JP2019164247A - 光走査装置、画像表示装置、および移動体 - Google Patents

光走査装置、画像表示装置、および移動体 Download PDF

Info

Publication number
JP2019164247A
JP2019164247A JP2018051790A JP2018051790A JP2019164247A JP 2019164247 A JP2019164247 A JP 2019164247A JP 2018051790 A JP2018051790 A JP 2018051790A JP 2018051790 A JP2018051790 A JP 2018051790A JP 2019164247 A JP2019164247 A JP 2019164247A
Authority
JP
Japan
Prior art keywords
light
optical deflector
detection unit
optical
deflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2018051790A
Other languages
English (en)
Inventor
大輔 市井
Daisuke Ichii
大輔 市井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2018051790A priority Critical patent/JP2019164247A/ja
Publication of JP2019164247A publication Critical patent/JP2019164247A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Instrument Panels (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

【課題】光偏向器の温度特性によらず起動時に駆動情報を確実に取得することを可能にする。【解決手段】本発明の一実施の形態の光走査装置は、光源と、前記光源からの光を走査する光偏向器と、前記光偏向器により走査された光の光路上であって、前記光偏向器により走査された光に基づいて画像が形成される被走査面とは異なる位置に配置され、前記光偏向器により走査された光を検知する光検知部と、前記光検知部付近で前記光源を点灯させたときの前記光検知部の検知に基づいて、前記光偏向器および前記光源を制御する制御部と、を備えた光走査装置であって、前記制御部は、前記光偏向器の駆動開始から前記光偏向器により走査された光が前記光検知部で所定回数だけ検知されるまでの期間における前記光源の点灯時間を、前記光検知部で前記光偏向器により走査された光が検知されてからの前記光源の点灯時間よりも長くすることを特徴とする。【選択図】図1

