JP2019157240A - REMOVAL METHOD OF Sn AND MANUFACTURING METHOD OF Pb - Google Patents

REMOVAL METHOD OF Sn AND MANUFACTURING METHOD OF Pb Download PDF

Info

Publication number
JP2019157240A
JP2019157240A JP2018048466A JP2018048466A JP2019157240A JP 2019157240 A JP2019157240 A JP 2019157240A JP 2018048466 A JP2018048466 A JP 2018048466A JP 2018048466 A JP2018048466 A JP 2018048466A JP 2019157240 A JP2019157240 A JP 2019157240A
Authority
JP
Japan
Prior art keywords
metal
harris
furnace
crude
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018048466A
Other languages
Japanese (ja)
Other versions
JP6959169B2 (en
Inventor
拓也 横田
Takuya Yokota
拓也 横田
瑛基 小野
Eiki Ono
瑛基 小野
琢真 武井
Takuma Takei
琢真 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2018048466A priority Critical patent/JP6959169B2/en
Publication of JP2019157240A publication Critical patent/JP2019157240A/en
Application granted granted Critical
Publication of JP6959169B2 publication Critical patent/JP6959169B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

To provide a removal method of Sn and a manufacturing method of Pb, capable of suppressing impurities contamination amount to Sn scum.SOLUTION: A removal method of Sn includes a Harris treatment process for repeating one or more of a series of a process for conducting a soda treatment on a melting crude Pb metal in a Harris furnace, a process for separating a Sd scum generated by the soda treatment; and a recovery process for recovering a part of purified Pb metal obtained in the Harris treatment process with remaining a part of the purified Pb metal, in which the soda treatment is conducted on the melting crude Pb metal obtained by mixing the remaining purified Pb metal and crude Pb metal in the Harris furnace when next Harris treatment process is initiated.SELECTED DRAWING: Figure 1

Description

本件は、Snの除去方法およびPbの製造方法に関する。   This case relates to a method for removing Sn and a method for producing Pb.

例えば、銅製錬などで発生する鉛(Pb)滓などの鉛原料から製品Pbを製造する鉛製錬において、溶融粗Pbメタルに対してソーダ処理を行うことで、錫(Sn)スカムが発生する。Snスカムを回収することでSnを除去することができる(例えば、特許文献1参照)。   For example, in lead smelting that produces product Pb from lead raw materials such as lead (Pb) soot generated in copper smelting, etc., tin (Sn) scum is generated by performing a soda treatment on the molten crude Pb metal. . Sn can be removed by collecting the Sn scum (see, for example, Patent Document 1).

特開2013−234356号公報JP 2013-234356 A

しかしながら、Pbなどの不純物もSnスカムに混入してしまう。Snスカムへの不純物混入量が多いと、Snスカムの浸出残渣を鉛製錬工程に繰り返す際に当該不純物の繰り返し量が増え、処理コストが増加するおそれがあり、歩留まりが悪化するおそれがある。   However, impurities such as Pb are also mixed in the Sn scum. If the amount of impurities mixed in Sn scum is large, when the Sn scum leaching residue is repeated in the lead smelting process, the amount of the impurities repeated increases, the processing cost may increase, and the yield may deteriorate.

本件は上記の課題に鑑み、Snスカムへの不純物混入量を抑制することができるSnの除去方法およびPbの製造方法を提供することを目的とする。   In view of the above-described problems, an object of the present invention is to provide a method for removing Sn and a method for producing Pb that can suppress the amount of impurities mixed into Sn scum.

1つの態様では、Snの除去方法は、ハリス炉において、溶融粗Pbメタルに対してソーダ処理を行う行程と、前記ソーダ処理で発生するSnスカムを分離する工程と、を含む一連の工程を1以上繰り返すハリス処理工程と、前記ハリス処理工程で得られる精製Pbメタルの一部を前記ハリス炉に残して回収する回収工程と、を含み、次回のハリス処理工程を開始する際に、前記ハリス炉に残った精製Pbメタルと粗Pbメタルとを混合して得られる溶融粗Pbメタルに対してソーダ処理を行うことを特徴とする。   In one aspect, the Sn removal method includes a series of steps including a step of performing a soda treatment on the molten crude Pb metal in a Harris furnace and a step of separating Sn scum generated in the soda treatment. A Harris treatment step that repeats the above, and a recovery step in which a part of the refined Pb metal obtained in the Harris treatment step is collected while remaining in the Harris furnace, and when the next Harris treatment step is started, the Harris furnace The soda treatment is performed on the molten crude Pb metal obtained by mixing the refined Pb metal and the crude Pb metal remaining in the substrate.

