JP2019132525A - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
JP2019132525A
JP2019132525A JP2018015147A JP2018015147A JP2019132525A JP 2019132525 A JP2019132525 A JP 2019132525A JP 2018015147 A JP2018015147 A JP 2018015147A JP 2018015147 A JP2018015147 A JP 2018015147A JP 2019132525 A JP2019132525 A JP 2019132525A
Authority
JP
Japan
Prior art keywords
compressor
oil
refrigerant
pipe
lubricating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018015147A
Other languages
English (en)
Inventor
将弘 近藤
Masahiro Kondo
将弘 近藤
和也 船田
Kazuya Funada
和也 船田
藤 利行
Toshiyuki Fuji
利行 藤
賢一 ▲高▼野
賢一 ▲高▼野
Kenichi Takano
稔弘 関根
Toshihiro Sekine
稔弘 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2018015147A priority Critical patent/JP2019132525A/ja
Publication of JP2019132525A publication Critical patent/JP2019132525A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

【課題】吐油量が多い圧縮機を用いた場合でも、冷媒の循環量の低下を防止し、能力低下を来さない空気調和機を提供する。【解決手段】空気調和機1は、圧縮機21及び圧縮機21の冷媒吐出側に位置する油分離器28を含む冷媒回路10と、油分離器28で冷媒から分離された潤滑油109aを油分離器28から圧縮機21に戻す返油回路65と、返油回路65に設けられたオイルポンプ81と、空気調和機1を制御する制御手段200と、を備え、制御手段200は、圧縮機21内部の前記潤滑油の量が低下する運転状態であることを検出したときオイルポンプ81を動作させることにより潤滑油109aを油分離器28から圧縮機21へ戻す。【選択図】図1

Description

本発明は、空気調和機、特に、油分離器を有する空気調和機に関するものである。
従来、空気調和機においては、圧縮機としてロータリ式やスクロール式のものが用いられている。スクロール式圧縮機は、ロータリ式圧縮機と比較して圧縮機内部から冷媒とともに排出される潤滑油の量が一般的に多くなる傾向がある。これは、ロータリ式圧縮機は圧縮部が電動機部の下に配置されているのに対して、スクロール式圧縮機は圧縮部が電動機部の上に配置されていることに起因する。ロータリ式圧縮機の場合、圧縮部で生成された潤滑油を含んだ高圧冷媒が電動機部側に存在する通路や隙間を経由して吐出管から吐出されるため、冷媒と潤滑油とが分離しやすい。スクロール式圧縮機の場合、圧縮部で生成された潤滑油を含んだ高圧冷媒は電動機部を経由することなく吐出管から吐出されるため、吐油量が多くなる。そこで、スクロール式圧縮機を搭載する冷凍サイクルでは、圧縮機の冷媒吐出側(下流側)の冷媒回路内に油分離器(オイルセパレータ)を搭載する例が多く、冷媒と潤滑油を分離することで、熱交換器側への潤滑油流入による熱交換性能の低下防止を図るとともに、分離した潤滑油を最短経路で圧縮機側へ返油して圧縮機の信頼性確保(油面確保)をしている(例えば、特許文献1参照)。
このような空気調和機1の冷凍サイクルを例示すると、図5に示すように、冷媒回路10のうち室外機冷媒回路10aに返油する手段として、圧縮機21の冷媒吐出側すなわち高圧側に位置する油分離器28から、圧縮機21の冷媒吸入側すなわち低圧側に位置する吸入管66へ、電磁弁29及び減圧器91(キャピラリチュープ)を用いた返油管65が形成されている。なお、ここで挙げた要素以外は、本発明の実施形態として後述する。
しかしながら、この態様において、電磁弁29が開閉制御されて弁が「開」の状態になる(電磁弁がない場合は常時「開」の状態となる)と、高圧側の油分離器28と低圧側の吸入管66とが返油管65を介して連通することから、返油管65を通じて、油分離器28で分離された潤滑油と共に一部の冷媒も流れてしまう。そうすると、室外熱交換器23又は室内熱交換器31へ流入する冷媒が減少し、返油しない場合に比して冷媒の循環量が低下したり、また、圧縮機21へ戻ってきた冷媒を再圧縮したりすることにより、使用される圧縮機21の圧縮動力(すなわち消費電力)に対して、得られる空気調和機1の能力が低下するという問題があった。