Description

本発明は、光走査装置、画像表示装置、および移動体に関する。
従来から、MEMS(Micro Electro Mechanical Systems)などの揺動ミラー(光偏向器)を揺動させてスクリーン上に往路方向と復路方向との走査で一つの画像を形成する画像表示装置が知られている。このような画像表示装置では、環境温度や経年変化により揺動ミラーの実際の位相と揺動ミラーを駆動する駆動信号の位相とがずれることがある。また、揺動ミラーの駆動信号に対する揺動ミラーの回転角度、つまり駆動信号の振幅感度が変化することもある。位相ずれや振幅感度の変化が生じると、往路方向と復路方向との画像形成位置にずれが生じるため、走査領域において画像形成領域の外側に光検知部を設け、検知部を設けた検知領域を含めて走査する。これにより光検知部における光の受光タイミングから光偏向器の駆動情報を取得し、取得した駆動情報に基づいて往路方向と復路方向の画像形成位置を調整する。
なお、画像表示装置について、走査周期と同期してフォトダイオードの受光タイミングで光源を発光させる構成のものが開示されている(特許文献1参照)。
しかし、光偏向器により光を走査して光検知部での受光タイミングにより駆動情報を得る方式の場合、光偏向器は温度特性があり起動時の温度により反応が変わる。このため、初期設定を行った基準温度から遠い例えば低温や高温などの環境温度下で起動すると光検知部付近で光源を点灯させたはずが光検知部から外れた位置で光源が点灯されることになる。このように、起動時は光偏向器の駆動情報を正確に把握することが難しく、基準温度から離れた温度で起動すると制御を開始することができないという問題がある。
本発明は、上記に鑑みてなされたものであって、光偏向器の温度特性によらず起動時に駆動情報を確実に取得することが可能な光走査装置、画像表示装置、および移動体を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明の一実施の形態の光走査装置は、光源と、前記光源からの光を走査する光偏向器と、前記光偏向器により走査された光の光路上であって、前記光偏向器により走査された光に基づいて画像が形成される被走査面とは異なる位置に配置され、前記光偏向器により走査された光を検知する光検知部と、前記光検知部付近で前記光源を点灯させたときの前記光検知部の検知に基づいて、前記光偏向器および前記光源を制御する制御部と、を備えた光走査装置であって、前記制御部は、前記光偏向器の駆動開始から前記光偏向器により走査された光が前記光検知部で所定回数だけ検知されるまでの期間における前記光源の点灯時間を、前記光検知部で前記光偏向器により走査された光が検知されてからの前記光源の点灯時間よりも長くすることを特徴とする。
本発明によれば、光偏向器の温度特性によらず起動時に駆動情報を確実に取得することが可能になるという効果を奏する。
図1は、第1の実施の形態に係る光走査装置の一例を示す図である。 図2は、光走査装置の制御ブロックの構成の一例を示す図である。 図3は、走査領域の構成の一例を示す図である。 図4は、第1の光検知部と第2の光検知部とにおいて高温時でも点灯位置のずれが吸収されることを説明する図である。 図5は、光偏向器の振幅中心から左右に位置する場合の信号光の点灯時間の設定について説明する図である。 図6は、光検知部における信号光による走査範囲の一例を示す図である。 図7は、制御期間と起動期間における信号光の異なる点灯期間により設けられる検知領域について説明する図である。 図8は、変形例1に係る走査範囲の一例を示す図である。 図9は、変形例2に係る光偏向器の温度特性を示した図である。 図10は、温度特性情報を利用する場合の光走査装置における制御フローの一例を示す図である。 図11は、第2の実施の形態に係る、光走査装置を有するヘッドアップディスプレイを説明する図である。
以下に添付図面を参照して、光走査装置、画像表示装置、および移動体の実施の形態を説明する。なお、以下の実施の形態により本発明が限定されるものではない。
(第1の実施の形態)
図1は、第1の実施の形態に係る光走査装置の一例を示す図である。図2は、当該光走査装置の制御ブロックの構成の一例を示す図である。
図1の光走査装置1は、制御部10と、光偏向器11と、光源12と、光検知部13と、温度検知部14とを含む。
制御部10は、図2に示すように光偏向器制御部21と光源制御部22とを有する。光偏向器制御部21は、光偏向器11を駆動信号により駆動し、光偏向器11において偏向した光で走査領域を走査する。また、光偏向器制御部21は、光検知部13や温度検知部14からの検知信号に基づき駆動信号を調整する。
光源制御部22は、光源12の光波形を制御する。例えば、画像信号に基づいて光源12の各色の光強度を調整する。また点灯タイミングなどを調整する。点灯タイミングには、信号光として光を点灯させる光源の点灯タイミングも含まれる。信号光の点灯は所定のタイミングで行い、点灯時間は後述の起動期間の点灯時間と制御期間の点灯時間とで行う。
光偏向器11は、MEMS(Micro Electro Mechanical Systems)ミラーなどの揺動ミラーであり、光源12からの出射光Lを偏向する。光偏向器11は、光偏向器制御部21からの駆動信号(駆動電圧)に基づき直交する2軸(第1軸と第2軸)の各軸周りに独立にミラーを駆動することにより走査領域1000を光走査する。
具体的に、光偏向器11は、ミラー110と枠部材(第1枠部材)111とがトーションバー(第1トーションバー)112で接続されており、第1トーションバー112を介する共振駆動によりミラー110が第1軸周りに正弦波振動で揺動し、主走査方向Xをミラー110が走査する。また、第1枠部材111は、トーションバー(第2トーションバー)113を介して枠部材(第2枠部材)114と接続されており、第2トーションバー113の変形によりミラー110と一体に第2枠部材114が第2軸周りに回転することで副走査方向Yに傾く。光偏向器制御部21が第1トーションバー112と第2トーションバー113とに駆動信号を加えることにより、ミラー110で偏向した光が走査領域1000を所定の走査経路で走査する。なお、図1には、主走査方向Xにおける往路と復路との1走査(1周期の光走査)を副走査方向において繰り返し行う走査経路を簡易的に表している。
光走査は、主走査方向Xにおいて2〜4万Hz程度の速い周波数で振動走査され、副走査方向Yにおいては数十Hz程度の遅い周波数で走査される。
なお、ここでは光偏向器11の一例として2次元的に揺動または回転駆動する単一のMEMSミラーを示しているが、1次元駆動のミラーを複数組み合わせることにより、2次元走査する構成としてもよい。また、非共振駆動や等速駆動の光偏向器を用いてもよい。
