JP2019142730A - 複合タングステン酸化物粒子の製造方法 - Google Patents

複合タングステン酸化物粒子の製造方法 Download PDF

Info

Publication number
JP2019142730A
JP2019142730A JP2018026129A JP2018026129A JP2019142730A JP 2019142730 A JP2019142730 A JP 2019142730A JP 2018026129 A JP2018026129 A JP 2018026129A JP 2018026129 A JP2018026129 A JP 2018026129A JP 2019142730 A JP2019142730 A JP 2019142730A
Authority
JP
Japan
Prior art keywords
tungsten oxide
composite tungsten
source
oxide particles
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018026129A
Other languages
English (en)
Other versions
JP7072145B2 (ja
Inventor
修平 中倉
Shuhei Nakakura
修平 中倉
崇 荻
Takashi Ogi
崇 荻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Hiroshima University NUC
Original Assignee
Sumitomo Metal Mining Co Ltd
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Hiroshima University NUC filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018026129A priority Critical patent/JP7072145B2/ja
Publication of JP2019142730A publication Critical patent/JP2019142730A/ja
Application granted granted Critical
Publication of JP7072145B2 publication Critical patent/JP7072145B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

【課題】導入コストの低い設備を用いることができ、工程数の少ない複合タングステン酸化物粒子の製造方法。【解決手段】一般式MxWyOz(但し、M元素は、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素、0.001≦x/y≦1、2.2≦z/y≦3.0)で表わされる複合タングステン酸化物粒子の製造方法であって、タングステン源とM元素源とを含む原料混合溶液の液滴を形成する液滴形成工程と、液滴を反応場の温度が500℃以上の火炎に供給し、加熱する加熱工程と、を有する複合タングステン酸化物粒子の製造方法。【選択図】図1

