに酸化ガスを供給してウェハWに吸着した原料ガスを酸化する領域であるので、酸化領域P2と呼んでもよいこととする。酸化領域P2において、酸化膜の分子層がウェハW上に堆積する。
また、第3の処理領域P3は、第2の処理領域P2で形成された酸化膜の分子層をプラズマ処理し、酸化膜を改質する領域であるので、プラズマ処理領域P3と呼んでもよいこととする。なお、本実施形態では、酸化膜を成膜するので、プラズマ処理ガスノズル33〜35から供給されるプラズマ処理ガスは、少なくとも酸素ガスを含んだガスである。
分離ガスノズル41、42は、第1の処理領域P1と第2の処理領域P2及び第3の処理領域P3と第1の処理領域P1とを分離する分離領域Dを形成するために設けられる。分離ガスノズル41、42から供給される分離ガスは、窒素等の不活性ガス、ヘリウム、アルゴン等の希ガスである。分離ガスは、パージガスとしても機能するので、分離ガスのことをパージガスと呼んでもよく、分離ガスノズル41、42をパージガスノズル41、42と呼んでもよいこととする。なお、第2の処理領域P2と第3の処理領域P3との間には分離領域Dは設けられていない。第2の処理領域P2で供給する酸化ガスと、第3処理領域P3で供給する混合ガスは、混合ガスに含まれている酸素ガスが共通に酸素原子を含んでおり、双方とも酸化剤として機能しているので、分離ガスを用いて第2の処理領域P2と第3の処理領域P3とを分離する必要が無いからである。
なお、プラズマ処理ガスノズル33〜35は、回転テーブル2上の異なる領域にガスを供給する構造となっているので、領域毎に、混合ガスの各成分の流量比を異ならせ、改質処理が全体で均一に行われるように供給してもよい。
図3に、本実施形態に係る成膜装置の回転テーブルの同心円に沿った断面図を示す。なお、図3は、分離領域Dから第1の処理領域P1を経て分離領域Dまでの断面図である。
分離領域Dにおける真空容器1の天板11には、概略扇形の凸状部4が設けられている。凸状部4は、天板11の裏面に取り付けられており、真空容器1内には、凸状部4の下面である平坦な低い天井面44(第1の天井面)と、この天井面44の周方向両側に位置する、天井面44よりも高い天井面45(第2の天井面)とが形成される。
天井面44を形成する凸状部4は、図2に示すように、頂部が円弧状に切断された扇型の平面形状を有している。また、凸状部4には、周方向中央において、半径方向に伸びるように形成された溝部43が形成され、分離ガスノズル41、42がこの溝部43内に収容されている。なお、凸状部4の周縁部(真空容器1の外縁側の部位)は、各処理ガス同士の混合を阻止するために、回転テーブル2の外端面に対向すると共に容器本体12に対して僅かに離間するように、L字型に屈曲している。
第1の処理ガスノズル31の上方側には、第1の処理ガスをウェハWに沿って通流させるために、且つ分離ガスがウェハWの近傍を避けて真空容器1の天板11側を通流するように、ノズルカバー230が設けられている。ノズルカバー230は、図3に示すように、第1の処理ガスノズル31を収納するために下面側が開口する概略箱形のカバー体231と、このカバー体231の下面側開口端における回転テーブル2の回転方向上流側及び下流側に各々接続された板状体である整流板232とを備えている。なお、回転テーブル2の回転中心側におけるカバー体231の側壁面は、第1の処理ガスノズル31の先端部に対向するように回転テーブル2に向かって伸び出している。また、回転テーブル2の外縁側におけるカバー体231の側壁面は、第1の処理ガスノズル31に干渉しないように切り欠かれている。なお、ノズルカバー230は、必須ではなく、必要に応じて設けられてよい。
図2に示されるように、プラズマ処理ガスノズル33〜35の上方側には、真空容器1内に吐出されるプラズマ処理用ガスをプラズマ化するために、プラズマ源80が設けられている。
図4に、本実施形態に係るプラズマ源80の一例の縦断面図を示す。また、図5に、本実施形態に係るプラズマ源80の一例の分解斜視図を示す。さらに、図6に、本実施形態に係るプラズマ源80に設けられる筐体の一例の斜視図を示す。
プラズマ源80は、金属線等から形成されるアンテナ83をコイル状に例えば鉛直軸回りに3重に巻回して構成されている。また、プラズマ源80は、平面視で回転テーブル2の径方向に伸びる帯状体領域を囲むように、且つ回転テーブル2上のウェハWの直径部分を跨ぐように配置されている。
アンテナ83は、整合器84を介して周波数が例えば13.56MHz及び出力電力が例えば5000Wの高周波電源85に接続されている。そして、アンテナ83は、真空容器1の内部領域から気密に区画されるように設けられている。なお、図4及び図5において、アンテナ83と整合器84及び高周波電源85とを電気的に接続するための接続電極86が設けられている。
なお、アンテナ83は、上下に折り曲げ可能な構成、アンテナ83を自動的に上下に折り曲げ可能な上下動機構、回転テーブル2の中心側の箇所を上下動可能な機構を必要に応じて備えてよい。図4においてはそれらの構成は省略されている。
図4及び図5に示すように、プラズマ処理ガスノズル33〜35の上方側における天板11には、平面視で概略扇形に開口する開口部11aが形成されている。
開口部11aには、図4に示すように、開口部11aの開口縁部に沿って、この開口部11aに気密に設けられる環状部材82を有する。後述する筐体90は、この環状部材82の内周面側に気密に設けられる。即ち、環状部材82は、外周側が天板11の開口部11aの内周面11bと接触すると共に、内周側が後述する筐体90のフランジ部90aに接触して気密に設けられる。そして、この環状部材82を介して、開口部11aには、アンテナ83を天板11よりも下方側に位置させるために、例えば石英等の誘導体により構成された筐体90が設けられる。筐体90の底面は、プラズマ処理領域P3の天井面46を構成する。
筐体90は、図6に示されるように、上方側の周縁部が周方向に亘ってフランジ状に水平に伸び出してフランジ部90aをなすと共に、平面視において、中央部が下方側の真空容器1の内部領域に向かって窪むように形成されている。
筐体90は、この筐体90の下方にウェハWが位置した場合に、回転テーブル2の径方向におけるウェハWの直径部分を跨ぐように配置されている。なお、環状部材82と天板11との間には、O−リング等のシール部材11cが設けられる(図4参照)。
真空容器1の内部雰囲気は、環状部材82及び筐体90を介して気密に設定されている。具体的には、環状部材82及び筐体90を開口部11a内に嵌め込み、次いで環状部材82及び筐体90の上面であって、環状部材82及び筐体90の接触部に沿うように枠状に形成された押圧部材91によって筐体90を下方側に向かって周方向に亘って押圧する。さらに、この押圧部材91を図示しないボルト等により天板11に固定する。これにより、真空容器1の内部雰囲気は気密に設定される。なお、図5においては、図示の簡素化のため、環状部材82を省略して示している。
