JP2019145531A - 非水電解液二次電池の製造方法 - Google Patents

非水電解液二次電池の製造方法 Download PDF

Info

Publication number
JP2019145531A
JP2019145531A JP2019108158A JP2019108158A JP2019145531A JP 2019145531 A JP2019145531 A JP 2019145531A JP 2019108158 A JP2019108158 A JP 2019108158A JP 2019108158 A JP2019108158 A JP 2019108158A JP 2019145531 A JP2019145531 A JP 2019145531A
Authority
JP
Japan
Prior art keywords
secondary battery
electrolyte secondary
electrode plate
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019108158A
Other languages
English (en)
Other versions
JP6852116B2 (ja
Inventor
一郎 有瀬
Ichiro Arise
一郎 有瀬
俊彦 緒方
Toshihiko Ogata
俊彦 緒方
孝輔 倉金
Kosuke Kurakane
孝輔 倉金
純次 鈴木
Junji Suzuki
純次 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2019108158A priority Critical patent/JP6852116B2/ja
Publication of JP2019145531A publication Critical patent/JP2019145531A/ja
Application granted granted Critical
Publication of JP6852116B2 publication Critical patent/JP6852116B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【課題】サイクル後の電池の充電容量特性に優れたものにする。【解決手段】ポリオレフィン多孔質フィルムを含む非水電解液二次電池用セパレータと、ポリフッ化ビニリデン系樹脂を含有する多孔質層と、正極板と、負極板と、を備え、前記正極板の下記式(1)で表される値が、0.00以上、0.50以下の範囲にあり、かつ、前記負極板の下記式(1)で表される値が、0.00以上、0.50以下の範囲にあるとともに、|1−T/M| …(1)前記多孔質層は、非水電解液二次電池用セパレータと、前記正極板及び前記負極板の少なくともいずれかと、の間に配置されており、前記ポリフッ化ビニリデン系樹脂は、α型結晶の含有量が、35.0モル%以上である、非水電解液二次電池の製造方法であって、集電体に10〜200m/分の塗工速度で活物質を塗工することによって前記正極板および前記負極板を作製する工程を含む。【選択図】なし

