JP2004307885A - Method for reducing impurity in metal - Google Patents

Method for reducing impurity in metal Download PDF

Info

Publication number
JP2004307885A
JP2004307885A JP2003099852A JP2003099852A JP2004307885A JP 2004307885 A JP2004307885 A JP 2004307885A JP 2003099852 A JP2003099852 A JP 2003099852A JP 2003099852 A JP2003099852 A JP 2003099852A JP 2004307885 A JP2004307885 A JP 2004307885A
Authority
JP
Japan
Prior art keywords
metal
dross
indium
raw material
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003099852A
Other languages
Japanese (ja)
Other versions
JP4264519B2 (en
Inventor
Tetsuo Doi
哲雄 土肥
Manabu Sugano
学 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2003099852A priority Critical patent/JP4264519B2/en
Publication of JP2004307885A publication Critical patent/JP2004307885A/en
Application granted granted Critical
Publication of JP4264519B2 publication Critical patent/JP4264519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for obtaining high-purity indium from an indium raw material containing impurities by a simple operation at a low cost. <P>SOLUTION: The high-purity indium can be obtained by melting the indium raw material, stirring and oxidizing the resultant molten material in the air to form dross, allowing the dross to include impurities, and then separating the dross. Further, alkali flux treatment and water washing treatment are applied to the dross to recover crude indium, and the crude indium is repeatedly used to improve yield. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は金属の不純物低減方法、特にあらかじめ粗精製されたインジウム(Inと表すことがある。)、ガリウム(Gaと表すことがある。)、錫(Snと表すことがある。)などの低融点金属の原料金属の精製方法に関するものである。
【0002】
【従来の技術】
低融点金属の1種であるインジウムは亜鉛精鉱中に微量含有されて産出し、亜鉛製錬の中間工程で濃縮され回収される。このインジウムに関し特開平11−269570号公報では効率良く回収する方法が開示されており、この回収されたインジウムは更に電解精製または減圧精製などによって高純度化されるものである。また、特開2002−212647号公報では純度99.9999質量%(単に%という。)以上のインジウムの高純度化および高生産性に関する精製技術が開示されている。
【0003】
【特許文献1】
特開平11−269570号公報
【特許文献2】
特開2002−212647号公報
【0004】
【発明が解決しようとする課題】
これらの従来の精製方法は高純度化、高生産性という優れた特徴を有するが、その一方で精製装置が複雑で熱エネルギーを多量に消費するものであって、純度99.99%(4Nという。)のインジウムを得る製錬コストと同等以上のコストを要するという問題があった。
したがって本発明はこの問題を解決し、インジウム等の低融点金属を経済的に高純度化する方法を提供することを課題とするものである。
【0005】
【課題を解決するための手段】
本発明者らは上記課題を解決するために鋭意研究した結果、主成分がインジウム、ガリウムまたは錫のいずれか1種の金属の原料金属を溶融し、その一部を酸化させることにより原料金属中に混在する不純物元素を酸化した上記金属側(ドロスという。)に濃縮することで簡単に高純度化できることを見出し本発明を完成するに至った。
【0006】