図6に示されるように、筐体90の下面には、当該筐体90の下方側のプラズマ処理領域P3を周方向に沿って囲むように、回転テーブル2に向かって垂直に伸び出す突起部92が形成されている。そして、この突起部92の内周面、筐体90の下面及び回転テーブル2の上面により囲まれた領域には、前述したプラズマ処理ガスノズル33〜35が収納されている。なお、プラズマ処理ガスノズル33〜35の基端部(真空容器1の内壁側)における突起部92は、プラズマ処理ガスノズル33〜35の外形に沿うように概略円弧状に切り欠かれている。
筐体90の下方(プラズマ処理領域P3)側には、図4に示されるように、突起部92が周方向に亘って形成されている。シール部材11cは、この突起部92によって、プラズマに直接曝されず、即ち、プラズマ処理領域P3から隔離されている。そのため、プラズマ処理領域P3からプラズマが例えばシール部材11c側に拡散しようとしても、突起部92の下方を経由して行くことになるので、シール部材11cに到達する前にプラズマが失活することとなる。
また、図4に示すように、筐体90の下方の第3の処理領域P3内には、プラズマ処理ガスノズル33〜35が設けられ、アルゴンガス供給源140、水素ガス供給源141、酸素ガス供給源142及びアンモニアガス供給源143に接続されている。ここで、水素ガス供給源141とアンモニア供給源143は、いずれか一方が設けられていればよく、必ずしも両方とも設けられていなくてもよい。
また、プラズマ処理ガスノズル33〜35とアルゴンガス供給源140、水素ガス供給源141、酸素ガス供給源142及びアンモニアガス供給源143との間には、各々に対応する流量制御器130、131、132、133が設けられている。アルゴンガス供給源140、水素ガス供給源141及び酸素ガス供給源142から各々流量制御器130、131、132、133を介してArガス、Hガス、Oガス及びNHガスが所定の流量比(混合比)で各プラズマ処理ガスノズル33〜35に供給され、供給される領域に応じてArガス、Hガス、Oガス及びNHガスが定められる。但し、上述のように、水素ガス供給源141及びアンモニアガス供給源143のうち、いずれか一方のみが設けられる場合には、流量制御器131、133も、設けられる方の一方に合わせて設けられれば十分である。なお、流量制御器130〜134には、例えばマスフローコントローラが用いられてもよい。
なお、プラズマ処理ガスノズルが1本の場合には、例えば、上述のArガス、Hガス又はNHガス、及びOガスの混合ガスを1本のプラズマ処理ガスノズルに供給するようにする。
図7は、回転テーブル2の回転方向に沿って真空容器1を切断した縦断面図を示した図である。図7に示されるように、プラズマ処理中には回転テーブル2が時計周りに回転するので、Arガスがこの回転テーブル2の回転に連れられて回転テーブル2と突起部92との間の隙間から筐体90の下方側に侵入しようとする。そのため、隙間を介して筐体90の下方側へのArガスの侵入を阻止するために、隙間に対して筐体90の下方側からガスを吐出させている。具体的には、プラズマ処理ガスノズル33のガス吐出孔36について、図4及び図7に示すように、この隙間を向くように、即ち回転テーブル2の回転方向上流側且つ下方を向くように配置している。鉛直軸に対するプラズマ処理ガスノズル33のガス吐出孔36の向く角度θは、図7に示すように例えば45°程度であってもよいし、突起部92の内側面に対向するように、90°程度であってもよい。つまり、ガス吐出孔36の向く角度θは、Arガスの侵入を適切に防ぐことができる45°〜90°程度の範囲内で用途に応じて設定することができる。
図8は、プラズマ処理領域P3に設けられたプラズマ処理ガスノズル33〜35を拡大して示した斜視図である。図8に示されるように、プラズマ処理ガスノズル33は、ウェハWが配置される凹部24の全体をカバーでき、ウェハWの全面にプラズマ処理用ガスを供給可能なノズルである。一方、プラズマ処理ガスノズル34は、プラズマ処理ガスノズル33よりもやや上方に、プラズマ処理ガスノズル33と略重なるように設けられた、プラズマ処理ガスノズル33の半分程度の長さを有するノズルである。また、プラズマ処理ガスノズル35は、真空容器1の外周壁から扇型のプラズマ処理領域P3の回転テーブル2の回転方向下流側の半径に沿うように延び、中心領域C付近に到達したら中心領域Cに沿うように直線的に屈曲した形状を有している。以後、区別の容易のため、全体をカバーするプラズマ処理ガスノズル33をベースノズル33、外側のみカバーするプラズマ処理ガスノズル34を外側ノズル34、内側まで延びたプラズマ処理ガスノズル35を軸側ノズル35と呼んでもよいこととする。
ベースノズル33は、プラズマ処理用ガスをウェハWの全面に供給するためのガスノズルであり、図7で説明したように、プラズマ処理領域P3を区画する側面を構成する突起部92の方に向かってプラズマ処理用ガスを吐出する。
一方、外側ノズル34は、ウェハWの外側領域に重点的にプラズマ処理用ガスを供給するためのノズルである。
軸側ノズル35は、ウェハWの回転テーブル2の軸側に近い中心領域にプラズマ処理用ガスを重点的に供給するためのノズルである。
なお、プラズマ処理ガスノズルを1本とする場合には、ベースノズル33のみを設けるようにすればよい。
次に、プラズマ源80のファラデーシールド95について、より詳細に説明する。図4及び図5に示すように、筐体90の上方側には、当該筐体90の内部形状に概略沿うように形成された導電性の板状体である金属板例えば銅などからなる、接地されたファラデーシールド95が収納されている。このファラデーシールド95は、筐体90の底面に沿うように水平に係止された水平面95aと、この水平面95aの外終端から周方向に亘って上方側に伸びる垂直面95bと、を備えており、平面視で例えば概略六角形となるように構成されていても良い。
図9は、アンテナ83の構造の詳細及び上下動機構を省略したプラズマ源80の一例の平面図である。図10は、プラズマ源80に設けられるファラデーシールド95の一部を示す斜視図を示す。
回転テーブル2の回転中心からファラデーシールド95を見た場合の右側及び左側におけるファラデーシールド95の上端縁は、各々、右側及び左側に水平に伸び出して支持部96を為している。そして、ファラデーシールド95と筐体90との間には、支持部96を下方側から支持すると共に筐体90の中心部領域C側及び回転テーブル2の外縁部側のフランジ部90aに各々支持される枠状体99が設けられている(図5参照)。
電界がウェハWに到達する場合、ウェハWの内部に形成されている電気配線等が電気的にダメージを受けてしまう場合がある。そのため、図10に示すように、水平面95aには、アンテナ83において発生する電界及び磁界(電磁界)のうち電界成分が下方のウェハWに向かうことを阻止すると共に、磁界をウェハWに到達させるために、多数のスリット97が形成されている。
スリット97は、図9及び図10に示すように、アンテナ83の巻回方向に対して直交する方向に伸びるように、周方向に亘ってアンテナ83の下方位置に形成されている。ここで、スリット97は、アンテナ83に供給される高周波に対応する波長の1/10000以下程度の幅寸法となるように形成されている。また、各々のスリット97の長さ方向における一端側及び他端側には、これらスリット97の開口端を塞ぐように、接地された導電体等から形成される導電路97aが周方向に亘って配置されている。ファラデーシールド95においてこれらスリット97の形成領域から外れた領域、即ち、アンテナ83の巻回された領域の中央側には、当該領域を介してプラズマの発光状態を確認するための開口部98が形成されている。なお、図7においては、簡単のために、スリット97を省略しており、スリット97の形成領域例を、一点鎖線で示している。