Description

本発明は、複合タングステン酸化物粒子の製造方法に関する。
良好な可視光透過率を有し透明性を保ちながら日射透過率を低下させる近赤外線遮蔽技術として、これまでさまざまな技術が提案されてきた。なかでも、無機物である導電性微粒子を用いた近赤外線遮蔽技術は、その他の技術と比較して近赤外線遮蔽特性に優れ、低コストである上、電波透過性が有り、さらに耐候性が高い等のメリットがある。
例えば特許文献1において、一般式M(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3.0)で表記される複合タングステン酸化物微粒子を赤外線遮蔽微粒子として可視光線を透過する樹脂等の媒体中に分散させた赤外線遮蔽材料微粒子分散体や、該赤外線遮蔽粒子の製造方法等に関する技術が開示されている。特許文献1には、薄膜状の赤外線遮蔽材料微粒子分散体である赤外線遮蔽膜を製造した例等も開示されている。
特許文献1によれば、太陽光線、特に近赤外線領域の光をより効率良く遮蔽し、同時に可視光領域の透過率を保持する等、優れた光学特性を有する赤外線遮蔽材料微粒子分散体を作製することが可能となるとされている。このため、特許文献1に開示された赤外線遮蔽粒子分散体を窓ガラス等の各種用途に適用することが検討されている。
そして、近赤外線遮蔽材料として有用な複合タングステン酸化物粒子の製造方法について、各種検討がなされている。
例えば、特許文献1の発明者は、非特許文献1において、固相法よるCs0.32WOナノ粒子の合成方法を提案している。しかしながら、非特許文献1に開示された合成方法では粒子径が大きく、ナノ粒子化するには粉砕プロセスが必要であった。このため、プロセスの工程数が増える可能性があった。
非特許文献2には水熱合成法によるCsWOの合成方法が開示されている。しかしながら、水熱合成法では数十時間以上の合成時間を必要とする。また、水熱合成法は、後処理工程などの工程数が多い問題もある。
非特許文献3には、誘導結合熱プラズマ技術に基づく合成方法が開示されている。しかしながら、係る合成方法は誘導結合熱プラズマの装置を導入する必要があり、コストが高くなっていた。
特許文献2には化学式KxCsyWOzで表わされるカリウム・セシウム・タングステンブロンズ固溶体粒子調合のためのプロセスであって、式中、x+y≦1および2 ≦ z ≦ 3であり、前記プロセスは適切なタングステン・ソースをカリウム塩およびセシウム塩と混ぜ合わせて粉末混合物を形成し、還元雰囲気下でプラズマトーチに粉末混合物を露出することを含み、好ましくは還元雰囲気が水素/希ガス混合物から成るシースガスによって供給される、プロセスが開示されている。
しかしながら、特許文献2についてもプラズマを用いる必要があり、プラズマ装置導入のためにコストが高くなっていた。また、特許文献2に開示された製造方法によれば、金属タングステンが不純物として混入することも開示されている。
Takeda Hiromitsu, and Kenji Adachi, "Near infrared absorption of tungsten oxide nanoparticle dispersions." Journal of the American Ceramic Society,2007 , Vol.90, Issue 12, P.4059-4061 Guo Chongshen, et al., "Novel synthesis of homogenous CsxWO3 nanorods with excellent NIR shielding properties by a water controlled-release solvothermal process." Journal of Materials Chemistry,2010, Vol.20, Issue38, P.8227-8229. Mamak Marc, et al., "Thermal plasma synthesis of tungsten bronze nanoparticles for near infra-red absorption applications." Journal of Materials Chemistry, 2010, Vol.20, Issue44, P.9855-9857.
特許第4096205号公報 特表2012−532822号公報
既述の様に複合タングステン酸化物粒子は、近赤外線遮蔽材料として有用である。そして、低コストで、かつ少ない工程で製造することができる複合タングステン酸化物粒子の製造方法が求められている。
しかしながら、従来開示された複合タングステン酸化物粒子の製造方法は、上述のように特殊な高コストの装置の導入を要したり、多くの工程を要したりする等の問題があった。
上記従来技術の問題に鑑み、本発明の一側面では、導入コストの低い設備を用いることができ、工程数の少ない複合タングステン酸化物粒子の製造方法を提供することを目的とする。
上記課題を解決するため本発明の一側面では、
一般式M(但し、M元素は、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3.0)で表わされる複合タングステン酸化物粒子の製造方法であって、
タングステン源と前記M元素源とを含む原料混合溶液の液滴を形成する液滴形成工程と、
前記液滴を反応場の温度が500℃以上の火炎に供給し、加熱する加熱工程と、を有する複合タングステン酸化物粒子の製造方法を提供する。
本発明の一側面によれば、導入コストの低い設備を用いることができ、工程数の少ない複合タングステン酸化物粒子の製造方法を提供することができる。
本実施形態の複合タングステン酸化物粒子の製造方法に好適に用いることができる複合材料製造装置の模式図 実施例1〜実施例4で用いた火炎の形状、及び温度分布 実施例1〜実施例4で得られた複合タングステン酸化物粒子のXRDパターン 実施例1〜実施例4で得られた複合タングステン酸化物粒子のSEM像
本開示の一実施形態(以下「本実施形態」と記す)に係る複合タングステン酸化物粒子の製造方法の具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
以下、本実施形態の複合タングステン酸化物粒子の製造方法の一構成例について説明する。
本実施形態の複合タングステン酸化物粒子の製造方法は、一般式Mで表わされる複合タングステン酸化物粒子の製造方法に関し、以下の工程を有することができる。
なお、上記一般式中のM元素は、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素とすることができる。また、Wはタングステン、Oは酸素を表し、x、y、zはそれぞれ、0.001≦x/y≦1、2.2≦z/y≦3.0を満たすことが好ましい。
タングステン源とM元素源とを含む原料混合溶液の液滴を形成する液滴形成工程。
液滴を反応場の温度が500℃以上の火炎に供給し、加熱する加熱工程。
ここでまず、本実施形態の複合タングステン酸化物粒子の製造方法で製造する複合タングステン酸化物粒子について説明する。
複合タングステン酸化物粒子に含まれる複合タングステン酸化物は、上述のように一般式Mで表記される。式中のM元素、W、O、及びx、y、zについては既述のため、ここでは説明を省略する。
複合タングステン酸化物は、例えば正方晶、立方晶、及び六方晶のいずれかの、タングステンブロンズ型の結晶構造をとることができる。本実施形態の複合タングステン酸化物粒子に含まれる複合タングステン酸化物の結晶構造は特に限定されず、正方晶、立方晶、六方晶から選択された1種類以上の結晶構造を有することができる。