光源12は、半導体レーザーによる発散光束を光学素子によって弱発散または平行または集束光束になるようカップリングされ、開口部によってビーム形状に整形した光を出射する。光源12は1つであっても複数であってもよく、例えばカラー画像を表示する場合は、RGBの3色を用いる。この場合、図1の射出光Lは、RGBの3色のレーザー光がそれぞれ略平行になるよう合成されたものとなる。
光検知部13は、信号光L1を検知して検知信号を出力するフォトダイオード等の光センサである。光検知部13は、信号光L1の検知により光偏向器11の駆動情報を得る。光検知部13は、信号光L1として例えば出射光Lの赤色などを利用する場合、その対応波長のフォトダイオードを使用する。ここで信号光とは、光検知部13付近で点灯させる光のことである。本実施の形態では信号光の一例として画像領域に画像を形成する走査光を利用する。例えば光検知部13付近では走査光(RGB)のうちの赤色などを信号光として点灯させる。なお、ここでは、画像形成のための走査光を信号光としても用いる例を示すが、専用の半導体レーザーを別途設けて信号光として用いてもよい。例えば、光源12にRGBの3色のレーザー光に追加して赤外の半導体レーザーを設ける。また、光検知部13の数は、複数でも単数でもよい。
温度検知部14は、光偏向器11の付近に設置し、光偏向器11(または光偏向器11付近)の温度を検知する。なお、温度検知部14は、必要に応じて適宜構成してもよい。温度検知部14を利用する構成については、第2の実施の形態で述べることにする。
以上の構成により、制御部10は、起動期間の光偏向器11による走査領域1000への光走査において画像領域外の検知領域で信号光を点灯し、光検知部13から信号光の検知信号(受光タイミング信号)を得る。この受光タイミングは光偏向器11の駆動情報を示すものに相当する。駆動情報は、初期設定時の基準温度と起動時の環境温度との違いに基づく光偏向器11の駆動信号の位相遅れや振幅感度のずれ等を示す情報である。そして、制御部10は、得られた駆動情報に基づき、光偏向器11の駆動信号を調整し、調整後の設定で、走査領域1000を光走査し画像領域に画像を形成する。なお、画像の形成の際も微調整のため光検知部13の位置で信号光の点灯は行われる。
ここで、上記起動期間は、光偏向器11の駆動開始から光偏向器11により走査された光が光検知部13で1回或いは複数回などの所定回数だけ検知されるまでの期間に相当する。また、光検知部13で光偏向器11により走査された光が検知されてからの、例えば調整後の画像の形成が行われる期間を、以下では「制御期間」と呼ぶ。本実施の形態では、光走査1周期当たりの信号光の点灯時間を制御期間よりも起動期間において長く設定している。
図3は、走査領域1000の構成の一例を示す図である。図3に示すように、走査領域1000は、画像領域1001と、その外側の光検知部13を設けた検知領域1002とを有する。
走査領域1000は、光偏向器11がミラー110により走査し得る全範囲を示す。ここでは模式的に矩形形状で示しているが、光学系の走査特性によっては台形や扇形に歪む場合もある。特に光偏向器11から被走査面1003に直接描画する場合において歪みが発生する。
画像領域1001は、中間像が描画される範囲である。図3には矩形で示されているが、矩形である必要はない。例えば、画像領域1001は、小型化のため、画像の図形に合わせて必要最小限にすることも可能である。
被走査面1003は、画像領域1001を包含する範囲に設けられる光拡散効果を持つ素子である。例えばヘッドアップディスプレイに構成されるスクリーンなどがこれに当たる。被走査面1003についても矩形あるいは平面である必要はなく、多角形や曲面であってもよい。
検知領域1002は光検知部13を有し、光検知部13で検知する信号光を点灯させる点灯範囲まで含む。従って、信号光を点灯する長さを短くすれば検知領域1002の範囲を狭くすることができ、その分、画像領域1001を広くとることができる。
図3には、一例として、3個の光検知部13を設けた構成を示している。3個の光検知部13は、被走査面1003とは異なる位置に配置されている。3個の光検知部13は被走査面1003とは異なる位置であれば任意に配置してよい。図3に示すように、主走査方向Xにおいては、画像領域1001の外側の左右の位置にそれぞれ光検知部13として第1の光検知部13―1と第2の光検知部13−2とを設けている。副走査方向Yには、第2の光検知部13−2に対して縦に並べて光検知部13としての第3の光検知部13−3を設けている。なお、光検知部13は、図3には、副走査方向Yに縦長になるように配置しているが、これに限らない。また、光検知部13の数は、本例のように3個に限らない。例えば第1の光検知部13−1と第2の光検知部13−2の2個の組み合わせ、或いは第1の光検知部13−1と第3の光検知部13−3の2個の組み合わせなどのように、主走査方向Xに距離を有するその他の組み合わせを選ぶこともできる。ただし、主走査および副走査を制御する観点から、それぞれの方向に所定距離を隔てた図3に示す組み合わせの配置が望ましい。
続いて、光偏向器11による走査領域1000への光走査において信号光L1を点灯するタイミングについて説明する。
光偏向器11には温度特性がある。信号光の点灯タイミングが基準温度(例えば30℃など)で初期設定されたものにおいて、従来のように起動期間において点灯期間を短いままの設定で使用すると、例えば高温下や低温下で起動したときに光偏向器11の位相や振幅感度などの変化により、光検知部13の位置で点灯したはずの信号光が光検知部13から外れ、光検知部13で信号光の検知が成功するまで走査が繰り返されることにより起動時間が長くなる。また、エラーとなり起動できないといった起動不良になることも考えられる。本実施の形態では、起動期間における点灯期間を制御期間における点灯期間よりも長く設定することにより、起動時の環境温度によらず、1周期の走査上に位置する光検知部13において1走査(1周期の走査)内などの少ない走査数で光検知部13による信号光の検知を可能にし、従来よりも起動を早めることを可能にした。
図4から図6は、制御期間よりも起動期間において信号光の点灯期間を長く設定することについて説明する図である。以下では、主走査方向Xの走査上に位置する座標X1の第1の光検知部13−1と座標X2の第2の光検知部13−2とを例に説明する。また、以下では高温の場合を一例に説明するが、高温の場合に限定するものではない。基準温度から離れる温度領域であれば、低温領域やその他の温度領域も含まれる。
図4は、第1の光検知部13−1と第2の光検知部13−2とにおいて高温時でも点灯位置のずれが吸収されることを説明する図である。図4には、主走査方向X(光偏向器11の揺動方向)についての、第1の光検知部13−1と第2の光検知部13−2とにおける1走査(往路と復路)での点灯範囲をプロットで示している。