図5に示すように、ファラデーシールド95の水平面95a上には、ファラデーシールド95の上方に載置されるプラズマ源80との間の絶縁性を確保するために、厚み寸法が例えば2mm程度の石英等から形成される絶縁板94が積層されている。即ち、プラズマ源80は、筐体90、ファラデーシールド95及び絶縁板94を介して真空容器1の内部(回転テーブル2上のウェハW)を覆うように配置されている。
再び、本実施形態に係る成膜装置の他の構成要素について、説明する。
図1及び図2に示されるように、回転テーブル2の外周側において、回転テーブル2よりも下方の位置には、カバー体であるサイドリング100が配置されている。サイドリング100の上面には、互いに周方向に離間するように例えば2箇所に排気口61、62が形成されている。図2に示されるように、排気口61、62は、互いに周方向に離間するように、例えば2箇所に設けられる。別の言い方をすると、真空容器1の底面には、2つの排気口が形成され、これら排気口に対応する位置におけるサイドリング100には、排気口61、62が形成されている。
本実施形態においては、排気口61、62のうち一方及び他方を、各々、第1の排気口61、第2の排気口62と呼ぶ。ここでは、第1の排気口61は、第1の処理ガスノズル31と、この第1の処理ガスノズル31に対して、回転テーブル2の回転方向下流側に位置する分離領域Dとの間において、分離領域D側に寄った位置に形成されている。また、第2の排気口62は、プラズマ源80と、このプラズマ源80よりも回転テーブル2の回転方向下流側の分離領域Dとの間において、分離領域D側に寄った位置に形成されている。
第1の排気口61は、第1の処理ガスや分離ガスを排気するためのものであり、第2の排気口62は、プラズマ処理用ガスや分離ガスを排気するためのものである。図1に示されるように、これら第1の排気口61及び第2の排気口62は、各々、バタフライバルブ等の圧力調整部65が介設された排気管63により、真空排気機構である例えば真空ポンプ64に接続されている。
前述したように、中心部領域C側から外縁側に亘って筐体90を配置しているため、処理領域P2に対して回転テーブル2の回転方向上流側から通流してくるガスは、この筐体90によって排気口62に向かおうとするガス流が規制されてしまうことがある。そのため、筐体90よりも外周側におけるサイドリング100の上面には、ガスが流れるための溝状のガス流路101が形成されている。
天板11の下面における中央部には、図1に示すように、凸状部4における中心部領域C側の部位と連続して周方向に亘って概略リング状に形成されると共に、その下面が凸状部4の下面(天井面44)と同じ高さに形成された突出部5が設けられている。この突出部5よりも回転テーブル2の回転中心側におけるコア部21の上方側には、中心部領域Cにおいて各種ガスが互いに混ざり合うことを抑制するためのラビリンス構造部110が配置されている。
前述したように筐体90は中心部領域C側に寄った位置まで形成されているので、回転テーブル2の中央部を支持するコア部21は、回転テーブル2の上方側の部位が筐体90を避けるように回転中心側に形成されている。そのため、中心部領域C側では、外縁部側よりも、各種ガス同士が混ざりやすい状態となっている。そのため、コア部21の上方側にラビリンス構造部110を形成することにより、ガスの流路を稼ぎ、ガス同士が混ざり合うことを防止することができる。
回転テーブル2と真空容器1の底面部14との間の空間には、図1に示すように、加熱機構であるヒータユニット7が設けられている。ヒータユニット7は、回転テーブル2を介して回転テーブル2上のウェハWを例えば室温〜700℃程度に加熱することができる構成となっている。なお、図1に、ヒータユニット7の側方側にカバー部材71aが設けられるとともに、ヒータユニット7の上方側を覆う覆い部材7aが設けられる。また、真空容器1の底面部14には、ヒータユニット7の下方側において、ヒータユニット7の配置空間をパージするためのパージガス供給管73が、周方向に亘って複数個所に設けられている。
真空容器1の側壁には、図2に示すように、搬送アーム10と回転テーブル2との間においてウェハWの受け渡しを行うための搬送口15が形成されている。この搬送口15は、ゲートバルブGより気密に開閉自在に構成されている。
回転テーブル2の凹部24は、この搬送口15に対向する位置にて搬送アーム10との間でウェハWの受け渡しが行われる。そのため、回転テーブル2の下方側の受け渡し位置に対応する箇所には、凹部24を貫通してウェハWを裏面から持ち上げるための図示しない昇降ピン及び昇降機構が設けられている。
また、本実施形態に係る成膜装置には、装置全体の動作を制御するためのコンピュータからなる制御部120が設けられている。この制御部120のメモリ内には、後述の基板処理を行うためのプログラムが格納されている。このプログラムは、装置の各種動作を実行するようにステップ群が組まれており、ハードディスク、コンパクトディスク、光磁気ディスク、メモリカード、フレキシブルディスク等の記憶媒体である記憶部121から制御部120内にインストールされる。
制御部120は、成膜装置が実施する本発明の実施形態に係る成膜方法の制御を行う。具体的には、プラズマ処理領域P3が次の運転でプラズマの着火が容易となる状態を作り出すようなガス供給シーケンスを実施する。制御部120は、プラズマ処理ガスノズル33〜35に接続されているバルブ、流量制御器130〜133を制御するとともに、原料ガスノズル31、酸化ガスノズル32に接続されている流量制御器(図示せず)も制御し、そのようなプラズマ着火準備工程を実施する制御を行う。なお、本実施形態に係る成膜方法の詳細については後述する。
[成膜方法]
以下、このような本発明の実施形態に係る成膜装置を用いた成膜方法について説明する。なお、本実施形態に係る成膜方法で成膜可能な薄膜は、シリコン酸化膜(SiO)の他、TiO、ZrO、HfO等の金属酸化膜も含まれるが、本実施形態では、説明の容易のため、原料ガスとしてシリコン含有ガスを用いた例を挙げて説明する。酸化ガスは、上述のように、酸素、オゾン、水、過酸化水素等を用いることができるが、本実施形態では、オゾンを用いた例について説明する。また、プラズマ処理ガスとしては、改質のときには酸素を含有するガス、改質を終了する際には水素原子を含有するガスであれば、種々のガスを用いることができるが、本実施形態においては、アルゴン、酸素、水素の混合ガスをプラズマ処理ガスとして用いた例について説明する。また、分離ガスは、窒素等の不活性ガス、又はヘリウム、アルゴン等の希ガスを用いることができるが、本実施形態では、アルゴンを用いた例について説明する。