Description

本発明は、非水電解液二次電池の製造方法に関する。
非水電解液二次電池、特にリチウム二次電池は、エネルギー密度が高いのでパーソナルコンピュータ、携帯電話、携帯情報端末などに用いる電池として広く使用され、また最近では車載用の電池として開発が進められている。例えば特許文献1には、ポリオレフィン多孔質フィルムと、ポリフッ化ビニリデン系樹脂を含む多孔質層とを備えた非水電解液二次電池が記載されている。
特許第5432417号
しかしながら、上述の従来のポリオレフィン多孔質フィルムと、ポリフッ化ビニリデン系樹脂を含む多孔質層とを組み込んだ非水電解液二次電池は、サイクル後の電池の充電容量の観点から改善の余地があった。すなわち、前記非水電解液二次電池に対しては、サイクル後の電池の充電回復容量特性を向上させることが求められていた。
本発明の一態様は、サイクル後の電池の充電回復容量特性に優れた非水電解液二次電池の製造方法を実現することを目的とする。
本発明の態様1に係る非水電解液二次電池の製造方法は、ポリオレフィン多孔質フィルムを含む非水電解液二次電池用セパレータと、ポリフッ化ビニリデン系樹脂を含有する多孔質層と、下記式(1)で表される値が、0.00以上、0.50以下の範囲にある正極板と、下記式(1)で表される値が、0.00以上、0.50以下の範囲にある負極板と、を備え、
|1−T/M| …(1)
(式(1)中、Tは、TDにおける0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表し、Mは、MDにおける0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表す。)
前記多孔質層は、前記非水電解液二次電池用セパレータと、前記正極板及び前記負極板の少なくともいずれかと、の間に配置されており、
前記多孔質層に含まれる前記ポリフッ化ビニリデン系樹脂は、α型結晶とβ型結晶の含有量の合計を100モル%とした場合の、前記α型結晶の含有量が、35.0モル%以上である(ここで、α型結晶の含有量は、前記多孔質層の19F−NMRスペクトルにおける、−78ppm付近にて観測される(α/2)の波形分離、および、−95ppm付近にて観測される{(α/2)+β}の波形分離から算出される。)、非水電解液二次電池の製造方法であって、集電体に10〜200m/分の塗工速度で活物質を塗工することによって前記正極板および前記負極板を作製する工程を含む。
また、本発明の態様2に係る非水電解液二次電池の製造方法は、前記態様1において、電極活物質粒子の粒径を1〜30μmの範囲とする。
また、本発明の態様3に係る非水電解液二次電池の製造方法は、前記態様1または2において、電極活物質粒子のアスペクト比(長径/短径)を1〜5の範囲に制御する。
また、本発明の態様4に係る非水電解液二次電池の製造方法は、前記態様1〜3の何れかにおいて、電極活物質層の空隙率を10〜50%の範囲に制御する。
また、本発明の態様5に係る非水電解液二次電池の製造方法は、前記態様1〜4の何れかにおいて、電極板組成に占める活物質成分の存在割合を80重量%以上の範囲に制御する。
本発明の一態様によれば、サイクル後の電池の充電回復容量特性に優れた非水電解液二次電池を実現できる。
本発明におけるスクラッチ試験に用いる装置およびその操作を示す図である。 本発明におけるスクラッチ試験の結果から作成したグラフにおける、臨界荷重および臨界荷重までの距離を示した図である。
以下、本発明の一実施の形態について、詳細に説明する。尚、本出願において、「A〜B」とは、「A以上、B以下」であることを示す。
[実施形態1:非水電解液二次電池]
本発明の実施形態1に係る非水電解液二次電池は、ポリオレフィン多孔質フィルムを含む非水電解液二次電池用セパレータと、ポリフッ化ビニリデン系樹脂を含有する多孔質層と、正極板と、負極板と、を備えた非水電解液二次電池であり、前記多孔質層は、前記非水電解液二次電池用セパレータと、前記正極板及び前記負極板の少なくともいずれかと、の間に配置されている。そして、以下の(i)および(ii)を特徴とする。
(i)前記正極板の下記式(1)で表される値が、0.00以上、0.50以下の範囲にあり、かつ、前記負極板の下記式(1)で表される値が、0.00以上、0.50以下の範囲にある。
|1−T/M| …(1)
(式(1)中、Tは、TDにおける0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表し、Mは、MDにおける0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表す。)
(ii)前記多孔質層に含まれる前記ポリフッ化ビニリデン系樹脂は、α型結晶とβ型結晶の含有量の合計を100モル%とした場合の、前記α型結晶の含有量が、35.0モル%以上である。
(ここで、α型結晶の含有量は、前記多孔質層の19F−NMRスペクトルにおける、78ppm付近にて観測される(α/2)の波形分離、および、−95ppm付近にて観測される{(α/2)+β}の波形分離から算出される。)
なお、本発明の一実施形態に係る非水電解液二次電池は、上述の、正極板、負極板、非水電解液二次電池用セパレータ、多孔質層以外に非水電解液等を含む。
<非水電解液二次電池用セパレータ>
本発明の一実施形態における非水電解液二次電池用セパレータは、ポリオレフィン多孔質フィルムを含む。なお、以下、「ポリオレフィン多孔質フィルム」を「多孔質フィルム」ということがある。
前記多孔質フィルムは、単独で非水電解液二次電池用セパレータとなり得る。また、後述する多孔質層が積層された非水電解液二次電池用積層セパレータの基材ともなり得る。前記多孔質フィルムは、ポリオレフィンを主成分とし、その内部に連結した細孔を多数有しており、一方の面から他方の面に気体や液体を通過させることが可能となっている。
本発明の一実施形態における非水電解液二次電池用セパレータは、少なくとも一方の面上に、後述するポリフッ化ビニリデン系樹脂を含有する多孔質層が積層され得る。この場合、前記非水電解液二次電池用セパレータの少なくとも一方の面上に、前記多孔質層が積層されてなる積層体を、本明細書において、「非水電解液二次電池用積層セパレータ」と称する。以下、非水電解液二次電池用積層セパレータを「積層セパレータ」ということがある。また、本発明の一実施形態における非水電解液二次電池用セパレータは、ポリオレフィン多孔質フィルムの他に、接着層、耐熱層、保護層等のその他の層をさらに備えていてもよい。
多孔質フィルムに占めるポリオレフィンの割合は、多孔質フィルム全体の50体積%以上であり、90体積%以上であることがより好ましく、95体積%以上であることがさらに好ましい。また、前記ポリオレフィンには、重量平均分子量が5×10〜15×10の高分子量成分が含まれていることがより好ましい。特に、ポリオレフィンに重量平均分子量が100万以上の高分子量成分が含まれていると、非水電解液二次電池用セパレータの強度が向上するのでより好ましい。
熱可塑性樹脂である前記ポリオレフィンとしては、具体的には、例えば、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン等の単量体を(共)重合してなる、単独重合体または共重合体が挙げられる。前記単独重合体としては、例えばポリエチレン、ポリプロピレン、ポリブテンを挙げることができる。また、前記共重合体としては、例えばエチレン−プロピレン共重合体を挙げることができる。
このうち、過大電流が流れることをより低温で阻止(シャットダウン)することができるため、ポリエチレンがより好ましい。当該ポリエチレンとしては、低密度ポリエチレン、高密度ポリエチレン、線状ポリエチレン(エチレン−α−オレフィン共重合体)、重量平均分子量が100万以上の超高分子量ポリエチレン等が挙げられ、このうち、重量平均分子量が100万以上の超高分子量ポリエチレンがさらに好ましい。
多孔質フィルムの膜厚は、4〜40μmであることが好ましく、5〜30μmであることがより好ましく、6〜15μmであることがさらに好ましい。
多孔質フィルムの単位面積当たりの目付は、強度、膜厚、重量、およびハンドリング性を考慮して適宜決定すればよいものの、多孔質フィルムを含む非水電解液二次電池用積層セパレータを非水電解液二次電池に用いた場合の当該電池の重量エネルギー密度や体積エネルギー密度を高くすることができるように、4〜20g/mであることが好ましく、4〜12g/mであることがより好ましく、5〜10g/mであることがさらに好ましい。
多孔質フィルムの透気度は、ガーレ値で30〜500 sec/100mLであることが好ましく、50〜300 sec/100mLであることがより好ましい。多孔質フィルムが上記透気度を有することにより、充分なイオン透過性を得ることができる。
多孔質フィルムの空隙率は、電解液の保持量を高めると共に、過大電流が流れることをより低温で確実に阻止(シャットダウン)する機能を得ることができるように、20〜80体積%であることが好ましく、30〜75体積%であることがより好ましい。また、多孔質フィルムが有する細孔の孔径は、充分なイオン透過性を得ることができ、かつ、正極や負極への粒子の入り込みを防止することができるように、0.3μm以下であることが好ましく、0.14μm以下であることがより好ましい。
また、多孔質フィルムは、American Standards Test Methods(以下、「ASTM」と略記する)のE313に規定されているホワイトインデックス(WI)(以下、単に「ホ
ワイトインデックス(WI)」または「WI」と記載する場合がある)が85以上、98以下であることが好ましく、より好ましくは90以上であり、さらに好ましくは97以下である。
WIは、サンプルの色味(白味)を表す指標であり、染料の退色性や、透明・白色系樹脂の、加工時における酸化劣化度の指標として用いられる。WIが高いほど白色度が高いことになる。また、WIが低いほど白色度が低いことになる。そして、WIが低いほど、多孔質フィルムに形成されている細孔の表面等の、多孔質フィルムと空気(酸素)とが接する面にカルボキシ基などの官能基の量が多いと考えられる。当該官能基によってLiイオンの透過が阻害され、その結果、Liイオンの透過性が低くなる。また、WIの値が高い場合、反射、散乱の波長依存性が低い多孔質フィルムであると言える。
多孔質フィルムは、例えば、(1)ポリオレフィン等の樹脂にフィラー(孔形成剤)を加えてシートを成形した後、フィラーを適当な溶媒で除去し、フィラーを除去したシートを延伸して多孔質フィルムを得る方法;(2)ポリオレフィン等の樹脂にフィラーを加えてシートを成形した後、当該シートを延伸し、延伸したシートからフィラーを除去して多孔質フィルムを得る方法、等により製造することができる。すなわち、得られた多孔質フィルムは、通常、フィラーを含まない。
本発明者は、このとき、BET比表面積が大きいフィラーを用いることによって、フィラーの分散性を高め、熱加工時の分散不良に伴う局所的な酸化劣化を抑えることで、カルボキシル基等の官能基の発生を抑制し、さらに多孔質フィルムの緻密性を向上させることにより、多孔質フィルムのWIを85以上、98以下とすることができることを見出した。
前記「BET比表面積が大きいフィラー」とは、BET比表面積が6m/g以上、16m/g以下のフィラーを言う。BET比表面積が6m/g未満であると、粗大な孔が発達する傾向があるため好ましくなく、BET比表面積が16m/gを超えると、フィラー同士の凝集を生じて分散不良を生じ、緻密な細孔が発達しない傾向がある。BET比表面積は、好ましくは8m/g以上、15m/g以下であり、より好ましくは10m/g以上、13m/g以下である。
フィラーとしては、具体的には、例えば、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸マグネシウム、および硫酸バリウム等の無機物からなるフィラーが挙げられる。フィラーは、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。中でも、BET比表面積が大きいという観点から、炭酸カルシウムであることが特に好ましい。
前記多孔質フィルムのWIが85以上、98以下であることは、例えば積分球分光測色計を用いてWIを測定することによって確認することができる。前記多孔質フィルムは、表面、裏面共にWIが85以上、98以下との要件を満たす。
前記多孔質フィルムのWIが85以上、98以下である場合は、多孔質フィルムと空気(酸素)とが接する面におけるカルボキシ基等の官能基の量が適正となるため、イオン透過性を適正な範囲で向上させることができる。
前記多孔質フィルムのWIが85未満の場合は、前記官能基量が多いため、該多孔質フィルムのイオン透過性が阻害されることになる。
前記多孔質フィルムのWIが98を超える場合は、多孔質フィルムと空気(酸素)とが接する面における表面官能基の量が少なくなりすぎることで、膜の電解液への親和性が低下するため、好ましくない。
多孔質フィルムに多孔質層またはその他の層が積層されている場合、当該多孔質フィルムの物性値は、多孔質フィルムと多孔質層またはその他の層とを含む積層体から、当該多孔質層およびその他の層を取り除いて測定することができる。積層体から多孔質層およびその他の層を取り除く方法としては、N−メチルピロリドンまたはアセトン等の溶剤によって多孔質層およびその他の層を構成する樹脂を溶解除去する方法などが挙げられる。
<多孔質層>
本発明の一実施形態において、前記多孔質層は、非水電解液二次電池を構成する部材として、前記非水電解液二次電池用セパレータと、前記正極板及び前記負極板の少なくともいずれかとの間に配置されている。前記多孔質層は、非水電解液二次電池用セパレータの片面又は両面に形成され得る。或いは、前記多孔質層は、前記正極板及び前記負極板の少なくともいずれかの活物質層上に形成され得る。或いは、前記多孔質層は、前記非水電解液二次電池用セパレータと、前記正極板及び前記負極板の少なくともいずれかとの間に、これらと接するように配置されてもよい。非水電解液二次電池用セパレータと、正極板および負極板の少なくともいずれかと、の間に配置される多孔質層は、1層でもよく2層以上であってもよい。
前記多孔質層に含まれ得る樹脂は、電池の電解液に不溶であり、また、その電池の使用範囲において電気化学的に安定であることが好ましい。多孔質フィルムの片面に多孔質層が積層される場合には、当該多孔質層は、好ましくは、多孔質フィルムにおける非水電解液二次電池の正極板と対向する面に積層され、より好ましくは、前記正極板と接する面に積層される。
多孔質層は、樹脂を含む絶縁性の多孔質層であることが好ましい。
本発明の一実施形態における多孔質層は、PVDF系樹脂を含有する多孔質層であって、前記PVDF系樹脂中の、α型結晶とβ型結晶の含有量の合計を100モル%とした場合の、前記α型結晶の含有量が、35.0モル%以上であることを特徴とする。
ここで、α型結晶の含有量は、前記多孔質層の19F−NMRスペクトルにおける、−78ppm付近にて観測される(α/2)の波形分離、および、−95ppm付近にて観測される{(α/2)+β}の波形分離から算出される。
多孔質層は、内部に多数の細孔を有し、これら細孔が連結された構造となっており、一方の面から他方の面へと気体或いは液体が通過可能となった層である。また、本発明の一実施形態における多孔質層が非水電解液二次電池用積層セパレータを構成する部材として使用される場合、前記多孔質層は、当該セパレータの最外層として、電極と接着する層となり得る。
PVDF系樹脂としては、例えば、フッ化ビニリデンのホモポリマー;フッ化ビニリデンと他の共重合可能なモノマーとの共重合体;これらの混合物;が挙げられる。フッ化ビニリデンと共重合可能なモノマーとしては、例えば、ヘキサフルオロプロピレン、テトラフルオロエチレン、トリフルオロエチレン、トリクロロエチレン、フッ化ビニル等が挙げられ、1種類または2種類以上を用いることができる。PVDF系樹脂は、乳化重合または懸濁重合で合成し得る。
PVDF系樹脂は、その構成単位としてフッ化ビニリデンが通常、85モル%以上、好ましくは90モル%以上、より好ましくは95モル%以上、更に好ましくは98モル%以上含まれている。フッ化ビニリデンが85モル%以上含まれていると、電池製造時の加圧や加熱に耐え得る機械的強度と耐熱性とを確保し易い。
また、多孔質層は、例えば、ヘキサフルオロプロピレンの含有量が互いに異なる2種類のPVDF系樹脂(下記第一の樹脂と第二の樹脂)を含有する態様も好ましい。
・第一の樹脂:ヘキサフルオロプロピレンの含有量が0モル%を超え、1.5モル%以下であるフッ化ビニリデン/ヘキサフルオロプロピレン共重合体、またはフッ化ビニリデン単独重合体。
・第二の樹脂:ヘキサフルオロプロピレンの含有量が1.5モル%を超えるフッ化ビニリデン/ヘキサフルオロプロピレン共重合体。
前記2種類のPVDF系樹脂を含有する多孔質層は、何れか一方を含有しない多孔質層に比べて、電極との接着性が向上する。また、前記2種類のPVDF系樹脂を含有する多孔質層は、何れか一方を含有しない多孔質層に比べて、非水電解液二次電池用セパレータを構成する他の層(例えば、多孔質フィルム層)との接着性が向上し、これら層間の剥離力が向上する。第一の樹脂と第二の樹脂との質量比は、15:85〜85:15の範囲が好ましい。
PVDF系樹脂は、重量平均分子量が20万〜300万の範囲であることが好ましく、より好ましくは20万〜200万の範囲であり、さらに好ましくは50万〜150万の範囲である。重量平均分子量が20万以上であると、多孔質層と電極との十分な接着性が得られる傾向がある。一方、重量平均分子量が300万以下であると、成形性に優れる傾向がある。
本発明の一実施形態における多孔質層は、PVDF系樹脂以外の他の樹脂として、スチレン−ブタジエン共重合体;アクリロニトリルやメタクリロニトリル等のビニルニトリル類の単独重合体または共重合体;ポリエチレンオキサイドやポリプロピレンオキサイド等のポリエーテル類;等を含み得る。
本発明の一実施形態における多孔質層はフィラーを含み得る。フィラーは、金属酸化物微粒子等の無機フィラーまたは有機フィラーであり得る。前記フィラーの含有量は、前記PVDF系樹脂および前記フィラーの総量に占める前記フィラーの割合が、1質量%以上、99質量%以下であることが好ましく、10質量%以上、98質量%以下であることがより好ましい。前記フィラーの割合の下限値は、50質量%以上でもよく、70質量%以上でもよく、90質量%以上でもよい。有機フィラーおよび無機フィラーは、従来公知のものを使用することができる。
本発明の一実施形態における多孔質層の平均膜厚は、電極との接着性および高エネルギー密度を確保する観点から、一層当たり0.5μm〜10μmの範囲であることが好ましく、1μm〜5μmの範囲であることがより好ましい。
多孔質層の膜厚が一層当たり0.5μm以上であると、非水電解液二次電池の破損等による内部短絡を充分に抑制することができ、また、多孔質層における電解液の保持量が充分となる。
一方、多孔質層の膜厚が一層当たり10μmを超えると、非水電解液二次電池において、リチウムイオンの透過抵抗が増加するので、サイクルを繰り返すと非水電解液二次電池の正極が劣化し、レート特性およびサイクル特性が低下する。また、正極および負極間の距離が増加するので非水電解液二次電池の内部容積効率が低下する。
本実施形態における多孔質層は、非水電解液二次電池用セパレータと正極板が備える正極活物質層との間に配置されるのが好ましい。多孔質層の物性に関する下記説明においては、非水電解液二次電池としたときに、非水電解液二次電池用セパレータと正極板が備える正極活物質層との間に配置された多孔質層の物性を少なくとも指す。
多孔質層の単位面積当たりの目付(一層あたり)は、多孔質層の強度、膜厚、重量、およびハンドリング性を考慮して適宜決定すればよい。多孔質層の塗工量(目付)は、一層当たり0.5〜20g/mであることが好ましく、0.5〜10g/mであることがより好ましい。
多孔質層の単位面積当たりの目付をこれらの数値範囲とすることにより、当該多孔質層を備えた非水電解液二次電池の重量エネルギー密度や体積エネルギー密度を高くすることができる。多孔質層の目付が上記範囲を超える場合には、非水電解液二次電池が重くなる。
多孔質層の空隙率は、充分なイオン透過性を得ることができるように、20〜90体積%であることが好ましく、30〜80体積%であることがより好ましい。また、多孔質層が有する細孔の孔径は、1.0μm以下であることが好ましく、0.5μm以下であることがより好ましい。細孔の孔径をこれらのサイズとすることにより、当該多孔質層は、充分なイオン透過性を得ることができる。
本発明の一実施形態に係る多孔質層における表面粗さは、十点平均粗さ(Rz)で、0.8μm〜8.0μmの範囲が好ましく、0.9μm〜6.0μmの範囲がより好ましく、1.0μm〜3.0μmの範囲がさらに好ましい。十点平均粗さ(Rz)は、JISB 0601−1994(またはJIS B 0601−2001のRzjis)に準じた方法により測定される値である。具体的には、Rzは、小坂研究所社製のET4000を
用いて、測定長さ1.25mm、測定速度0.1mm/秒、温湿度25℃/50%RHの条件にて測定される値である。
本発明の一実施形態に係る多孔質層における動摩擦係数は、0.1〜0.6が好ましく、0.1〜0.4がより好ましく、0.1〜0.3がさらに好ましい。動摩擦係数は、JIS K 7125に準じた方法により測定される値である。具体的には、本発明における動摩擦係数は、ヘイドン社製のサーフェイスプロパティテスターを用いて測定される値である。
上記非水電解液二次電池用積層セパレータの透気度は、ガーレ値で30〜1000 sec/100mLであることが好ましく、50〜800 sec/100mLであることがより好
ましい。非水電解液二次電池用積層セパレータは、上記透気度を有することにより、非水電解液二次電池において、充分なイオン透過性を得ることができる。
透気度が上記範囲未満の場合には、非水電解液二次電池用積層セパレータの空隙率が高いために非水電解液二次電池用積層セパレータの積層構造が粗になっていることを意味し、結果として非水電解液二次電池用積層セパレータの強度が低下して、特に高温での形状安定性が不充分になるおそれがある。一方、透気度が上記範囲を超える場合には、非水電解液二次電池用積層セパレータは、充分なイオン透過性を得ることができず、非水電解液二次電池の電池特性を低下させることがある。
(PVDF系樹脂の結晶形)
本発明の一実施形態に使用される多孔質層に含まれるPVDF系樹脂において、α型結晶およびβ型結晶の含有量の合計を100モル%とした場合のα型結晶の含有量は、35.0モル%以上であり、好ましくは37.0モル%以上であり、より好ましくは40.0モル%以上であり、さらに好ましくは44.0モル%以上である。また、好ましくは90.0モル%以下である。
前記α型結晶の含有量が上述の範囲である多孔質層は、サイクル後の電池の充電回復容量特性に優れた非水二次電池、特に非水二次電池用積層セパレータまたは非水電解液二次電池用電極を構成する部材として好適に利用され得る。
本発明の一形態では、上述のように多孔質層を構成するPVDF系樹脂のα型結晶の割合を一定以上の割合にしている。このため、充放電を繰り返す場合に生じる高温によるPVDF系樹脂の変形に起因した多孔質層内部構造の変形や空隙の閉塞等を低減させることができる。その結果、多孔質層は、充放電を繰り返す場合においても、そのイオン透過性は低下せず、非水電解液二次電池の充放電サイクル後の充電回復容量特性が向上する。
α型結晶のPVDF系樹脂は、PVDF系樹脂を構成する重合体に含まれるPVDF骨格において、前記骨格中の分子鎖にある1つの主鎖炭素原子に結合するフッ素原子(または水素原子)に対し、一方の隣接する炭素原子に結合した水素原子(またはフッ素原子)がトランスの位置に存在し、かつ、もう一方(逆側)に隣接する炭素原子に結合する水素原子(またはフッ素原子)がゴーシュの位置(60°の位置)に存在し、その立体構造の連鎖が2つ以上連続する
Figure 2019145531
であることを特徴とするものであって、分子鎖が、
Figure 2019145531
型でC−F、C−H結合の双極子能率が分子鎖に垂直な方向と平行な方向とにそれぞれ成分を有している。
α型結晶のPVDF系樹脂は、19F−NMRスペクトルにおいて、−95ppm付近、−78ppm付近に特徴的なピークを有する。
β型結晶のPVDF系樹脂は、PVDF系樹脂を構成する重合体に含まれるPVDF骨格において、前記骨格中の分子鎖の1つの主鎖炭素に隣り合う炭素原子に結合したフッ素原子と水素原子がそれぞれトランスの立体配置(TT型構造)、すなわち隣り合う炭素原子に結合するフッ素原子と水素原子とが、炭素−炭素結合の方向から見て180°の位置に存在することを特徴とする。
β型結晶のPVDF系樹脂は、PVDF系樹脂を構成する重合体に含まれるPVDF骨格において、前記骨格全体が、TT型構造を有していてもよい。また、前記骨格の一部がTT型構造を有し、かつ、少なくとも4つの連続するPVDF単量体単位のユニットにおいて前記TT型構造の分子鎖を有するものであってもよい。何れの場合もTT型構造の部分がTT型の主鎖を構成する炭素−炭素結合は、平面ジグザグ構造を有し、C−F、C−H結合の双極子能率が分子鎖に垂直な方向の成分を有している。
β型結晶のPVDF系樹脂は、19F−NMRスペクトルにおいて、−95ppm付近に特徴的なピークを有する。
(PVDF系樹脂におけるα型結晶、β型結晶の含有率の算出方法)
本発明の一実施形態における多孔質層の、α型結晶とβ型結晶の含有量の合計を100モル%とした場合の、α型結晶の含有率およびβ型結晶の含有率は、前記多孔質層から得られる19F−NMRスペクトルから算出され得る。具体的な算出方法は、例えば、以下の通りである。
(1)PVDF系樹脂を含有する多孔質層に対して、以下の条件にて19F−NMRスペクトルを測定する。
測定条件
測定装置:Bruker Biospin社製 AVANCE400
測定方法:シングルパルス法
観測核:19
スペクトル幅:100kHz
パルス幅:3.0s(90°パルス)
パルス繰り返し時間:5.0s
基準物質:C(外部基準:−163.0ppm)
温度:22℃
試料回転数:25kHz
(2)(1)にて得られた19F−NMRスペクトルにおける−78ppm付近のスペクトルの積分値を算出し、α/2量とする。
(3)(2)と同様に、(1)にて得られた19F−NMRスペクトルにおける−95ppm付近のスペクトルの積分値を算出し、{(α/2)+β}量とする。
(4)(2)および(3)にて得られた積分値から、以下の式(2)にて、α型結晶とβ型結晶の含有量の合計を100モル%とした場合のα型結晶の含有率(α比とも称する)を算出する。
α比(モル%)=〔(−78ppm付近の積分値)×2/{(−95ppm付近の積分値)+(−78ppm付近の積分値)}〕×100 (2)
(5)(4)にて得られたα比の値から、以下の式(3)にて、α型結晶とβ型結晶の含有量の合計を100モル%とした場合のβ型結晶の含有率(β比とも称する)を算出する。
β比(モル%)=100(モル%)−α比(モル%) (3)。
(多孔質層、非水電解液二次電池用積層セパレータの製造方法)
本発明の一実施形態における多孔質層および非水電解液二次電池用積層セパレータの製造方法としては、特に限定されず、種々の方法が挙げられる。
例えば、基材となる多孔質フィルムの表面上に、以下に示す工程(1)〜(3)の何れかの1つの工程を用いて、PVDF系樹脂および任意でフィラーを含む多孔質層を形成する。工程(2)および(3)の場合においては、多孔質層を析出させた後にさらに乾燥させ、溶媒を除去することによって、製造され得る。なお、工程(1)〜(3)における塗工液は、フィラーを含む多孔質層の製造に使用する場合には、フィラーが分散しており、かつ、PVDF系樹脂が溶解している状態であることが好ましい。
本発明の一実施形態における多孔質層の製造方法に使用される塗工液は、通常、前記多孔質層に含まれる樹脂を溶媒に溶解させると共に、前記多孔質層にフィラーが含まれる場合には当該フィラーを分散させることにより調製され得る。
(1)前記多孔質層を形成するPVDF系樹脂の微粒子および任意でフィラーの微粒子を含む塗工液を、多孔質フィルム上に塗工し、前記塗工液中の溶媒(分散媒)を乾燥除去することによって多孔質層を形成させる工程。
(2)(1)に記載の塗工液を、前記多孔質フィルムの表面に塗工した後、その多孔質フィルムを前記PVDF系樹脂に対して貧溶媒である、析出溶媒に浸漬することによって、多孔質層を析出させる工程。
(3)(1)に記載の塗工液を、前記多孔質フィルムの表面に塗工した後、低沸点有機酸を用いて、前記塗工液の液性を酸性にすることによって、多孔質層を析出させる工程。
前記塗工液における溶媒(分散媒)としては、例えば、N−メチルピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、アセトン、および水が挙げられる。
前記析出溶媒としては、例えば、イソプロピルアルコールまたはt−ブチルアルコールを用いることが好ましい。
前記工程(3)において、低沸点有機酸としては、例えば、パラトルエンスルホン酸、酢酸等を使用することができる。
前記塗工液は、前記樹脂およびフィラー以外の成分として、分散剤や可塑剤、界面活性剤、pH調整剤等の添加剤を適宜含んでいてもよい。
なお、前記基材には、多孔質フィルムの他に、その他のフィルム、正極板および負極板などを用いることができる。
塗工液の基材への塗布方法としては、従来公知の方法を採用することができ、具体的には、例えば、グラビアコーター法、ディップコーター法、バーコーター法、およびダイコーター法等が挙げられる。
(PVDF系樹脂の結晶形の制御方法)
本発明の一実施形態における多孔質層に含まれるPVDF系樹脂の結晶形は、上述の方法における乾燥温度、乾燥時の風速および風向などの乾燥条件およびPVDF系樹脂を含む多孔質層を析出溶媒または低沸点有機酸を用いて析出させる場合の析出温度で制御することができる。
なお、前記工程(1)のように単に塗工液を乾燥させる場合には、前記乾燥条件は、塗工液における、溶媒、PVDF系樹脂の濃度、および、フィラーが含まれる場合には、含まれるフィラーの量、並びに、塗工液の塗工量などによって適宜変更され得る。前記工程(1)にて多孔質層を形成する場合は、乾燥温度は30℃〜100℃であることが好ましく、乾燥時における熱風の風向は塗工液を塗工した非水電解液二次電池用セパレータまたは電極板に対して垂直方向であることが好ましく、風速は0.1m/s〜40m/sであることが好ましい。具体的には、PVDF系樹脂を溶解させる溶媒としてN−メチル−2−ピロリドン、PVDF系樹脂を1.0質量%、無機フィラーとしてアルミナを9.0質量%含む塗工液を塗布する場合には、前記乾燥条件を、乾燥温度:40℃〜100℃とし、乾燥時における熱風の風向:塗工液を塗工した非水電解液二次電池用セパレータまたは電極板に対して垂直方向とし、風速:0.4m/s〜40m/sとすることが好ましい。
また、前記工程(2)にて多孔質層を形成する場合は、析出温度は−25℃〜60℃であることが好ましく、乾燥温度は20℃〜100℃であることが好ましい。具体的には、PVDF系樹脂を溶解させる溶媒としてN−メチルピロリドンを使用し、析出溶媒としてイソプロピルアルコールを使用して、工程(2)にて多孔質層を形成する場合は、析出温度は−10℃〜40℃とし、乾燥温度は30℃〜80℃とすることが好ましい。
<正極板>
本発明の一実施形態における正極板は、以下の式(1)で表される値が0.00以上、0.50以下である正極板であれば特に限定されない。例えば、正極活物質層として、正極活物質、導電剤および結着剤を含む正極合剤を正極集電体上に担持したシート状の正極板である。なお、正極板は、正極集電体の両面上に正極合剤を担持してもよく、正極集電体の片面上に正極合剤を担持してもよい。
|1−T/M| …(1)
(式(1)中、Tは、TD方向における0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表し、Mは、MD方向における0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表す。)
前記正極活物質としては、例えば、リチウムイオンをドープ・脱ドープ可能な材料が挙げられる。当該材料としては、遷移金属酸化物が好ましく、当該遷移金属酸化物として、具体的には、例えば、V、Mn、Fe、Co、Ni等の遷移金属を少なくとも1種類含んでいるリチウム複合酸化物が挙げられる。
前記導電剤としては、天然黒鉛、人造黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維、有機高分子化合物焼成体等の炭素質材料等が挙げられる。前記導電剤は、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。
前記結着剤としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデンの共重合体、ポリテトラフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロプロピレンの共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテルの共重合体、エチレン−テトラフルオロエチレンの共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレンの共重合体、熱可塑性ポリイミド、ポリエチレン、およびポリプロピレン等の熱可塑性樹脂、アクリル樹脂、並びに、スチレンブタジエンゴムが挙げられる。尚、結着剤は、増粘剤としての機能も有している。
前記正極集電体としては、例えば、Al、Ni、ステンレス等の導電体が挙げられ、薄膜に加工し易く、安価であることから、Alがより好ましい。
シート状の正極板の製造方法としては、例えば、正極活物質、導電剤および結着剤を正極集電体上で加圧成型する方法;適当な有機溶剤を用いて正極活物質、導電剤および結着剤をペースト状にして正極合剤を得た後、当該ペーストを正極集電体に塗工し、乾燥した後に加圧して正極集電体に固着する方法;等が挙げられる。
<負極板>
本発明の一実施形態における負極板は、以下の式(1)で表される値が0.00以上、0.50以下である負極板であれば特に限定されない。例えば、負極活物質層として、負極活物質を含む負極合剤を負極集電体上に担持したシート状の負極板である。なお、負極板は、負極集電体の両面上に負極合剤を担持してもよく、負極集電体の片面上に負極合剤を担持してもよい。
|1−T/M| …(1)
(式(1)中、Tは、TD方向における0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表し、Mは、MD方向における0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表す。)
シート状の負極板には、好ましくは前記導電剤、および、前記結着剤が含まれる。
前記負極活物質としては、例えば、リチウムイオンをドープ・脱ドープ可能な材料、リチウム金属またはリチウム合金等が挙げられる。当該材料としては、例えば、炭素質材料が挙げられる。炭素質材料としては、天然黒鉛、人造黒鉛等の黒鉛が挙げられる。
前記負極集電体としては、例えば、Cu、Ni、ステンレス等が挙げられ、特にリチウムイオン二次電池においてはリチウムと合金を作り難く、かつ薄膜に加工し易いことから、Cuがより好ましい。
シート状の負極板の製造方法としては、例えば、負極活物質を負極集電体上で加圧成型する方法;適当な有機溶剤を用いて負極活物質をペースト状にした後、当該ペーストを負極集電体に塗工し、乾燥した後加圧して負極集電体に固着する方法;等が挙げられる。前記ペーストには、好ましくは前記導電剤、および、前記結着剤が含まれる。
(スクラッチ試験)
本発明の一実施形態における「スクラッチ試験」とは、図1に示すように、圧子に一定の荷重をかけ、多孔質フィルム、正極板および負極板といった測定対象の表層を厚み方向に圧縮変形(=圧子を押し込んだ状態)させた状態で水平方向に測定対象を移動させたときの、ある圧子移動距離における発生応力を測定する試験であり、具体的には、以下に示す方法にて実施される:
(1)測定対象3(正極板または負極板)を20mm×60mmに裁断する。30mm×70mmのガラス製プレパラート(基板2)の表面全面に、水で5倍希釈したアラビックヤマト水性液状糊(ヤマト株式会社製)を、目付が1.5g/m程度となるように塗布する。当該裁断した測定対象3と、基板2とを、塗布された水性液状糊を介して貼り合わせた後、25℃の温度下にて一昼夜乾燥させることにより、試験用サンプルを作製する。なお、貼り合せるときは、測定対象3とガラス製プレパラート(基板2)との間に気泡が入らない様に注意する。なお、測定対象3が電極板(正極板または負極板)である場合には、当該電極板の活物質層(正極活物質層または負極活物質層)が、後述するダイヤモンド圧子1と接触する上面となるように、前記試験用サンプルを作製する。
(2)工程(1)にて作製された試験用サンプルを、マイクロスクラッチ試験装置(CSEM Instruments社製)に設置する。当該試験装置におけるダイヤモンド圧子1(頂角120°、先端半径0.2mmの円錐状)を、当該試験用サンプル上に、0.1Nの大きさの垂直荷重をかけたままの状態にて、当該試験装置におけるテーブルを、測定対象のTDに向けて、5mm/minの速さにて、10mmの距離を移動させ、その間の、前記ダイヤモンド圧子1と当該試験用サンプルとの間に発生する応力(摩擦力)を測定する。
(3)工程(2)にて測定された応力の変位と、前記テーブルの移動距離との関係を示す曲線グラフを作成し、当該曲線グラフから、図2に示すように、TDにおける、臨界荷重値および、臨界荷重に至るまでの距離を算出する。
(4)前記テーブルの移動方向をMDに変更して、上述の工程(1)〜(3)を繰り返して行い、MDにおける、臨界荷重値および、臨界荷重に至るまでの距離を算出する。
なお、前記スクラッチ試験における、上述した条件以外の測定条件等に関しては、JIS R 3255に記載の方法と同様の条件にて実施される。
本明細書におけるMDとは、正極板、および負極板の長手方向を指し、TDとはMDに直交する方向を指す。但し、正極板、または負極板が正方形の場合は、任意の辺に平行する方向をMDとし、それに直交する方向をTDとする。
前記スクラッチ試験は、測定対象が電極板(正極板または負極板)である場合、当該電極板を組み込んだ非水電解液二次電池において、充放電に伴い発生する、電極活物質層(電極活物質粒子(正極活物質粒子、負極活物質粒子))の膨張収縮による電極活物質層内部の応力伝達の均一性を、モデル化して測定・算出する試験である。
また、前記スクラッチ試験において、測定対象が電極板である場合、測定される臨界荷重までの距離は、当該電極板の表層(電極活物質層)の均一性、当該電極板の電極活物質層表面における粒子の配向度、形状(例えば、当該粒子のアスペクト比、等)および粒径に影響される。
ここで、本発明の一実施形態における正極板は、以下の式(1)で表される値が、0.00以上、0.50以下の範囲にあり、0.00以上、0.47以下であることが好ましく、0.00以上、0.45以下であることがより好ましい。
また、本発明の一実施形態における負極板は、以下の式(1)で表される値が、0.00以上、0.50以下の範囲にあり、0.00以上、0.49以下であることが好ましく、0.00以上、0.45以下であることがより好ましい。
|1−T/M| …(1)
(式(1)中、Tは、TD方向における0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表し、Mは、MD方向における0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表す。)
前記式(1)にて表される値は、電極板に対するスクラッチ試験における臨界荷重までの距離の異方性を示す値であり、その値がゼロに近いほど、前記臨界荷重までの距離が等方性であることを示す。
以上のことから、電極板における式(1)の値が、0.50を超えることは、前記臨界荷重値までの距離において、TDとMDとの間に大きな異方性が存在することを示す。これら大きな異方性を有する電極板を含む非水電解液二次電池においては、充放電に伴い発生する、電極活物質粒子の膨張収縮による電極活物質層内部における応力伝達が不均一となるため、電極活物質層内部の空隙の孔径および分布が不均一となり、また、電極活物質層内部にて応力が局所的な方向に発生する。その結果、充放電サイクルの過程にて、電極活物質層内部の導電パスの切断、電極活物質および導電剤の結着剤(バインダー)からの剥離、並びに、集電体と電極活物質層との密着性の低下が発生し、その結果、当該非水電解液二次電池の放電サイクル後における充電回復容量等の電池特性が悪化する恐れがある。
電極板(正極板および負極板)における式(1)で表される値を調整する方法としては、例えば、電極板の材料である電極活物質粒子の粒径および/またはアスペクト比を調整する方法、電極板を作製する際に集電体上に電極合剤(正極合剤、負極合剤)を特定の塗工せん断速度にて塗工することによって、電極活物質の粒子の配向性および/または得られる電極活物質層における空隙率を調製する方法、および、電極板の材料である電極活物質、導電剤、結着剤の配合比を調整することによって、得られる電極板(電極活物質層)の組成比を制御する方法などを挙げることができる。
上述の方法のうち、具体的には、電極活物質粒子の粒径を1〜30μmの範囲とすること、電極活物質粒子のアスペクト比(長径/短径)を1〜5の範囲に制御すること、集電体に活物質を塗工する塗工ライン速度(以降、塗工速度と略す)を10〜200m/分の範囲とすること、電極板の空隙率(電極活物質層の空隙率)を10〜50%の範囲に制御すること、電極板組成に占める活物質成分の存在割合を80重量%以上の範囲に制御することが好ましい。上述の製造条件等を好適な範囲とすることによって、電極板における式(1)で表される値を0.00以上、0.50以下の範囲に好適に制御することができる。
電極活物質層の空隙率(ε)は、電極活物質層の密度ρ(g/m)と、電極活物質層を構成する物質(例えば正極活物質、導電材、結着剤など)の各々の質量組成(wt%)b
、b、・・・bと、当該物質の各々の真密度(g/m)をc、c、・・・cとから下記式に基づいて算出することができる。ここで、上記物質の真密度には、文献値を用いてもよいし、ピクノメーター法を用いて測定された値を用いてもよい。
ε=1−{ρ×(b/100)/c+ρ×(b/100)/c+・・・ρ×(b/100)/c}×100
<非水電解液>
本発明の一実施形態における非水電解液は、一般に非水電解液二次電池に使用される非水電解液であり、特に限定されないが、例えば、リチウム塩を有機溶媒に溶解してなる非水電解液を用いることができる。リチウム塩としては、例えば、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(CFSO、LiC(CFSO、Li10Cl10、低級脂肪族カルボン酸リチウム塩、LiAlCl等が挙げられる。前記リチウム塩は、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。
本発明の一実施形態における非水電解液を構成する有機溶媒としては、例えば、カーボネート類、エーテル類、ニトリル類、カーバメート類、および含硫黄化合物、並びに前記有機溶媒にフッ素基が導入されてなる含フッ素有機溶媒等が挙げられる。前記有機溶媒は、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。
<非水電解液二次電池の製造方法>
本発明の一実施形態に係る非水電解液二次電池の製造方法としては、例えば、前記正極板、上述の多孔質フィルムを含む非水電解液二次電池用積層セパレータ、および負極板をこの順で配置して非水電解液二次電池用部材を形成した後、非水電解液二次電池の筐体となる容器に当該非水電解液二次電池用部材を入れ、次いで、当該容器内を非水電解液で満たした後、減圧しつつ密閉することにより、本発明の一実施形態に係る非水電解液二次電池を製造することができる。本発明の一実施形態に係る非水電解液二次電池の形状は、特に限定されるものではなく、薄板(ペーパー)型、円盤型、円筒型、直方体等の角柱型等のどのような形状であってもよい。尚、本発明の一実施形態に係る非水電解液二次電池の製造方法は、特に限定されるものではなく、従来公知の製造方法を採用することができる。
本発明の一実施形態に係る非水電解液二次電池は、上述したように、ポリオレフィン多孔質フィルムを含む非水電解液二次電池用セパレータと、多孔質層と、正極板と、負極板と、を備えている。特に、本発明の一実施形態に係る非水電解液二次電池は、以下の(i)〜(iii)の要件を充足する。
(i)多孔質層に含まれるポリフッ化ビニリデン系樹脂は、α型結晶とβ型結晶の含有量の合計を100モル%とした場合の、前記α型結晶の含有量が、35.0モル%以上である。
(ii)前記正極板の下記式(1)で表される値が、0.00以上、0.50以下の範囲にある。
(iii)前記負極板の下記式(1)で表される値が、0.00以上、0.50以下の範囲にある。
|1−T/M| …(1)
(式(1)中、Tは、TDにおける0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表し、Mは、MDにおける0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表す。)
さらに、本発明の一実施形態に係る非水電解液二次電池は、(i)〜(iii)の要件に加え、以下の(iv)の要件を充足することが好ましい。
(iv)ポリオレフィン多孔質フィルムは、AmericanStandards Test Methods のE313に規定されているホワイトインデックス(WI)が85以上、98以下である。
(i)の要件によって、本発明の一実施形態に係る非水電解液二次電池では、サイクル充放電後の多孔質層の構造安定性が良好となる。また、(iv)の要件によって、ポリオレフィン多孔質フィルム(セパレータ)のカチオン透過性も促進される。そして、(ii)および(iii)の要件によって、電池の充放電過程において、電極活物質粒子の膨張収縮による電極活物質層内部における応力伝達が均一となり、電極活物質層は、電極活物質粒子の膨張収縮に等方的に追従する。このため、電極活物質層内部の電極活物質粒子および導電剤(バインダー含む)同士の密着性、並びに電極活物質層と集電箔との密着性が維持されやすくなる。
したがって、前記(i)〜(iii)の要件を充足する非水電解液二次電池では、(a)サイクル充放電後の多孔質層の構造安定性が良好であり、さらに、(b)電極活物質層内部の電極活物質粒子および導電剤(バインダー含む)同士の密着性、並びに電極活物質層と集電箔との密着性が良好に維持され、充放電サイクル時の電池の劣化が抑制される。その結果、本発明の一実施形態に係る非水電解液二次電池では、サイクル後の電池の充電容量特性が向上し、例えば、100サイクル経過後においても充電回復容量が向上する。さらに具体的には、100サイクル後の充電回復容量が125mAh/g以上となる。
さらに、前記(iv)の要件を充足する非水電解液二次電池では、前記(a)および(b)に加え、(c)ポリオレフィン多孔質フィルムのカチオンの透過性も向上する。このため、より一層サイクル後の電池の充電回復容量が向上する。
本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
以下、実施例および比較例により、本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
[測定方法]
実施例および比較例における各測定は以下の方法で行った。
(1)膜厚(単位:μm):
多孔質フィルムの膜厚は、株式会社ミツトヨ製の高精度デジタル測長機(VL−50)を用いて測定した。
(2)ホワイトインデックス(WI):
多孔質フィルムのWIは、分光測色計(CM-2002、MINOLTA社製)を用いて、黒紙(北越紀州製紙株式会社、色上質紙、黒、最厚口、四六版T目)を下敷きとして敷いた状態で、SCI(Specular Component Include(正反射光を含む))で測定した。
(3)α比算出法
以下の実施例および比較例において得られた積層セパレータを約2cm×5cmの大きさに切り出し、前記(PVDF系樹脂におけるα型結晶、β型結晶の含有率の算出方法)の(1)〜(4)の手順に沿って、切り出された積層セパレータに含まれるPVDF系樹脂におけるα型結晶の含有率(α比)を測定した。
(5)正極活物質層の空隙率の測定
下記実施例1における正極板が備える正極活物質層の空隙率を下記の方法を用いて測定した。下記実施例におけるその他の正極板が備える正極活物質層の空隙率も同様の方法によって測定した。
正極合剤(LiNi0.5Mn0.3Co0.2/導電剤/PVDF(重量比92/5/3))が、正極集電体(アルミニウム箔)の片面に積層された正極板を14.5cm(4.5cm×3cm+1cm×1cm)の大きさに切り出した。切り出された正極板の質量は0.215g、厚さ58μmであった。前記正極集電体を同サイズに切り出したところ、その質量は0.078g、厚さ20μmであった。
正極活物質層密度ρは、(0.215−0.078)/{(58-20)/10000×14.5}=2.5g/cmと算出された。
正極合剤を構成する材料の真密度はそれぞれ、LiNi0.5Mn0.3Co0.2は4.68g/cmであり、導電材は1.8g/cmであり、PVDFは1.8g/cmであった。
これらの値を用いて下記式に基づいて算出した正極活物質層の空隙率 εは、40%であった。
ε=[1−{2.5×(92/100)/4.68+2.5×(5/100)/1.8+2.5×(3/100)/1.8}]*100=40%
(6)負極活物質層の空隙率の測定
下記実施例1における負極板が備える負極活物質層の空隙率を下記の方法を用いて測定した。下記実施例におけるその他の負極板が備える負極活物質層の空隙率も同様の方法によって測定した。
負極合剤(黒鉛/スチレン−1,3−ブタジエン共重合体/カルボキシメチルセルロースナトリウム(重量比98/1/1))が、負極集電体(銅箔)の片面に積層された負極板を18.5cm(5cm×3.5cm+1cm×1cm)の大きさに切り出した。切り出された負極板の質量は0.266g、厚さ48μmであった。前記負極集電体を同サイズに切り出したところ、その質量は0.162g、厚さ10μmであった。
負極活物質層密度ρは、(0.266−0.162)/{(48-10)/10000×18.5}=1.49g/cmと算出した。
負極合剤を構成する材料の真密度はそれぞれ、黒鉛は2.2g/cmであり、スチレン−1,3−ブタジエン共重合体は1g/cmであり、カルボキシメチルセルロースナトリウムは1.6g/cmであった。
これらの値を用いて下記式に基づいて算出した負極活物質層空隙率εは、31%であった。
ε=[1−{1.49×(98/100)/2.2+1.49×(1/100)/1+1.49×(1/100)/1.6}]*100=31%
(7)スクラッチ試験
実施例、比較例における正極板および負極板について、臨界荷重値、および臨界荷重までの距離のTD/MD比(T/M)を、前記(スクラッチ試験)の項の工程(1)〜(4)の手順に沿って、スクラッチ試験にて測定した(図1を参照)。前記工程(1)〜(4)に記載する以外の測定条件等は、JIS R 3255と同様の条件等にして、測定を行った。また、測定装置は、マイクロスクラッチ試験装置(CSEM Instruments社製)を使用した。
(8)100サイクル後の充電回復容量
1.初期充放電
実施例、比較例にて製造された非水電解液二次電池用積層セパレータを備えた充放電サイクルを経ていない新たな非水電解液二次電池に対して、電圧範囲;2.7〜4.1V、充電電流値0.2CのCC−CV充電(終止電流条件0.02C)、放電電流値0.2CのCC放電(1時間率の放電容量による定格容量を1時間で放電する電流値を1Cとする、以下も同様)を1サイクルとして、4サイクルの初期充放電を25℃にて行った。ここでCC−CV充電とは、設定した一定の電流で充電し、所定の電圧に到達後、電流を絞りながら、その電圧を維持する充電方法である。またCC放電とは設定した一定の電流で所定の電圧まで放電する方法であり、以下も同様である。
2.サイクル試験
初期充放電後の非水電解液二次電池を、電圧範囲;2.7〜4.2V、充電電流値1CのCC−CV充電(終止電流条件0.02C)、放電電流値10CのCC放電を1サイクルとして、100サイクルの充放電を55℃にて実施した。
3.100サイクル後の充電回復容量試験
100サイクルの充放電を行った非水電解液二次電池に対して、電圧範囲は2.7V〜4.2V、充電電流値1CのCC−CV充電(終止電流条件0.02C)、放電電流値0.2CでCC放電を3サイクルの充放電を55℃にて実施した。その3サイクル目の充電容量を正極の重量で除した値を100サイクル後の充電回復容量とした。
ここで充電回復容量試験とは、サイクル後に低いレート(0.2C)で放電を実施し、電池内部の容量を空にした後に、充電容量をより正確に確認する試験方法であり、電池全体の充電性能の劣化度、特に電極の充電性能の劣化度を確認する試験方法である。
(正極活物質および負極活物質の平均粒径)
レーザー回折式粒度分布計(島津製作所製、商品名:SALD2200)を用いて、体積基準の粒度分布および平均粒径(D50)を測定した。
[実施例1]
[非水電解液二次電池用積層セパレータの製造]
超高分子量ポリエチレン粉末(GUR2024、ティコナ社製、重量平均分子量497万)の割合が68.0重量%、重量平均分子量1000のポリエチレンワックス(FNP−0115、日本精鑞社製)の割合が32.0重量%となるように両者を混合した。この超高分子量ポリエチレン粉末とポリエチレンワックスとの合計を100重量部として、この混合物100重量部に、酸化防止剤(Irg1010、チバ・スペシャリティ・ケミカルズ社製)0.4重量部、酸化防止剤(P168、チバ・スペシャリティ・ケミカルズ社製)0.1重量部、ステアリン酸ナトリウム1.3重量部を加え、更に全体積に対して38体積%となるように、BET比表面積が11.8m/gの炭酸カルシウム(丸尾カルシウム社製)を加え、これらを粉末のままヘンシェルミキサーで混合した後、二軸混練機で溶融混練してポリオレフィン樹脂組成物とした。
次いで、該ポリオレフィン樹脂組成物を、表面温度が150℃の一対のロールにて圧延し、シートを作成した。このシートを、43℃の塩酸水溶液(塩酸4mol/L、非イオン系界面活性剤1.0重量%含有)に浸漬させることで炭酸カルシウムを除去し、水洗を45℃で行った。続いて株式会社市金工業社製の一軸延伸型テンター式延伸機を用いて、前記シートを100℃で6.2倍に延伸し、多孔質フィルム1を得た。得られた多孔質フィルム1の膜厚は10.0μmであり、目付は6.4g/mであり、ホワイトインデックス(WI)は、87であった。
PVDF系樹脂(ポリフッ化ビニリデン−ヘキサフルオロプロピレンコポリマー)のN−メチル−2−ピロリドン(以下「NMP」と称する場合もある)溶液(株式会社クレハ製;商品名「L#9305」、重量平均分子量;1000000)を塗工液とし、多孔質フィルム1上に、ドクターブレード法により、塗工液中のPVDF系樹脂が1平方メートル当たり6.0gとなるように塗布した。
得られた塗布物を、塗膜が溶媒湿潤状態のままで2−プロパノール中に浸漬し、−10℃で5分間静置させ、積層多孔質フィルム1を得た。得られた積層多孔質フィルム1を、浸漬溶媒湿潤状態で、さらに別の2−プロパノール中に浸漬し、25℃で5分間静置させ、積層多孔質フィルム1aを得た。得られた積層多孔質フィルム1aを130℃で5分間乾燥させて、多孔質層が積層された積層セパレータ1を得た。得られた積層セパレータ1の評価結果を表1示す。
[非水電解液二次電池の作製]
(正極板)
正極合剤(体積基準の平均粒径(D50)が4.5μmであるLiNi0.5Mn0.3Co0.2/導電剤/PVDF(重量比:92/5/3))が、正極集電体(アルミニウム箔)の片面に積層された正極板を得た。得られた正極板の正極活物質層の空隙率は40%であった。
前記正極板を、正極活物質層が積層された部分の大きさが45mm×30mmであり、かつその外周に幅13mmで正極活物質層が積層されていない部分が残るように、切り取り正極板1とした。
(負極板)
負極合剤(体積基準の平均粒径(D50)が15μmである天然黒鉛/スチレン−1,3−ブタジエン共重合体/カルボキシメチルセルロースナトリウム(重量比98/1/1))が、負極集電体(銅箔)の片面に積層された負極板を得た。得られた負極板の負極活物質層の空隙率は31%であった。
前記負極板を、負極活物質層が積層された部分の大きさが50mm×35mmであり、かつその外周に幅13mmで負極活物質層が積層されていない部分が残るように、切り取り負極板1とした。
(非水電解液二次電池の組み立て)
前記正極板1、前記負極板1および積層セパレータ1を使用して、以下に示す方法にて非水電解液二次電池を製造した。
ラミネートパウチ内で、前記正極板1、多孔質層を正極板1側に対向させた積層セパレータ1、および負極板1をこの順で積層(配置)することにより、非水電解液二次電池用部材1を得た。このとき、正極板1の正極活物質層における主面の全部が、負極板1の負極活物質層における主面の範囲に含まれる(主面に重なる)ように、正極板1および負極板1を配置した。
続いて、非水電解液二次電池用部材1を、予め作製していた、アルミニウム層とヒートシール層とが積層されてなる袋に入れ、さらにこの袋に非水電解液を0.23mL入れた。前記非水電解液は、エチレンカーボネート、エチルメチルカーボネート、ジエチルカーボネートを3:5:2(体積比)で混合してなる混合溶媒に、LiPFを1mol/Lとなるように溶解して調製した。そして、袋内を減圧しつつ、当該袋をヒートシールすることにより、非水電解液二次電池1を作製した。
その後、上述の方法にて得られた非水電解液二次電池1の100サイクル後の充電回復容量特性の測定を行った。その結果を表1に示す。
[実施例2]
[非水電解液二次電池用積層セパレータの製造]
超高分子量ポリエチレン粉末(GUR4032、ティコナ社製、重量平均分子量497万)の割合が70.0重量%、重量平均分子量1000のポリエチレンワックス(FNP−0115、日本精鑞社製)の割合が30.0重量%となるように両者を混合した。この超高分子量ポリエチレン粉末とポリエチレンワックスとの合計を100重量部として、この混合物100重量部に、酸化防止剤(Irg1010、チバ・スペシャリティ・ケミカルズ社製)0.4重量部、酸化防止剤(P168、チバ・スペシャリティ・ケミカルズ社製)0.1重量部、ステアリン酸ナトリウム1.3重量部を加え、更に全体積に対して36体積%となるように、BET比表面積が11.6m2/gの炭酸カルシウム(丸尾カルシウム社製)を加え、これらを粉末のままヘンシェルミキサーで混合した後、二軸混練機で溶融混練してポリオレフィン樹脂組成物とした。
次いで、該ポリオレフィン樹脂組成物を、表面温度が150℃の一対のロールにて圧延し、シートを作成した。このシートを、38℃の塩酸水溶液(塩酸4mol/L、非イオン系界面活性剤6.0重量%含有)に浸漬させることで炭酸カルシウムを除去し、水洗を40℃で行った。続いて株式会社市金工業社製の一軸延伸型テンター式延伸機を用いて、前記シートを105℃で6.2倍に延伸し、多孔質フィルム2を得た。得られた多孔質フィルム2の膜厚は15.6μmであり、目付は5.4g/mであり、WIは、97であった。
多孔質フィルム2上に、実施例1と同様に塗工液を塗布した。得られた塗布物を、塗膜が溶媒湿潤状態のままで2−プロパノール中に浸漬し、25℃で5分間静置させ、積層多孔質フィルム2を得た。得られた積層多孔質フィルム2を浸漬溶媒湿潤状態で、さらに別の2−プロパノール中に浸漬し、25℃で5分間静置させ、積層多孔質フィルム2aを得た。得られた積層多孔質フィルム2aを65℃で5分間乾燥させて、多孔質層が積層された積層セパレータ2を得た。得られた積層セパレータ2の評価結果を表1に示す。
[非水電解液二次電池の作製]
積層セパレータ1の代わりに、積層セパレータ2を使用したこと以外は、実施例1と同様にして、非水電解液二次電池を作製した。作製した非水電解液二次電池を非水電解液二次電池2とした。
その後、上述の方法にて得られた非水電解液二次電池2の100サイクル後の充電回復容量特性の測定を行った。その結果を表1に示す。
[実施例3]
[非水電解液二次電池用積層セパレータの製造]
超高分子量ポリエチレン粉末(GUR4032、ティコナ社製、重量平均分子量497万)の割合が71.5重量%、重量平均分子量1000のポリエチレンワックス(FNP−0115、日本精鑞社製)の割合が28.5重量%となるように両者を混合した。この超高分子量ポリエチレン粉末とポリエチレンワックスとの合計を100重量部として、この混合物100重量部に、酸化防止剤(Irg1010、チバ・スペシャリティ・ケミカルズ社製)0.4重量部、酸化防止剤(P168、チバ・スペシャリティ・ケミカルズ社製)0.1重量部、ステアリン酸ナトリウム1.3重量部を加え、更に全体積に対して37体積%となるように、BET比表面積が11.8m/gの炭酸カルシウム(丸尾カルシウム社製)を加え、これらを粉末のままヘンシェルミキサーで混合した後、二軸混練機で溶融混練してポリオレフィン樹脂組成物とした。
次いで、該ポリオレフィン樹脂組成物を、表面温度が150℃の一対のロールにて圧延し、シートを作成した。このシートを、43℃の塩酸水溶液(塩酸4mol/L、非イオン系界面活性剤1.0重量%含有)に浸漬させることで炭酸カルシウムを除去し、水洗を45℃で行った。続いて株式会社市金工業社製の一軸延伸型テンター式延伸機を用いて、前記シートを100℃で7.0倍に延伸し、多孔質フィルム3を得た。得られた多孔質フィルム3の膜厚は10.3μmであり、目付は5.2g/mであり、WIは、91であった。
多孔質フィルム3上に、実施例1と同様に塗工液を塗布した。得られた塗布物を、塗膜が溶媒湿潤状態のままで2−プロパノール中に浸漬し、−5℃で5分間静置させ、積層多孔質フィルム3を得た。得られた積層多孔質フィルム3を浸漬溶媒湿潤状態で、さらに別の2−プロパノール中に浸漬し、25℃で5分間静置させ、積層多孔質フィルム3aを得た。得られた積層多孔質フィルム3aを30℃で5分間乾燥させて、多孔質層が積層された積層セパレータ3を得た。得られた積層セパレータ3の評価結果を表1に示す。
[非水電解液二次電池の作製]
積層セパレータ1の代わりに、積層セパレータ3を使用したこと以外は、実施例1と同様にして、非水電解液二次電池を作製した。作製した非水電解液二次電池を非水電解液二次電池3とした。
その後、上述の方法にて得られた非水電解液二次電池3の100サイクル後の充電回復容量特性の測定を行った。その結果を表1に示す。
[実施例4]
(正極板)
正極合剤(体積基準の平均粒径(D50)が5μmであるLiCoO/導電剤/PVDF(重量比:97/1.8/1.2))が、正極集電体(アルミニウム箔)の片面に積層された正極板を得た。得られた正極板の正極活物質層の空隙率は20%であった。
前記正極板を、正極活物質層が積層された部分の大きさが45mm×30mmであり、かつその外周に幅13mmで正極活物質層が積層されていない部分が残るように、切り取り正極板2とした。
[非水電解液二次電池の作製]
積層セパレータ1の代わりに、前記積層セパレータ3を使用し、正極板として前記正極板2を用いたこと以外は、実施例1と同様にして、非水電解液二次電池を作製した。作製した非水電解液二次電池を非水電解液二次電池4とした。
その後、上述の方法にて得られた非水電解液二次電池4の100サイクル後の充電回復容量特性の測定を行った。その結果を表1に示す。
[実施例5]
(正極板)
正極合剤(体積基準の平均粒径(D50)が10μmであるLiNi0.33Mn0.33Co0.33/導電剤/PVDF(重量比:100/5/3))が、正極集電体(アルミニウム箔)の片面に積層された正極板を得た。得られた正極板の正極活物質層の空隙率は34%であった。
前記正極板を、正極活物質層が積層された部分の大きさが45mm×30mmであり、かつその外周に幅13mmで正極活物質層が積層されていない部分が残るように、切り取り正極板3とした。
[非水電解液二次電池の作製]
積層セパレータ1の代わりに、前記積層セパレータ3を使用し、正極板として前記正極板3を用いたこと以外は、実施例1と同様にして、非水電解液二次電池を作製した。作製した非水電解液二次電池を非水電解液二次電池5とした。
その後、上述の方法にて得られた非水電解液二次電池5の100サイクル後の充電回復容量特性の測定を行った。その結果を表1に示す。
[実施例6]
(負極板)
負極合剤(体積基準の平均粒径(D50)が22μmである人造黒鉛/スチレン−1,3−ブタジエン共重合体/カルボキシメチルセルロースナトリウム(重量比98/1/1))が、負極集電体(銅箔)の片面に積層された負極板を得た。得られた負極板の負極活物質層の空隙率は35%であった。
前記負極板を、負極活物質層が積層された部分の大きさが50mm×35mmであり、かつその外周に幅13mmで負極活物質層が積層されていない部分が残るように、切り取り負極板2とした。
[非水電解液二次電池の作製]
負極板として、前記負極板2を用いた。また、積層セパレータ1の代わりに、積層セパレータ3を使用したこと以外は、実施例1と同様にして、非水電解液二次電池を作製した。作製した非水電解液二次電池を非水電解液二次電池6とした。
その後、上述の方法にて得られた非水電解液二次電池6の100サイクル後の充電回復容量特性の測定を行った。その結果を表1に示す。
[実施例7]
[多孔質層、非水電解液二次電池用積層セパレータの作製]
PVDF系樹脂(株式会社アルケマ製;商品名「Kynar(登録商標) LBG」、重量平均分子量:590,000)を、固形分が10質量%となるように、N−メチル−
2−ピロリドンに、65℃で30分間かけて撹拌し、溶解させた。得られた溶液をバインダー溶液として用いた。フィラーとして、アルミナ微粒子(住友化学株式会社製;商品名「AKP3000」、ケイ素の含有量:5ppm)を用いた。前記アルミナ微粒子、バインダー溶液、および溶媒(N−メチル−2−ピロリドン)を、下記割合となるように混合した。即ち、前記アルミナ微粒子90重量部に対してPVDF系樹脂が10重量部となるように、バインダー溶液を混合すると共に、得られる混合液における固形分濃度(アルミナ微粒子+PVDF系樹脂)が10重量%となるように溶媒を混合することで分散液を得た。実施例3にて作製した多孔質フィルム3上に、ドクターブレード法により、塗工液中のPVDF系樹脂が1平方メートル当たり6.0gとなるように塗布することにより、積層多孔質フィルム4を得た。積層多孔質フィルム4を65℃で5分間乾燥させることにより、積層セパレータ4を得た。乾燥は、熱風風向を多孔質フィルム3に対して垂直方向とし、風速を0.5m/sとして実施した。得られた積層セパレータ4の評価結果を表1に示す。
[非水電解液二次電池の作製]
積層セパレータ1の代わりに、積層セパレータ4を使用したこと以外は、実施例1と同様にして、非水電解液二次電池を作製した。作製した非水電解液二次電池を非水電解液二次電池7とした。
その後、上述の方法にて得られた非水電解液二次電池7の100サイクル後の充電回復容量特性の測定を行った。その結果を表1に示す。
[比較例1]
[非水電解液二次電池の作製]
[非水電解液二次電池用積層セパレータの作製]
実施例3と同様の方法で得られた塗布物を、塗膜が溶媒湿潤状態のままで2−プロパノール中に浸漬し、−78℃で5分間静置させ、積層多孔質フィルム5を得た。得られた積層多孔質フィルム5を浸漬溶媒湿潤状態で、さらに別の2−プロパノール中に浸漬し、25℃で5分間静置させ、積層多孔質フィルム5aを得た。得られた積層多孔質フィルム5aを30℃で5分間乾燥させて、積層セパレータ5を得た。得られた非水電解液二次電池用積層セパレータ5の評価結果を表1に示す。
[非水電解液二次電池の作製]
積層セパレータ1の代わりに、積層セパレータ5を使用したこと以外は、実施例1と同様にして、非水電解液二次電池を作製した。作製した非水電解液二次電池を非水電解液二次電池8とした。
その後、上述の方法にて得られた非水電解液二次電池8の100サイクル後の充電回復容量特性の測定を行った。その結果を表1に示す。
[比較例2]
(正極板)
正極合剤(体積基準の平均粒径(D50)が8μmであるLiMn/導電剤/PVDF(重量比:100/5/3))が、正極集電体(アルミニウム箔)の片面に積層された正極板を得た。得られた正極板の正極活物質層の空隙率は51%であった。
前記正極板を、正極活物質層が積層された部分の大きさが45mm×30mmであり、かつその外周に幅13mmで正極活物質層が積層されていない部分が残るように、切り取り正極板4とした。
[非水電解液二次電池の作製]
正極板として、前記正極板4を用いた。また、積層セパレータ1の代わりに、積層セパレータ3を使用した以外は、実施例1と同様の方法にて、非水電解液二次電池を作製した。得られた非水電解液二次電池を非水電解液二次電池9とした。
その後、上述の方法にて得られた非水電解液二次電池9の100サイクル後の充電回復容量特性の測定を行った。その結果を表1に示す。
[比較例3]
(負極板)
負極合剤(体積基準の平均粒径(D50)が34μmである人造球晶黒鉛/導電剤/PVDF(重量比85/15/7.5))が、負極集電体(銅箔)の片面に積層された負極板を得た。得られた負極板の負極活物質層の空隙率は59%であった。
前記負極板を、負極活物質層が積層された部分の大きさが50mm×35mmであり、かつその外周に幅13mmで負極活物質層が積層されていない部分が残るように、切り取り負極板3とした。
[非水電解液二次電池の作製]
負極板として、前記負極板3を用いた。また、積層セパレータ1の代わりに、積層セパレータ3を使用した以外は、実施例1と同様の方法にて、非水電解液二次電池を作製した。得られた非水電解液二次電池を非水電解液二次電池10とした。
その後、上述の方法にて得られた非水電解液二次電池10の100サイクル後の充電回復容量特性の測定を行った。その結果を表1に示す。
Figure 2019145531
[結論]
表1に記載の通り、実施例1〜7にて製造された非水電解液二次電池は、比較例1〜3にて製造された非水電解液二次電池よりも、サイクル後の電池の充電容量特性に優れている。実施例1〜7にて製造された非水電解液二次電池は何れも、100サイクル後の充電回復容量が125mAh/g以上である。
従って、非水電解液二次電池において、(i)多孔質層に含まれるポリフッ化ビニリデン系樹脂は、α型結晶とβ型結晶の含有量の合計を100モル%とした場合の、前記α型結晶の含有量が、35.0モル%以上、(ii)正極板の|1−T/M|で表される値が、0.00以上、0.50以下の範囲、(iii)負極板の|1−T/M|で表される値が、0.00以上、0.50以下、との3つの要件を充足することにより、当該非水電解液二次電池のサイクル後の充電回復容量特性を向上させることができることが分かった。
本発明の一実施形態に係る非水電解液二次電池は、パーソナルコンピュータ、携帯電話および携帯情報端末などに用いる電池、並びに、車載用電池として好適に利用することができる。
1 ダイヤモンド圧子
2 基板(ガラス製プレパラート)
3 測定対象(正極板または負極板)

Claims (5)

  1. ポリオレフィン多孔質フィルムを含む非水電解液二次電池用セパレータと、ポリフッ化ビニリデン系樹脂を含有する多孔質層と、下記式(1)で表される値が、0.00以上、0.50以下の範囲にある正極板と、下記式(1)で表される値が、0.00以上、0.50以下の範囲にある負極板と、を備え、
    |1−T/M| …(1)
    (式(1)中、Tは、TDにおける0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表し、Mは、MDにおける0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表す。)
    前記多孔質層は、前記非水電解液二次電池用セパレータと、前記正極板及び前記負極板の少なくともいずれかと、の間に配置されており、
    前記多孔質層に含まれる前記ポリフッ化ビニリデン系樹脂は、α型結晶とβ型結晶の含有量の合計を100モル%とした場合の、前記α型結晶の含有量が、35.0モル%以上である(ここで、α型結晶の含有量は、前記多孔質層の19F−NMRスペクトルにおける、−78ppm付近にて観測される(α/2)の波形分離、および、−95ppm付近にて観測される{(α/2)+β}の波形分離から算出される。)、非水電解液二次電池の製造方法であって、
    集電体に10〜200m/分の塗工速度で活物質を塗工することによって前記正極板および前記負極板を作製する工程を含む、非水電解液二次電池の製造方法。
  2. 電極活物質粒子の粒径を1〜30μmの範囲とする、請求項1に記載の非水電解液二次電池の製造方法。
  3. 電極活物質粒子のアスペクト比(長径/短径)を1〜5の範囲に制御する、請求項1または2に記載の非水電解液二次電池の製造方法。
  4. 電極活物質層の空隙率を10〜50%の範囲に制御する、請求項1〜3の何れか1項に記載の非水電解液二次電池の製造方法。
  5. 電極板組成に占める活物質成分の存在割合を80重量%以上の範囲に制御する、請求項1〜4の何れか1項に記載の非水電解液二次電池の製造方法。
JP2019108158A 2019-06-10 2019-06-10 非水電解液二次電池の製造方法 Active JP6852116B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019108158A JP6852116B2 (ja) 2019-06-10 2019-06-10 非水電解液二次電池の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019108158A JP6852116B2 (ja) 2019-06-10 2019-06-10 非水電解液二次電池の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017243278 Division 2017-12-19 2017-12-19

Publications (2)

Publication Number Publication Date
JP2019145531A true JP2019145531A (ja) 2019-08-29
JP6852116B2 JP6852116B2 (ja) 2021-03-31

Family

ID=67773924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019108158A Active JP6852116B2 (ja) 2019-06-10 2019-06-10 非水電解液二次電池の製造方法

Country Status (1)

Country Link
JP (1) JP6852116B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010089939A1 (ja) * 2009-02-06 2010-08-12 コニカミノルタホールディングス株式会社 電池用電極の製造方法および二次電池の製造方法
JP2017107848A (ja) * 2015-11-30 2017-06-15 住友化学株式会社 非水電解液二次電池用セパレータ
JP2017168419A (ja) * 2016-03-11 2017-09-21 住友化学株式会社 多孔質層

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010089939A1 (ja) * 2009-02-06 2010-08-12 コニカミノルタホールディングス株式会社 電池用電極の製造方法および二次電池の製造方法
JP2017107848A (ja) * 2015-11-30 2017-06-15 住友化学株式会社 非水電解液二次電池用セパレータ
JP2017168419A (ja) * 2016-03-11 2017-09-21 住友化学株式会社 多孔質層

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
小畠 淳平: "スクラッチ試験機", TECNICAL SHEET NO.13011, JPN6020028084, 29 October 2013 (2013-10-29), JP, pages 1 - 2, ISSN: 0004320081 *

Also Published As

Publication number Publication date
JP6852116B2 (ja) 2021-03-31

Similar Documents

Publication Publication Date Title
KR102626679B1 (ko) 비수 전해액 이차 전지
US10367182B2 (en) Laminated body
JP6430620B1 (ja) 非水電解液二次電池
JP2012094493A (ja) スラリー及び該スラリーを使用した非水電解液二次電池用セパレータの製造方法
JP7160636B2 (ja) 非水電解液二次電池
JP6430618B1 (ja) 非水電解液二次電池
JP2020072039A (ja) 非水電解液二次電池
JP6430619B1 (ja) 非水電解液二次電池
JP6507217B1 (ja) 非水電解液二次電池
JP6430623B1 (ja) 非水電解液二次電池
JP6507219B1 (ja) 非水電解液二次電池
JP6430624B1 (ja) 非水電解液二次電池
JP6852116B2 (ja) 非水電解液二次電池の製造方法
JP6430622B1 (ja) 非水電解液二次電池
JP6430616B1 (ja) 非水電解液二次電池
JP2020072043A (ja) 非水電解液二次電池
JP6430617B1 (ja) 非水電解液二次電池
JP6430621B1 (ja) 非水電解液二次電池
WO2020091058A1 (ja) 非水電解液二次電池
JP2019079805A (ja) 非水電解液二次電池用多孔質層
KR20190074252A (ko) 비수전해액 이차 전지
JP2020074276A (ja) 非水電解液二次電池用セパレータの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210310

R150 Certificate of patent or registration of utility model

Ref document number: 6852116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350