1つの態様では、Snの除去方法は、ハリス炉において、溶融粗Pbメタルに対してソーダ処理を行う行程と、前記ソーダ処理で発生するSnスカムを分離する工程と、を含む一連の工程を1以上繰り返すハリス処理工程と、前記ハリス処理工程で得られる精製Pbメタルを前記ハリス炉から回収する回収工程と、を含み、前記ハリス処理工程を開始する際の前記溶融粗PbメタルのSn品位を6.0mass%以下に調整することを特徴とする。   In one aspect, the Sn removal method includes a series of steps including a step of performing a soda treatment on the molten crude Pb metal in a Harris furnace and a step of separating Sn scum generated in the soda treatment. Including a repeating Harris treatment step and a recovery step of recovering the purified Pb metal obtained in the Harris treatment step from the Harris furnace, and the Sn quality of the molten crude Pb metal at the start of the Harris treatment step is 6 It is characterized by adjusting to 0.0 mass% or less.

1つの態様では、Pbの製造方法は、上記いずれかのSnの除去方法の回収工程で回収された精製Pbメタルに対して電解工程を行うことで、Pbを製造することを特徴とする。   In one aspect, the method for producing Pb is characterized in that Pb is produced by performing an electrolysis step on the purified Pb metal collected in any of the above-described methods for removing Sn.

本発明によれば、Snスカムへの不純物混入量を抑制することができる。   According to the present invention, the amount of impurities mixed into Sn scum can be suppressed.

SnおよびPbを製造する工程の一例について説明する図である。It is a figure explaining an example of the process of manufacturing Sn and Pb. (a)および(b)はハリス処理工程について例示する図である。(A) And (b) is a figure illustrated about a Harris processing process. 溶融粗Pbメタル中のSn品位と、SnスカムへのPb混入量(Pb/Sn比)との関係を例示する図である。It is a figure which illustrates the relationship between Sn quality in a molten rough Pb metal, and Pb mixing amount (Pb / Sn ratio) to Sn scum.

以下、本発明を実施するための実施形態について説明する。   Hereinafter, an embodiment for carrying out the present invention will be described.

図1は、製品Snおよび製品Pbを製造する製造工程の一例について説明する図である。図1で例示するように、銅製錬工程などで発生する鉛滓、排バッテリー等の鉛原料に対して脱銅および炭酸化が行われる。脱銅および炭酸化によって得られた炭酸鉛は、Pb原料としてPb電気炉に投入される。炭酸鉛は、Pb電気炉で1000℃〜1200℃で溶融することによって、粗Pbメタルとスラグとに分離する。   FIG. 1 is a diagram illustrating an example of a manufacturing process for manufacturing the product Sn and the product Pb. As illustrated in FIG. 1, copper removal and carbonation are performed on lead raw materials such as lead soot generated in a copper smelting process and the like, an exhaust battery, and the like. Lead carbonate obtained by copper removal and carbonation is put into a Pb electric furnace as a Pb raw material. Lead carbonate is separated into crude Pb metal and slag by melting at 1000 ° C. to 1200 ° C. in a Pb electric furnace.

粗Pbメタルには、不純物としてSnが含まれている。例えば、粗PbメタルにおけるSn品位は、6.0mass%を上回り、8.0mass%以上となることもある。以下で説明する工程では、Snを効果的に除去することができるため、粗PbメタルにおけるSn品位が10.0mass%を上回るような場合に特に有効となる。   The crude Pb metal contains Sn as an impurity. For example, the Sn quality in the rough Pb metal may exceed 6.0 mass% and may be 8.0 mass% or more. In the process described below, Sn can be effectively removed, and thus is particularly effective when the Sn quality in the crude Pb metal exceeds 10.0 mass%.