まず、ウェハWを真空容器1内に搬入する。ウェハW等の基板の搬入に際しては、先ず、ゲートバルブGを開放する。そして、回転テーブル2を間欠的に回転させながら、搬送アーム10により搬送口15を介して回転テーブル2上に載置する。
次いで、ゲートバルブGを閉じて、真空ポンプ64及び圧力調整部65により真空容器1内を所定の圧力にした状態で、回転テーブル2を回転させながら、ヒータユニット7によりウェハWを所定の温度に加熱する。この時、分離ガスノズル41、42からは、分離ガスとしてArガスが供給される。このような一連の制御は、制御部120が行う。
続いて、第1の処理ガスノズル31からはシリコン含有ガスを供給し、第2の処理ガスノズル32からはオゾンガスを供給する。また、プラズマ処理ガスノズル33〜35からも、所定の流量でアルゴン、酸素、水素の混合ガスからなるプラズマ処理ガスを供給する。また、プラズマ処理ガスノズル33〜35からプラズマ処理ガスを供給するとともに、高周波電源85からアンテナ83に高周波電力を供給し、プラズマを生成する。
ウェハWの表面では、回転テーブル2の回転によって第1の処理領域P1においてシリコン含有ガスが吸着し、次いで、第2の処理領域P2においてウェハW上に吸着したシリコン含有ガスが、オゾンガスによって酸化される。これにより、薄膜成分であるシリコン酸化膜(SiO)の分子層が1層又は複数層形成されてウェハW上に堆積する。
更に回転テーブル2が回転すると、ウェハWはプラズマ処理領域P3に到達し、プラズマ処理によるシリコン酸化膜の改質処理が行われる。プラズマ処理領域P3においては、ベースノズル33、外側ノズル34、軸側ノズル35からAr/O/Hの混合ガスをプラズマ処理ガスとして供給する。なお、必要に応じて、ベースノズル33からの供給を基準とし、角速度が遅くプラズマ処理量が多くなり易い中心軸側の領域では、ベースノズル33から供給される混合ガスよりも改質力の弱くなるように酸素の流量を低くし、角速度が速く、プラズマ処理量が不足する傾向がある害種側の領域では、ベースノズル33から供給される混合ガスよりも改質力の強くなるように酸素の流量を高くしてもよい。これにより、回転テーブル2の角速度の影響を適宜調整することができる。
このような状態で、回転テーブル2の回転を継続することにより、ウェハW表面へのシリコン含有ガスの吸着、ウェハW表面に吸着したシリコン含有ガス成分の酸化、及び反応生成物であるシリコン酸化膜のプラズマ改質が、この順番で多数回に亘って行われる。即ち、ALD法による成膜処理と、形成された膜の改質処理とが、回転テーブル2の回転よって、多数回に亘って行われる。
また、本実施形態に係る成膜装置における第1及び第2の処理領域P1、P2の間と、第3及び第1の処理領域P3、P1の間には、回転テーブル2の周方向に沿って分離領域Dを配置している。そのため、分離領域Dにおいて、処理ガスとプラズマ処理用ガスとの混合が阻止されながら、各ガスが排気口61、62に向かって排気されていく。
このような成膜処理及び改質処理を繰り返し、シリコン酸化膜が所定の膜厚に到達したら、シリコン含有ガス、オゾンガス及びプラズマ処理ガスの供給を停止する。または、シリコン含有ガス及びオゾンガスの供給を停止し、プラズマ処理ガスの供給のみを継続する。これは、シリコン酸化膜の改質処理のみを継続し、高品質なシリコン酸化膜を成膜するためである。
この後、一般的な成膜方法では、プラズマ処理ガスの供給も停止し、回転テーブル2の回転を停止してから、処理済みのウェハWを真空容器1から搬出する。
しかしながら、本実施形態に係る成膜方法では、プラズマ源80を運転した状態で、成膜処理及び改質処理が終了した後、プラズマ処理ガスの酸素ガスの供給のみを停止し、アルゴンガス及び水素ガスのみを供給した状態で、プラズマ処理を行う。これにより、プラズマ処理領域P3内の表面に付着した酸素が還元され、プラズマ処理領域P3内を電荷的ニュートラルな状態に戻すことができる。
即ち、酸素プラズマをプラズマ処理領域P3に供給した状態で全体の処理を終了すると、プラズマ処理領域P3の表面に酸素(酸素ラジカルも含む)が付着した状態で処理が終了することになる。この状態で、処理済みのウェハWを搬出し、次に成膜処理を施す新たなウェハWを真空容器1内に搬入し、プラズマを着火させようとすると、プラズマ着火の時間遅れが発生する場合がある。つまり、1回目の成膜処理の際には、プラズマの着火はスムーズであるが、2回目以降の成膜処理の際には、プラズマの着火が上手くいかない場合がある。
これは、酸素の電気陰性度が非常に高く、電子を捕獲する能力が非常に高いことに起因すると考えられる。プラズマの着火し易い状態は、電子、陽イオン等の電荷が空間中に発生し易い状態であると考えられる。プラズマとは、気体を構成する分子が電離し、陽イオンと電子に分かれて運動している状態であり、電離によって生じた荷電粒子を含む気体のことであるから、荷電粒子が発生し易い環境は、当然にプラズマが発生し易い。つまり、荷電粒子が発生し易い環境は、着火し易い環境であると考えられる。
プラズマ処理領域P3、具体的には、筐体90の天井面、突起部92の内周面(図5参照)等の表面に酸素が付着した状態であると、プラズマ処理ガスを供給し、アンテナ83に高周波電力を供給してプラズマ放電を発生させようとしても、電離した電子がすぐに表面の酸素に捕獲されてしまい、プラズマ処理領域P3に十分な荷電粒子が蓄積され難くなると考えられる。
このようなメカニズムについて、図11及び図12を用いて説明する。図11は、アルゴンガスのイオン化電子エネルギーを示した図である。図11において、横軸はアルゴンガスのイオン化において消費される電子のエネルギーを示しているが、10eV未満の低エネルギー領域では、イオン化のために電子は消費されない。よって、放電初期なでの低電子エネルギー状態での放電に関しては、放電が阻害されず、放電が発生し易い状態となっている。
図12は、酸素ガスのイオン化電子エネルギーを示した図である。図12において、横軸は酸素ガスのイオン化において消費される電子のエネルギーを示しているが、10eV未満の低エネルギー領域において、電子を消費(捕獲)する反応が多数見られる。具体的な反応としては、酸素のローテーション(Qrotとして表示)、バイブレーション(Qv1〜Qv4として表示)、Oと電子衝突によるOの生成(Qattとして表示)がイオン化前の低エネルギー領域(10eV未満、0.08〜3eV付近)で確認される。つまり、プラズマ着火初期のような低電子エネルギー領域では、電子が酸素に捕獲され易い状態であり、酸素が存在すると非常に効率が悪いことが分かる。
かかる観点から、本実施形態に係る成膜方法では、成膜工程及び改質工程が終了したら、プラズマが生成している状態で、水素原子含有ガスをプラズマ化し、Hプラズマ及びHラジカルで酸素及び酸素ラジカルを還元する。これにより、プラズマ処理領域P3の表面に付着した酸素及び酸素ラジカルを除去することができ、電子が捕獲され易い状態からニュートラルな通常の状態に戻すことができ、プラズマ着火遅れを防止することができる。
なお、プラズマ着火遅れとは、高周波電源85からアンテナ83に高周波電力供給後(プラズマ引火後)に0.1秒以上のプラズマ未着火状態が継続することをいう。