特開平9−14769号公報
本発明は以上述べた問題点を解決するものであって、吐油量が多い圧縮機を用いた場合でも、冷媒の循環量の低下を防止し、能力低下を来さない空気調和機を提供することを目的とする。
本発明は、上記目的を達成するために、以下の構成によって把握される。
(1)本発明の第1の観点は、圧縮機及び前記圧縮機の冷媒吐出側に位置する油分離器を含む冷媒回路と、前記油分離器で冷媒から分離された潤滑油を前記圧縮機へ戻す返油回路と、前記空気調和機を制御する制御手段と、を備え、前記返油回路は、前記潤滑油を前記油分離器から前記圧縮機へ戻すオイルポンプと、前記圧縮機から前記油分離器への前記潤滑油の流通を規制する逆止弁とを有し、前記制御手段は、前記圧縮機内部の前記潤滑油の量が低下する運転状態であることを検出したとき前記オイルポンプを動作させることにより前記潤滑油を前記油分離器から前記圧縮機へ戻す、ことを特徴とする。
(2)上記(1)の構成において、前記制御手段は、前記圧縮機が起動したら前記オイルポンプを動作させる。
(3)上記(1)又は(2)の構成において、さらに、前記返油回路を加熱する加熱手段を備える。
本発明によれば、吐油量が多い圧縮機を用いた場合でも、冷媒の循環量の低下を防止し、能力低下を来さない空気調和機を提供することができる。
第1実施形態の空気調和機を説明する図であって、(A)は冷媒回路図、(B)は室外機制御手段のブロック図である。 第1実施形態の空気調和機を構成する圧縮機の一例を示す縦断面図である。 第1実施形態の空気調和機に係る返油回路の構造を模式的に説明する図である。 第2実施形態の空気調和機に係る返油回路の構造を模式的に説明する図である。 従来の空気調和機に係る冷媒回路図である。
(第1実施形態)
以下、本発明の第1実施形態を、添付図面に基づいて詳細に説明する。第1実施形態としては、室外機と室内機が2本の冷媒配管で接続された空気調和機を例に挙げて説明する。第1実施形態は、室外機において、油分離器で冷媒から分離された潤滑油を圧縮機へ戻す返油管を圧縮機内部の高圧となる空間へ接続することにより、冷媒が再び圧縮されることを防止するとともに、配管を流れる際に生じる圧力損失によって潤滑油が戻される圧縮機内部の高圧となる空間より低圧になった返油管について、返油管内圧力を上昇させる手段としてオイルポンプを設けて潤滑油を加圧することにより、圧力差(返油管内圧力>圧縮機内圧力)をつけて潤滑油を圧縮機内へ戻すものである。なお、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。
図1(A)に示すように、第1実施形態における空気調和機1は、屋外に設置される室外機2と、室内に設置され、室外機2に液管4及びガス管5で接続された室内機3を備えている。詳細には、室外機2の閉鎖弁25と室内機3の液管接続部33が液管4で接続されている。また、室外機2の閉鎖弁26と室内機3のガス管接続部34がガス管5で接続されている。以上により、空気調和機1の冷媒回路10が形成される。
<室外機の構成>
まずは、室外機2について説明する。室外機2は、圧縮機21と、油分離器28と、四方弁22と、室外熱交換器23と、膨張弁24と、液管4が接続された閉鎖弁25と、ガス管5が接続された閉鎖弁26と、室外ファン27を備えている。そして、室外ファン27を除くこれら各装置が後述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室外機冷媒回路10aを形成している。なお、圧縮機21の冷媒吸入側には、図示しないアキュムレータが設けられている。
圧縮機21は、図示しないインバータにより回転数が制御されることで、運転容量を変えることができる容量可変型圧縮機である。圧縮機21の冷媒吐出側は、四方弁22のポートaと吐出管61で接続されている。また、圧縮機21の冷媒吸入側は、四方弁22のポートcと吸入管66で接続されている。
ここで、圧縮機21の内部構造詳細の一例を説明する。圧縮機21は、密閉容器101内に圧縮されて吐出された冷媒が溜まる内部高圧型のスクロール式圧縮機であり、図2は、第1実施形態の圧縮機21の縦断面図である。図2において、圧縮機21には、密閉容器101内の上下に、冷媒を圧縮する圧縮部102と、圧縮部102を駆動するステータ103bとロータ103aとからなる電動機103とを配設している。
より詳しくは、圧縮機21は、渦捲き状のラップを立設させた固定スクロール104と、固定スクロール104とラップを互いに噛み合わせ複数の圧縮室105を形成する旋回スクロール106と、旋回スクロール106の背面のボス部106aに、先端に形成した旋回軸107aを挿入し、電動機103のステータ103bの回転力を旋回スクロール106に伝達するシャフト107と、シャフト107の上部を支持するメインフレーム108と、シャフト107の下端を支持するサブフレーム108aと、密閉容器101の底部に設けられ、圧縮部102の軸受け等の摺動部分に潤滑油109aを供給するための油溜め109とから構成されている。