冷却した粗Pbメタルは、ハリス炉に投入される。ハリス炉では、粗Pbメタルを溶融することで得られる溶融粗Pbメタルに対してソーダ処理が行われる。ソーダ処理とは、500℃程度に加熱して溶融した溶融粗Pbメタルに、例えば苛性ソーダを添加し、さらに場合により追加の苛性ソーダおよび硝酸ソーダを添加して、Snをソーダ塩(NaSnO)化して、溶湯表面において固形化させる処理のことである。固形化したSnのソーダ塩は、一般にSnスカムと呼ばれる。Snスカムを掬い取る等して分離することでSnスカムを除去することができる。溶融粗Pbメタル中のSn品位を十分に低くするために、ソーダ処理を行う行程と、Snスカムを分離する工程と、を含む一連の工程を1以上繰り返す。当該一連の工程を1以上繰り返す工程を、ハリス処理工程と称する。 The cooled crude Pb metal is put into a Harris furnace. In the Harris furnace, soda treatment is performed on the molten crude Pb metal obtained by melting the crude Pb metal. In the soda treatment, for example, caustic soda is added to the molten crude Pb metal melted by heating to about 500 ° C., and additional caustic soda and sodium nitrate are added in some cases, so that Sn is a soda salt (Na 2 SnO 3 ). It is a process of solidifying on the surface of the molten metal. Solidified soda salt of Sn is generally called Sn scum. Sn scum can be removed by scraping and separating the Sn scum. In order to sufficiently lower the Sn quality in the molten crude Pb metal, one or more of a series of steps including the process of performing the soda process and the step of separating the Sn scum are repeated. A step of repeating the series of steps one or more times is referred to as a Harris processing step.

Snスカムは、Sn製造用のSn原料として利用される。具体的には、Snスカムは、Snを浸出するSn浸出工程に供される。得られた浸出後液は、電解採取工程に供され、製品Snが製造される。Sn浸出工程の浸出残渣は、鉛電気炉または炭酸化工程に繰り返される。一方、ハリス処理工程によって、Sn品位が低くなった精製Pbメタルが得られる。この精製Pbメタルは、電解精製工程に供され、製品Pbが製造される。   Sn scum is used as an Sn raw material for producing Sn. Specifically, the Sn scum is subjected to a Sn leaching process for leaching Sn. The obtained post-leaching solution is subjected to an electrowinning process to produce a product Sn. The leaching residue of the Sn leaching process is repeated in the lead electric furnace or the carbonation process. On the other hand, a refined Pb metal having a low Sn quality is obtained by the Harris treatment process. This purified Pb metal is subjected to an electrolytic purification process to produce a product Pb.

図2(a)は、ハリス処理工程について例示する図である。図2(a)で例示するように、ハリス炉10内に冷却した粗Pbメタルが投入される。この粗Pbメタルをハリス炉10で加熱することで、溶融粗Pbメタル20が得られる。なお、黒丸は、含有されるSn成分を表している。溶融粗Pbメタル20に対してソーダ処理を行うことで、溶湯表面においてSnスカム30が発生する。このSnスカム30を掬い取る等して分離することで、Snスカム30を除去することができる。さらに溶融粗Pbメタル20に対してソーダ処理を行うことで、溶湯表面においてSnスカム30が発生する。このSnスカム30を掬い取る等して分離することで、Snスカム30をさらに除去することができる。ハリス処理工程では、溶融粗Pbメタル20中のSn濃度が十分に低くなるまで、ソーダ処理を行う行程とSnスカム30を分離する工程とが繰り返されることになる。溶融粗Pbメタル20中のSn濃度が十分に低くなれば、当該溶融粗Pbメタル20をメタルポンプによって吸引することで、ハリス炉10から精製Pbメタル40を回収することができる。   FIG. 2A is a diagram illustrating the Harris processing step. As illustrated in FIG. 2A, the cooled coarse Pb metal is put into the Harris furnace 10. By heating the crude Pb metal in the Harris furnace 10, the molten crude Pb metal 20 is obtained. In addition, the black circle represents the Sn component contained. By performing a soda treatment on the molten coarse Pb metal 20, Sn scum 30 is generated on the surface of the molten metal. The Sn scum 30 can be removed by scraping or separating the Sn scum 30. Furthermore, Sn scum 30 is generated on the surface of the molten metal by performing a soda treatment on the molten rough Pb metal 20. The Sn scum 30 can be further removed by, for example, scraping and separating the Sn scum 30. In the Harris treatment process, the process of performing the soda process and the process of separating the Sn scum 30 are repeated until the Sn concentration in the molten coarse Pb metal 20 becomes sufficiently low. If the Sn concentration in the molten crude Pb metal 20 becomes sufficiently low, the purified Pb metal 40 can be recovered from the Harris furnace 10 by sucking the molten crude Pb metal 20 with a metal pump.