ただし、複合タングステン酸化物が六方晶の結晶構造を有する場合、複合タングステン酸化物粒子の可視光線領域の光の透過率、及び近赤外線領域の光の吸収が特に向上するため好ましい。このため、複合タングステン酸化物粒子は、六方晶の結晶構造の複合タングステン酸化物を含むことが好ましい。そして、M元素にCs、Rb、K、Tl、Ba、Inから選択された1種類以上を用いると六方晶を形成し易くなる。このため、M元素はCs、Rb、K、Tl、Ba、Inから選択された1種類以上を含むことが好ましい。
ここで、複合タングステン酸化物が六方晶の結晶構造を有する場合のM元素の配置の仕方を説明する。
Wと、6つのOとを単位として形成される8面体、すなわち頂点にO原子を配し、中央部にW原子を配した8面体が、6個集合することでO原子より構成される六角形の空隙(トンネル)が形成される。そして、当該空隙中に、M元素が配置されて1箇の単位を構成し、この1箇の単位が多数集合して六方晶の結晶構造を構成する。六方晶の結晶構造を有する複合タングステン酸化物が均一な結晶構造を有するとき、M元素の添加量は、x/yの値で0.2以上0.5以下が好ましく、さらに好ましくは0.33である。z/y=3の時、x/yの値が0.33となることで、M元素が六角形の空隙の全てに配置されると考えられる。
同様に、z/y=3の時、立方晶、正方晶のそれぞれの複合タングステン酸化物にも構造に由来したM元素の添加量の上限があり、1モルのタングステンに対するM元素の最大添加量は、立方晶の場合は1モルであり、正方晶の場合は0.5モル程度である。なお、正方晶の場合の1モルのタングステンに対するM元素の最大添加量は、M元素の種類により変化するが、工業的に製造が容易なのは、上述のように0.5モル程度である。但し、これらの構造は、単純に規定することが困難であり、当該範囲は特に基本的な範囲を示した例であることから、本発明がこれに限定されるわけではない。
また、M元素は極微量でも添加することで、複合タングステン酸化物内に自由電子が生成され、目的とする赤外線吸収効果を得ることができる。このため、x/yは、0.001≦x/y≦1を満たすことが好ましい。
また、複合タングステン酸化物は、三酸化タングステン(WO)にM元素を添加した組成を有している。そして、三酸化タングステンでは有効な自由電子を含まないため、1モルのタングステンに対する酸素の割合を3未満としないと赤外線吸収効果を発揮することはできない。しかしながら、複合タングステン酸化物では、M元素を添加することで自由電子を生じ、赤外線吸収効果を得ることができる。このため、1モルのタングステンに対する酸素の割合は3以下とすることができる。ただし、WOの結晶相は可視光線領域の光について吸収や散乱を生じさせ、近赤外線領域の光の吸収を低下させる恐れがある。このため、WOの生成を抑制する観点から、1モルのタングステンに対する酸素の割合は2より大きくすることが好ましい。
従って、上述のように2.2≦z/y≦3.0を満たすことが好ましい。
本実施形態の複合タングステン酸化物粒子の製造方法により製造する複合タングステン酸化物粒子の粒子径は特に限定されず、使用目的等に応じて選定することができる。
例えば透明性を保持することが要求される用途に使用する場合は、800nm以下の粒子径を有していることが好ましい。これは、粒子径が800nm以下の粒子は、散乱により光を完全に遮蔽することが無く、可視光線領域の視認性を高く保持し、同時に効率良く透明性を保持することができるからである。特に可視光線領域の透明性を重視する場合は、さらに粒子による散乱を考慮することが好ましい。
係る粒子による散乱の低減を重視するとき、粒子径は200nm以下であることが好ましく、100nm以下であることがより好ましい。
これは、粒子径が小さければ、幾何学散乱もしくはミー散乱による、波長400nm〜780nmの可視光線領域の光の散乱が低減される結果、赤外線遮蔽膜が曇りガラスのようになり、鮮明な透明性が得られなくなるのを回避できるからである。そして、粒子径が200nm以下になると、上記幾何学散乱もしくはミー散乱が低減し、レイリー散乱領域になる。レイリー散乱領域では、散乱光は粒子径の6乗に比例して低減するため、粒子径の減少に伴い散乱が低減し透明性が向上するからである。さらに粒子径が100nm以下になると、散乱光は非常に少なくなり好ましい。光の散乱を回避する観点からは、粒子径が小さい方が好ましい。
このため、本実施形態の複合タングステン酸化物粒子の製造方法により製造する複合タングステン酸化物粒子の粒子径は、用いる用途に応じて選択することができる。例えば上述のように可視光線領域の視認性を高く保持することが求められる場合には、粒子径は800nm以下とすることが好ましく、200nm以下とすることがより好ましく、100nm以下とすることがさらに好ましい。本実施形態の複合タングステン酸化物粒子の製造方法により製造する複合タングステン酸化物粒子の粒子径の下限値は特に限定されないが、例えば1nm以上とすることができる。
本実施形態の複合タングステン酸化物粒子の製造方法により得られる複合タングステン酸化物粒子の粒子径は、該粒子を例えばSEMやTEMで観察し、該粒子に外接する最小の外接円を描いた場合の直径とすることができる。
なお、例えば後述する液滴形成工程において形成する液滴のサイズや、加熱工程での火炎の反応場の温度等を調整することで、得られる複合タングステン酸化物粒子の粒子径を選択することができる。
本実施形態の複合タングステン酸化物粒子の製造方法により得られた複合タングステン酸化物粒子を含有する赤外線遮蔽材料は近赤外線領域、特に波長1000nm付近の光を大きく吸収するため、その透過色調は青色系から緑色系となる物が多い。
次に、本実施形態の複合タングステン酸化物粒子の製造方法について具体的に説明する。
本実施形態の複合タングステン酸化物粒子の製造方法はタングステン源と、M元素源とを含む液滴を火炎中へ供給し、加熱処理を行う火炎噴霧分解法である。
そこで、本実施形態の複合タングステン酸化物粒子の製造方法は、既述の様にタングステン源とM元素源とを含む原料混合溶液の液滴を形成する液滴形成工程と、液滴を反応場の温度が500℃以上の火炎に供給し、加熱する加熱工程とを有することができる。
液滴形成工程では、タングステン源とM元素源とを含む原料混合溶液の液滴を形成することができる。
液滴形成工程において液滴を形成する具体的な手段は特に限定されない。例えばスプレーノズルを用いてタングステン源とM元素源とを含む溶液の液滴を形成する方法や、タングステン源とM元素源とを含む溶液に対して超音波照射を行い、液滴を形成する方法、二流体ノズルを用いて液滴を形成する方法、遠心アトマイザーを初めとした各種アトマイザーを用いて液滴を形成する方法等が挙げられる。
特に微細な液滴を安定して形成できることから、タングステン源とM元素源とを含む溶液に対して超音波を照射して液滴を形成することが好ましい。すなわち超音波を用いた液滴形成方法を好適に用いることができる。
なお、タングステン源を含む溶液と、M元素源を含む溶液とを別に用意しておき、例えば液滴形成部(液滴形成手段)に供給する直前、もしくは液滴形成部内で混合し、タングステン源とM元素源とを含む溶液を形成することが好ましい。すなわち、液滴形成工程において、タングステン源を含む溶液と、M元素源を含む溶液とを混合し、原料混合溶液を形成することが好ましい。そして、原料混合溶液の形成に引き続き、連続して原料混合溶液を用いて液滴を形成することが好ましい。