シャフト107の内部には、上端から下方へ、シャフト107の回転軸の軸心に対して偏心して潤滑油送路110が設けられると共に、シャフト107の下部には、下端を開口し潤滑油送路110と油溜め109とを連通する円筒状の遠心ポンプ111が設けられ、シャフト107の下端を支持するサブフレーム108の底部には、遠心ポンプ111の下端の開口部に臨ませた吸込口112が設けられている。
さらに、ロータ103aのシャフト107側の近傍に複数に形成され、電動機103の上部空間103c1と下部空間103c2とを連通するガス通路116と、ロータ103aの上部に取付けられた遠心ファン113とが設けられている。
遠心ファン113は、シャフト107の回りに図示しない複数の羽根が放射状に配置され、ロータ103aの回転により、電動機103を収納する電動機室103c内のガスを循環させ、電動機103及び油溜め109を冷却するもので、圧縮部102からの吐出ガスを電動機103の外周部で上部空間103c1から下部空間103c2へ、そのガスをロータ103aに設けたガス通路116を通して電動機103の下部から上部へ導き、電動機103のステータ103bを冷却する。
なお、潤滑油送路110と電動機103の上部空間103c1とを連通し、潤滑油送路110内のガスを電動機室103cに放出するためのガス抜き孔115を、遠心ファン113の上方に設けた構成となっている。
上記構成において、圧縮機21が運転されると、旋回スクロール106の旋回運動によって吸入管66から圧縮部102の吸入室105aに吸入された低圧冷媒は、圧縮室105の外周部から中心部へ順次移動しながら圧縮されて高圧冷媒ガスとなり、冷媒ガスは吐出孔104aを経由して吐出室114に吐出される。そして、吐出室114の高圧冷媒ガスは電動機室103c(上部空間103c1及び下部空間103c2)を経由して吐出管61から密閉容器101の外部に放出される。
一方、シャフト107が回転すると、遠心ポンプ111も回転し、シャフト107の回転による遠心力作用を利用して、油溜め109から潤滑油109aを吸引し、潤滑油109aは潤滑油送路110を通して圧縮部102の軸受け等の各摺動部分に供給される。
潤滑油送路110内に溜まるガスは、ガス抜き孔115を通り電動機室103cに放出され、潤滑油送路110内の圧力上昇を抑えて、遠心ポンプの能力低下を防いでいる。
また、圧縮機21は、電動機室103cの下部空間103c2に返油管65が接続されており、後述する油分離器28で分離した潤滑油109aを油溜め109へ供給している。
図1(A)に戻る。油分離器28は、吐出管61に設けられ、冷媒流入口が吐出管61を介して圧縮機21に接続され、冷媒流出口が吐出管61を介して四方弁22のポートaに接続されている。また、油分離器28の油流出口と前述した圧縮機21の下部空間103c2が、逆止弁82とオイルポンプ81を備えた返油管65で接続されている。この返油管65は、圧縮機21から冷媒とともに吐出され油分離器28で冷媒から分離された潤滑油109aを、圧縮機21に送るためのものである。返油管65、逆止弁82及びオイルポンプ81を含む一連の回路を返油回路という(なお、本明細書では、返油管65で代表させて返油回路ということがある)。
逆止弁82は、返油管65に設けられ、返油管65で圧縮機21側から油分離器28の方向へ冷媒が流れるのを規制する。オイルポンプ81は、返油管65に設けられ、油分離器28からオイルポンプ81へ流入した潤滑油109aが圧縮機21の下部空間103c2(高圧となる空間)へ供給されるようにするため、潤滑油109aの圧力が下部空間103c2内部の冷媒の圧力以上となるように加圧している。
四方弁22は、冷媒の流れる方向を切り替えるための弁であり、a、b、c、dの4つのポートを備えている。ポートaは、上述したように圧縮機21の冷媒吐出側と吐出管61で接続されている。ポートbは、室外熱交換器23の一方の冷媒出入口と冷媒配管62で接続されている。ポートcは、上述したように圧縮機21の冷媒吸入側と吸入管66で接続されている。そして、ポートdは、閉鎖弁26と室外機ガス管64で接続されている。なお、四方弁22が、本発明の流路切替手段である。
室外熱交換器23は、冷媒と、後述する室外ファン27の回転により室外機2の内部に取り込まれた外気を熱交換させるものである。室外熱交換器23の一方の冷媒出入口は、上述したように四方弁22のポートbと冷媒配管62で接続され、他方の冷媒出入口は閉鎖弁25と室外機液管63で接続されている。室外熱交換器23は、後述する四方弁22の切り替えによって、冷房運転時は凝縮器として機能し、暖房運転時は蒸発器として機能する。
膨張弁24は、図示しないパルスモータにより駆動される電子膨張弁である。具体的には、パルスモータに加えられるパルス数によりその開度が調整される。膨張弁24は、圧縮機21から吐出される冷媒の温度である吐出温度が所定の目標温度となるように、その開度が調整される。
