JP2019120473A - Fluidization roasting furnace - Google Patents

Fluidization roasting furnace Download PDF

Info

Publication number
JP2019120473A
JP2019120473A JP2018002345A JP2018002345A JP2019120473A JP 2019120473 A JP2019120473 A JP 2019120473A JP 2018002345 A JP2018002345 A JP 2018002345A JP 2018002345 A JP2018002345 A JP 2018002345A JP 2019120473 A JP2019120473 A JP 2019120473A
Authority
JP
Japan
Prior art keywords
roasting
furnace
roasted
surface vertical
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018002345A
Other languages
Japanese (ja)
Other versions
JP7044995B2 (en
Inventor
井関 隆士
Takashi Izeki
隆士 井関
幸弘 合田
Sachihiro Aida
幸弘 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018002345A priority Critical patent/JP7044995B2/en
Publication of JP2019120473A publication Critical patent/JP2019120473A/en
Application granted granted Critical
Publication of JP7044995B2 publication Critical patent/JP7044995B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

To provide a fluidization roasting furnace capable of improving quality and the rate of collection after roasting even with respect to objects to be roasted that cause gas due to roasting.SOLUTION: A fluidization roasting furnace 10 is provided with a cylindrical furnace core 11 where objects to be roasted are roasted by using gas flowing from downstream to upstream. The cylindrical furnace core 11 has a plurality of inner surface vertical parts 17 different in in-furnace cross-sectional area in a region in a height direction where a fluidized layer in which the objects to be roasted are roasted is formed. The in-furnace cross-sectional area of the inner surface vertical part 17 positioned above is larger than the in-furnace cross-sectional area of the inner surface vertical part 17 positioned below. In this construction, even when gas is generated by roasting the objects to be roasted, a volume increase of the generated gas is absorbed by the inner surface vertical part 17 above, so that speed of fluidized gas is maintained evenly in the fluidized layer. Thus, quality of the objects to be roasted after roasting and the rate of collection are improved.SELECTED DRAWING: Figure 1

Description

本発明は、流動焙焼炉に関する。さらに詳しくは、高品位が要求される被焙焼物を焙焼可能な流動焙焼炉に関する。   The present invention relates to a fluid roaster. More particularly, the present invention relates to a fluidized roaster capable of roasting a roasted toast that requires high quality.

一般的に、流動焙焼炉は、原料単独、もしくは流動媒体を用いてガスを供給しながら焙焼対象の粒状の原料をあたかも流体のように浮遊させることによって媒体との混合状態をつくり上げ、効率的に焙焼する装置である。焙焼対象の原料と流動媒体とを混合させた状態で焙焼することにより原料と流動媒体とが衝突しながら焙焼が進み、また、原料が流動層内に比較的長時間滞留できるため、効率的に焙焼することができる。   In general, a fluidized roasting furnace creates a mixed state with a medium by floating granular material to be roasted as if it were a fluid, while supplying a gas using a raw material alone or a fluidized medium, It is a device that roasts By performing roasting in a state in which the raw material to be roasted and the fluid medium are mixed, the roasting proceeds while the raw material and the fluid medium collide, and the raw material can be retained in the fluid bed for a relatively long time, It can be roasted efficiently.

このような流動焙焼炉を用いて供給した原料に対する焙焼を確実に行うためには、ガスの流速を、原料(以下、本明細書において「被焙焼物」と称することがある)と流動媒体との混合物の空塔速度が、最小流動化速度以上、終末速度未満の範囲となるように正確に制御されなければならない。   In order to ensure the roasting of the raw material supplied using such a flow roasting furnace, the flow rate of the gas flows with the raw material (hereinafter, may be referred to as "the to-be-baked material" in the present specification) The superficial velocity of the mixture with the medium must be precisely controlled to be in the range above the minimum fluidization velocity and below the terminal velocity.