ここで、ソーダ処理によってSnスカムを形成する際に、Pb、Bi(ビスマス)などの不純物もSnスカムに巻き込まれてSnスカムに混入してしまう。図1で例示したように、混入した不純物は、Sn浸出工程で浸出残渣として回収され、鉛製錬工程に繰り返される。鉛製錬工程への不純物の繰返し量が増えると、処理コストが増加するおそれがあり、歩留まりが悪化するおそれがある。したがって、Snスカムへの不純物混入量を抑制することが望まれる。   Here, when the Sn scum is formed by the soda process, impurities such as Pb and Bi (bismuth) are also caught in the Sn scum and mixed into the Sn scum. As illustrated in FIG. 1, the mixed impurities are recovered as a leaching residue in the Sn leaching process and are repeated in the lead smelting process. If the repetition amount of impurities in the lead smelting process increases, the processing cost may increase and the yield may deteriorate. Therefore, it is desired to suppress the amount of impurities mixed into the Sn scum.

図3は、溶融粗Pbメタル中のSn品位と、SnスカムへのPb混入量(Pb/Sn比)との関係を例示する図である。本発明者らの鋭意研究により、図3で例示するように、溶融粗Pbメタル中のSn品位が高いと、SnスカムへのPb混入量が多くなることが突き止められた。Biについても、図3と同様の結果が得られる。   FIG. 3 is a diagram illustrating the relationship between the Sn quality in the molten coarse Pb metal and the amount of Pb mixed in the Sn scum (Pb / Sn ratio). As illustrated in FIG. 3, it has been found out that the amount of Pb mixed into the Sn scum increases when the Sn quality in the molten crude Pb metal is high as a result of diligent research by the present inventors. For Bi, the same results as in FIG. 3 are obtained.

そこで、本実施形態においては、ハリス炉10から精製Pbメタル40を回収する際に、精製Pbメタル40の一部をハリス炉10に残す。なお、メタルポンプによって精製Pbメタル40を全て回収しようとしても一部の精製Pbメタル40がハリス炉10内に残る場合もある。そこで、ここでの「一部を残す」とは、メタルポンプによって回収可能な精製Pbメタル40の一部を意図的に残すことを意味する。例えば、ハリス炉10内の精製Pbメタル40の1/10〜1/2を残すようにしてもよい。   Therefore, in the present embodiment, when the purified Pb metal 40 is recovered from the Harris furnace 10, a part of the purified Pb metal 40 is left in the Harris furnace 10. Note that some of the purified Pb metal 40 may remain in the Harris furnace 10 even if all of the purified Pb metal 40 is to be recovered by the metal pump. Therefore, “leaving a part” here means intentionally leaving a part of the purified Pb metal 40 that can be recovered by the metal pump. For example, 1/10 to 1/2 of the purified Pb metal 40 in the Harris furnace 10 may be left.

この場合、図2(b)で例示するように、ハリス炉10内に冷却した粗Pbメタルを投入する際に、精製Pbメタル40がハリス炉10内に残存していることになる。ハリス炉10内に残存している精製Pbメタル40のSn濃度は十分に低くなっているため、ソーダ処理を行う時点での溶融粗Pbメタル20中のSn濃度は低くなる。したがって、ソーダ処理を行う際に発生するSnスカム中の不純物混入量を抑制することができる。   In this case, as illustrated in FIG. 2B, the purified Pb metal 40 remains in the Harris furnace 10 when the cooled crude Pb metal is charged into the Harris furnace 10. Since the Sn concentration of the refined Pb metal 40 remaining in the Harris furnace 10 is sufficiently low, the Sn concentration in the molten crude Pb metal 20 at the time of performing the soda treatment is low. Therefore, it is possible to suppress the amount of impurities mixed in the Sn scum generated when performing the soda process.