室外ファン27は樹脂材で形成されており、室外熱交換器23の近傍に配置されている。室外ファン27は、その中心部が図示しないファンモータの回転軸に接続されている。ファンモータが回転することで室外ファン27が回転する。室外ファン27の回転によって、室外機2の図示しない吸込口から室外機2の内部へ外気を取り込み、室外熱交換器23において冷媒と熱交換した外気を、室外機2の図示しない吹出口から室外機2外部へ放出する。
以上説明した構成の他に、室外機2には各種のセンサが設けられている。図1(A)に示すように、吐出管61には、圧縮機21から吐出される冷媒の圧力を検出する吐出圧力センサ71と、圧縮機21から吐出される冷媒の温度(上述した吐出温度)を検出する吐出温度センサ73が設けられている。吸入管66には、圧縮機21に吸入される冷媒の圧力を検出する吸入圧力センサ72と、圧縮機21に吸入される冷媒の温度を検出する吸入温度センサ74が設けられている。
室外熱交換器23の図示しない冷媒パスの略中間部には、室外熱交換器23の温度である室外熱交温度を検出する熱交温度センサ75が設けられている。そして、室外機2の図示しない吸込口付近には、室外機2の内部に流入する外気の温度、すなわち外気温度を検出する外気温度センサ76が備えられている。
また、室外機2には、室外機制御手段200が備えられている。室外機制御手段200は、室外機2の図示しない電装品箱に格納されている制御基板に搭載されている。図1(B)に示すように、室外機制御手段200は、CPU210と、記憶部220と、通信部230と、センサ入力部240を備えている(なお、本明細書では、室外機制御手段200を単に制御手段ということがある)。
記憶部220は、フラッシュメモリで構成されており、室外機2の制御プログラムや各種センサからの検出信号に対応した検出値、圧縮機21や室外ファン27等の制御状態等を記憶している。また、図示は省略するが、記憶部220には室内機3から受信する要求能力に応じて圧縮機21の回転数を定めた回転数テーブルが予め記憶されている。
通信部230は、室内機3との通信を行うインターフェイスである。センサ入力部240は、室外機2の各種センサでの検出結果を取り込んでCPU210に出力する。
CPU210は、前述した室外機2の各センサでの検出結果を、センサ入力部240を介して取り込む。さらには、CPU210は、室内機3から送信される制御信号を、通信部230を介して取り込む。CPU210は、取り込んだ検出結果や制御信号等に基づいて、圧縮機21や室外ファン27の駆動制御を行う。また、CPU210は、取り込んだ検出結果や制御信号に基づいて、四方弁22の切り替え制御を行う。さらには、CPU210は、取り込んだ検出結果や制御信号に基づいて、室外膨張弁24の開度調整、オイルポンプ81の稼動を行う。
<室内機の構成>
次に、図1(A)を用いて、室内機3について説明する。室内機3は、室内熱交換器31と、室内ファン32と、液管4の他端が接続された液管接続部33と、ガス管5の他端が接続されたガス管接続部34を備えている。そして、室内ファン32を除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室内機冷媒回路10bを形成している。
室内熱交換器31は、冷媒と後述する室内ファン32の回転により室内機3の図示しない吸込口から室内機3の内部に取り込まれた室内空気を熱交換させるものである。室内熱交換器31の一方の冷媒出入口は、液管接続部33と室内機液管67で接続されている。室内熱交換器31の他方の冷媒出入口は、ガス管接続部34と室内機ガス管68で接続されている。室内熱交換器31は、室内機3が冷房運転を行う場合は蒸発器として機能し、室内機3が暖房運転を行う場合は凝縮器として機能する。なお、液管接続部33やガス管接続部34では、各冷媒配管が溶接やフレアナット等により接続されている。
室内ファン32は樹脂材で形成されており、室内熱交換器31の近傍に配置されている。室内ファン31は、図示しないファンモータによって回転することで、室内機3の図示しない吸込口から室内機3の内部に室内空気を取り込み、室内熱交換器31において冷媒と熱交換した室内空気を室内機3の図示しない吹出口から室内へ吹き出す。
以上説明した構成の他に、室内機3には各種のセンサが設けられている。室内機液管67には、室内熱交換器31に流入あるいは室内熱交換器31から流出する冷媒の温度を検出する液側温度センサ77が設けられている。室内機ガス管68には、室内熱交換器31から流出あるいは室内熱交換器31に流入する冷媒の温度を検出するガス側温度センサ78が設けられている。そして、室内機3の図示しない吸込口付近には、室内機3の内部に流入する室内空気の温度、すなわち室温を検出する室温センサ79が備えられている。
<冷媒回路の動作>