液滴形成工程において両溶液を混合する具体的な方法は特に限定されない。例えばタングステン源を含む溶液と、M元素源を含む溶液とを液滴形成部である超音波噴霧装置(超音波照射装置)に別々に導入し、該装置内で両溶液を混合して原料混合溶液とし、液滴を形成することが好ましい。すなわち、液滴形成工程において、超音波噴霧装置を用いて原料混合溶液の液滴を形成している場合、超音波噴霧装置において、タングステン源を含む溶液と、M元素源を含む溶液とを混合し、原料混合溶液を形成することが好ましい。このようにタングステン源を含む溶液と、M元素源を含む溶液とを別に用意しておき、例えば超音波噴霧装置において混合することで、原料混合溶液を形成してから液滴にするまでの時間を特に短くすることができる。このため、中和反応によりタングステン源と、M元素源とが反応し、原料混合溶液内で析出等が生じることを特に抑制できる。
タングステン源としては特に限定されず、タングステンの塩等を用いることができ、例えばパラタングステン酸アンモニウムを好ましく用いることができる。パラタングステン酸アンモニウム(ATP:ammonium tungstate pentahydrate)は、例えば(NH10(W1241)・5HOと表すことができる。
パラタングステン酸アンモニウムは、タングステン以外の元素が、N(窒素)、H(水素)、O(酸素)であり、後述する加熱工程において系外に排出される。このため、タングステン源を含む溶液の溶質として用いることで、不純物の混入を抑制した複合タングステン酸化物粒子を得ることができるため好ましく用いることができる。
また、タングステン源を含む溶液としては、取扱いの容易さ等から、タングステン源を含む水溶液を好適に用いることができる。このため、タングステン源としては水溶性の塩を好適に用いることができる。そして、パラタングステン酸アンモニウムは水への溶解が容易であり、溶媒として水を用い、タングステン源を含む溶液を容易に形成できるため、好ましく用いることができる。
M元素源を含む溶液としては、例えばM元素を含む塩の溶液を用いることができる。M元素源であるM元素の塩の種類は特に限定されないが、例えばM元素の炭酸塩、酢酸塩、硝酸塩、水酸化物等から選択された1種類以上を用いることができる。
M元素源を含む溶液としては、取扱いの容易さ等から、M元素源を含む水溶液を好適に用いることができる。このため、M元素の塩としては水溶性の塩を好適に用いることができる。
例えば、M元素がセシウムの場合においても、炭酸塩、酢酸塩、硝酸塩、水酸化物等から選択された1種類以上を用いることができるが、炭酸塩を特に好適に用いることができる。これは、炭酸セシウムが水への溶解が特に容易であるからである。
なお、得られる複合タングステン酸化物中の1モルのタングステンに対する、M元素の割合、すなわちドープ量は、原料混合溶液を形成する際のタングステン源と、M元素源との割合により決まる。このため、例えばタングステン源を含む溶液の濃度や、M元素源を含む溶液の濃度等により制御できる。
タングステン源を含む溶液に含まれるタングステン源の濃度は特に限定されない。例えば、タングステン源を含む溶液のタングステン濃度が0.012mol/L以上120mol/L以下であることが好ましい。これは、タングステン源を含む溶液のタングステン濃度を0.012mol/L以上とすることで、単位時間当たりの複合タングステン酸化物粒子の生産量を十分に確保でき、例えばフィルター等で十分な量を回収することができ、生産性を高めることができるからである。また、タングステン源を含む溶液のタングステン濃度を120mol/L以下とすることで、生成した粒子が凝集することを抑制し、例えば1μm以上の粗大な複合タングステン酸化物粒子が混入することを抑制できるからである。
タングステン源を含む溶液として、例えばパラタングステン酸アンモニウム水溶液を用いる場合、パラタングステン酸アンモニウムは分子内に12個のタングステンを含むため、パラタングステン酸アンモニウムの濃度は0.001mol/L以上10mol/L以下が好ましい。
また、M元素源を含む溶液に含まれるM元素の濃度についても特に限定されるものではなく、製造する複合タングステン酸化物粒子における所望の組成や、タングステン源を含む溶液に含まれるタングステン源の濃度等に応じて選択することができる。
原料混合溶液には、タングステン源を含む溶液や、M元素源を含む溶液以外にも任意の成分を添加できる。例えば後述する加熱工程で用いる火炎での還元剤として、アンモニアを添加することもできる。タングステン源を含む溶液として、既述のパラタングステン酸アンモニウム水溶液を用いる場合、上記アンモニアは、例えばパラタングステン酸アンモニウム水溶液に添加しておくことができる。
液滴形成工程で形成する液滴のサイズは特に限定されないが、液滴の直径は100μm以下であることが好ましく、10μm以下であることがより好ましく、5μm以下であることがさらに好ましい。液滴の直径を100μm以下とすることで、得られる複合タングステン酸化物粒子が粗粒化することを防ぎ、ナノメートルオーダーの複合タングステン酸化物粒子を得ることが可能になる。なお、液滴形成工程で形成する液滴のサイズの下限値は特に限定されない。ただし、過度に小さい液滴を形成することは困難であり、生産性が低下する恐れがあることから、例えば1μm以上であることが好ましい。
液滴形成工程で形成した液滴は、例えばキャリアガスにより搬送し、加熱工程に供することができる。
次に加熱工程について説明する。
加熱工程では、液滴を反応場の温度が500℃以上の火炎に供給し、加熱することができる。
原料混合溶液の液滴は、窒素ガスなどのキャリアガスにより火炎中を移動し、火炎内部での温度変化により、まず溶媒部分、例えば水が蒸発し、次いで溶質部分、例えばタングステン源であるタングステンの塩等や、M元素源であるM元素の塩等の分解が生じる。なお、既述の様にタングステン源としてはパラタングステン酸アンモニウム等が、M元素源としてはM元素がセシウムの場合であれば炭酸セシウム等が挙げられ、これらの塩が分解する。
そして、溶質部分の分解過程で、タングステンとM元素とが反応して、複合タングステン酸化物が形成される。
なお、原料混合溶液には既述の様にアンモニアを添加しておくこともでき、係るアンモニアは還元剤としても機能する。
加熱工程で液滴を加熱する際、液滴に含まれる溶媒が水の場合、該水の蒸発は50℃以上120℃以下の範囲で生じていると推定される。また、タングステン源や、M元素源の分解は、例えば120℃以上500℃以下の範囲で生じていると推定される。そして、タングステン源や、M元素源の分解の過程、及びさらに高温の温度でタングステンとM元素とが反応して、複合タングステン酸化物が形成されていると考察される。
このため、タングステン源や、M元素源の分解を十分に進行させ、複合タングステン酸化物への不純物の混入を抑制するため、火炎の温度は、タングステン源や、M元素源の分解温度以上であることが好ましい。そして、タングステン源や、M元素の塩は500℃以下で分解すると考えられるため、加熱工程で用いる火炎の反応場の温度は500℃以上であることが好ましく、特に550℃以上であることがより好ましく、1000℃以上であることがさらに好ましい。
火炎の温度の上限は特に限定されないが、火炎の反応場の温度を上げるために過度のエネルギーを要することになるため、例えば1500℃以下であることが好ましい。
ここで、火炎での反応場とは、火炎の内炎部であり、複合タングステン酸化物が形成されと推定される場である。そして、反応場の温度とは、複合タングステン酸化物の形成が推定される反応場、すなわち火炎の内炎部の温度である。反応場の温度は熱電対により測定できる。
火炎は、例えば酸素と、燃料ガスである可燃性気体とを含む混合気体を用いて形成することができる。可燃性気体としては、例えばメタン等を用いることができる。