このような状態にしてから成膜処理全体を終了し、ウェハWを搬出すれば、プラズマ処理領域P3は電荷的にニュートラルな状態となっているので、次に新たなウェハWを真空容器1内に搬入し、成膜処理を行えば、着火遅れを生じさせること無くプラズマ着火を行うことができる。
図13は、本実施形態に係る成膜方法の処理フロー図である。本実施形態に係る成膜方法の処理の詳細については、上で説明した通りであるが、プラズマ着火を含めた全体の処理フローについて図13を用いて説明する。また、供給するガス等についても一般化して説明する。
ステップS100では、基板搬入工程が実施される。具体的には、搬送口15から、複数枚又は1枚のウェハWが真空容器1内に搬入され、回転テーブル2の凹部24上に載置される。この後、真空容器1内で加熱、回転テーブル2の回転、分離ガスの供給等が行われる。
ステップS110では、プラズマ着火が行われる。具体的には、プラズマ処理ガスがプラズマ処理ガスノズル33〜35からプラズマ処理ガスが供給され、プラズマ源80のアンテナ83に高周波電源85から高周波電力が供給される。同時、又はその前後に、原料ガス及び酸化ガスが原料ガスノズル31及び酸化ガスノズル32からそれぞれ供給される。
ステップS120では、原料ガス、酸化ガス、プラズマ処理ガスが供給された状態で回転テーブル2が回転し続け、成膜工程及び改質工程が繰り返し行われる。なお、原料ガス吸着領域P1及び酸化領域P2で成膜工程が実施され、プラズマ処理領域P3で改質工程が実施される。改質工程では、酸素プラズマ又は酸素ラジカルが酸化膜に供給され、酸化膜を緻密化して高密度にする。よって、プラズマ処理ガスは、少なくとも酸素ガスを含む。かかる成膜工程及び改質工程の繰り返しにより、酸化膜が改質されながらウェハW上に堆積する。
酸化膜が所定の膜厚に到達したら、原料ガス及び酸化ガスの供給を停止する。必要に応じて、改質工程のみ継続して実施する。改質工程のみを継続する場合には、原料ガス及び酸化ガスの供給を停止し、アンテナ83への高周波電力の供給を継続した状態でプラズマ処理ガスの供給を継続する。分離ガスの供給は、引き続き継続する。
ステップS130では、プラズマ着火準備工程が行われる。プラズマ着火準備工程では、プラズマ処理領域P3の表面(筐体90の天井面及び内側面)に付着した酸素及び酸素ラジカルを還元して除去すべく、酸素ガスの供給を停止するとともに、水素原子含有ガスをプラズマ化及び/又はラジカル化して供給する。水素原子含有ガスとしては、例えば、水素ガス、アンモニアガス等が挙げられる。なお、水素原子含有ガスは、水素原子を含有している物質のガス単体の他、混合ガスも含むことを意図しており、水素ガス、アンモニアガスに加えて、アルゴンガス等、還元を妨げないガスであれば、水素原子を含有しないガスを含んでいてもよい。また、水素、アンモニア等の水素原子を含む物質の単体のガスを指す場合には、水素原子含有物質、又は水素原子含有物質ガスと区別して呼ぶこととする。
改質工程で用いたプラズマ処理ガスに、水素、アンモニア等の水素原子含有ガスが含まれていない場合には、プラズマ着火工程で水素原子含有ガスを新たにプラズマ処理領域P3内に供給することになる。例えば、水素及びアンモニアの少なくとも一方を含むプラズマ処理ガスを供給する。この場合、上述のように、必要に応じて、アルゴンガスを同時に供給してもよい。
一方、水素ガス及び/又はアンモニアガスが、改質工程におけるプラズマ処理ガスに含まれている場合には、酸素ガスの供給のみを停止してもよい。水素ガスとアンモニアガスは、少なくともいずれか一方を供給すれば十分であるが、短時間に還元を行いたい場合には、両方を供給してもよい。両方を供給する場合であって、成膜時のプラズマ処理ガスに水素又はアンモニアの一方しか含まれていない場合には、新たに水素又はアンモニアの処理ガスに含まれてない方を追加供給してもよい。このように、プラズマ処理領域P3におけるプラズマ着火準備工程は、改質工程で供給したプラズマ処理ガスの成分を考慮して、適切な組み合わせとすることができる。
プラズマ着火工程は、0.1秒〜10秒程度の数秒であってよい。水素原子含有物質ガスの流量を100sccm程度に設定すると、水素原子含有物質ガスを0.5秒程度供給すれば、次のプラズマ着火で着火遅れが発生しないことが実験で確認されている。即ち、プラズマ未着火状態が0.1秒未満となることが確認されている。一方、水素原子含有物質ガスの流量を45sccm程度の設定とすると、2秒程度の時間を要することも確認されている。これらの実験結果の詳細については後述する。
このように、プラズマ処理領域P3の表面に付着した酸素及び酸素ラジカルを水素ラジカル及び/又は水素プラズマで還元することにより、次の新たなウェハWの成膜処理の際、プラズマ着火遅れの発生を防止し、プラズマ着火時間を各運転間で一定とすることができる。
なお、プラズマ着火遅れとは、高周波電源85からアンテナ83に高周波電力供給開始後(プラズマ引火後)に0.1秒以上のプラズマ未着火状態が継続することをいうのは上述の通りである。
ステップS140では、プラズマを停止し、プラズマ着火準備工程を終了する。具体的には、プラズマ着火準備工程のプラズマ処理ガスの供給を停止するとともに、アンテナ83への高周波電力の供給を停止する。
ステップS150では、プラズマ着火準備工程を含む成膜処理全体が終了したウェハWを、真空容器1から搬出する。ウェハWの搬出は、回転テーブル2を間欠的に回転させ、搬送口15の対向したウェハWを昇降ピンで押し上げ、搬送アーム10を用いて搬出する。これにより、成膜処理の一運転が終了する。このように、一運転とは、基板(ウェハW)の処理室(真空容器1)への搬入から、プラズマ着火準備工程を含めた成膜処理全体を終了して基板(ウェハW)を処理室(真空容器1)から搬出するまでを意味する。なお、一運転のことを、1ランと呼んでもよいこととする。
なお、ウェハWの搬出は、複数枚(例えば、5枚又は6枚)のウェハWを総て搬出してもよいし、1枚のウェハWを搬出する毎に、空いた凹部24上に新たなウェハWを交換して搬入するような、搬入・搬出を同時に行うような搬送処理でもよい。この場合には、前の一運転の終了と次の一運転の開始が重なる状態となる。
次のウェハWを総て真空容器1内に搬入した後は、ステップS100〜S150を繰り返せばよい。このような処理を行うことにより、一定のプラズマ着火時間で、成膜処理の一運転を継続的に安定して実施することができる。
このように、本実施形態に係る成膜方法によれば、各運転において、プラズマ着火遅れを無くすとともに、プラズマ着火時間を一定とすることができる。
なお、本実施形態において、原料ガスは、シリコン酸化膜を成膜する場合には、種々のシリコン含有ガスを用いることができ、例えば、DIPAS[ジイソプロピルアミノシラン]、3DMAS[トリスジメチルアミノシラン]ガス、BTBAS[ビスターシャルブチルアミノシラン]、DCS[ジクロロシラン]、HCD[ヘキサクロロジシラン]等を用いてもよい。
また、金属酸化膜を成膜する場合には、TiCl[四塩化チタン]、Ti(MPD)(THD)[チタニウムメチルペンタンジオナトビステトラメチルヘプタンジオナト]、TMA[トリメチルアルミニウム]、TEMAZ[テトラキスエチルメチルアミノジルコニウム]、TEMHF[テトラキスエチルメチルアミノハフニウム]、Sr(THD)[ストロンチウムビステトラメチルヘプタンジオナト]等の金属含有ガスを使用しても良い。