次に、第1実施形態における空気調和機1の空調運転時の冷媒回路10における冷媒の流れや各部の動作について、図1(A)を用いて説明する。以下の説明では、まず、室内機3が暖房運転を行う場合について説明し、次に、冷房運転を行う場合について説明する。そして、室外熱交換器23で発生した霜を溶かす熱交除霜運転と、室外ファン27で発生した霜を溶かすファン除霜運転からなる除霜運転を行う場合について説明する。
<<暖房運転>>
室内機3が暖房運転を行う場合、CPU210は、図1(A)に示すように四方弁22を実線で示す状態、すなわち、四方弁22のポートaとポートdが連通するよう、また、ポートbとポートcが連通するよう、切り替える。これにより、冷媒回路10において実線矢印で示す方向に冷媒が循環し、室外熱交換器23が蒸発器として機能するとともに、室内熱交換器31が凝縮器として機能する暖房サイクルとなる。
圧縮機21から吐出された高圧の冷媒は、吐出管61を流れて油分離器28に流入する。圧縮機21から吐出された冷媒には、圧縮機21に滞留していた潤滑油109aが含まれている。この潤滑油109aは、油分離器28で冷媒から分離され、油分離器28から四方弁22のポートaへは冷媒のみが流出する。なお、油分離器28で冷媒から分離された潤滑油109aは、油分離器28から返油管65に流出し、逆止弁82を介してオイルポンプ81に流入し、オイルポンプ81で加圧された後、圧縮機21の下部空間103c2へ直接的に流入する。四方弁22のポートaに流入した冷媒は、四方弁22のポートdから室外機ガス管64を流れて、閉鎖弁26を介してガス管5に流入する。ガス管5を流れる冷媒は、ガス管接続部34を介して室内機3に流入する。
室内機3に流入した冷媒は、室内機ガス管68を流れて室内熱交換器31に流入し、室内ファン32の回転により室内機3の内部に取り込まれた室内空気と熱交換を行って凝縮する。このように、室内熱交換器31が凝縮器として機能し、室内熱交換器31で冷媒と熱交換を行った室内空気が図示しない吹出口から室内に吹き出されることによって、室内機3が設置された室内の暖房が行われる。
室内熱交換器31から流出した冷媒は、室内機液管67を流れ、液管接続部33を介して液管4に流入する。液管4を流れ、閉鎖弁25を介して室外機2に流入した冷媒は、室外機液管63を流れて膨張弁24を通過する際に減圧される。上述したように、暖房運転時の膨張弁24の開度は、圧縮機21の吐出温度が所定の目標温度となるように調整される。
膨張弁24を通過して室外熱交換器23に流入した冷媒は、室外ファン27の回転により室外機2の内部に取り込まれた外気と熱交換を行って蒸発する。室外熱交換器23から冷媒配管62に流出した冷媒は、四方弁22のポートb及びポートc、吸入管66を流れ、圧縮機21に吸入されて再び圧縮される。
<<冷房運転>>
室内機3が冷房運転あるいは除霜運転を行う場合、CPU210は、図1(A)に示すように四方弁22を破線で示す状態、すなわち、四方弁22のポートaとポートbとが連通するよう、また、ポートcとポートdとが連通するよう、切り替える。これにより、冷媒回路10において破線矢印で示す方向に冷媒が循環し、室外熱交換器23が凝縮器として機能するとともに室内熱交換器31が蒸発器として機能する冷房サイクルとなる。
圧縮機21から吐出された高圧の冷媒は、吐出管61を流れて油分離器28に流入する。圧縮機21から吐出された冷媒には、圧縮機21に滞留していた潤滑油109aが含まれている。この潤滑油109aは、油分離器28で冷媒から分離され、油分離器28から四方弁22のポートaへは冷媒のみが流出する。なお、油分離器28で冷媒から分離された潤滑油109aは、油分離器28から返油管65に流出し、逆止弁82を介してオイルポンプ81に流入し、オイルポンプ81で加圧された後、圧縮機21の下部空間103c2へ直接的に流入する。四方弁22のポートaに流入した冷媒は、四方弁22のポートbから冷媒配管62を流れて室外熱交換器23に流入する。室外熱交換器23に流入した冷媒は、室外ファン27の回転により室外機2の内部に取り込まれた外気と熱交換を行って凝縮する。
室外熱交換器23から流出した冷媒は室外機液管63を流れ、膨張弁24を通過する際に減圧される。
膨張弁24を通過した冷媒は、閉鎖弁25を介して液管4に流出する。液管4を流れ、液管接続部33を介して室内機3に流入した冷媒は、室内機液管67を流れて室内熱交換器31に流入する。
室内熱交換器31に流入した冷媒は、室内ファン32の回転により室内機3の内部に取り込まれた室内空気と熱交換を行って蒸発する。このように、室内熱交換器31が蒸発器として機能し、冷房運転の場合は、室内熱交換器31で冷媒と熱交換を行った室内空気が図示しない吹出口から室内に吹き出されることによって、室内機3が設置された室内の冷房が行われる。
室内熱交換器31から流出した冷媒は、室内機ガス管68を流れ、ガス管接続部34を介してガス管5に流出する。ガス管5を流れる冷媒は、閉鎖弁26を介して室外機2に流入し、室外機ガス管64、四方弁22のポートd及びポートc、吸入管66の順に流れ、圧縮機21に吸入されて再び圧縮される。