そして、火炎のサイズや、火炎の温度を調整する方法は特に限定されないが、例えば混合気体中の酸素と、可燃性気体との流量比を可燃性気体の燃焼が可能な流量比とし、酸素、及び可燃性気体の流量を調整することで行うことが好ましい。これは可燃性気体が、燃焼するために必要な酸素量を確保しつつ火力を調整することができるからである。
例えば火炎を、酸素とメタンとを含む混合気体を用いて形成している場合、混合気体中のメタンと酸素の流量の比は、メタン1に対し酸素を2以上3以下とし、メタンの流量を0.5L/min以上2L/min以上の範囲とすることが好ましい。
これはメタンの流量を1とした場合に、酸素の流量を2以上とすることで、可燃性気体であるメタンの燃焼を十分に促進できるからである。ただし、酸素の供給が過剰とならないように、メタン1に対して、酸素を3以下供給することが好ましい。
火炎の反応場の温度は、得られる複合タングステン酸化物粒子の粒子径にも影響する。本発明の発明者らの検討によれば、火炎の反応場の温度が上がるにつれて、得られる複合タングステン酸化物粒子の粒径が小さくなる傾向がみられる。
タングステン源の溶液としてパラタングステン酸アンモニウム水溶液を、M元素源の溶液として炭酸セシウム水溶液を用いて、セシウムドープ酸化タングステン酸化物粒子を製造した場合を例に説明する。この場合、火炎の反応場の温度が500℃以上1000℃未満の場合は、セシウムドープ酸化タングステン酸化物粒子の粒子径は100nmから1μm未満となった。また、火炎の反応場の温度が、さらに高温の1000℃以上となると、セシウムドープ酸化タングステン酸化物粒子の粒子径は100nm未満となる場合があった。
これは、火炎の反応場の温度が高くなると、生成した複合タングステン酸化物粒子の昇華に熱エネルギーが使われ、昇華により粒子が弾けて微細な粒子径の粒子が得られるためと推認される。
[複合材料製造装置]
本実施形態の複合タングステン酸化物粒子の製造方法に好適に用いることができる複合材料製造装置の構成例について以下に説明する。
図1は、本実施形態の複合材料製造装置10を模式的に表した図である。
図1に示すように、複合材料製造装置は、原料溶液となる、タングステン源を含む溶液を入れた第1格納部11と、M元素源を含む溶液を入れた第2格納部12とを有することができる。
第1格納部11と液滴形成部13、及び第2格納部12と液滴形成部13は、それぞれ配管で接続しておくことができる。なお、各格納部に入っているタングステン源を含む溶液や、M元素源を含む溶液を、所望の供給速度で液滴形成部13に供給できるように、例えば係る配管上に図示しないポンプ等を配置できる。
そして、第1格納部11、及び第2格納部12から液滴形成部13に供給されたタングステン源を含む溶液、およびM元素源を含む溶液は、図1に示した装置では液滴形成部13内の上部で混合され、原料混合溶液が形成される。次いで、形成された原料混合溶液を用いて、液滴形成部13により液滴が形成される。
なお、図1に示した液滴形成部13は超音波噴霧装置の場合を例に示しており、例えば超音波照射手段131により、原料混合溶液に超音波が照射され、液滴が形成される。
液滴形成部13にはキャリアガスを充てんした第1ガスタンク14が接続されており、該第1ガスタンク14から液滴形成部13に対してキャリアガスが供給される。そして、液滴形成部13で形成した液滴はキャリアガスにより搬送され、輸送部15の導入管151を介して火炎18に供給される。第1ガスタンク14と液滴形成部13との間には、流量を制御するためのマスフローコントローラー等を配置しておくこともできる。
輸送部15は、例えば導入管151と同心円状にその外周に配置された燃料ガス供給部152と、酸素ガス供給部153とを有することができる。なお、輸送部15は火炎18を形成するためのバーナーとしての機能も兼ねることができる。
燃料ガス供給部152には、燃料ガス、例えばメタンガスを充てんした第2ガスタンク16を、酸素ガス供給部153には酸素ガスを充てんした第3ガスタンク17を、それぞれ接続しておくことができる。第2ガスタンク16と燃料ガス供給部152との間や、第3ガスタンク17と酸素ガス供給部153との間にはそれぞれ、流量を制御するためのマスフローコントローラー等を配置しておくこともできる。
上記構成とすることで、輸送部15は火炎18の下方から、酸素と、燃料ガスと、キャリアガスに搬送された液滴とを供給することができる。そして、酸素と燃料ガスとにより火炎18が形成され、該火炎18に液滴が供給され、既述の加熱工程を実施できる。
火炎18の周囲には反応管19を配置しておき、火炎18により加熱工程がなされ、得られた複合タングステン酸化物粒子が系外に放出されないように構成しておくことが好ましい。そして、得られた複合タングステン酸化物粒子は、反応管19に接続されたフィルター20により回収することができる。
なお、フィルター20には、トラップ21や、ポンプ22を接続しておき、生成した複合タングステン酸化物粒子をフィルター20へと誘導し、また複合タングステン酸化物粒子以外のガス等を分離できるように構成しておくことが好ましい。
以上に説明した本実施形態の複合タングステン酸化物粒子の製造方法によれば、火炎中に、原料混合溶液の液滴を供給するだけの簡単な工程で、かつ特殊な装置を用いることなく複合タングステン酸化物粒子を製造することができる。このため、本実施形態の複合タングステン酸化物粒子の製造方法によれば、導入コストの低い設備を用いることができ、工程数の少ない複合タングステン酸化物粒子の製造方法を提供することができる。
以下に具体的な実施例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例1]
図1に示した複合材料製造装置10を用いて、複合タングステン酸化物粒子の製造を行い、評価を行った。以下、具体的な条件について説明する。
まず、タングステン源を含む溶液として、(NH10(W1241)・5HOで表されるパラタングステン酸アンモニウム(ATP)(関東化学製 純度:88〜90%)、及び超純水を用いて10mmol/Lのパラタングステン酸アンモニウム水溶液を調製した。そして、係るパラタングステン酸アンモニウム水溶液は、第1格納部11に入れ、第1格納部11に配管で接続された液滴形成部13に連続して供給されるように構成した。
また、M元素源を含む溶液として、炭酸セシウム(シグマアルドリッチ社製)、及び超純水を用いて19.2mmol/Lの炭酸セシウム水溶液を調製した。そして、係る炭酸セシウム水溶液は、第2格納部12に入れ、第2格納部12に配管で接続された液滴形成部13に連続して供給されるように構成した。
なお、図示しないポンプにより第1格納部11、及び第2格納部12から、配管を介して液滴形成部13に各溶液が一定の流速で供給され、液滴形成部13内の上部で両溶液が混合され原料混合溶液が形成されるように構成されている。そして、液滴形成部13内で形成される原料混合溶液中の1モルのタングステンに対するセシウムのモル数の割合が0.32となるように供給速度、及び各溶液の濃度を調整した。原料混合溶液中では、5 mmol/Lのパラタングステン酸アンモニウムと9.6mmol/Lの炭酸セシウムが含まれる。
液滴形成部13には、超音波照射手段131が設けられており、形成された原料混合溶液に対して超音波を照射し、直径が1μm以上7μm以下の液滴を形成できるように超音波の出力を調整しておいた。なお、液滴形成部13としては、超音波式ネブライザ(オムロンヘルスケア株式会社製 型式:NE−U17 超音波発信周波数1.7MHz)を用いた。
また、液滴形成部13には、第1ガスタンク14が接続されており、第1ガスタンク14としては窒素ボンベを用いた。なお、液滴形成部13と、第1ガスタンク14との間には図示しないマスフローコントローラーが配置されており、窒素ガスの流量が制御できるように構成した。そして、複合タングステン酸化物粒子を製造している間、液滴形成部13にはキャリアガスとして、第1ガスタンク14から窒素ガスが3L/minの流量で供給されるように構成した。