図4において、プロットk1で示す範囲は、制御期間における点灯範囲を示している。制御期間は、起動期間における駆動情報の取得により光偏向器11の駆動が調整された後の設定で制御が行われているため、環境温度によらず、第1の光検知部13−1と第2の光検知部13−2とにおいて、プロットk1で示す点灯範囲はそれらを中心付近に含む範囲となり、点灯時間も短く設定できる。
プロットk2で示す範囲は、第1の光検知部13−1と第2の光検知部13−2とにおいて、起動期間における走査1周期あたりの点灯時間を制御期間における走査1周期あたりの点灯時間よりも長く設定した場合のもので、温度変化がない状態(つまり基準温度)における起動期間の点灯範囲を示している。起動時は、駆動情報が未取得のため、光偏向器11の調整は未確定であるが、本ケースでは、点灯時間を制御期間よりも長く設定することにより第1の光検知部13−1と第2の光検知部13−2の位置を含む範囲でより長く点灯させることができる。
図4においてプロットk3とプロットk4で示す範囲は、温度変化が有る場合(一例として高温時)の起動期間内における点灯範囲を示している。プロットk3は主に光偏向器11の共振周波数が高温によりプラス側に振れている場合の点灯範囲を示し、プロットk4は共振周波数が高温によりマイナス側に振れている場合の点灯範囲を示している。実際の装置では、プロットk3とプロットk4で示す範囲に点灯範囲がずれることが想定される。
図4に示すように、プラス側、マイナス側に振れたとしても、起動期間の点灯時間を長く設定したことにより、第1の光検知部13−1と第2の光検知部13−2との何れの位置も点灯範囲にかかり、それぞれの走査上において1走査内で検知することができ、従来に比べて起動時間が早くなる。
なお、図4では、第1の光検知部13−1と第2の光検知部13−2とにおいて、往路および復路のそれぞれで点灯範囲が異なっている。また、第1の光検知部13−1と第2の光検知部13−2との間でも、往路と復路で点灯範囲が異なっている。これは、本例は、共振駆動による正弦波振動をするMEMSの光偏向器を想定しているためである。光偏向器の特性により往路と復路で信号光の位置ばらつきが異なるため、必要な時間が異なっている。具体的に、図4では、点灯範囲が左右で非対称になり、往路と復路とで必要な点灯範囲が異なっている。
図4において、上段には往路側についての点灯範囲を示し、下段には復路側についての点灯範囲を示している。ここから分かるように、光偏向器11の重要特性の一つの共振周波数が環境温度により変動した場合には、起動期間の点灯範囲が往路と復路で変化する。例えば、往路では、走査方向(往路)の後段の第2の光検知部13−2で変動量が小さく、復路では、走査方向(復路)の後段の第1の光検知部13−1で変動量が小さくなる。このように往路と復路で特性による影響と必要な点灯範囲が異なる。
なお、迷光などの不要な光の低減または防止の観点で言えば、往路と復路のどちらか一方の変動量の小さい部分の信号光のみで駆動情報を得ることが望ましい。例えば、図4の場合、往路では、走査方向(往路)の後段の第2の光検知部13−2がそれに当たり、復路では、走査方向(復路)の後段の第1の光検知部13−1がそれに当たる。制御期間はより多くの情報を用いて精密に制御する必要があるが、起動期間は光偏向器11の駆動情報を得るための「粗調整」のための役割であるため、光検知器のうちで変動量の小さい部分があれば、その部分における信号光の点灯のみで駆動情報を得て、制御を安定させてもよい。この場合、その他の変動量の大きい部分では信号光を消灯させておく。また、本実施形態の一例で示すように往路と復路の両方の部分で駆動情報を取得する場合であっても、それぞれにおいて必要な点灯範囲が異なるので、点灯範囲を一律に設定するのではなく次に示すように個別に設定することが望ましい。
図5は、図4に示す第1の光検知部13−1および第2の光検知部13−2のように、光偏向器11の振幅中心から左右に位置する場合の信号光の点灯時間の設定について説明する図である。例えば、図4に示す例では、第2の光検知部13−2において復路走査では長い点灯時間を必要とするが、往路走査では、復路走査での点灯時間よりも短い点灯時間とすることができる。従って、第2の光検知部13−2の往路走査での点灯時間TBαを、第2の光検知部13−2の復路走査での点灯時間TBβよりも点灯時間を短く設定する。また、第1の光検知部13−1については、復路走査での点灯時間TAβを往路走査での点灯時間TAαよりも、点灯時間を短く設定する。
図5(a)には、制御期間における点灯時間の設定例を示し、図5(b)には起動期間における点灯時間の設定例を示している。図5(a)と図5(b)との比較からも分かるように、第1の光検知部13−1および第2の光検知部13−2の各点灯時間TAα、TAβ、TBα、TBβにおいて、起動期間における点灯時間が制御期間における点灯時間よりも長くなるように設定する。
なお、迷光などの不要な光の低減または防止の観点で言えば、変動量の小さい部分の信号光のみで駆動情報を得ることが望ましいと既に述べた。そのようにする場合、図4に示す例に基づくと、図5(b)において第2の光検知部13−2の復路走査での点灯時間TBβと、第1の光検知部13−1の往路走査での点灯時間TAαとを点灯時間「0」に設定する。つまり、それらの期間において信号光の点灯は行わずに、消灯させる。
図6は、光検知部13における信号光による走査範囲の一例を示す図である。ここでは一例として第1の光検知部13−1における信号光の走査範囲を示している。その他の光検知部(例えば第2の光検知部13−2や第3の光検知部13−3など)についても同様である。図6(a)には制御期間の信号光の走査範囲300を示し、図6(b)〜図6(d)には、温度変化が無い場合と有る場合の起動期間の走査範囲300を示している。
図6(a)では、制御期間には起動期間に取得した駆動情報により光偏向器11の駆動が調整されているため、第1の光検知部13−1における信号光の点灯を短い点灯期間に設定することができる。制御期間は、この短い点灯期間で第1の光検知部13−1が信号光を検知し、その駆動情報に基づき光偏向器11の駆動が微調整される。従って、図6(a)に示す走査範囲300は、主走査方向Xでの走査幅が短く、且つ中心付近で第1の光検知部13−1を走査する。
図6(b)〜図6(d)では、起動期間で、光偏向器11の駆動情報が未取得なので、信号光の点灯期間を制御期間における点灯期間よりも長く設定している。そのため、図6(b)〜図6(d)において走査範囲300の主走査方向Xの走査幅は、制御時の走査範囲300よりも長くなる。図6(b)では、温度変化がないため、走査範囲300の中心付近で第1の光検知部13−1に確実に信号光を点灯することができる。図6(c)は、光偏向器11の共振周波数がプラス側に振れている場合に対応する。図6(c)でも、走査範囲300一方の端ではあるが、第1の光検知部13−1にかかる位置で確実に信号光を点灯することができる。図6(d)は、光偏向器11の共振周波数がマイナス側に振れている場合に対応する。図6(d)でも、走査範囲300の他方の端ではあるが、第1の光検知部13−1にかかる位置で確実に信号光を点灯することができる。