図3の結果から、SnスカムにおけるPb/Sn比を1.5未満に抑制するためには、ハリス炉10内に残存する精製Pbメタル40と、新たにハリス炉10内に投入する粗Pbメタルとを混合して得られる溶融粗Pbメタル20(ハリス処理開始時の溶融粗Pbメタル)におけるSn品位を6.0mass%以下に調整することが好ましい。なお、SnスカムへのPb混入量を十分に抑制する観点から、ハリス処理開始時の溶融粗Pbメタル20におけるSn品位を4.0mass%以下とすることが好ましく、2.0mass%以下とすることがより好ましい。   From the results shown in FIG. 3, in order to suppress the Pb / Sn ratio in Sn scum to less than 1.5, the refined Pb metal 40 remaining in the Harris furnace 10 and the crude Pb metal newly introduced into the Harris furnace 10 are used. It is preferable to adjust the Sn quality in the molten crude Pb metal 20 (melted rough Pb metal at the start of the Harris process) obtained by mixing to 6.0 mass% or less. In addition, from the viewpoint of sufficiently suppressing the amount of Pb mixed into the Sn scum, it is preferable that the Sn quality in the molten crude Pb metal 20 at the start of the Harris process is 4.0 mass% or less, and 2.0 mass% or less. Is more preferable.

ハリス処理開始時の溶融粗Pbメタル20中のSn品位C3は、下記式(1)で表すことができる。
C3=(C1×W1+C2×W2)/(W1+W2) (1)
C1:精製Pbメタル40中のSn品位(1mass%以下で一定)
C2:粗Pbメタル中のSn品位(5mass%〜20mass%程度)
C3:ハリス処理開始時の溶融粗Pbメタル20中のSn品位
W1:ハリス炉10内に残す精製Pbメタル40の重量
W2:粗Pbメタルの重量
The Sn quality C3 in the molten crude Pb metal 20 at the start of the Harris process can be expressed by the following formula (1).
C3 = (C1 × W1 + C2 × W2) / (W1 + W2) (1)
C1: Sn quality in purified Pb metal 40 (constant at 1 mass% or less)
C2: Sn grade in crude Pb metal (about 5 mass% to 20 mass%)
C3: Sn grade W1 in molten crude Pb metal 20 at the start of the Harris process W1: Weight of purified Pb metal 40 left in Harris furnace 10 W2: Weight of crude Pb metal

粗Pbメタル中のSn品位C2に応じて、ハリス炉10内に残す精製Pbメタル40の重量W1を調整することで、ハリス処理開始時の溶融粗Pbメタル20中のSn品位を6mass%以下に調整することができる。粗Pbメタル中のSn品位が高い場合には、精製Pbメタル40をハリス炉10内に多く残すことで、希釈を行う。粗Pbメタル中のSn品位が低い場合には、ハリス炉10内に残す精製Pbメタル40の量を少なくすることができる。この場合、ハリス炉10からメタルポンプによって回収可能な精製Pbメタル40の量が多くなり、工程を簡略化することができるとともに、コストを抑制することができる。   By adjusting the weight W1 of the purified Pb metal 40 remaining in the Harris furnace 10 according to the Sn grade C2 in the crude Pb metal, the Sn grade in the molten crude Pb metal 20 at the start of the Harris process is reduced to 6 mass% or less. Can be adjusted. When the Sn quality in the crude Pb metal is high, dilution is performed by leaving a large amount of the purified Pb metal 40 in the Harris furnace 10. When the Sn quality in the crude Pb metal is low, the amount of the purified Pb metal 40 left in the Harris furnace 10 can be reduced. In this case, the amount of the purified Pb metal 40 that can be recovered from the Harris furnace 10 by the metal pump increases, and the process can be simplified and the cost can be suppressed.