<<返油運転>>
次に、空気調和機1の返油運転について、図3を参照して説明する。図3は、図1における圧縮機21と返油回路(返油管65、逆止弁82、オイルポンプ81)との構造的関係を模式的に示している。返油運転は、冷媒回路10が暖房運転又は冷房運転される際に、その双方において同じように実行される。
前述したように、圧縮機21から吐出された高圧の冷媒は、吐出管61を流れて油分離器28に流入する。圧縮機21から吐出された冷媒には、圧縮機21に滞留していた潤滑油109aが含まれている。この潤滑油109aは、油分離器28で冷媒から分離され、油分離器28から四方弁22のポートaへは冷媒のみが流出する。油分離器28で冷媒から分離された潤滑油109aは、油分離器28から返油管65に流出し、逆止弁82を介してオイルポンプ81に流入し、オイルポンプ81で加圧された後、圧縮機21の下部空間103c2へ直接的に流入する。
従来の空気調和機1では、図5に示したように、返油回路(返油管65、電磁弁29、減圧器91)の下流側が圧縮機21の冷媒吸入側(圧縮機21外部の低圧側)へ接続しているため、冷媒が潤滑油109aとともに戻ってしまって冷媒循環量が低下したり、圧縮機21へ戻った冷媒を圧縮機21において再圧縮したりするなどによる空気調和機1の能力低下を来す。これに対し、第1実施形態に係る空気調和機1では、図1に示すように、返油回路(返油管65、逆止弁82、オイルポンプ81)は圧縮機21の内部である下部空間103c2へ、すなわち圧縮機21の高圧となる空間へ 直接的に接続しているため、冷媒回路10への冷媒循環量が低下せず、ひいては冷媒の再圧縮が生じず、空気調和機1の能力低下を防止できる。
ここで、圧縮機21の圧縮室105から吐出された冷媒(潤滑油109aを含む)の圧力に対して、返油管65内の圧力が吐出管61、返油管65、油分離器28、逆止弁82による圧力損失等により下部空間103c2内の圧力より低下してしまうことから、圧縮機21の高圧となる空間へ潤滑油109aを戻すにあたっては、潤滑油109aを加圧するオイルポンプ81が必要となる。
図3に示すように、圧縮機21の吐出室114の圧力をP0、電動機室103cの上部空間103c1及び下部空間103c2の圧力をP1、油分離器28の内部の圧力をP2、オイルポンプ81の出口の圧力をP3とすると、オイルポンプ81が稼動しないときの圧力関係は、「P0>P1>P2>P3」となり、潤滑油109aは、圧縮機21の電動機室103cの下部空間103c2ひいては油溜め109へ戻ることができない。
そこで、室外機制御手段200のCPU210は、オイルポンプ81を稼動させて、圧力関係が「P0>P3>P1>P2」となるように潤滑油109aを加圧し、圧縮機21の電動機室103cの下部空間103c2ひいては油溜め109へ潤滑油109aを戻す。
その際、CPU210は、圧縮機21内部の潤滑油109aの量が低下する運転状態(例えば、圧縮機21起動時)下においてオイルポンプ81を動作させる。これにより、吐油の多い場合にのみ、選択的につまり効率的に返油を実行することができる。そして、常に返油することを回避することによって、新たな動力であるオイルポンプ81を含む空気調和機1の全体の消費電力を抑制するものである。
例えば、CPU210は、圧縮機21が起動したことを検出したらオイルポンプ81を動作させるようにしても良い。この場合、オイルポンプ81の動作を停止させる解除条件は、圧縮機21が起動してから経過する所定時間とする。この所定時間は、圧縮機21が起動してから圧縮機21の吐出温度が十分に上昇して圧縮機21内の吐油量が少なくなるまで時間を試験等により予め定めたものである。上記の他、油溜め109の油面高さを検出し、その油面高さが予め定めた高さ(例えば、吸込口112の下端付近)となったらオイルポンプ81を動作させ、その予め定めた高さより低くなったらオイルポンプ81の動作を停止させるようにしてもよい。その後は、上記したような条件下と圧縮機21の回転数が安定している運転状態(安定時)では、吐油量(具体的には、オイル循環率OCR)は数倍以上の差異があることから、潤滑油109aを常時戻すことなく、安定時に1時間に1度の所定時間の割合でオイルポンプ81を動作させるようにしてもよい。
(第2実施形態)
以下、本発明の第2実施形態を、図4に基づいて説明する。図4は、第1実施形態の図3に対応する態様で第2実施形態を示している。第2実施形態は、返油回路(返油管65、逆止弁82、オイルポンプ81)の経路中に加熱手段を設けることにより、返油回路の潤滑油109aの温度低下を防ぎ、起動性能の低下、信頼性の低下を抑制するものである。加熱手段を設けた点以外は第1実施形態と同様の構成を備えるので、加熱手段以外の説明は省略する。