液滴形成部13には、輸送部15の導入管151が接続されており、液滴形成部13で形成した液滴は上記キャリアガスにより搬送され、輸送部15の導入管151を介して火炎18に供給される。
輸送部15は導入管151と、同心円状にその外周に配置された燃料ガス供給部152と、酸素ガス供給部153とを有し、火炎18を形成するためのバーナーとしての機能も兼ねている。
燃料ガス供給部152には、メタンガスを充てんした第2ガスタンク16を、酸素ガス供給部153には酸素ガスを充てんした第3ガスタンク17を、それぞれ接続しておいた。第2ガスタンク16と燃料ガス供給部152との間、及び第3ガスタンク17と酸素ガス供給部153との間にはそれぞれ、図示しないマスフローコントローラーを配置し、その流量が制御できるように構成されている。
本実施例では、メタンガス流量を0.5L/min、酸素ガス流量を1.25L/minとした。この際の火炎の形状と、火炎内の温度分布を図2(A)に示す。なお、温度分布はK型熱電対により測温して求めており、図2(A)中左側が火炎を模式的に表した図であり、図2(A)中右側のグラフが温度分布を示している。係るグラフ中の横軸が火炎の温度を、縦軸が、輸送部15の上端の位置、すなわち火炎の最下端部を0とした場合の高さ方向の位置を示しており、単位はcmとなる。図2(A)に示すように、火炎18の反応場の温度はグラフ中丸を付けた点であり、595℃となっていた。
また、火炎18の周囲には反応管19を配置しておき、加熱工程がなされ、得られた複合タングステン酸化物粒子が系外に放出されないように構成し、得られた複合タングステン酸化物粒子は、反応管19に接続されたフィルター20により回収するように構成した。なお、フィルター20としてはバグフィルターを用いた。
また、フィルター20には、トラップ21、及びポンプ22を接続しておき、生成した複合タングステン酸化物粒子をフィルター20に誘導するようにし、また複合タングステン酸化物粒子以外のガス等を分離できるように構成しておいた。
以上のように、液滴形成部13に、第1格納部11からパラタングステン酸アンモニウム水溶液を、第2格納部12から炭酸セシウム水溶液をそれぞれ供給し、原料混合溶液を液滴形成部13内の上部で形成した。そして、係る原料混合溶液の液滴を液滴形成部13により形成した(液滴形成工程)。
次いで、得られた液滴は、キャリアガスである窒素ガスにより、火炎18に供給し、熱処理を行った(加熱工程)。
加熱工程終了後に得られた複合タングステン酸化物粒子をフィルター20により回収した。
得られた複合タングステン酸化物粒子である、Cs0.32WO粒子について、以下の評価を行った。
(1)粉末X線回折
複合タングステン酸化物粒子について、粉末X線回折装置(Bruker社製 型式:D2 PHASER)を用い、粉末X線回折パターン(XRDパターン)の測定を行った。なお、線源としてはCuKα線を用い、管電圧40kV、管電流30mAとして粉末X線回折パターンの測定を行った。
得られたXRDパターンを図3に示す。図3にはあわせてJCPDS 81−1244 :Cs0.32WO、COD No.1004090:CsW1.6の回折ピーク位置も併せて示す。
図3に示したように、XRDパターンから、得られた複合タングステン酸化物粒子は30°付近にCsW1.6相が見られるもののほぼCs0.32WOの単相と考えられる。
(2)SEM像観察
得られた三酸化タングステンの粒子について、電界放出形走査型電子顕微鏡(FE−SEM:Field Emission−Scanning Electron Microscope ハイテクノロジーズ社製 型式:S−5200)を用いて観察を行った。観察は印加電圧を5〜20kVとして行った。
得られたSEM像を図4(A)に示す。図4(A)に示したSEM画像から、300nm程度の球状粒子と数十nmサイズの微細な粒子が析出したことを確認できる。これは、火炎の反応場の温度が他の実施例と比較して低いため液滴の形を維持したまま結晶化が進んだためと考えられる。
[実施例2]
メタンガス流量を1L/min、酸素ガス流量を2.5L/minとして、火炎の反応場の温度を880℃とした点以外は、実施例1と同様にして複合タングステン酸化物粒子の製造、評価を行った。
この際の火炎の形状と、火炎内の温度分布を図2(B)に示す。なお、図2(B)中左側が火炎を模式的に表した図であり、図2(B)中右側のグラフが温度分布を示している。係るグラフ中の横軸が火炎の温度を、縦軸が、輸送部15の上端の位置、すなわち火炎の最下端部を0とした場合の高さ方向の位置を示しており、単位はcmとなる。図2(B)に示すように、火炎18の反応場の温度はグラフ中丸を付けた点であり、880℃となっていた。
得られた複合タングステン酸化物粒子のXRDパターンを図3に示す。15°、30°付近にCsW1.6相が見られたが、概ねCs0.32WOの単相と考えられる。
また、観察したSEM像を図4(B)に示す。実施例1と同様に粒径が300nm程度の球状粒子と数十nmサイズの微細な粒子が析出したことを確認できた。本実施例では、実施例1よりも火炎の反応場の温度が上昇したものの、実施例1の場合と同様に液滴の形を維持したまま結晶化が進んだためと考えられる。
[実施例3]
メタンガス流量を2L/min、酸素ガス流量を5L/minとして、火炎の反応場の温度を1080℃とした点以外は、実施例1と同様にして複合タングステン酸化物粒子の製造、評価を行った。
この際の火炎の形状と、火炎内の温度分布を図2(C)に示す。なお、図2(C)中左側が火炎を模式的に表した図であり、図2(C)中右側のグラフが温度分布を示している。係るグラフ中の横軸が火炎の温度を、縦軸が、輸送部15の上端の位置、すなわち火炎の最下端部を0とした場合の高さ方向の位置を示しており、単位はcmとなる。図2(C)に示すように、火炎18の反応場の温度はグラフ中丸を付けた点であり、1080℃となっていた。
得られた複合タングステン酸化物粒子のXRDパターンを図3に示す。実施例2の場合よりもCsW1.6相の回折ピークの強度が増加したもののCs0.32WOの回折ピークの割合が多いことを確認できた。
また、観察したSEM像を図4(C)に示す。実施例1、2とは異なり、粒径が300nm程度の球状粒子は確認できなかった。一方粒径が数十nmサイズの角型粒子が析出した。火炎の反応場の温度がさらに上昇し、液滴が蒸発し、結晶化が進んだためと考えられる。
[実施例4]
メタンガス流量を3L/min、酸素ガス流量を7.5L/minとして、火炎の反応場の温度を1155℃とした点以外は、実施例1と同様にして複合タングステン酸化物粒子の製造、評価を行った。
この際の火炎の形状と、火炎内の温度分布を図2(D)に示す。なお、図2(D)中左側が火炎を模式的に表した図であり、図2(D)中右側のグラフが温度分布を示している。係るグラフ中の横軸が火炎の温度を、縦軸が、輸送部15の上端の位置、すなわち火炎の最下端部を0とした場合の高さ方向の位置を示しており、単位はcmとなる。図2(D)に示すように、火炎18の反応場の温度はグラフ中丸を付けた点であり、1155℃となっていた。
得られた複合タングステン酸化物粒子のXRDパターンを図3に示す。実施例3の場合よりもCsW1.6相の回折ピークの強度が増加したもののCs0.32WOの回折ピークの割合が多いことを確認できた。
また、観察したSEM像を図4(D)に示す。実施例3と同様に、粒径が数十nmサイズの角型粒子が析出した。火炎の反応場の温度がさらに上昇し、液滴が蒸発し、結晶化が進んだためと考えられる。