例えば、粗Pbメタル中のSn品位C2が18mass%の場合には、ハリス炉10内に残す精製Pbメタル40の重量W1を6t以上とし、粗Pbメタルの重量W2を3t以下とすれば、ハリス処理開始時の溶融粗Pbメタル20中のSn品位C3を6mass%以下とすることができる。例えば、粗Pbメタル中のSn品位C2が12mass%の場合には、ハリス炉10内に残す精製Pbメタル40の重量W1を4.5t以上とし、粗Pbメタルの重量W2を4.5t以下とすれば、ハリス処理開始時の溶融粗Pbメタル20中のSn品位C3を6mass%以下とすることができる。   For example, if the Sn grade C2 in the crude Pb metal is 18 mass%, the weight W1 of the purified Pb metal 40 left in the Harris furnace 10 is set to 6 t or more, and the weight P2 of the crude Pb metal is set to 3 t or less. The Sn quality C3 in the molten crude Pb metal 20 at the start of the treatment can be set to 6 mass% or less. For example, when the Sn grade C2 in the crude Pb metal is 12 mass%, the weight W1 of the purified Pb metal 40 left in the Harris furnace 10 is 4.5 t or more, and the weight P2 of the crude Pb metal is 4.5 t or less. If so, the Sn grade C3 in the molten crude Pb metal 20 at the start of the Harris process can be made 6 mass% or less.

(実施例)
実施形態に従って、ハリス処理工程を行った。ハリス炉10から精製Pbメタル40を回収する際に、一部の精製Pbメタル40をハリス炉10内に残した。精製Pbメタル40が残存するハリス炉10に粗Pbメタルを投入した。ハリス処理開始時の溶融粗Pbメタル20中のSn品位は、5.1mass%であった。ハリス処理工程によってSnスカムを発生させ、掬い取った。掬い取ったSnスカムの各成分品位を表1に示す。

Figure 2019157240
(Example)
According to the embodiment, a Harris treatment process was performed. When recovering the refined Pb metal 40 from the Harris furnace 10, a part of the refined Pb metal 40 was left in the Harris furnace 10. Crude Pb metal was charged into the Harris furnace 10 where the purified Pb metal 40 remained. The Sn quality in the molten crude Pb metal 20 at the start of the Harris treatment was 5.1 mass%. Sn scum was generated and scraped off by the Harris treatment process. Table 1 shows the quality of each component of the Sn scum thus obtained.
Figure 2019157240

(比較例)
比較例では、ハリス炉10から精製Pbメタル40を回収する際に、メタルポンプの回収能力で回収可能な精製Pbメタル40を全て回収した。その後、ハリス炉10に粗Pbメタルを投入した。ハリス処理開始時の溶融粗Pbメタル20中のSn品位は、8.9mass%であった。ハリス処理工程によってSnスカムを発生させ、掬い取った。掬い取ったSnスカムの各成分品位を表2に示す。

Figure 2019157240
(Comparative example)
In the comparative example, when the purified Pb metal 40 was recovered from the Harris furnace 10, all of the purified Pb metal 40 that could be recovered with the recovery capability of the metal pump was recovered. Thereafter, crude Pb metal was charged into the Harris furnace 10. The Sn quality in the molten crude Pb metal 20 at the start of the Harris treatment was 8.9 mass%. Sn scum was generated and scraped off by the Harris treatment process. Table 2 shows the quality of each component of the Sn scum scooped up.
Figure 2019157240

精製Pbメタル40の一部を残存させることによって、ハリス処理開始時の溶融粗Pbメタル20中のSn品位を低くすることができた。表1および表2の結果から、ハリス処理開始時の溶融粗Pbメタル20中のSn品位を低くすることで、Snスカムに取り込まれる不純物混入量を抑制できることがわかった。また、ハリス処理開始時の溶融粗Pbメタル20中のSn品位を6mass%以下とすることで、Snスカムへの不純物混入量を十分に抑制できることがわかった。   By leaving a part of the purified Pb metal 40, the Sn quality in the molten crude Pb metal 20 at the start of the Harris process could be lowered. From the results of Tables 1 and 2, it was found that the amount of impurities incorporated into the Sn scum can be suppressed by lowering the Sn quality in the molten crude Pb metal 20 at the start of the Harris process. It was also found that the amount of impurities mixed into the Sn scum can be sufficiently suppressed by setting the Sn quality in the molten crude Pb metal 20 at the start of the Harris process to 6 mass% or less.