なお、ここでは、共振周波数が変動した場合について示しているが、一例であり、位相や振幅感度が変動する場合についても、同様とする。
また、図6(c)および図6(d)において走査範囲300の端で第1の光検知部13−1にかかる例を示したが、これは起動期間にも点灯時間をできるだけ短く設定した場合の例であり、点灯時間を長くとれば、走査範囲300の端ではなく、それよりも内側で第1の光検知部13−1に信号光を点灯することも可能である。
また、走査範囲300の副走査方向の幅は、複数走査に渡って繰り返し点灯させる場合に広くする。複数走査に渡る点灯では検知精度の向上や検出の確実性を高めることができる。
図7は、制御期間と起動期間における信号光の異なる点灯期間により設けられる検知領域1002について説明する図である。図7(a)に制御期間の検知領域1002を示し、図7(b)に起動期間の検知領域1002を示す。なお、図7(a)および図7(b)には、図3と同様の構成を示す箇所に同一の番号を付している。
図7(b)では、制御期間よりも信号光の点灯期間を長く設定している。このため走査領域1000の主走査全幅、つまり光偏向器11の主走査方向Xへの最大振れ角に基づく幅に対し、検知領域1002に割り当てる主走査幅の比が大きくなる。
一方、図7(a)では、制御期間で信号光の点灯期間を短く設定しており、走査領域1000の主走査全幅に対し検知領域1002に割り当てる主走査幅を起動期間のときの幅よりも狭くすることができる。これは、制御期間において画像領域1001を大きくとることができることを意味し、この場合、制御期間の方が起動期間よりも画像領域での走査回数が多くなり、画像への光の利用効率を高めることが可能になる。
以上により、本実施の形態の光走査装置1では、光偏向器11の温度特性によらず起動時に駆動情報を確実に取得することが容易になり、1走査内などの少ない走査数で駆動情報を取得することができる。そのため、起動時間が短縮され、起動不良などのエラーも防止することができる。
また、制御期間は、走査光の点灯時間を最小限に設定することができるため、表示画像への信号光による乱反射や迷光などの映り込みを抑止することができる。
また、起動期間においても、不要な点灯をできるだけ省けば起動期間において表示領域に表示される迷光を低減することができる。
更に、制御期間において検知領域を狭くし、その分、画像領域を広くとることができるので、最適な画像サイズで十分な明るさの画像を表示することができる。
また、起動時の安定性を高めるために信号光の領域を不用意に拡大することも防止でき、画像光が減ることを抑止すると共に、十分な明るさの画像を表示することが可能になる。
(変形例1)
信号光による走査範囲300(図6参照)の副走査方向Yの走査幅の変形例について示す。
図8は、変形例1にかかる走査範囲の一例を示す図である。副走査方向Yについては、共振駆動する主走査方向Xと違い、温度特性の影響が少ない。そこで、副走査方向Yの信号光による走査範囲の走査幅を図8に示す走査範囲301のように狭く設定する。つまり副走査方向Yでの光検知部13上の走査回数を減らす。このように副走査方向Yにおいて信号光の点灯回数を減らすことで、信号光の総光量を減らすことができ、不要光を低減することができる。従って、この時点で、光偏向器の特性、走査タイミングが正確に把握できるため、起動時の副走査方向Yの信号光の点灯範囲を縮めることができる。
このように、走査幅を狭く設定することにより信号光の乱反射や迷光をより低減し、画質をより向上させることも可能になる。また、変形例1に示す走査範囲の形態を制御期間のみに適用した場合には、制御期間の方が起動期間よりも画像領域での走査回数が多くなり、画像への光の利用効率を高めることが可能になるという効果も奏する。
(変形例2)
正弦波振動時の往路と復路において、各光検知部13にて信号光を点灯させる例を示したが、必要に応じて信号光を点灯させないようにしてもよい。例えば、図5には、正弦波振動時の第1の光検知部13−1と第2の光検知部13−2とにおける往路と復路との信号光の点灯時間を示しているが、各点灯時間TAα、TAβ、TBα、TBβの少なくとも1つを「点灯時間=0」に設定し、その通過時の信号光の点灯を消灯させてもよい。
(変形例3)
温度検知部14(図1、図2参照)からの情報に基づいて光偏向器11の駆動情報を予測する場合の一例について示す。既に説明したように光偏向器11の特性は環境温度で変動する。特に共振駆動させる主走査方向Xについては温度変化に対する感度が高いため精度よく駆動情報を得て制御する必要性が高い。また副走査方向Yにおいても、温度特性を有することから、高画質を担保するためには制御が必要である。
温度から光偏向器11の特性変化を予測する際に重要なのが、光偏向器11の主走査方向Xの共振周波数変動である。共振周波数付近では、駆動感度や駆動信号と光偏向器11の動作との時間差である位相差が大きく変化する。そのため温度からあらかじめ想定していた共振周波数の温度特性より、共振周波数を予測して駆動信号を生成する必要がある。このようにすれば温度情報を基に、制御開始前、つまり光検知部13で信号光L1を受光し、駆動情報を得る前から、光偏向器11による光走査範囲をより精度よく実現できるため、起動時間の短縮が行える。
図1に示す光偏向器11付近に設けられた温度検知部14は、光偏向器11近傍の温度から、光偏向器11の特性変化を予測するために用いることができる。光偏向器制御部21は、光検知部13からの情報と、温度検知部14からの情報を基に、光偏向器11への駆動信号を調整する。
光偏向器11近傍の温度情報から特性を予測することについて以下に説明する。
図9は光偏向器11の温度特性を示した図である。図9(a)には主走査方向Xの振動の共振周波数を示し、図9(b)には主走査方向Xの電圧に対する駆動感度(振幅感度)を示し、図9(c)には主走査方向Xのミラー駆動の入力駆動信号に対する位相差を示している。
図9(a)、図9(b)、図9(c)には、それぞれ、光偏向器11の温度が30℃のときに初期調整を行った場合の光偏向器A、光偏向器B、光偏向器Cの個体別の温度特性を一例として示している。図9(a)、図9(b)、図9(c)に示すように光偏向器A、光偏向器B、光偏向器Cの各個体別の温度特性は、30℃を基準に、30℃から離れていくほど個体間の変化量の差が大きくなり、ばらつきが大きくなっている。
各温度特性から、環境温度の変化に応じた駆動情報の値を予測することができる。これについて図9(a)の共振周波数(駆動情報の一例)を例に説明する。30℃の環境で行った初期調整時の共振周波数をω30℃とすると、環境温度が60℃に上昇した場合、各光偏向器A、B、Cの温度特性から共振周波数の平均値ω60℃が求まる。環境温度60℃では、平均値ω60℃を共振周波数として推定し、光偏向器を駆動することにより、共振周波数の差分(ω60℃−ω30℃)をキャンセルすることができる。ただし、個体間のばらつきがあるため、推定値の精度は図9(a)に示すように±Δω60℃の誤差が含まれる。