酸化ガスは、上述の通り、O、O、HO、H等を用いることができる。改質用のプラズマ処理ガスとしては、酸素を含んでいれば種々のガスを用いてよいが、例えば、Ar/O/H、Ar/O/NH、Ar/O/H/NH等の混合ガスを用いることができる。また、プラズマ着火準備工程の還元用のプラズマ処理ガスとしては、水素ガス、アンモニアガス等の水素原子含有物質ガスを含んでおり、酸素を含んでいなければ、種々のガスを用いることができるが、例えば、Ar/H、Ar/NH、Ar/H/NH等の混合ガスを用いることができる。
また、本実施形態では、酸化工程における酸化ガスと、改質工程における酸素が各々別の処理領域P2、P3で供給されている例を挙げて説明したが、改質工程で行っているプラズマ処理で酸化と改質を兼用するプロセスにも適用可能である。この場合には、第2の処理領域P2が無くなり、第3の処理領域P3で酸化と改質の双方を行う装置構成及び成膜方法となる。このような場合でも、プラズマ処理領域P3で行う処理は同じであるから、図13で説明した処理フローをそのまま適用することができる。
[実施例]
次に、本実施形態に係る成膜方法を実施した実施例について説明する。
図14は、本実施形態に係る成膜方法を実施した実施例1〜4についての実施条件と結果を示した図である。実施例1に係る成膜方法は、図1乃至10で説明した本実施形態に係るALD成膜装置を用いて実施した。
図14(a)は、実施例1〜5に係る成膜方法の条件を示した図である。図14(a)において、ステップ番号、時間、プロセス状態、プラズマ処理領域P3における水素、アンモニア、酸素の流量、酸化領域P2におけるオゾンの流量が示されている。ステップ番号は、図13で示した処理フローのステップ番号と対応させている。
図14(a)に示されるように、ステップS120の成膜・改質工程においては、酸化領域P2におけるオゾンの流量は6000sccmに設定し、プラズマ処理領域P3における水素の流量は45sccm、酸素の流量は75sccmに設定した。アンモニアは、成膜・改質工程では供給しなかった。高周波電源85は、4000Wの出力とした。なお、影響のない要素であるので、プラズマ処理領域P3に供給されているアルゴンガスは特に示していないが、一定の流量でアルゴンも供給した。
ステップS130A、130Bがプラズマ着火準備工程に相当する。プラズマ着火工程において、水素及びアンモニアの流量を種々変更して実験を行った。ステップS130Aでは、酸化領域P2のオゾンガスの供給バルブを閉に切り替え、オゾンガスの供給を停止した。また、プラズマ処理領域P3における酸素ガスの供給を停止した。ステップS130Aは、固定で0.5秒の時間を確保した。高周波電源85の出力は、4000Wを維持した。
ステップS130Bでは、酸化領域P2におけるオゾンの供給を停止した後、アルゴンガスを6000sccmで供給した。水素及びアンモニアは、ステップS130A、S130Bで共通の流量とした。酸素ガスの供給はゼロを継続した。
ステップS140では、プラズマを停止した。即ち、高周波電源85からアンテナ83への高周波電力の供給を停止するとともに、プラズマ処理領域P3への総てのガスの供給を停止した。そして、ウェハWの搬出及び搬入を行い、次の運転を実施する、ということを、30運転(ラン)について行った。
図14(b)は、具体的なプラズマ着火準備工程の条件と結果を示した図である。まず、従来のプラズマ着火工程を設けない場合を基準となる比較条件とし、これを比較例とした。比較例においては、プラズマ着火準備工程は存在しないので、ステップS130A、S130Bの時間はゼロであり、プラズマ源80も停止させている。但し、水素及びアンモニアについては、流量制御器131、133(図4)の目盛を最大にしてガスの供給は継続した。
その結果、比較例においては、30ラン(運転)中、28ランでプラズマ着火の遅れが観察された。
実施例1では、水素を45sccm、アンモニアを100sssm、ステップS130Aの0.5秒間だけ供給した。ステップS130Bは0秒とし、設けなかった。この場合、30ラン中、11ランでプラズマ着火遅れが観察された。0.5秒という短時間ではあるが、プラズマ着火準備工程を設けたことにより、比較例よりもプラズマ着火遅れを減少させることができた。
実施例2では、水素を流量45sccmで継続供給するとともに、アンモニアを追加的に100sccm供給した。ステップS130Bは6秒設けた。S130AとS130Bとの合計6.5秒間、水素を45sccmの流量、アンモニアを100sccmの流量で供給した。その結果、30ラン中、1ランもプラズマ着火遅れは発生しなかった。
実施例3では、水素のみを45sccmの流量で継続供給し、アンモニアは追加供給しなかった。ステップS130Bの時間は6秒間とした。よって、プラズマ着火準備工程の合計時間は6.5秒とした。この場合も、30ランで1ランもプラズマ着火遅れは発生せず、良好な結果が得られた。
実施例4では、実施例3と同様に水素のみを45sccmの流量で継続供給し、アンモニアは追加供給しなかった。ステップS130Bの時間は2秒間に短縮した。よって、プラズマ着火準備工程の合計時間は2.5秒とした。この場合も、30ランで1ランもプラズマ着火遅れは発生せず、良好な結果が得られた。このように、実施例4では、水素のみの供給を成膜・改質工程から2.5秒継続しただけで、プラズマ着火遅れを効果的に防止できること示された。
実施例5では、水素及びアンモニアの両方を流量制御器131、133の最大目盛、つまり上限で供給した。その代わり、ステップS130Bは0秒として設けず、ステップS130Aの0.5秒のみの短時間の供給とした。この場合も、30ランで1ランもプラズマ着火遅れは発生せず、良好な結果が得られた。このように、実施例5では、プラズマ着火準備工程が短時間であっても、水素原子含有物質ガスの流量を非常に大きくすれば、プラズマ着火遅れを確実に防止できることが示された。
実施例4及び5の結果から、プラズマ処理領域P3の表面に付着した酸素を還元するためには、ある程度の量の水素プラズマ又は水素ラジカルを供給することが必要であり、用途に応じて、時間で調整するか、流量で調整するかを選択できることが示された。
なお、プラズマ着火工程における水素の流量は、30sccm〜無限大に設定することができ、好ましくは45sccm〜無限大に設定することができ、更に好ましくは、45sccm〜200sccmに設定することができる。同様に、プラズマ着火工程におけるアンモニアの流量は、50sccm〜無限大に設定することができ、好ましくは100sccm〜無限大に設定することができ、更に好ましくは、100sccm〜200sccmに設定することができる。また、プラズマ着火工程の時間は、0.3〜10秒に設定することができ、好ましくは0.5〜8秒に設定することができ、更に好ましくは0.5〜6.5秒に設定することができ、最適には2.5〜6.5秒に設定することができる。