すなわち本発明は第1に、主成分がインジウム、ガリウムまたは錫のいずれか1種の金属である原料金属を溶融し、酸化剤を添加することによりドロスを発生させて該原料金属中に含有される不純物を該ドロスに包含させ、次いで該ドロスを分離することを特徴とする金属の不純物低減方法である。ここで原料金属は純度が99%(2Nという。)以上のものが好ましく、酸化剤の添加は金属溶湯の撹拌、空気もしくは酸素ガスの吹込み、または金属溶湯の循環などの操作によって行われる。また本発明は第2に、前記ドロスの発生量が重量比で前記原料金属量の5%以上である、第1記載の金属の不純物低減方法である。この際、好ましくは金属溶湯がドロスと接触している時間を10分間以上に設定する。さらに本発明は第3に、前記分離されたドロスにNaOH、KOHなどのアルカリを添加し溶融処理することによって該アルカリと酸化物を含有するスラグの上層と前記の酸化されていない金属の下層とに分離する、第1または2に記載の金属の不純物低減方法である。なお添加するアルカリ量は重量比でドロス量の1%以上で効果が生じ、ここで分離され、回収された金属は原料金属として繰り返すことにより効率よく原料金属を精製することができる。またこの場合アルカリの接触面積を増やすためにアルカリが溶融する温度(NaOHの場合は350℃)以上とすることが好ましい。
【0007】
【発明の実施の形態】
前記のとおり、本発明の対象となる原料金属は融点が500℃以下の低融点金属が好ましく、特にインジウム、ガリウム、錫のいずれか1種が主成分であるものが好ましい。なお、亜鉛など蒸気圧の高い金属は他の方法によって高純度化が可能である。以下、インジウムを原料金属として説明する。
本発明の金属の高純度化方法は、クルードと呼ばれる粗精製された金属を出発原料として採用し、純度4Nの両性金属に適用する場合について説明する。なお、本発明によるインジウムにおける精製方法の工程を図1に示す。
【0008】
4Nの原料金属インジウムをその融点の156℃以上で溶融すると、大気中で行うことで該原料金属が一部酸化され、該原料金属のインジウムからの溶融物であるメタルとは形態の異なるスポンジ状で酸化物を含有しているドロスが生成する。このドロスには、原料金属のインジウムの酸化物、原料金属インジウムに含まれていた不純物の酸化物、インジウムと不純物の化合物の酸化物、または原料金属の酸化物に囲まれまたは付着による不純物元素などが雑多に包含されている。すなわち、このドロスの生成は、不純物を酸化物とすることの他、金属またはその他化合物としてドロス中に包含させることにある。ドロスを発生させるには酸化剤を添加、投入する。酸化剤としては酸素ガス、酸素含有ガス、大気などがあり、220℃以上で金属溶湯を撹拌すると空気(酸素)吹込みが効果的である。ドロスとメタルの重量比は5%以上で効果があり50%のドロスを発生させるとニッケル(Niと表すことがある。)、鉄(Feと表すことがある。)、亜鉛(Znと表すことがある。)などの不純物元素はほとんど原料金属インジウム中から除去される。
【0009】
ドロスは比重が小さいため軽く溶解ルツボ中においてメタルの上に浮くので、メタルとドロスの分離はメタルを底抜きする、又はドロスを上から掬い取ることによって達成される。すなわち、メタルはこの単純な操作によって純度99.9%(3Nという。)〜4Nから純度99.9999%(6Nという。)に高純度化される。
一方、除去されたドロスも3N程度の純度のインジウム金属であり一部の不純物と酸化インジウムによりスポンジ状になっているだけであり、メタルの取出しは可能である。このドロス化により不純物はドロス側に移行して、ドロスに包含され、再度インジウムメタル中に再溶解することがなく、不純物分離と再溶解防止が可能となった。
【0010】
インジウム金属は酸に溶解しアルカリに難溶性であるが、酸化インジウムは酸にもアルカリにも溶解する。この作用を利用することによりNaOH、KOHなどのアルカリを加えるとインジウムは酸化物がアルカリに取込まれ、インジウム金属はその自重で下に溜まり完全に分離する。この時のメタル純度は6Nには至らず、Fe、Niなどの不純物が再度混入し4N程度となる。上部に浮いたドロスは灰色のスポンジ滓でNaOHとNi、Fe、Zn等の不純物金属とインジウムとが酸化したものを含有するが、主成分は金属インジウムであるのでここから更に金属インジウムを回収する工程がある。すなわち、分離されたドロスにNaOH(水酸化ナトリウム)、KOH(水酸化カリウム)などのアルカリを添加し溶融処理することによってアルカリと酸化物を含有するスラグの上層と酸化されていない金属の下層に分離し回収する。メタルとドロスの分離はメタルを底抜きする、又はドロスを上から掬い取ることによって達成される。溶融処理は、対象となる原料金属の溶融点以上の温度で行うのが望ましい。これは金属は溶融したほうがスラグとの分離性がよいからである。
【0011】
このスラグは水洗することにより水溶性のものと不溶性のものに分離するので主としてNaOH除去を目的とするものであって、水洗撹拌時間を30分以上にすると酸化したインジウムが再びNaOHによって還元されて金属のインジウムとなり、溶解残渣中に移行する。ここで、水洗水量としてはスラグ体積に対し2倍以上の水洗水が必要であり、pH9以下になるようにアルカリ濃度10g/リットル以下が好ましい。
Fe、Niなどの不純物元素については水洗後も酸化物の形態であるがアルカリ中には溶解しないのでインジウム金属との混合物になる。よってこれをドロスフラックス処理に戻して再び加熱溶融することでインジウムを回収することができる。
上記はインジウムの場合について説明したが、同様なことがガリウム、錫においても可能である。
【0012】
【実施例】
以下に、実施例をもって本発明をさらに具体的に示すが、本発明の技術的範囲はこれらの記載によって限定されるものではない。
【0013】
[実施例] 図1に示す精製工程において2000gのインジウム原料金属をカーボン坩堝に仕込み、抵抗加熱炉で250℃に加熱してインジウムを溶融した。このインジウム原料の組成は誘導結合高周波プラズマ発光分析(ICPという。)、原子吸光分析(AASという。)により分析したところ表1に示すように99.95%のインジウム純度であった。
溶融時にドロスは約2%発生したが直ちには分離はせず、撹拌と空気を導入する酸化を30分間継続しドロスを20%発生させてからこれを分離した。分離したドロスは400g、メタルは1600gであった。このドロスおよびインジウムメタルの組成をICP、AASにより分析したところ、表1に示すようにインジウムメタルの純度は99.9999%(6N)であり、ドロスのインジウムは99%(2N)であった。
【0014】
【表1】