図9(b)の駆動感度や図9(c)の位相差についても同様に各環境温度に対しての推定が可能である。
任意の固体の温度特性のばらつきを製造工程で測定することは非常に困難でコストアップの原因になる。これに対し、全体の温度特性傾向が把握できていれば温度特性に個体別のばらつきがある場合でも、ある程度の誤差の範囲内で特性を予測し、正常に動作させることが可能になる。また、この予測を行えば、起動時でも信号光を点灯する範囲を必要最小限にとどめることもできる。
図10は、図9に一例として示す温度特性情報を利用する場合の光走査装置1における制御フローの一例を示す図である。当該温度特性情報をROM(Read Only Memory)等の記憶部に記憶させておき、制御部10が以下の制御手順で処理を実行する。
先ず、制御部10は、光走査装置1が起動すると(S1)、温度検知部14から温度を検知し(S2)、検知した温度における光偏向器11の特性を温度特性情報から予測する(S3)。
続いて、制御部10は、予測結果に基づいて調整した駆動信号(駆動電圧)を光偏向器11に印加することにより光偏向器11の起動駆動を開始する(S4)。この開始により、光偏向器11は光検知部13から信号光の検知信号を取得するために、走査領域を光走査する。更に、制御部10は、光偏向器11の駆動に応じた所定のタイミングで信号光を点灯させる(S5)。この起動期間の信号光の点灯時間は、制御期間よりも長い点灯時間とするが、ステップS3〜ステップS4において光偏向器11の環境温度による特性が予測され、更に光偏向器11の駆動信号が調整されているため、点灯のタイミングのずれが個体別の特性のばらつきの誤差内に抑えられている。従って、第1の実施の形態における点灯時間よりも点灯時間を短くすることができる。
制御部10は、光検知部13で信号光が検知されると(S6)、光偏向器11の制御駆動を開始する(S7)。
制御部10は、信号光の検知に基づく駆動情報から光偏向器11の駆動信号を調整することにより信号光の点灯タイミングを調整し、点灯時間を短い時間に変更し、制御駆動を行う(S8)。この設定で、光偏向器11は、走査領域に画像を形成するため光走査を行う。
なお、上記動作フローでは、一例として温度検知を行ってから光偏向器11へ駆動電圧を印加しているが、駆動電圧の印加後に温度検知を行ってもよい。
以上のように、変形例3では基準となる温度特性情報を用いて光偏向器11の環境温度による特性を予測するため、起動時の信号光の点灯のタイミングのずれを個体別の特性のばらつきの誤差内に抑えることができる。このため、1走査以内など、短い時間で精度良く信号光が光検知部で検知され、起動時の環境温度によらず安定して起動時間を早めることが可能になる。また、温度特性情報により点灯タイミングのずれの範囲を絞ることができるため、信号光の点灯時間をより短くすることができる。
(第2の実施の形態)
第1の実施の形態では光走査装置について説明した。第2の実施の形態では、第1の実施の形態の光走査装置を備えた画像表示装置について説明する。なお、ここでは、画像表示装置としてレーザ走査型画像表示装置であるヘッドアップディスプレイへの適用例を示す。
図11は、光走査装置を有するヘッドアップディスプレイを説明する図である。ヘッドアップディスプレイは、例えば、車両や航空機、船舶、移動式ロボット等の移動体、また、その場から移動せずにマニピュレータ等の駆動対象を操作する作業ロボット等の非移動体に搭載される画像表示装置としても適用できる。ここでは、ヘッドアップディスプレイを自動車に搭載した例を示す。なお、自動車は、「移動手段」として、モータやエンジンなどの動力源や、バッテリなどの電力源を有し、モータやエンジンの始動後に、電力源からの電力により後述する画像をフロントガラスに表示する。そして、自動車は、動力源から駆動力を得て走行し、走行中における画像の表示も選択に可能である。
図11に示すように、ヘッドアップディスプレイ1901は、光走査装置1と、「表示装置」として、走査ミラー1903と、被走査面1003(図3参照)であるスクリーン1904と、凹面ミラー1906とを備え、フロントガラス(フロントウィンドシールド)1905に対して光を照射する。フロントガラス1905は、入射された光の一部を透過させ、残部の少なくとも一部を反射させる透過反射部材としても機能する。このため、運転手Hの視点から虚像Iが視認される。光走査装置1は、単数又は複数の発光点を有する複数の光源12を備える。例えば、光源12は、赤色と青色と緑色の半導体レーザーで、各光源素子から時分割に出射される赤色と青色と緑色の3色の偏向光は、光学系を通じ、光偏向器11の反射面(ミラー)に混合光として導かれる。混合光は光偏向器11のミラーにより偏向され、走査ミラー1903で折り返されてスクリーン1904に2次元像(中間像)を描画する。
スクリーン1904は、レーザー光を所望の発散角で発散させる機能を有し、マイクロレンズアレイ構造とすることが好ましい。光検知部13(図1参照)はスクリーン1904とは異なる位置として例えばスクリーン1904の外側などに配置してもよい。スクリーン1904から射出された光束は、単一の凹面ミラー1906及びフロントガラス1905を介することにより虚像Iが拡大表示される。単一の凹面ミラー1906は、フロントガラス1905の影響で中間像の水平線が上又は下に凸形状となる光学歪み要素を補正するように、設計・配置されている。なお、フロントガラス1905と同一の機能(部分反射)を持つ別途の部分反射鏡(コンバイナ)を有する構成であっても良い。ヘッドアップディスプレイ1901は、高画質を維持しつつ、任意の限定された方向への高輝度な画像投影が可能となり、例えば、自動車の操縦のためのナビゲーション情報(速度や走行距離等の情報)を、視認性を向上させるために高輝度に表示することができる。光走査装置1を用いて光走査を行なうことで画像を投影する装置であれば、例えば、表示スクリーン上に画像を投影するプロジェクタや、観測者の頭部等に装着した装着部材が有する反射透過部材等のスクリーンに画像を投影するヘッドマウントディスプレイ等にも、同様に適用することができる。
第2の実施の形態においても、第1の実施の形態の光走査装置を使用するため装置全体の起動時間が早くなり、起動不良エラーを防止するなどの効果も得られる。
また、車両などの移動体に搭載されるヘッドアップディスプレイなどの画像表示装置は、幅広い運転環境温度においても装置を安定的に動作させる必要があるが、第1の実施の形態の光走査装置を使用するため、装置を安定的に動作させることが可能となる。
1 光走査装置
10 制御部
11 光偏向器
12 光源
13 光検知部
14 温度検知部
21 光偏向器制御部
22 光源制御部
特開2009−180753号公報