ここで、「空塔速度」とは、ガス流量/炉内断面積で求められる実速度である。ここで「炉内断面積」は、炉芯の軸心に垂直な平面における炉内の面積をいう。また、「最小流動化速度」とは、粉体(被焙焼物と流動媒体との混合物)が流動を始める最小の速度である。「終末速度」とは、流動層から粉体が上昇して飛び出し始める速度をいう。   Here, the "empty velocity" is an actual velocity obtained by gas flow rate / cross-sectional area in the furnace. Here, "in-furnace cross-sectional area" refers to the area in the furnace in a plane perpendicular to the axis of the furnace core. Also, the "minimum fluidization velocity" is the minimum velocity at which the powder (the mixture of the roasted product and the fluid medium) starts to flow. The term "end velocity" refers to the velocity at which powder begins to rise and pop out of the fluid bed.

上記のように速度制御が正確に行われる必要があるのは、以下のような理由のためである。すなわち、供給するガスの流速が、原料と流動媒体との混合物の「最小流動化速度」未満であると、原料が流動化しないために焙焼が均一に進まず、原料の凝集が発生する等の問題が生じる。   As described above, the speed control needs to be performed accurately for the following reasons. That is, if the flow velocity of the supplied gas is less than the "minimum fluidization velocity" of the mixture of the raw material and the fluid medium, the raw material is not fluidized and roasting does not proceed uniformly, so that aggregation of the raw material occurs Problems arise.

一方で、ガスの流速がその混合物の「終末速度」以上であると、流速が速すぎて原料または流動媒体がガスと共に流されてしまい、効果的に焙焼を施すことができないという問題、または回収率が大きく低下するという問題が生じる。   On the other hand, if the flow rate of the gas is equal to or higher than the “end velocity” of the mixture, the flow rate is too fast and the raw material or the fluid medium is made to flow together with the gas. There is a problem that the recovery rate is greatly reduced.

つまり、流動焙焼では、ガス流量を適切な範囲内で制御して、原料を焙焼に足る時間、流動層内で流動化させることが必要となる。   That is, in the fluid roasting, it is necessary to control the gas flow rate within an appropriate range to fluidize the raw material in the fluid bed for a time sufficient for roasting.

特許文献1、2には、上で記載した流動焙焼炉の構成が開示されている。これらの流動焙焼炉は、工業的に生産を行うためにいくつかの問題点が挙げられる。以下に記載した4つは、そのうちの重要と考えられるものである。   Patent Literatures 1 and 2 disclose the configuration of the above-described fluidized roasting furnace. These fluidized roasters have several problems in order to produce them industrially. The four listed below are considered to be important among them.

第1の問題点として、連続処理が困難であるという点である。効率化の観点から、連続処理に際しては、原料を連続的に投入する。この際、焙焼中の原料と焙焼されていない原料とが混ざってしまい、効率的に焙焼を行うことができないと、被焙焼物の品質が低下したことになり好ましくない。   The first problem is that continuous processing is difficult. From the viewpoint of efficiency, raw materials are continuously fed in continuous processing. Under the present circumstances, if the raw material in roasting and the raw material which is not roasted mix, and it is not possible to carry out roasting efficiently, it will be that the quality of a roasting thing fell and it is unpreferable.

上記の問題を解決するために、原料投入口と原料回収口とを離して原料が投入口から回収口へ向かうようにすることも考えられるが、流動焙焼の場合には、粒状の原料が流体の如く流動化しているため、投入直後の焙焼されていない原料と、暫く炉内を浮遊して焙焼が進んだ原料とがすぐに混ざってしまい、焙焼が完了した原料だけを回収することはできず、どうしても焙焼が不十分な原料も混合した状態で回収される。このため、品質的に低いものが回収され、また、焙焼効率も悪くなってしまう。   In order to solve the above problems, it is conceivable to separate the raw material inlet and the raw material recovery port so that the raw material travels from the inlet to the recovery port, but in the case of fluidized roasting, the granular raw material is Since it fluidizes like a fluid, the raw material which has not been roasted immediately after charging and the raw material which floats in the furnace for a while and which has been roasted immediately mixes with it, and only the raw material which has been roasted is recovered It is impossible to do this, and raw materials that are not sufficient for roasting are recovered in a mixed state. For this reason, a thing low in quality will be collect | recovered, and a roasting efficiency will also worsen.