Figure 2004307885
【0015】
前記ドロス400gを再びカーボン坩堝に仕込み溶融し300℃となったところで粒状のNaOHを50g投入し30分間撹拌した。温度が反応熱等により350℃まで上昇し、またドロスが酸化物(スラグ)の層と溶融した第2のメタルの層とに分離した。分離した酸化物は210g、第2のメタルは240gであった。この酸化物及び第2のメタルの組成をICP、AASにより分析したところ、表1に示すようにインジウムメタルの純度は99.999%(5Nという。)であり、酸化物はインジウム純度が85.8%であった。
この酸化物の残渣210gを粒状に粗砕きされた状態で水1リットル中に投入しリパルプ撹拌を30分間行った。温度は50℃、pHは13であった。処理後にアルカリ中に溶解せずに残った固形物を濾別、乾燥した。残渣量は158gであった。濾液、残渣を各々ICP、AASにより分析した結果を表1に示す。濾液中にはZnなどの不純物が一部洗浄液中に溶解し、またNaは殆どが溶解した。残渣のインジウム純度は98%であった。
【0016】
【発明の効果】
本発明によれば、純度が4N以下のインジウム金属を蒸留精製や電解精製を要せずに、簡易に効率よく99.999%(5N)〜99.9999%(6N)に高純度化することができ、更に酸化によって生じたドロスから効率よくインジウム金属を回収しロスなく低コストで高純度化することができる。
【図面の簡単な説明】
【図1】本発明によるインジウムの精製方法の工程図[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for reducing metal impurities, and particularly to a method for reducing indium (sometimes referred to as In), gallium (sometimes referred to as Ga), tin (sometimes referred to as Sn), etc., which have been roughly refined in advance. The present invention relates to a method for purifying a raw material metal of a melting point metal.
[0002]
[Prior art]
Indium, which is one of the low melting point metals, is produced by being contained in a trace amount in zinc concentrate, and is concentrated and recovered in an intermediate step of zinc smelting. JP-A-11-269570 discloses a method for efficiently recovering this indium, and the recovered indium is further purified by electrolytic purification or vacuum purification. In addition, Japanese Patent Application Laid-Open No. 2002-212647 discloses a purification technique relating to high purity and high productivity of indium having a purity of 99.9999% by mass (hereinafter simply referred to as%) or more.
[0003]
[Patent Document 1]
JP-A-11-269570 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2002-212647
[Problems to be solved by the invention]
These conventional purification methods have excellent features of high purification and high productivity, but on the other hand, the purification apparatus is complicated and consumes a large amount of heat energy, and the purity is 99.99% (4N). ) Has a problem that the cost is equal to or higher than the smelting cost of obtaining indium.
Accordingly, an object of the present invention is to solve this problem and to provide a method for economically purifying a low melting point metal such as indium.
[0005]
[Means for Solving the Problems]
The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, melted a raw material metal of one of indium, gallium, and tin as a main component, and oxidized a part of the raw material to form a metal. The present inventors have found that high purity can be easily achieved by concentrating the impurity element mixed in the above on the oxidized metal side (referred to as dross), and have completed the present invention.
[0006]
That is, the present invention firstly melts a raw material metal whose main component is any one of indium, gallium and tin, generates dross by adding an oxidizing agent, and contains the raw material metal. And dipping the dross, and then separating the dross. Here, the raw material metal preferably has a purity of at least 99% (referred to as 2N), and the oxidizing agent is added by operations such as stirring the molten metal, blowing air or oxygen gas, or circulating the molten metal. Secondly, the present invention is the metal impurity reduction method according to the first aspect, wherein the amount of dross generated is 5% or more of the amount of the raw material metal by weight. At this time, the time during which the molten metal is in contact with the dross is preferably set to 10 minutes or more. Thirdly, the present invention further comprises adding an alkali such as NaOH or KOH to the separated dross and subjecting the separated dross to a melting treatment to form an upper layer of the slag containing the alkali and the oxide and a lower layer of the non-oxidized metal. 3. The method for reducing metal impurities according to the first or second aspect, wherein The effect is produced when the amount of alkali to be added is 1% or more of the amount of dross by weight, and the metal separated and recovered here can be efficiently purified by repeating as the raw metal. In this case, in order to increase the contact area of the alkali, the temperature is preferably set to a temperature at which the alkali melts (350 ° C. in the case of NaOH) or higher.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
As described above, the low-melting-point metal having a melting point of 500 ° C. or less is preferable as the raw material metal to be used in the present invention, and in particular, a metal mainly containing any one of indium, gallium, and tin is preferable. It should be noted that metals having a high vapor pressure such as zinc can be highly purified by other methods. Hereinafter, indium will be described as a raw metal.
The method for purifying a metal according to the present invention employs a crudely refined metal called crude as a starting material and describes a case where the method is applied to an amphoteric metal having a purity of 4N. The steps of the method for purifying indium according to the present invention are shown in FIG.
[0008]
When 4N raw metal indium is melted at a melting point of 156 ° C. or more, the raw metal is partially oxidized by performing in air, and a sponge having a different form from the metal which is a melt of the raw metal indium. Produces dross containing oxides. This dross contains oxides of indium as a source metal, oxides of impurities contained in the source metal indium, oxides of compounds of indium and impurities, or impurity elements surrounded or adhered by oxides of the source metal. Is miscellaneously included. That is, the formation of dross involves not only converting impurities into oxides but also including them as metals or other compounds in dross. An oxidizing agent is added and introduced to generate dross. Examples of the oxidizing agent include oxygen gas, oxygen-containing gas, and atmosphere. When the molten metal is stirred at 220 ° C. or more, blowing air (oxygen) is effective. The weight ratio of dross to metal is effective at 5% or more, and when 50% dross is generated, nickel (may be expressed as Ni), iron (may be expressed as Fe), and zinc (may be expressed as Zn). ) Are almost removed from the raw material metal indium.