このように、本実施形態に係る成膜装置及び成膜方法によれば、プラズマ処理領域に付着した酸素ラジカルを含む酸素をプラズマ着火準備工程で簡単かつ確実に除去することができ、プラズマ着火遅れを防止できる。
なお、本実施形態では、回転テーブル式のALD成膜装置を例に挙げて説明したが、プラズマ処理領域を有し、酸化膜を成膜するプロセスを実施する成膜装置であれば、本実施形態に係る成膜装置及び成膜方法を好適に適用することができる。例えば、プラズマを用いたCVD(Chemical Vapor Deposition)を実施する装置にも好適に適用することができ、回転テーブル以外の態様のサセプタや、ウェハを縦に積載するウェハボートを用いて成膜処理を行う装置及び方法にも好適に本実施形態に係る成膜装置及び成膜方法を適用することができる。
以上、本発明の好ましい実施形態及び実施例について詳説したが、本発明は、上述した実施形態及び実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施形態及び実施例に種々の変形及び置換を加えることができる。
1 真空容器
2 回転テーブル
24 凹部
31、32 処理ガスノズル
33〜35 プラズマ処理ガスノズル
36 ガス吐出孔
41、42 分離ガスノズル
80 プラズマ源
83 アンテナ
85 高周波電源
95 ファラデーシールド
120 制御部
130〜133 流量制御器
140〜143 ガス供給源
P1 第1の処理領域(原料ガス吸着領域)
P2 第2の処理領域(酸化領域)
P3 第3の処理領域(プラズマ処理領域)

Claims (12)

  1. 処理室内の所定のプラズマ処理領域でプラズマ源により生成された酸素ラジカルを用いて基板上に成膜された酸化膜を改質する改質工程と、
    前記基板上への酸化膜の成膜が終了したら、前記プラズマ処理領域内をプラズマが着火し易い状態にする着火準備工程と、を有する成膜方法。
  2. 前記着火準備工程は、プラズマが生成した状態で、前記プラズマ処理領域内に酸素ガスの供給を停止して水素原子含有ガスを供給する工程である請求項1に記載の成膜方法。
  3. 前記水素原子含有ガスは、水素ガス及びアンモニアガスの少なくとも1つを含む請求項2に記載の成膜方法。
  4. 前記水素原子含有ガスは、アルゴンガスを更に含む混合ガスである請求項3に記載の成膜方法。
  5. 前記改質工程は、前記プラズマ処理領域内に供給されたアルゴンガス、水素ガス、酸素ガスを含むプラズマ処理ガスを前記プラズマ源により活性化することにより行われ、
    前記着火準備工程は、前記プラズマ処理ガスのうち、前記酸素ガスの前記プラズマ処理領域内への供給を停止し、前記アルゴンガス及び前記水素ガスの供給を継続することにより行われる請求項4に記載の成膜方法。
  6. 前記改質工程の前に、
    前記基板上に原料ガスを吸着させる吸着工程と、
    前記基板上に吸着した前記原料ガスを酸化して前記酸化膜の分子層を堆積させる酸化工程と、を含む成膜工程を更に有する請求項1乃至5のいずれか一項に記載の成膜方法。
  7. 前記基板は回転テーブル上に周方向に沿って載置され、
    前記回転テーブルの上方に、前記回転テーブルの回転方向に沿って原料ガス吸着領域、酸化領域、前記プラズマ処理領域が互いに離間して配置され、前記回転テーブルを前記回転方向に複数回回転させ、前記回転テーブル上の前記基板に前記原料ガス吸着領域、前記酸化領域、前記プラズマ処理領域を順に通過させることにより前記成膜工程及び前記改質工程を繰り返し、前記酸化膜の膜厚が所定の膜厚となったときに前記酸化膜の成膜を終了し、前記着火準備工程を行う請求項6に記載の成膜方法。
  8. 前記原料ガス吸着領域と前記酸化領域との間、及び前記プラズマ処理領域と前記原料ガス吸着領域との間に、前記基板上にパージガスを供給するパージガス供給領域が設けられ、前記吸着工程と前記酸化工程との間、及び前記改質工程と前記吸着工程との間に、パージ工程を更に有する請求項7に記載の成膜方法。
  9. 前記プラズマ処理領域は、天井面及び側壁に囲まれた領域であり、
    前記プラズマ源は、前記天井面の上方の前記処理室外に設けられた誘導結合型プラズマ源である請求項1乃至8のいずれか一項に記載の成膜方法。
  10. 前記酸化膜は、シリコン酸化膜又は金属酸化膜である請求項1乃至9のいずれか一項に記載の成膜方法。
  11. 前記着火準備工程の後、前記酸化膜の成膜が終了した前記基板を前記処理室から搬出する基板搬出工程と、
    新たな基板を前記処理室内に搬入する搬入工程と、
    前記プラズマ処理領域でプラズマを着火させるプラズマ着火工程と、を更に有する請求項1乃至10のいずれか一項に記載の成膜方法。
  12. 処理室と、
    処理室内に設けられ、周方向に沿って上面に基板を載置可能な回転テーブルと、
    該回転テーブルに原料ガスを供給可能な原料ガス供給手段と、
    前記回転テーブルの回転方向下流側に設けられ、前記回転テーブルに酸化ガスを供給可能な酸化ガス供給手段と、
    前記回転テーブルの回転方向下流側に設けられ、前記回転テーブルにプラズマ処理ガスを供給可能なプラズマ処理ガス供給手段と、
    該プラズマ処理ガス供給手段を上方及び側方から囲むプラズマ処理領域と、
    該プラズマ処理領域内でプラズマを発生させるプラズマ源と、
    前記回転テーブルを回転させながら前記原料ガス供給手段から原料ガス、前記酸化ガス供給手段から酸化ガスを供給して前記基板上に酸化膜を成膜する成膜工程と、前記プラズマ源を駆動して前記プラズマ処理ガス供給手段から酸素ガスを含むプラズマ処理ガスを供給して前記酸化膜を改質する改質工程とを交互に実施し、
    前記成膜工程及び前記改質工程終了後に、前記原料ガス及び前記酸化ガスの供給を停止させるとともに、前記プラズマ源を駆動したまま前記プラズマ処理ガス供給手段から酸素ガスの供給を停止させ、水素原子含有ガスを供給させるプラズマ着火準備工程を実施する制御を行う制御手段と、を有する成膜装置。
JP2018051271A 2018-03-19 2018-03-19 成膜方法及び成膜装置 Active JP7002970B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018051271A JP7002970B2 (ja) 2018-03-19 2018-03-19 成膜方法及び成膜装置
KR1020190029726A KR102430799B1 (ko) 2018-03-19 2019-03-15 성막 방법 및 성막 장치
US16/357,285 US20190284691A1 (en) 2018-03-19 2019-03-18 Film forming method and film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018051271A JP7002970B2 (ja) 2018-03-19 2018-03-19 成膜方法及び成膜装置

Publications (2)

Publication Number Publication Date
JP2019165078A true JP2019165078A (ja) 2019-09-26