Claims (6)

  1. 一般式M(但し、M元素は、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3.0)で表わされる複合タングステン酸化物粒子の製造方法であって、
    タングステン源と前記M元素源とを含む原料混合溶液の液滴を形成する液滴形成工程と、
    前記液滴を反応場の温度が500℃以上の火炎に供給し、加熱する加熱工程と、を有する複合タングステン酸化物粒子の製造方法。
  2. 前記液滴形成工程において、前記タングステン源を含む溶液と、前記M元素源を含む溶液とを混合し、前記原料混合溶液を形成する請求項1に記載の複合タングステン酸化物粒子の製造方法。
  3. 前記液滴形成工程では、超音波噴霧装置を用いて前記原料混合溶液の液滴を形成しており、
    前記超音波噴霧装置において、前記タングステン源を含む溶液と、前記M元素源を含む溶液とを混合し、前記原料混合溶液を形成する請求項1または請求項2に記載の複合タングステン酸化物粒子の製造方法。
  4. 前記タングステン源がパラタングステン酸アンモニウムである請求項1〜請求項3のいずれか一項に記載の複合タングステン酸化物粒子の製造方法。
  5. 前記M元素源が、前記M元素の炭酸塩、酢酸塩、硝酸塩、水酸化物から選択された1種類以上である請求項1〜請求項4のいずれか一項に記載の複合タングステン酸化物粒子の製造方法。
  6. 前記火炎は、酸素とメタンとを含む混合気体を用いて形成されており、
    前記混合気体中のメタンと酸素の流量の比は、メタン1に対し酸素を2以上3以下とし、メタンの流量を0.5L/min以上2L/min以下の範囲とする請求項1〜請求項5のいずれか一項に記載の複合タングステン酸化物粒子の製造方法。
JP2018026129A 2018-02-16 2018-02-16 複合タングステン酸化物粒子の製造方法 Active JP7072145B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018026129A JP7072145B2 (ja) 2018-02-16 2018-02-16 複合タングステン酸化物粒子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018026129A JP7072145B2 (ja) 2018-02-16 2018-02-16 複合タングステン酸化物粒子の製造方法