[0009]
Since the dross lightly floats on the metal in the melting crucible due to its small specific gravity, separation of the metal and dross is achieved by bottoming out the metal or scooping up the dross from above. That is, the metal is highly purified from 99.9% (3N) to 4N purity to 99.9999% (6N) by this simple operation.
On the other hand, the removed dross is also indium metal having a purity of about 3N, and is only in the form of a sponge due to some impurities and indium oxide, so that the metal can be taken out. Due to the dross formation, the impurities migrated to the dross side and were included in the dross, and did not redissolve again in the indium metal, thereby enabling impurity separation and re-dissolution prevention.
[0010]
Indium metal dissolves in acids and is hardly soluble in alkalis, but indium oxide dissolves in acids and alkalis. When an alkali such as NaOH or KOH is added by utilizing this action, the oxide of indium is taken into the alkali, and the indium metal is collected under its own weight and completely separated. At this time, the metal purity does not reach 6N, and impurities such as Fe and Ni are mixed again and become about 4N. The dross floating on the top is a gray sponge slag that contains oxidized indium with impurity metals such as NaOH, Ni, Fe, Zn, etc., but the main component is metal indium, so further metal indium is recovered from this. There is a process. That is, an alkali such as NaOH (sodium hydroxide) or KOH (potassium hydroxide) is added to the separated dross and melted to form an upper layer of slag containing alkali and oxide and a lower layer of non-oxidized metal. Separate and collect. Separation of metal and dross is achieved by bottoming out the metal or scooping the dross from above. The melting treatment is desirably performed at a temperature equal to or higher than the melting point of the target metal. This is because the more the metal is melted, the better the separation from the slag.
[0011]
Since this slag is separated into a water-soluble one and an insoluble one by washing with water, it is mainly intended to remove NaOH. When the washing and stirring time is set to 30 minutes or more, oxidized indium is reduced again by NaOH. It becomes metal indium and migrates into the dissolved residue. Here, the washing water amount needs to be twice or more the slag volume, and the alkali concentration is preferably 10 g / liter or less so that the pH becomes 9 or less.
The impurity elements such as Fe and Ni are in the form of oxides even after washing with water, but do not dissolve in alkali, so that they become a mixture with indium metal. Therefore, this is returned to the dross flux treatment and is again heated and melted, whereby indium can be recovered.
Although the above description has been made for the case of indium, the same can be applied to gallium and tin.
[0012]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples, but the technical scope of the present invention is not limited by these descriptions.
[0013]
Example In the purification step shown in FIG. 1, 2,000 g of indium raw metal was charged into a carbon crucible and heated to 250 ° C. in a resistance heating furnace to melt indium. The composition of the indium raw material was analyzed by inductively-coupled high-frequency plasma emission spectrometry (ICP) and atomic absorption analysis (AAS). As shown in Table 1, the indium purity was 99.95%.
About 2% of dross was generated at the time of melting, but was not separated immediately. Stirring and oxidation by introducing air were continued for 30 minutes to generate 20% of dross and then separated. The separated dross weighed 400 g and the metal 1600 g. The composition of the dross and indium metal was analyzed by ICP and AAS. As shown in Table 1, the purity of the indium metal was 99.9999% (6N), and the indium of the dross was 99% (2N).
[0014]
[Table 1]
Figure 2004307885
[0015]
400 g of the dross was charged into a carbon crucible again and melted. When the temperature reached 300 ° C., 50 g of granular NaOH was charged and stirred for 30 minutes. The temperature rose to 350 ° C. due to heat of reaction and the like, and dross separated into an oxide (slag) layer and a molten second metal layer. The separated oxide weighed 210 g and the second metal weighed 240 g. The composition of this oxide and the second metal was analyzed by ICP and AAS. As shown in Table 1, the purity of the indium metal was 99.999% (referred to as 5N), and the indium purity of the oxide was 85. 8%.
210 g of the residue of this oxide was charged into 1 liter of water in a state of being roughly crushed into granules, and the pulp was stirred for 30 minutes. The temperature was 50 ° C. and the pH was 13. After the treatment, the solid matter which did not dissolve in the alkali was filtered off and dried. The residue amount was 158 g. The results of analyzing the filtrate and the residue by ICP and AAS, respectively, are shown in Table 1. Impurities such as Zn were partially dissolved in the washing solution in the filtrate, and most of Na was dissolved in the washing solution. The indium purity of the residue was 98%.
[0016]
【The invention's effect】
According to the present invention, it is possible to simply and efficiently purify indium metal having a purity of 4N or less to 99.999% (5N) to 99.9999% (6N) without the need for distillation purification or electrolytic purification. In addition, it is possible to efficiently recover indium metal from dross generated by oxidation, and to purify the metal at low cost without loss.
[Brief description of the drawings]
FIG. 1 is a process diagram of a method for purifying indium according to the present invention.