JP7002970B2 JP7002970B2 (ja) 2022-01-20

Family

ID=67905274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018051271A Active JP7002970B2 (ja) 2018-03-19 2018-03-19 成膜方法及び成膜装置

Country Status (3)

Country Link
US (1) US20190284691A1 (ja)
JP (1) JP7002970B2 (ja)
KR (1) KR102430799B1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021180082A (ja) * 2020-05-11 2021-11-18 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP7540868B2 (ja) 2021-01-14 2024-08-27 東京エレクトロン株式会社 成膜方法及び成膜システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6807792B2 (ja) * 2017-03-27 2021-01-06 東京エレクトロン株式会社 プラズマ生成方法及びこれを用いたプラズマ処理方法、並びにプラズマ処理装置
JP7236985B2 (ja) * 2019-11-15 2023-03-10 東京エレクトロン株式会社 温度計測システム、温度計測方法及び基板処理装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191065A1 (ja) * 2012-06-18 2013-12-27 東京エレクトロン株式会社 マンガン含有膜の形成方法
JP2015154025A (ja) * 2014-02-19 2015-08-24 東京エレクトロン株式会社 プラズマ処理装置及びその運転方法
JP2017135313A (ja) * 2016-01-29 2017-08-03 東京エレクトロン株式会社 成膜方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4233085C2 (de) * 1992-10-01 1996-10-10 Fraunhofer Ges Forschung Verfahren zur Herstellung heteroepitaktischer Diamantschichten
US8415259B2 (en) * 2009-10-14 2013-04-09 Asm Japan K.K. Method of depositing dielectric film by modified PEALD method
JP5644719B2 (ja) 2011-08-24 2014-12-24 東京エレクトロン株式会社 成膜装置、基板処理装置及びプラズマ発生装置
JP6242288B2 (ja) * 2014-05-15 2017-12-06 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191065A1 (ja) * 2012-06-18 2013-12-27 東京エレクトロン株式会社 マンガン含有膜の形成方法
JP2015154025A (ja) * 2014-02-19 2015-08-24 東京エレクトロン株式会社 プラズマ処理装置及びその運転方法
JP2017135313A (ja) * 2016-01-29 2017-08-03 東京エレクトロン株式会社 成膜方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021180082A (ja) * 2020-05-11 2021-11-18 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
KR20210137911A (ko) 2020-05-11 2021-11-18 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치 및 플라즈마 처리 방법
JP7412268B2 (ja) 2020-05-11 2024-01-12 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP7540868B2 (ja) 2021-01-14 2024-08-27 東京エレクトロン株式会社 成膜方法及び成膜システム

Also Published As

Publication number Publication date
KR102430799B1 (ko) 2022-08-10
KR20190110039A (ko) 2019-09-27
JP7002970B2 (ja) 2022-01-20
US20190284691A1 (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP6807792B2 (ja) プラズマ生成方法及びこれを用いたプラズマ処理方法、並びにプラズマ処理装置
KR101885411B1 (ko) 기판 처리 방법 및 기판 처리 장치
KR102024983B1 (ko) 성막 방법
KR102430799B1 (ko) 성막 방법 및 성막 장치
JP6584347B2 (ja) 成膜方法
JP6968011B2 (ja) 成膜方法及び成膜装置
KR102198727B1 (ko) 보호막 형성 방법
JP2017183379A (ja) プラズマ処理装置及びプラズマ処理方法
JP2015220293A (ja) プラズマ処理方法及びプラズマ処理装置
JP2018078233A (ja) 成膜装置及び成膜方法
JP6587514B2 (ja) プラズマ処理方法及びプラズマ処理装置
JP2024069245A (ja) プラズマ処理方法、プラズマ処理装置及び制御装置
KR102460932B1 (ko) 기판 처리 장치
KR102092444B1 (ko) 성막 방법
CN115206761A (zh) 等离子体产生装置、成膜装置以及成膜方法
JP7224241B2 (ja) 成膜方法及び成膜装置
JP6890497B2 (ja) プラズマ処理装置
KR20210137911A (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
JP2022108645A (ja) 成膜装置及び成膜方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211228

R150 Certificate of patent or registration of utility model

Ref document number: 7002970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150