Claims (8)

  1. 光源と、
    前記光源からの光を走査する光偏向器と、
    前記光偏向器により走査された光の光路上であって、前記光偏向器により走査された光に基づいて画像が形成される被走査面とは異なる位置に配置され、前記光偏向器により走査された光を検知する光検知部と、
    前記光検知部付近で前記光源を点灯させたときの前記光検知部の検知に基づいて、前記光偏向器および前記光源を制御する制御部と、
    を備えた光走査装置であって、
    前記制御部は、前記光偏向器の駆動開始から前記光偏向器により走査された光が前記光検知部で所定回数だけ検知されるまでの期間における前記光源の点灯時間を、前記光検知部で前記光偏向器により走査された光が検知されてからの前記光源の点灯時間よりも長くすること、
    を特徴とする光走査装置。
  2. 前記光偏向器の温度特性情報と、
    前記光偏向器の温度を検知する温度検知部と
    を有し、
    前記制御部は、
    前記光偏向器の駆動開始から前記光偏向器により走査された光が前記光検知部で所定回数だけ検知されるまでの期間において、前記温度特性情報と前記温度検知部が検知した検知温度とに基づき前記光偏向器の駆動を前記温度特性情報から予測される前記検知温度での設定に調整する、
    ことを特徴とする請求項1に記載の光走査装置。
  3. 前記光偏向器は揺動ミラーであり、
    往路と復路とを含む走査を行い、
    前記光検知部は、前記往路と前記復路とを含む走査上の異なる位置に配置された少なくとも2つ以上の光検知部であり、
    前記走査上の異なる位置に配置された各光検知部付近における前記光源の点灯時間は、前記往路と前記復路とで時間長が異なる、
    ことを特徴とする請求項1または2に記載の光走査装置。
  4. 前記走査上の異なる位置に配置された各光検知部付近において、前記往路と前記復路のどちらか一方向においてのみ前記光源を点灯する、
    ことを特徴とする請求項3に記載の光走査装置。
  5. 前記光検知部上における前記光の走査回数が、
    起動時よりも制御時の方が多い
    ことを特徴とする請求項1乃至4のうちの何れか一項に記載の光走査装置。
  6. 請求項1乃至5のうちの何れか一項に記載の光走査装置と、
    前記被走査面を含み、前記光偏向器による前記被走査面への光の走査により画像を表示する表示装置と、
    を備えることを特徴とする画像表示装置。
  7. ヘッドアップディスプレイであることを特徴とする請求項6に記載の画像表示装置。
  8. 請求項6に記載の画像表示装置と、
    前記画像を表示しながら移動する移動手段と
    を備えることを特徴とする移動体。
JP2018051790A 2018-03-19 2018-03-19 光走査装置、画像表示装置、および移動体 Withdrawn JP2019164247A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018051790A JP2019164247A (ja) 2018-03-19 2018-03-19 光走査装置、画像表示装置、および移動体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018051790A JP2019164247A (ja) 2018-03-19 2018-03-19 光走査装置、画像表示装置、および移動体