Claims (3)

主成分がインジウム、ガリウムまたは錫のいずれか1種の金属である原料金属を溶融し、酸化剤を添加することによりドロスを発生させて該原料金属中に含有される不純物を該ドロスに包含させ、次いで該ドロスを分離することを特徴とする金属の不純物低減方法。A raw material metal whose main component is any one of indium, gallium, and tin is melted and dross is generated by adding an oxidizing agent, so that impurities contained in the raw metal are included in the dross. And then separating the dross. 前記ドロスの発生量が重量比で前記原料金属量の5%以上である、請求項1記載の金属の不純物低減方法。2. The method according to claim 1, wherein the amount of dross generated is at least 5% by weight of the amount of the raw material metal. 前記分離されたドロスにアルカリを添加し、溶融処理することによって該アルカリと酸化物を含有するスラグの層と前記金属の層とに分離する、請求項1または2に記載の金属の不純物低減方法。The method according to claim 1, wherein an alkali is added to the separated dross, and the dross is melted to separate the dross into a slag layer containing the alkali and the oxide and the metal layer. .
JP2003099852A 2003-04-03 2003-04-03 Method for reducing metal impurities Expired - Fee Related JP4264519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003099852A JP4264519B2 (en) 2003-04-03 2003-04-03 Method for reducing metal impurities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003099852A JP4264519B2 (en) 2003-04-03 2003-04-03 Method for reducing metal impurities