以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

10 ハリス炉
20 溶融粗Pbメタル
30 Snスカム
40 精製Pbメタル
10 Harris furnace 20 Molten rough Pb metal 30 Sn scum 40 Refined Pb metal

Claims (6)

ハリス炉において、溶融粗Pbメタルに対してソーダ処理を行う行程と、前記ソーダ処理で発生するSnスカムを分離する工程と、を含む一連の工程を1以上繰り返すハリス処理工程と、
前記ハリス処理工程で得られる精製Pbメタルの一部を前記ハリス炉に残して回収する回収工程と、を含み、
次回のハリス処理工程を開始する際に、前記ハリス炉に残った精製Pbメタルと粗Pbメタルとを混合して得られる溶融粗Pbメタルに対してソーダ処理を行うことを特徴とするSnの除去方法。
In a Harris furnace, a Harris treatment step that repeats one or more of a series of steps including a step of performing a soda treatment on the molten coarse Pb metal and a step of separating Sn scum generated in the soda treatment;
A recovery step of recovering a part of the refined Pb metal obtained in the Harris treatment step while leaving it in the Harris furnace,
Removal of Sn characterized by performing a soda treatment on the molten crude Pb metal obtained by mixing the refined Pb metal remaining in the Harris furnace and the crude Pb metal when starting the next Harris treatment process. Method.
粗Pbメタルを前記ハリス炉に残った精製Pbメタルと混合することで、Sn品位を6.0mass%以下に調整することを特徴とする請求項1記載のSnの除去方法。   The method for removing Sn according to claim 1, wherein the Sn quality is adjusted to 6.0 mass% or less by mixing the crude Pb metal with the refined Pb metal remaining in the Harris furnace. ハリス炉において、溶融粗Pbメタルに対してソーダ処理を行う行程と、前記ソーダ処理で発生するSnスカムを分離する工程と、を含む一連の工程を1以上繰り返すハリス処理工程と、
前記ハリス処理工程で得られる精製Pbメタルを前記ハリス炉から回収する回収工程と、を含み、
前記ハリス処理工程を開始する際の前記溶融粗PbメタルのSn品位を6.0mass%以下に調整することを特徴とするSnの除去方法。
In a Harris furnace, a Harris treatment step that repeats one or more of a series of steps including a step of performing a soda treatment on the molten coarse Pb metal and a step of separating Sn scum generated in the soda treatment;
A recovery step of recovering the purified Pb metal obtained in the Harris treatment step from the Harris furnace,
A method for removing Sn, characterized in that the Sn quality of the molten crude Pb metal at the start of the Harris treatment step is adjusted to 6.0 mass% or less.
前記回収工程において、前記ハリス処理工程で得られる精製Pbメタルの一部を前記ハリス炉に残し、前記ハリス炉に残った精製Pbメタルを粗Pbメタルと混合することで、前記ハリス処理工程を開始する際の前記溶融粗PbメタルのSn品位を6.0mass%以下に調整することを特徴とする請求項3記載のSnの除去方法。   In the recovery step, a part of the refined Pb metal obtained in the Harris treatment step is left in the Harris furnace, and the refined Pb metal remaining in the Harris furnace is mixed with the crude Pb metal to start the Harris treatment step. 4. The method for removing Sn according to claim 3, wherein the Sn grade of the molten crude Pb metal is adjusted to 6.0 mass% or less. 前記粗PbメタルのSn品位は、8.0mass%以上であることを特徴とする請求項2または4に記載のSnの除去方法。   The Sn removal method according to claim 2 or 4, wherein Sn quality of the rough Pb metal is 8.0 mass% or more. 請求項1〜5のいずれか一項に記載のSnの除去方法の回収工程で回収された精製Pbメタルに対して電解工程を行うことで、Pbを製造することを特徴とするPbの製造方法。   A method for producing Pb, characterized in that Pb is produced by performing an electrolysis step on the purified Pb metal recovered in the recovery step of the Sn removal method according to any one of claims 1 to 5. .
JP2018048466A 2018-03-15 2018-03-15 Sn removal method and Pb manufacturing method Active JP6959169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018048466A JP6959169B2 (en) 2018-03-15 2018-03-15 Sn removal method and Pb manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018048466A JP6959169B2 (en) 2018-03-15 2018-03-15 Sn removal method and Pb manufacturing method

Publications (2)

Publication Number Publication Date
JP2019157240A true JP2019157240A (en) 2019-09-19
JP6959169B2 JP6959169B2 (en) 2021-11-02

Family

ID=67995817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018048466A Active JP6959169B2 (en) 2018-03-15 2018-03-15 Sn removal method and Pb manufacturing method

Country Status (1)

Country Link
JP (1) JP6959169B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020147813A (en) * 2019-03-14 2020-09-17 Jx金属株式会社 METHOD OF REMOVING Sn AND METHOD OF MANUFACTURING Pb

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976835A (en) * 1982-10-25 1984-05-02 Sumitomo Metal Mining Co Ltd Dry refining method of lead
JP2011214021A (en) * 2010-03-31 2011-10-27 Mitsui Mining & Smelting Co Ltd Method of producing valuable metal
JP2013234356A (en) * 2012-05-09 2013-11-21 Jx Nippon Mining & Metals Corp Pyrometallurgy process for lead using high impurity-containing lead slag as raw material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976835A (en) * 1982-10-25 1984-05-02 Sumitomo Metal Mining Co Ltd Dry refining method of lead
JP2011214021A (en) * 2010-03-31 2011-10-27 Mitsui Mining & Smelting Co Ltd Method of producing valuable metal
JP2013234356A (en) * 2012-05-09 2013-11-21 Jx Nippon Mining & Metals Corp Pyrometallurgy process for lead using high impurity-containing lead slag as raw material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020147813A (en) * 2019-03-14 2020-09-17 Jx金属株式会社 METHOD OF REMOVING Sn AND METHOD OF MANUFACTURING Pb
JP7126972B2 (en) 2019-03-14 2022-08-29 Jx金属株式会社 Method for removing Sn and method for producing Pb

Also Published As

Publication number Publication date
JP6959169B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
JP2008081799A (en) Method for recovering lead
JP2013139595A (en) Method for recovering valuables from impurity lump containing copper derived from lead smelting
CN1752235A (en) Methpd for separating and recovering Sb and Bi
JP2006322031A (en) Method for recovering metal
JP5755572B2 (en) Method for producing bismuth anode for electrolytic purification
JP2010111912A (en) Method of removing lead, reclaimed metal and reclaimed product
JP2007270243A (en) Dry type refining method for copper
JP6662230B2 (en) Method for producing high-purity indium
JP2004307965A (en) Method for removing arsenic and antimony by separation from slag fuming dust
JP6335519B2 (en) Method for treating antimony-containing material discharged from tin smelting process
JP5507310B2 (en) Method for producing valuable metals
JP6959169B2 (en) Sn removal method and Pb manufacturing method
JP2013234356A (en) Pyrometallurgy process for lead using high impurity-containing lead slag as raw material
JP4874375B2 (en) Method for recovering tellurium from copper electrolytic deposits
JP2020147813A (en) METHOD OF REMOVING Sn AND METHOD OF MANUFACTURING Pb
JP2019131838A (en) METHOD FOR REMOVING SiO2 FROM SLURRY CONTAINING SILVER AND SiO2, AND PURIFICATION METHOD OF SILVER
JP4797163B2 (en) Method for electrolysis of tellurium-containing crude lead
JP2009074128A (en) Method for recovering tin
JP6373772B2 (en) Method for recovering indium and gallium
JP2008106348A (en) Method of separating and recovering zinc
JP6457039B2 (en) Silver recovery method
JP2587814B2 (en) Method for treating concentrate from copper converter
JP6959160B2 (en) Sn leaching method and Sn manufacturing method
JP2004307885A (en) Method for reducing impurity in metal
JP5554274B2 (en) Method for recovering In and Sn and method for recovering In and Sn from an ITO recycled material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211007

R151 Written notification of patent or utility model registration

Ref document number: 6959169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250