Publications (2)

Publication Number Publication Date
JP2019142730A true JP2019142730A (ja) 2019-08-29
JP7072145B2 JP7072145B2 (ja) 2022-05-20

Family

ID=67773056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018026129A Active JP7072145B2 (ja) 2018-02-16 2018-02-16 複合タングステン酸化物粒子の製造方法

Country Status (1)

Country Link
JP (1) JP7072145B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114573030A (zh) * 2022-03-10 2022-06-03 中国科学技术大学先进技术研究院 一种铯钨青铜粉体的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0892613A (ja) * 1994-09-26 1996-04-09 Oogawara Kakoki Kk 金属粉末の製造方法及び製造装置
JP2004500487A (ja) * 2000-02-15 2004-01-08 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア アルカリ硫酸塩およびアルカリ塩化物による高温腐蝕を防止する方法および組成物
US20100102700A1 (en) * 2008-10-24 2010-04-29 Abhishek Jaiswal Flame spray pyrolysis with versatile precursors for metal oxide nanoparticle synthesis and applications of submicron inorganic oxide compositions for transparent electrodes
JP2012532822A (ja) * 2009-07-07 2012-12-20 ビーエーエスエフ ソシエタス・ヨーロピア カリウム・セシウム・タングステンブロンズ粒子
JP2014513662A (ja) * 2011-03-30 2014-06-05 廈門金鷺特種合金有限公司 業用ナノニードル紫色酸化タングステンの調製方法
WO2017129516A1 (de) * 2016-01-27 2017-08-03 Evonik Degussa Gmbh Verfahren zur herstellung von wolframoxid und wolfram-mischoxiden

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0892613A (ja) * 1994-09-26 1996-04-09 Oogawara Kakoki Kk 金属粉末の製造方法及び製造装置
JP2004500487A (ja) * 2000-02-15 2004-01-08 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア アルカリ硫酸塩およびアルカリ塩化物による高温腐蝕を防止する方法および組成物
US20100102700A1 (en) * 2008-10-24 2010-04-29 Abhishek Jaiswal Flame spray pyrolysis with versatile precursors for metal oxide nanoparticle synthesis and applications of submicron inorganic oxide compositions for transparent electrodes
JP2012532822A (ja) * 2009-07-07 2012-12-20 ビーエーエスエフ ソシエタス・ヨーロピア カリウム・セシウム・タングステンブロンズ粒子
JP2014513662A (ja) * 2011-03-30 2014-06-05 廈門金鷺特種合金有限公司 業用ナノニードル紫色酸化タングステンの調製方法
WO2017129516A1 (de) * 2016-01-27 2017-08-03 Evonik Degussa Gmbh Verfahren zur herstellung von wolframoxid und wolfram-mischoxiden

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114573030A (zh) * 2022-03-10 2022-06-03 中国科学技术大学先进技术研究院 一种铯钨青铜粉体的制备方法

Also Published As

Publication number Publication date
JP7072145B2 (ja) 2022-05-20

Similar Documents

Publication Publication Date Title
JP7398689B2 (ja) 複合タングステン酸化物粒子の製造方法
Drmosh et al. Spectroscopic characterization approach to study surfactants effect on ZnO2 nanoparticles synthesis by laser ablation process
Kanade et al. Effect of solvents on the synthesis of nano-size zinc oxide and its properties
Hirano et al. Synthesis of highly crystalline hexagonal cesium tungsten bronze nanoparticles by flame-assisted spray pyrolysis
TWI245742B (en) Method for manufacturing highly-crystallized oxide powder
JP2009521393A (ja) 金属酸化物ナノ粒子の製造方法、ならびにそれにより製造されるナノ粒子および調製物
JP2010265144A (ja) 複合タングステン酸化物超微粒子の製造方法
DE19627167A1 (de) Verfahren zur Herstellung von Metalloxidpulvern
Wang et al. One-step preparation of YVO4: Eu3+ nanoparticles by pulsed laser ablation
Dwivedi et al. Size controlled synthesis and photocatalytic activity of anatase TiO2 hollow microspheres
Elen et al. Comparison of Two Novel Solution‐Based Routes for the Synthesis of Equiaxed ZnO Nanoparticles
Khan et al. Flame-synthesized Y 2 O 3: Tb 3+ nanocrystals as spectral converting materials
TWI543200B (zh) 金屬粉末之製造方法、藉以製得之金屬粉末、導電糊及多層陶瓷電子組件
JP2022135131A (ja) 複合タングステン酸化物粒子の製造方法
JP7072145B2 (ja) 複合タングステン酸化物粒子の製造方法
JP7417918B2 (ja) 複合タングステン酸化物粒子
JP7116415B2 (ja) 複合タングステン酸化物粒子の製造方法
JP2004124257A (ja) 金属銅微粒子及びその製造方法
JP7302808B2 (ja) 複合タングステン酸化物粒子の製造方法
CN109081694B (zh) 前驱液及高温雾化火焰合成钇铝复合氧化物纳米粉体以及其制备方法
JP2023078980A (ja) 複合タングステン酸化物粒子の製造方法
Usliyanage et al. Synthetic strategies of Ag-doped ZnO nanocomposites: a comprehensive review
JP7359376B2 (ja) 複合タングステン酸化物粒子の製造方法
Bensebaa Dry production methods
Gondal et al. Synthesis and characterization of copper oxides nanoparticles via pulsed laser ablation in liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220420

R150 Certificate of patent or registration of utility model

Ref document number: 7072145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150