第1実施形態の構成では、低外気温時の起動時等においては、油分離器28で分離した潤滑油109aが、油分離器28やオイルポンプ81、その接続経路である返油管65内で冷却され、圧縮機21内部に返油される際には、外気温度に近い低温状態となって圧縮機温度(潤滑油温度)の上昇を妨げることがある。 そうすると、潤滑油109aが冷媒に希釈されて粘度の低い状態が長く続いてしまうこととなり、圧縮機21の信頼性の低下につながる。
これに対し、第2実施形態では、図4に示すように、返油回路の加熱手段として、油分離器28及びオイルポンプ81にベルトヒータ84を取付け、圧縮機21内の油温が低下するのを防いでいる。ここで、圧縮機21内の油温をTc、外気温度をTa、吐出管61の温度をTdとすると、室外機制御手段200のCPU210は、各部温度の大小関係に応じて、ベルトヒータ84のOn、Offを例えば以下のように切り替える。
(例)・TcがTd若しくはTa以上のとき、Off。それ以外のとき、On。
・Taが一定値(例えば5℃)以上のとき、Off。それ以外のとき、On。
第2実施形態は、以下のような効果を奏する。低外気温度(例えば5℃)時等に発生する、圧縮機21内の油温が低下するのを防ぎ、起動性能(能力)の低下を防止できる。また、油温低下による圧縮機信頼性の低下を防止できる。これらに加えて、圧縮機21の外周に加熱手段を取り付けて圧縮機21内に返油された潤滑油109aを加温する方法(圧縮機21内でのオイル加熱)に対して、熱容量の小さい部位(流路)で加熱するため、潤滑油109aを効率的に加温し、加温による消費電力の増大を抑えることができる。さらに、On/Offを判断して加熱手段を使用するため、消費電力の増大を抑えることができる。
(変形例)
第1及び第2実施形態では、圧縮機21として密閉容器101内に圧縮されて吐出された冷媒が貯まる内部高圧型のスクロール式圧縮機を説明したが、密閉容器101内に吸引された冷媒が貯まる内部低圧型のスクロール式圧縮機を用いて、上記した返油回路(返油管65、逆止弁82、オイルポンプ81)を適用することができる。ただし、そのときは、返油管65は圧縮機21の圧縮室105に接続される。なお、このほかにも、ロータリ式圧縮機を圧縮機21としても差し支えない。
1 空気調和機
2 室外機
3 室内機
4 液管
5 ガス管
10 冷媒回路
10a 室外機冷媒回路
10b 室内機冷媒回路
21 圧縮機
22 四方弁
23 室外熱交換器
24 膨張弁
25 液側閉鎖弁
26 ガス側閉鎖弁
27 室外ファン
28 油分離器
31 室内熱交換器
32 室内ファン
33 液側閉鎖弁
34 ガス側閉鎖弁
61 吐出管
62 冷媒管
63 冷媒管
64 冷媒管
65 返油管(返油回路)
66 吸入管
67 冷媒管
68 冷媒管
71 吐出圧力センサ
72 吸入圧力センサ
73 吐出温度センサ
74 吸入温度センサ
75 熱交温度センサ
76 外気温度センサ
77 液側温度センサ
78 ガス側温度センサ
79 室温センサ
81 オイルポンプ
82 逆止弁
84 ベルトヒータ(加熱手段)
101 密閉容器
102 圧縮部
103 電動機
103a ロータ
103b ステータ
103c 電動機室
103c1 上部空間
103c2 下部空間
104 固定スクロール
104a 吐出孔
105 圧縮室
105a 吸入室
106 旋回スクロール
106a ボス部
107 シャフト
107a 旋回軸
108 メインフレーム
108a サブフレーム
109 油溜め
109a 潤滑油
110 潤滑油送路
111 遠心ポンプ
112 吸込口
113 遠心ファン
114 吐出室
115 ガス抜き孔
200 室外機制御手段(制御手段)
210 CPU
220 記憶部
230 通信部
240 センサ入力部

Claims (3)

  1. 圧縮機及び前記圧縮機の冷媒吐出側に位置する油分離器を含む冷媒回路と、
    前記油分離器で冷媒から分離された潤滑油を前記圧縮機へ戻す返油回路と、
    前記空気調和機を制御する制御手段と、を備え、
    前記返油回路は、前記潤滑油を前記油分離器から前記圧縮機へ戻すオイルポンプと、前記圧縮機から前記油分離器への前記潤滑油の流通を規制する逆止弁とを有し、
    前記制御手段は、前記圧縮機内部の前記潤滑油の量が低下する運転状態であることを検出した とき前記オイルポンプを動作させる、ことを特徴とする空気調和機。
  2. 前記制御手段は、前記圧縮機が起動したら前記オイルポンプを動作させることを特徴とする請求項1に記載の空気調和機。
  3. さらに、前記返油回路に前記潤滑油を加熱する加熱手段を備えることを特徴とする請求項1又は2に記載の空気調和機。
JP2018015147A 2018-01-31 2018-01-31 空気調和機 Pending JP2019132525A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018015147A JP2019132525A (ja) 2018-01-31 2018-01-31 空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018015147A JP2019132525A (ja) 2018-01-31 2018-01-31 空気調和機