Publications (2)

Publication Number Publication Date
JP2004307885A true JP2004307885A (en) 2004-11-04
JP4264519B2 JP4264519B2 (en) 2009-05-20

Family

ID=33464147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003099852A Expired - Fee Related JP4264519B2 (en) 2003-04-03 2003-04-03 Method for reducing metal impurities

Country Status (1)

Country Link
JP (1) JP4264519B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211354A (en) * 2011-03-30 2012-11-01 Jx Nippon Mining & Metals Corp METHOD FOR RECOVERING ALLOY CONTAINING In AND Sn, AND METHOD FOR TREATING ITO RECYCLED MATERIAL
JP2013036075A (en) * 2011-08-05 2013-02-21 Jx Nippon Mining & Metals Corp Method of refining indium or indium alloy
CN107034365A (en) * 2017-06-08 2017-08-11 安徽省金鸿再生资源科技有限公司 A kind of method of thick tin pyro-refining
CN113005308A (en) * 2021-02-24 2021-06-22 合肥江丰电子材料有限公司 Method for refining metal indium
CN114457239A (en) * 2022-03-11 2022-05-10 合肥江丰电子材料有限公司 Purification method of indium slag

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211354A (en) * 2011-03-30 2012-11-01 Jx Nippon Mining & Metals Corp METHOD FOR RECOVERING ALLOY CONTAINING In AND Sn, AND METHOD FOR TREATING ITO RECYCLED MATERIAL
JP2013036075A (en) * 2011-08-05 2013-02-21 Jx Nippon Mining & Metals Corp Method of refining indium or indium alloy
CN107034365A (en) * 2017-06-08 2017-08-11 安徽省金鸿再生资源科技有限公司 A kind of method of thick tin pyro-refining
CN113005308A (en) * 2021-02-24 2021-06-22 合肥江丰电子材料有限公司 Method for refining metal indium
CN114457239A (en) * 2022-03-11 2022-05-10 合肥江丰电子材料有限公司 Purification method of indium slag
CN114457239B (en) * 2022-03-11 2024-02-06 合肥江丰电子材料有限公司 Method for purifying indium slag

Also Published As

Publication number Publication date
JP4264519B2 (en) 2009-05-20

Similar Documents

Publication Publication Date Title
JP6219325B2 (en) Method for producing metal manganese
JP6648674B2 (en) Method for producing metallic manganese
KR101012109B1 (en) Method for recycling indium
JP2006322031A (en) Method for recovering metal
CN110512077A (en) A kind of method of lead anode slurry high efficiente callback gold and silver bismuth antimony tellurium
JP2010528177A (en) Method for producing pure metal indium from zinc oxide and / or metal-containing solution
KR20120074167A (en) Recovery method of valuableness metals from copper smelting slag
JP2010138490A (en) Method of recovering zinc
JP5507310B2 (en) Method for producing valuable metals
JP4264519B2 (en) Method for reducing metal impurities
JP2008297608A (en) Method for separating/recovering tin
JP2015086436A (en) Method for recovering valuable material
JP2019527769A (en) Concentrating and recovering precious metals
JP2012513536A (en) Method for recovering secondary zinc oxide rich in fluoride and chloride
JP2015134954A (en) Method for treating antimony-containing material discharged from tin smelting process
JP2004300490A (en) Method of recovering cobalt
JP5188768B2 (en) Tin recovery method
JP6591675B2 (en) Method for producing metal manganese
CN113528845B (en) Full-resource recovery method for smelting soot of waste circuit board
JP2013234356A (en) Pyrometallurgy process for lead using high impurity-containing lead slag as raw material
KR101763549B1 (en) Method and arrangement of separating arsenic from starting materials
JP6411001B1 (en) Method for producing metal manganese
WO2006084273A2 (en) Process for hydrometallurgical treatment of electric arc furnace dust
CN108359801B (en) The method of valuable metal is recycled from copper indium gallium selenide refuse battery chip
JP2001279344A (en) Method for recovering tin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090121

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees