JP2019143983A - 目標追尾装置 - Google Patents

目標追尾装置 Download PDF

Info

Publication number
JP2019143983A
JP2019143983A JP2018025465A JP2018025465A JP2019143983A JP 2019143983 A JP2019143983 A JP 2019143983A JP 2018025465 A JP2018025465 A JP 2018025465A JP 2018025465 A JP2018025465 A JP 2018025465A JP 2019143983 A JP2019143983 A JP 2019143983A
Authority
JP
Japan
Prior art keywords
wake
partial
error
value
integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018025465A
Other languages
English (en)
Other versions
JP6910314B2 (ja
Inventor
亮佑 峯村
Ryosuke Minemura
亮佑 峯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2018025465A priority Critical patent/JP6910314B2/ja
Publication of JP2019143983A publication Critical patent/JP2019143983A/ja
Application granted granted Critical
Publication of JP6910314B2 publication Critical patent/JP6910314B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

【課題】航跡の追尾精度の劣化を抑制することができる目標追尾装置を得ること。【解決手段】ノード(目標追尾装置)100−1は、目標を観測するセンサ10と、センサ10の観測値を用いて目標の部分航跡を生成する追尾処理部20と、複数の部分航跡を用いて統合航跡を生成する統合航跡生成部41と、部分航跡を統合航跡生成部41に送信する通信装置50と、統合航跡の予測値と部分航跡の平滑値との差と、統合航跡の予測誤差の共分散行列とを用いて、統合航跡の予測誤差の共分散行列の広がりである第1の計算結果を算出する第1の演算部35と、差と部分航跡の平滑誤差の共分散行列とを用いて、部分航跡の平滑誤差の共分散行列の広がりである第2の計算結果を算出する第2の演算部36と、第1の計算結果と第2の計算結果との和と、差とを用いて、部分航跡を通信装置50に送出するかを判定するバイアス判定を行うバイアス誤差判定部34とを備える。【選択図】図2

Description

本発明は、ネットワークで互いに接続された目標追尾装置に関する。
複数の目標追尾装置をネットワークで接続し、複数の目標追尾装置によって目標を追尾するシステムは、センサネットワークシステムと呼ばれる。目標追尾装置は、ノードとも呼ばれる。
センサネットワークシステムにおける目標追尾装置は、部分航跡統合型の目標追尾装置と呼ばれる。部分航跡統合型の目標追尾装置は、自ノードのセンサから得られた観測値をもとに部分航跡を生成し、該部分航跡を他ノードにネットワークを介して送出する。また、目標追尾装置は、他ノードが生成した部分航跡を他ノードから受信する。目標追尾装置は、複数の部分航跡を統合して統合航跡を生成する。また、目標追尾装置は、統合航跡と新たに生成された部分航跡とを融合し、新たな統合航跡を生成する。オペレータは、新たに生成された統合航跡を確認することで、センサネットワークが追尾する目標の情報を得ることができる。
特許文献1は、統合航跡の予測誤差の上限値と下限値とから、部分航跡を他ノードにネットワークを介して送出するかを判定する目標追尾装置を開示する。特許文献1に記載の目標追尾装置は、統合航跡の予測誤差が上限値より大きい場合、予測誤差を改善するために、部分航跡を他ノードにネットワークを介して送出する。特許文献1に記載の目標追尾装置は、予測誤差が下限値を下回る場合は、部分航跡の送出を保留する。特許文献1に記載の目標追尾装置は、予測誤差が上限値と下限値の間である場合、ノードが部分航跡を送出することによって改善される統合航跡の予測誤差の改善量がしきい値を超える場合のみ、部分航跡を他ノードにネットワークを介して送出する。
特開2017−58192号公報
しかしながら、特許文献1に記載の目標追尾装置は、自己位置の絶対的な誤差である自己位置誤差、またはネットワークで接続されたノード間で時刻誤差が発生する。自己位置誤差または時刻誤差は、バイアス誤差とも呼ばれる。換言すると、バイアス誤差とは、ノード間で発生する、時刻または位置の誤差である。バイアス誤差を有する部分航跡と統合航跡とが融合されると、新たに生成される統合航跡の追尾精度が劣化するという問題があった。
本発明は、上記に鑑みてなされたものであって、航跡の追尾精度の劣化を抑制することができる目標追尾装置を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係る目標追尾装置は、目標を観測するセンサと、センサの観測値を用いて目標の部分航跡を生成する追尾処理部と、複数の部分航跡を用いて統合航跡を生成する統合航跡生成部と、部分航跡を統合航跡生成部に送信する通信装置と、統合航跡の予測値と部分航跡の平滑値との差と、統合航跡の予測誤差の共分散行列とを用いて、統合航跡の予測誤差の共分散行列の広がりである第1の計算結果を算出する第1の演算部と、差と部分航跡の平滑誤差の共分散行列とを用いて、部分航跡の平滑誤差の共分散行列の広がりである第2の計算結果を算出する第2の演算部と、第1の計算結果と第2の計算結果との和と、差とを用いて、部分航跡を通信装置に送出するかを判定するバイアス判定を行うバイアス誤差判定部と、を備えることを特徴とする。
本発明によれば、統合航跡の追尾精度の劣化を抑制することができるという効果を奏する。
実施の形態1に係るセンサネットワークシステムの構成を示すブロック図 実施の形態1に係るノードの構成を示すブロック図 実施の形態1の制御回路の構成例を示す図 実施の形態1に係る部分航跡部の部分航跡判定処理を示すフローチャート 実施の形態1に係る部分航跡部の部分航跡判定処理を座標で示す図 実施の形態2に係るノードの構成を示すブロック図
以下に、本発明の実施の形態に係る目標追尾装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、実施の形態1に係るセンサネットワークシステムの構成を示すブロック図である。センサネットワークシステム200は、ノード100−1〜ノード100−Nと、ネットワーク2とを備える。ノード100−1〜ノード100−Nは、目標1を追尾する。ノード100−1〜ノード100−Nは、それぞれ艦艇などの移動体に搭載される。ノード100−1〜ノード100−Nは、それぞれを区別せずに示すときは、ノード100と称される。ネットワーク2は、ノード100−1〜ノード100−Nを互いに通信可能に接続する。ネットワーク2は、無線ネットワークである。ノード100−1〜ノード100−Nは、ネットワーク2を介し部分航跡をノード100−1〜ノード100−N間で共有する。
図2は、実施の形態1に係るノード100−1の構成を示すブロック図である。ノード100−2〜ノード100−Nの構成は、ノード100−1の構成と同様である。ノード100−1は、センサ10と、追尾処理部20と、部分航跡部30と、統合航跡部40と、通信装置50と、表示器60とを備える。
センサ10は、レーダ、光学カメラなどであり、目標1の観測値を取得する。観測値は、位置、速度などの運動諸元に関する情報と、センサ10が目標を観測した時刻の情報とを含む。
追尾処理部20は、センサ10から観測値を取得する。追尾処理部20は、定期的に取得した複数の観測値を用いて平滑処理を行い、平滑値を算出する。平滑値は、カルマンフィルタ処理などの追尾処理が行われた後に更新される。追尾処理部20は、平滑値を用いて目標の航跡を予測する予測処理を行い、予測値を算出する。予測値は、目標の運動緒元に関する情報を予測した値である。追尾処理部20は、平滑値および予測値を用いて部分航跡を生成する。追尾処理部20は、生成した部分航跡を部分航跡部30へ出力する。
部分航跡部30は、予測処理部31と、航跡融合部32と、送出調整部33と、バイアス誤差判定部34と、第1の演算部35と、第2の演算部36と、送出部37とを備える。
予測処理部31は、統合航跡部40から取得した統合航跡を用いて、予測値と予測誤差と予測誤差共分散行列とを算出する。航跡融合部32は、予測処理部31から取得した予測値および予測誤差と、追尾処理部20から取得した部分航跡とを用いて、平滑値と平滑誤差とを算出する。送出調整部33は、予測誤差および平滑誤差を用いて、部分航跡をネットワーク2へ送出するかの判定である第1の送出判定を行う。予測誤差は、予測誤差共分散行列を用いて算出される。平滑誤差は、平滑誤差共分散行列を用いて算出される。第1の送出判定の詳細については後述する。
送出調整部33で行われた第1の送出判定の結果は、バイアス誤差判定部34または送出部37に送られる。バイアス誤差判定部34は、第1の送出判定の結果と、第1の演算部35および第2の演算部36の算出結果とを用いて、第2の送出判定を行う。第2の送出判定とは、部分航跡のバイアスの誤差の有無を判定し、部分航跡を送出するかを判定することである。第2の送出判定は、バイアス判定とも呼ばれる。
第1の演算部35は、統合航跡の予測誤差共分散行列、および統合航跡の予測値と部分航跡の平滑値との差を用いて、統合航跡の予測誤差共分散行列の広がりを算出する。第2の演算部36は、部分航跡の平滑誤差共分散行列、および統合航跡の予測値と部分航跡の平滑値との差を用いて、部分航跡の平滑誤差共分散行列の広がりを算出する。つまり、計算結果とは、統合航跡の予測誤差共分散行列の広がり、および平滑誤差共分散行列の広がりである。統合航跡の予測誤差共分散行列の広がりは第1の計算結果とも呼ばれる。平滑誤差共分散行列の広がりは、第2の計算結果とも呼ばれる。
第1の演算部35および第2の演算部36の計算結果は、バイアス誤差判定部34へ送られる。送出部37は、第1の送出判定の結果、または第2の送出判定の結果を受け取る。送出判定の結果とは、部分航跡の送出実行、または部分航跡の送出保留のいずれかを示す。送出部37は、部分航跡の送出実行の判定結果を受け取った場合、部分航跡を通信装置50へ送る。送出部37から部分航跡が送出されると、追尾処理部20が算出した平滑値は初期化される。送出部37は、送出保留の判定結果を受けた場合、通信装置50への部分航跡の送出を保留する。
統合航跡部40は、統合航跡生成部41と、統合航跡記憶部42を備える。統合航跡生成部41は、通信装置50から部分航跡を取得した場合、統合航跡記憶部42に記憶されている統合航跡と取得した部分航跡とを融合し、統合航跡を更新する。統合航跡記憶部42は、統合航跡生成部41が更新した統合航跡を記憶する。
通信装置50は、ネットワーク2と接続し、自ノードと他ノードとの間で部分航跡を送受信する。また、通信装置50は、自ノードまたは他ノードの部分航跡を統合航跡部40に送信する。例えば、自ノードがノード100−1である場合、他ノードは100−2〜100−Nである。表示器60は、統合航跡を表示する。
実施の形態1に係る追尾処理部20、部分航跡部30、および統合航跡部40は、各処理を行う電子回路である処理回路により実現される。
本処理回路は、専用のハードウェアであっても、メモリ及びメモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央演算装置)を備える制御回路であってもよい。ここでメモリとは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリなどの、不揮発性または揮発性の半導体メモリ、磁気ディスク、光ディスクなどが該当する。本処理回路がCPUを備える制御回路である場合、この制御回路は例えば、図3に示す構成の制御回路300となる。
図3に示すように、制御回路300は、CPUであるプロセッサ300aと、メモリ300bとを備える。図3に示す制御回路300により実現される場合、プロセッサ300aがメモリ300bに記憶された、各処理に対応するプログラムを読みだして実行することにより実現される。また、メモリ300bは、プロセッサ300aが実施する各処理における一時メモリとしても使用される。
図4は、実施の形態1に係る部分航跡部30の部分航跡判定処理を示すフローチャートである。部分航跡判定処理は、第1の送出判定および第2の送出判定を含む処理である。ステップS3からステップS7は、送出調整部33で行われる第1の送出判定処理である。ステップS11からステップS14は、バイアス誤差判定部34で行われる第2の送出判定処理である。部分航跡部30は、第1の送出判定処理および第2の送出判定処理を、追尾処理部20が部分航跡を生成するたびに実施する。
部分航跡部30は、部分航跡および統合航跡を取得する(ステップS1)。予測処理部31は、統合航跡を用いて予測処理し、予測誤差を算出する(ステップS2)。
送出調整部33は、予測誤差と予測誤差の上限閾値とを比較する(ステップS3)。予測誤差が予測誤差の上限閾値以下である場合(ステップS3,No)、部分航跡判定処理はステップS4へ進む。予測誤差が予測誤差の上限閾値より大きい場合(ステップS3,Yes)、部分航跡判定処理は、ステップS8へ進む。予測誤差の上限閾値は、目標の追尾精度の要求である送出要求に応じて設定される。送出要求は、オペレータによりノード100に設定される。送出要求が高いほど予測誤差の上限値は低くなる。
送出調整部33は、予測誤差と予測誤差の下限閾値とを比較する(ステップS4)。予測誤差が予測誤差の下限閾値より小さい場合(ステップS4,No)、部分航跡判定処理は、ステップS5へ進む。予測誤差の下限閾値は、オペレータの送出要求に応じて設定される。
ステップS5において、送出調整部33は、統合航跡の予測誤差が許容範囲内であると判断し、部分航跡の送出を保留する判定結果を送出部37へ送る。送出部37は、部分航跡の送出を保留する。このため、統合航跡は更新されない。
予測誤差が予測誤差の下限閾値以上である場合(ステップS4,Yes)、部分航跡判定処理はステップS6へ進む。送出調整部33は、部分航跡と統合航跡とを融合することで統合航跡を更新し、更新された統合航跡を用いて平滑誤差を算出する(ステップS6)。平滑誤差は、更新された統合航跡の平滑誤差共分散行列を用いて算出されたものである。
送出調整部33は、予測誤差とステップS6で算出した平滑誤差とから、統合航跡の予測誤差の改善量を算出し、閾値と比較する(ステップS7)。統合航跡の予測誤差の改善量が閾値より小さい場合(ステップ7,No)、部分航跡判定処理は、ステップS5へ進む。閾値は、オペレータの送出要求に応じて設定される。
統合航跡の予測誤差の改善量が閾値以上である場合(ステップ7,Yes)、ステップS8の処理を実行する。第1の演算部35および第2の演算部36は、部分航跡の平滑値と統合航跡の予測値との差の絶対値であるΔXを算出する(ステップS8)。
第1の演算部35は、統合航跡の予測誤差共分散行列P (−)が形成する楕円のうち、直交座標空間における部分航跡の平滑値および統合航跡の予測値を結ぶ直線の範囲で形成されるP (−)の広がりの大きさΔP (−)を算出し、バイアス誤差判定部34へ送る(ステップS9)。統合航跡の予測誤差共分散行列P (−)、およびP (−)の広がりの大きさΔP (−)の詳細については後述する。
第2の演算部36は、部分航跡の平滑誤差共分散行列P (+)が形成する楕円のうち、直交座標空間における部分航跡の平滑値および統合航跡の予測値を結ぶ直線の範囲で形成されるP (+)の広がりの大きさΔP (+)を算出し、バイアス誤差判定部34へ送る(ステップS10)。部分航跡の平滑誤差共分散行列P (+)およびP (+)の広がりの大きさΔP (+)の詳細については後述する。
バイアス誤差判定部34は、ΔP (−)とΔP (+)との和を、ΔXで割った商を算出する(ステップS11)。ΔP (−)とΔP (+)との和をΔXで割った商は、第1の商とも呼ばれる。第1の商が1より小さい場合(ステップS11,Yes)、バイアス誤差判定部34は、部分航跡にバイアス誤差があると判定し、部分航跡の送出を保留する判定結果を送出部37へ送る(ステップS12)。送出部37は、部分航跡の送出を保留する。このため、統合航跡は更新されない。
第1の商が1以上である場合(ステップS11,No)、バイアス誤差判定部34は、部分航跡にバイアス誤差はないと判定し、部分航跡をネットワーク2および統合航跡生成部41に送出する判定結果を送出部37へ送り、送出部37は、部分航跡をネットワーク2および統合航跡生成部41に送出する(ステップS13)。部分航跡と統合航跡とが融合することで統合航跡の誤差は改善し、センサネットワークシステム200の追尾精度の劣化は抑制される。
追尾処理部20は、送出部37から部分航跡が出力されたとき、部分航跡を削除し、平滑値を初期化する(ステップS14)。
バイアス誤差判定部34に入力された部分航跡がバイアス誤差を有するか否かを判定する処理について説明する。
図5は、実施の形態1に係る部分航跡部30の部分航跡判定処理を座標で示す図である。部分航跡の平滑値および統合航跡の予測値は、直交座標系の値である。部分航跡の平滑値および統合航跡の予測値は、位置、速度などの情報を持つ。部分航跡の平滑値の周囲には、平滑誤差共分散行列が、統合航跡の予測値の周囲には予測誤差共分散行列が、確率分布として楕円体をとり、楕円体は平滑値および予測値の誤差の広がりを示す。図5において、破線で形成される楕円体は、部分航跡の平滑誤差共分散行列を示す。太線で形成される楕円体は、統合航跡の予測誤差共分散行列を示す。
ノード100−1〜ノード100−N間でバイアス誤差を有するとき、部分航跡の平滑値と統合航跡の予測値との差は増加する。一方、平滑値と予測値との周囲に広がる誤差共分散行列の広がりの大きさは、バイアス誤差に影響されず一定である。このため、バイアス誤差判定部34は、部分航跡の平滑誤差共分散行列および統合航跡の予測誤差共分散行列の広がりの和を、平滑値と予測値とを結んだ差の大きさで割った第1の商が1よりも小さいときにバイアス誤差を有していると判定する。
部分航跡および統合航跡は、位置および速度などの成分を含む。誤差共分散行列は、位置、速度などの誤差の相関を示している。部分航跡の送出要求をされた時、統合航跡は、部分航跡の時刻情報を用いて予測処理される。統合航跡の持つ時刻情報と部分航跡の時刻情報との差をΔtとしたときの統合航跡の予測処理は以下である。
Figure 2019143983
式(1)のX は、統合航跡の平滑値である。x 、y 、z は目標の位置を示し、x・F 、y・F 、z・F は目標の速度を示す。式(2)のX は、予測処理された統合航跡であり、添え字のTは転置を示す。式(3)のP は、統合航跡の平滑誤差分散行列である。P は、統合航跡の予測誤差分散行列である。バイアス誤差判定部34は、予測処理された統合航跡の予測値を用いて、部分航跡の平滑値と統合航跡の予測値との差ΔXを求める。
Figure 2019143983
式(4)のX は、部分航跡の平滑値を示す。式(5)のΔXは、部分航跡の平滑値と統合航跡の予測値との差を示す。
バイアス誤差判定部34は、平滑値と予測値とを結んだ統合航跡の予測誤差共分散行列の広がりの大きさΔP (−)を求める。誤差共分散行列は、多次元の行列である。また、誤差共分散行列は、位置および速度などのx、y、z成分ごとの分散の相関を表している。バイアス誤差判定部34は、誤差共分散行列に観測行列Hを乗算することで、必要な行列成分を抽出することができる。例えば、誤差共分散行列が6行6列の位置と速度との分散を示している場合、位置に関する行列成分を抜き出すときは、式(6)のように求められる。
Figure 2019143983
誤差共分散行列は、予測値または平滑値を中心に広がる楕円体となる。平滑値と予測値とを直交座標系の三次元空間上に存在する2つの点とし、誤差共分散行列を楕円体と考えることで、平滑値と予測値とが形成する線と、楕円体を形成する線との接点は求めることができる。平滑値と予測値とを結んだ統合航跡の予測誤差共分散行列の広がりΔP (−)は、式(7)のように求められる。
Figure 2019143983
平滑値と予測値とを結んだ部分航跡の平滑誤差共分散行列の広がりΔP (+)は、ΔP (−)と同様に式(8)で求めることができる。
Figure 2019143983
ノード100−1〜ノード100−Nの間にバイアス誤差が存在する場合、誤差共分散行列の広がりの和を、および部分航跡の平滑値と統合航跡の予測値との差で割った第1の商は、1より小さい値をとり、バイアス誤差の判定は式(9)で求めることができる。
Figure 2019143983
式(9)の値が1より小さい場合、バイアス誤差判定部34は、バイアス誤差ありと判定し、送出部37は部分航跡の送出を保留する。式(9)の第1の商が1以上である場合、バイアス誤差判定部34は、バイアス誤差なしと判定し、送出部37は部分航跡の送出を実行する。
上記の処理よりバイアス誤差判定部34は、バイアス誤差を判定し、部分航跡の送出制御を繰り返し実施する。
式(6)では位置に関する情報を用いて説明したが、バイアス誤差判定部34は、ΔXに速度、加速度、躍度等を用いた場合でもバイアス誤差の判定は可能である。また、バイアス誤差判定部34は、バイアス誤差判定の要素として速度、加速度、または躍度いずれか1つに限らず、複数を組み合わせて判定することも可能である。
以上のように、本実施の形態によれば、追尾処理部20でバイアス誤差を有する観測値から部分航跡が生成された場合には、送出調整部33およびバイアス誤差判定部34において、部分航跡の送出を保留する。このため、本実施の形態では、バイアス誤差を含む部分航跡が、統合航跡生成部41およびネットワーク2に送出されないため、ノード100−1〜ノード100−Nの統合航跡が劣化することを抑制することができる。
また、本実施の形態では通信装置50を通してネットワーク2へ送出される部分航跡が制限されるため、ネットワーク2の通信負荷が改善される。
実施の形態2.
図6は、実施の形態2に係るノードの構成を示すブロック図である。ノード100aは、センサ10aと、バイアス誤差判定部34aと、追尾処理部20aと、予測処理部31aと、航跡記憶部70と、表示器60aとを備える。本実施の形態では、バイアス誤差判定部34aは、センサ10aが取得した観測値と、ノード100aが保存する航跡とを用いてバイアス誤差判定をする。
センサ10aは、目標から観測値を取得し、観測値をバイアス誤差判定部34aへ出力する。バイアス誤差判定部34aは、センサ10aから入力された観測値と、予測処理部31aによって予測処理された航跡とからバイアス誤差判定処理を実施し、観測値を追尾処理部20aへ送出するかを判定する。追尾処理部20aは、観測値を用いてカルマンフィルタ処理などの追尾処理を実施し、予測処理および平滑処理を実行し、航跡を生成する。生成された航跡は、航跡記憶部70に記憶および管理される。生成された航跡は、表示器60aに航跡情報として表示される。
本実施の形態に係るバイアス誤差判定部34aが実施するバイアス誤差判定の動作を説明する。
Figure 2019143983
Zは観測値である。観測値は、目標1の位置および速度を含む運動諸元に関する情報、および時刻情報である。X(−)は、追尾処理部20aが予測処理した航跡の予測値である。Rは、観測誤差共分散行列である。また、Rは、観測値を中心に真値が存在すると考えられる範囲を示す。P(3×3) (‐)は、航跡の予測誤差共分散行列である。式(10)および式(11)中では割愛しているが、本実施の形態においても実施の形態1と同様に観測誤差共分散行列の広がり、および航跡の予測誤差共分散行列の広がりも算出している。式(10)および式(11)の算出の結果、式(11)の右辺の値が1より小さい場合、バイアス誤差判定部34aは、観測値にバイアス誤差があると判定し、観測値を追尾処理部20aへ送出することを保留する。式(11)の右辺の値が1以上である場合、バイアス誤差判定部34aは、観測値にバイアス誤差はないと判定し、観測値を追尾処理部20aへ送出する。
ノード100aは、バイアス誤差判定処理を行うことで、バイアス誤差がある観測値を除去し、追尾精度の維持に必要な観測値のみ航跡を生成することで追尾処理を行う。したがって、ノード100aは、バイアス誤差判定処理を行うことで追尾精度の劣化を抑制することができる。
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1 目標、2 ネットワーク、10,10a センサ、20,20a 追尾処理部、30 部分航跡部、31,31a 予測処理部、32 航跡融合部、33 送出調整部、34,34a バイアス誤差判定部、35 第1の演算部、36 第2の演算部、37 送出部、40 統合航跡部、41 統合航跡生成部、42 統合航跡記憶部、50 通信装置、60,60a 表示器、70 航跡記憶部、100−1〜100−N,100a ノード、200 センサネットワークシステム、300 制御回路、300a プロセッサ、300b メモリ。

Claims (8)

  1. 目標を観測するセンサと、
    前記センサの観測値を用いて前記目標の部分航跡を生成する追尾処理部と、
    複数の前記部分航跡を用いて統合航跡を生成する統合航跡生成部と、
    前記部分航跡を前記統合航跡生成部に送信する通信装置と、
    前記統合航跡の予測値と前記部分航跡の平滑値との差と、前記統合航跡の予測誤差の共分散行列とを用いて、前記統合航跡の前記予測誤差の共分散行列の広がりである第1の計算結果を算出する第1の演算部と、
    前記差と前記部分航跡の平滑誤差の共分散行列とを用いて、前記部分航跡の平滑誤差の共分散行列の広がりである第2の計算結果を算出する第2の演算部と、
    前記第1の計算結果と前記第2の計算結果との和と、前記差とを用いて、前記部分航跡を前記通信装置に送出するかを判定するバイアス判定を行うバイアス誤差判定部と、
    を備えることを特徴とする目標追尾装置。
  2. 前記目標追尾装置は、複数の前記目標追尾装置により構成されるセンサネットワークシステムを構成し、
    前記通信装置は、前記センサネットワークシステムを構成する他の前記目標追尾装置へ前記部分航跡を送信することを特徴とする請求項1に記載の目標追尾装置。
  3. 前記バイアス誤差判定部は、
    前記和を前記差の絶対値で割った商を算出し、前記商が1より小さい場合、前記部分航跡の送出を保留させ、前記商が1以上である場合、前記部分航跡を送出させることを特徴とする請求項1または2に記載の目標追尾装置。
  4. 前記平滑値は前記部分航跡の位置の情報が用いられ、
    前記予測値は前記統合航跡の位置の情報が用いられることを特徴とする請求項1から3のいずれか1つに記載の目標追尾装置。
  5. 前記平滑値は前記部分航跡の速度の情報が用いられ、
    前記予測値は前記統合航跡の速度の情報が用いられることを特徴とする請求項1から3のいずれか1つに記載の目標追尾装置。
  6. 前記平滑値は前記部分航跡の加速度の情報が用いられ、
    前記予測値は前記統合航跡の加速度の情報が用いられることを特徴とする請求項1から3のいずれか1つに記載の目標追尾装置。
  7. 目標を観測するセンサと、
    前記センサの観測値を用いて航跡を生成する追尾処理部と、
    前記航跡の予測値と前記観測値との差と、前記航跡の予測誤差の共分散行列とを用いて、前記航跡の前記予測誤差の共分散行列の広がりを算出し、前記差と、前記観測値の観測誤差の共分散行列とを用いて、前記観測値の前記観測誤差の共分散行列の広がりを算出し、前記観測誤差の共分散行列の広がりと前記観測誤差の共分散行列の広がりとの和と、前記差とを用いて、前記観測値を前記追尾処理部に送出するかを判定するバイアス誤差判定部と、
    を備えることを特徴とする目標追尾装置。
  8. 前記バイアス誤差判定部は、
    前記和を前記差の絶対値で割った商を算出し、前記商が1より小さい場合、前記航跡の送出を保留させ、前記商が1以上である場合、前記航跡を送出させることを特徴とする請求項7に記載の目標追尾装置。
JP2018025465A 2018-02-15 2018-02-15 目標追尾装置 Active JP6910314B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018025465A JP6910314B2 (ja) 2018-02-15 2018-02-15 目標追尾装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018025465A JP6910314B2 (ja) 2018-02-15 2018-02-15 目標追尾装置

Publications (2)

Publication Number Publication Date
JP2019143983A true JP2019143983A (ja) 2019-08-29
JP6910314B2 JP6910314B2 (ja) 2021-07-28

Family

ID=67773678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018025465A Active JP6910314B2 (ja) 2018-02-15 2018-02-15 目標追尾装置

Country Status (1)

Country Link
JP (1) JP6910314B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004144616A (ja) * 2002-10-24 2004-05-20 Mitsubishi Electric Corp 目標追尾装置
JP2009002794A (ja) * 2007-06-21 2009-01-08 Mitsubishi Electric Corp 航跡統合装置及びプログラム及び航跡統合方法
JP2010505111A (ja) * 2006-09-29 2010-02-18 韓國電子通信研究院 レーダ追跡装置及びその方法
JP2010190869A (ja) * 2009-02-20 2010-09-02 Mitsubishi Electric Corp センサ制御装置
US20160103214A1 (en) * 2014-10-08 2016-04-14 Src, Inc. Use of Range-Rate Measurements in a Fusion Tracking System via Projections
JP2017058192A (ja) * 2015-09-15 2017-03-23 三菱電機株式会社 目標追尾装置
JP2017150989A (ja) * 2016-02-25 2017-08-31 三菱電機株式会社 目標追尾装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004144616A (ja) * 2002-10-24 2004-05-20 Mitsubishi Electric Corp 目標追尾装置
JP2010505111A (ja) * 2006-09-29 2010-02-18 韓國電子通信研究院 レーダ追跡装置及びその方法
JP2009002794A (ja) * 2007-06-21 2009-01-08 Mitsubishi Electric Corp 航跡統合装置及びプログラム及び航跡統合方法
JP2010190869A (ja) * 2009-02-20 2010-09-02 Mitsubishi Electric Corp センサ制御装置
US20160103214A1 (en) * 2014-10-08 2016-04-14 Src, Inc. Use of Range-Rate Measurements in a Fusion Tracking System via Projections
JP2017058192A (ja) * 2015-09-15 2017-03-23 三菱電機株式会社 目標追尾装置
JP2017150989A (ja) * 2016-02-25 2017-08-31 三菱電機株式会社 目標追尾装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
松崎貴史 丸山晃佐 小幡康 匂坂健太郎 亀田洋志: "人間・環境・社会を支えるセンシング技術", 計測自動制御学会論文集, vol. 第51巻 第10号, JPN6021014166, 31 October 2015 (2015-10-31), JP, pages 724 - 735, ISSN: 0004489057 *

Also Published As

Publication number Publication date
JP6910314B2 (ja) 2021-07-28

Similar Documents

Publication Publication Date Title
JP5306389B2 (ja) 目標追跡装置
JP6202850B2 (ja) 目標追尾装置
AU2018253980A1 (en) Distributed device mapping
US20140358434A1 (en) Peer-Assisted Dead Reckoning
CN114072254A (zh) 不确定环境中利用静态和动态碰撞规避的机器人路径规划方法
CN109143214B (zh) 一种采用激光扫描的目标定位方法及装置
EP3678822B1 (en) System and method for estimating pose of robot, robot, and storage medium
JP5589324B2 (ja) 新規なセンサフュージョン手法を用いた、移動体の状態推定のための装置、方法、およびプログラム
WO2019129355A1 (en) Method for predicting a motion of an object, method for calibrating a motion model, method for deriving a predefined quantity and method for generating a virtual reality view
JP7439691B2 (ja) 情報処理装置及びプログラム
JP4684591B2 (ja) 追尾装置及び追尾処理方法
JP2020118575A (ja) 車間距離測定装置、誤差モデル生成装置および学習モデル生成装置とこれらの方法およびプログラム
JP2019143983A (ja) 目標追尾装置
JP2009014596A (ja) 目標追尾装置及び目標追尾方法
JP2018146351A (ja) マルチセンサシステム、センサバイアス推定装置、センサバイアス推定方法及びセンサバイアス推定プログラム
JP2018041431A (ja) 対応関係を考慮した点群マッチング方法、対応関係を考慮した点群マッチング装置及びプログラム
JP2020113202A (ja) パラメータ選定装置、パラメータ選定方法、およびパラメータ選定プログラム
KR102325121B1 (ko) 맵 정보과 영상 매칭을 통한 실시간 로봇 위치 예측 방법 및 로봇
CN114088093A (zh) 一种点云地图构建方法、装置、系统及存储介质
JP2020165981A (ja) 情報処理システム、情報処理装置、プログラム、及び情報処理方法
KR20210003398A (ko) 위치 정보를 추정하는 단말 장치, 위치 정보 추정 방법 및 그 시스템
CN113096156B (zh) 面向自动驾驶的端到端实时三维多目标追踪方法及装置
TW202125530A (zh) 座標值整合裝置、座標值整合系統、座標值整合方法以及儲存媒體
US20240134033A1 (en) Method for determining a movement state of a rigid body
JP2019020338A (ja) 状態推定装置及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210706

R150 Certificate of patent or registration of utility model

Ref document number: 6910314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150