Publications (1)

Publication Number Publication Date
JP2019164247A true JP2019164247A (ja) 2019-09-26

Family

ID=68065919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018051790A Withdrawn JP2019164247A (ja) 2018-03-19 2018-03-19 光走査装置、画像表示装置、および移動体

Country Status (1)

Country Link
JP (1) JP2019164247A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3709068B1 (en) * 2019-03-15 2022-11-23 Ricoh Company, Ltd. Optical scanner, display system, and mobile object

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003131151A (ja) * 2001-07-11 2003-05-08 Canon Inc 光偏向装置、それを用いた画像形成装置およびその駆動方法
JP2008191010A (ja) * 2007-02-05 2008-08-21 Ricoh Co Ltd ビームプロファイル計測装置・光走査装置・画像形成装置
JP2009086371A (ja) * 2007-09-28 2009-04-23 Brother Ind Ltd 画像表示装置
JP2011095684A (ja) * 2009-11-02 2011-05-12 Ricoh Co Ltd 光走査装置及び画像形成装置
JP2012113233A (ja) * 2010-11-26 2012-06-14 Ricoh Co Ltd 光ビーム走査装置、画像形成装置及び光ビーム走査方法
US20140168619A1 (en) * 2012-12-13 2014-06-19 Lite-On It Corporation Laser projector and method of detecting scanning angle range of laser beam thereof
JP2016136090A (ja) * 2015-01-23 2016-07-28 富士通株式会社 レーザ測距装置、レーザ測距方法、およびレーザ測距プログラム
WO2017104613A1 (ja) * 2015-12-18 2017-06-22 株式会社リコー 光偏向装置とヘッドアップディスプレイ装置と光書込みユニットと画像形成装置と物体認識装置
JP2018005007A (ja) * 2016-07-04 2018-01-11 株式会社リコー 光走査装置、プロジェクタ装置およびヘッドアップディスプレイ装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003131151A (ja) * 2001-07-11 2003-05-08 Canon Inc 光偏向装置、それを用いた画像形成装置およびその駆動方法
JP2008191010A (ja) * 2007-02-05 2008-08-21 Ricoh Co Ltd ビームプロファイル計測装置・光走査装置・画像形成装置
JP2009086371A (ja) * 2007-09-28 2009-04-23 Brother Ind Ltd 画像表示装置
JP2011095684A (ja) * 2009-11-02 2011-05-12 Ricoh Co Ltd 光走査装置及び画像形成装置
JP2012113233A (ja) * 2010-11-26 2012-06-14 Ricoh Co Ltd 光ビーム走査装置、画像形成装置及び光ビーム走査方法
US20140168619A1 (en) * 2012-12-13 2014-06-19 Lite-On It Corporation Laser projector and method of detecting scanning angle range of laser beam thereof
JP2016136090A (ja) * 2015-01-23 2016-07-28 富士通株式会社 レーザ測距装置、レーザ測距方法、およびレーザ測距プログラム
WO2017104613A1 (ja) * 2015-12-18 2017-06-22 株式会社リコー 光偏向装置とヘッドアップディスプレイ装置と光書込みユニットと画像形成装置と物体認識装置
JP2018005007A (ja) * 2016-07-04 2018-01-11 株式会社リコー 光走査装置、プロジェクタ装置およびヘッドアップディスプレイ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3709068B1 (en) * 2019-03-15 2022-11-23 Ricoh Company, Ltd. Optical scanner, display system, and mobile object

Similar Documents

Publication Publication Date Title
US10429638B2 (en) Control unit, optical deflection system, image projection apparatus, and control method
JP6903875B2 (ja) 光走査装置、プロジェクタ装置およびヘッドアップディスプレイ装置
JP6627886B2 (ja) 光走査装置、画像表示装置、および車両
US10901220B2 (en) Movable device, image projection apparatus, heads-up display, laser headlamp, head-mounted display, object recognition device, and vehicle
US10793418B2 (en) Rotating apparatus, optical scanning apparatus, and image display apparatus
JP2011154324A (ja) 画像表示装置
US10261315B2 (en) Optical scanning apparatus and image display apparatus
JP2018156062A (ja) 表示装置、物体装置及び表示方法
WO2018123527A1 (ja) 表示装置、表示装置の制御方法、及び表示装置を有する移動体
JP2019082634A (ja) 可動装置、ヘッドアップディスプレイ、レーザヘッドランプ、ヘッドマウントディスプレイ、車両及び光走査方法
JP2017120371A (ja) 光走査装置及び画像表示装置
JP2019164247A (ja) 光走査装置、画像表示装置、および移動体
JP6312484B2 (ja) ヘッドランプ
CN111913339A (zh) 光源装置、光扫描装置、显示系统以及移动体
WO2011108395A1 (ja) 光走査装置及びそれを備えた画像表示装置
JP2019164180A (ja) 光走査装置、画像表示装置、ヘッドアップディスプレイ、及び移動体
JP6569318B2 (ja) 光走査装置
JP2017227868A (ja) 制御装置、画像投影装置、および制御方法
JP2017134391A (ja) 光偏向装置と、画像投影装置と、光書込みユニットと、物体認識装置
JP2020154111A (ja) 光走査装置、表示システム、および移動体
EP3176627B1 (en) Light source apparatus, image display apparatus and system
WO2020080001A1 (en) Display apparatus, display system, and mobile object
JP7115046B2 (ja) 光源装置、表示装置、表示システム、移動体および光量制御方法
JP7396147B2 (ja) 可動装置、光偏向装置、画像投影装置、光書込装置、物体認識装置、移動体、ヘッドマウントディスプレイ
US11624903B2 (en) Light deflector, LiDAR device, and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20220708