Publications (1)

Publication Number Publication Date
JP2019132525A true JP2019132525A (ja) 2019-08-08

Family

ID=67545970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018015147A Pending JP2019132525A (ja) 2018-01-31 2018-01-31 空気調和機

Country Status (1)

Country Link
JP (1) JP2019132525A (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07189959A (ja) * 1993-12-27 1995-07-28 Kobe Steel Ltd 油冷式スクリュ圧縮機潤滑油の除ガス装置
JP2012057596A (ja) * 2010-09-13 2012-03-22 Daikin Industries Ltd 圧縮機及び冷凍装置
JP2015038407A (ja) * 2013-08-19 2015-02-26 ダイキン工業株式会社 冷凍装置
JP2016161163A (ja) * 2015-02-27 2016-09-05 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機
JP2017025899A (ja) * 2015-07-15 2017-02-02 東芝キヤリア株式会社 圧縮機及び冷凍サイクル装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07189959A (ja) * 1993-12-27 1995-07-28 Kobe Steel Ltd 油冷式スクリュ圧縮機潤滑油の除ガス装置
JP2012057596A (ja) * 2010-09-13 2012-03-22 Daikin Industries Ltd 圧縮機及び冷凍装置
JP2015038407A (ja) * 2013-08-19 2015-02-26 ダイキン工業株式会社 冷凍装置
JP2016161163A (ja) * 2015-02-27 2016-09-05 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機
JP2017025899A (ja) * 2015-07-15 2017-02-02 東芝キヤリア株式会社 圧縮機及び冷凍サイクル装置

Similar Documents

Publication Publication Date Title
EP1726893B1 (en) Refrigerant cycle apparatus
EP2009368B1 (en) Refrigerating apparatus
EP2015003B1 (en) Refrigerating apparatus
CN103216963B (zh) 空调及其启动控制方法
US8408018B2 (en) Refrigeration apparatus
JP5510393B2 (ja) 複数段圧縮式冷凍サイクル装置
KR20080111146A (ko) 냉동장치
EP3546850A1 (en) Refrigeration device
JPWO2018198164A1 (ja) 空気調和装置
US20090183524A1 (en) Refrigerating Apparatus
US10851787B2 (en) Compressor bearing housing drain
JP7047416B2 (ja) 空気調和機
JP6255832B2 (ja) 空気調和機
JP2019132525A (ja) 空気調和機
JP7042929B2 (ja) 冷凍サイクル装置
KR100395920B1 (ko) 공기조화기의 기동 제어 시스템 및 그 제어 방법
WO2015104822A1 (ja) 冷凍サイクル装置
JP2007147228A (ja) 冷凍装置
JPWO2020008916A1 (ja) 冷凍サイクル装置およびその制御方法
KR100710312B1 (ko) 공기 조화 시스템 및 그 제어방법
KR100403023B1 (ko) 공기조화기의 실외팬 제어 시스템 및 그 제어 방법
WO2015104823A1 (ja) 冷凍サイクル装置
JP2023003223A (ja) 空気調和装置
JP2022070158A (ja) 空気調和装置
JP2013139904A (ja) 冷凍装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220524