特許文献1には、古砂ダストを流動焙焼炉の焙焼室内に供給し、その焙焼室内に置いて流動焙焼させ、焙焼室内に形成される流動層の上部位置に開口する溢流口からオーバーフローさせて、再生処理ダストとして回収する技術が開示されている。ここで古砂ダストは、鋳物古砂再生用の管乾式再生機で発生したダストを集じんして得たものである。また、流動焙焼炉の底部には、珪砂をベース砂として収容されている。   According to Patent Document 1, old sand dust is supplied into the roasting chamber of the fluidized roasting furnace, placed in the roasting chamber, fluidized roasted, and overflowed at the upper position of the fluidized bed formed in the roasting chamber. There is disclosed a technique of overflowing from a flow port and recovering as recycled dust. Here, the old sand dust is obtained by collecting the dust generated by the pipe type dry regenerator for regenerating cast old sand. In addition, silica sand is accommodated as the base sand at the bottom of the fluidized roasting furnace.

加えて、シュートの投入口部に設けた圧縮空気吹込管で、その先端に形成したノズルから圧縮空気がシュートの出口に向って吹き込まれるようになっていることも開示されている。すなわち、古砂ダストをシュートに向かって圧縮空気を吹き込みながら炉内に供給し、溢流口から古砂ダストをオーバーフローさせて回収している。   In addition, it is also disclosed that compressed air is blown toward the outlet of the chute from a nozzle formed at the tip of the compressed air blowing pipe provided at the inlet of the chute. That is, the old sand dust is supplied into the furnace while blowing compressed air toward the chute, and the old sand dust is overflowed and collected from the overflow port.

特許文献1で開示されている流動焙焼炉では、古砂ダストの供給高さ位置と溢流口(回収口)の高さ位置とがほとんど同じであることから、流動化している古砂ダストについて、焙焼されたものだけが確実に溢流口からオーバーフローして回収されることはない。   In the fluidized-bed roaster disclosed in Patent Document 1, the old sand dust is fluidized since the old sand dust supply height position is almost the same as the height position of the overflow (recovery port). For sure, only those that have been roasted can not overflow and be recovered from the overflow.

すなわち、流動化し焙焼中の古砂ダストの中に、次々に焙焼前の古砂ダストが供給されるため、溢流口から回収されている古砂ダストには焙焼が不十分な古砂ダストが混在する。そのためこの点で連続処理が困難である。   That is, since old sand dust before roasting is supplied one after another into old sand dust being fluidized and roasted, old sand dust collected from the overflow port is old that roasting is insufficient Sand dust is mixed. Therefore, continuous processing is difficult at this point.

上記第1の問題点に対し、特許文献1に開示の方法で、可能な限り焙焼が進んだ古砂ダストを回収するためには、古砂ダストの供給速度を極力遅くする必要があると考えられる。ただし、この場合流動焙焼炉による処理は、非常に効率の悪いものとなり、やはり連続処理は困難である。   With respect to the first problem described above, it is necessary to slow the supply speed of old sand dust as much as possible in order to recover old sand dust that has been roasted as much as possible by the method disclosed in Patent Document 1 Conceivable. However, in this case, the treatment with the fluidized roasting furnace becomes very inefficient, and again, continuous treatment is difficult.

第2の問題点としては、焙焼後に焙焼に用いられたガスと焙焼後の被焙焼物とを分離することが困難であるという点である。   The second problem is that it is difficult to separate the gas used for roasting after roasting and the roasted material after roasting.

特許文献2には、金属鉄源を流動焙焼炉で酸化焙焼する工程と、焙焼炉の溢流口より排出された粗粒子の酸化層を剥離する工程と、剥離工程後の酸化鉄と金属鉄粉を流動焙焼炉に循環する工程と、生成した微粉酸化鉄を焙焼ガスと共に流出させて焙焼ガス中より捕捉回収する工程とからなる高品位酸化鉄の製造方法が開示されている。   In Patent Document 2, a step of oxidizing and roasting a metal iron source in a fluidized roasting furnace, a step of peeling off an oxide layer of coarse particles discharged from an overflow port of the roasting furnace, and iron oxide after the peeling step A process for producing high-grade iron oxide is disclosed, which comprises the steps of: circulating the metal iron powder in a fluidized roasting furnace, and flowing out the produced finely powdered iron oxide together with the roasting gas to capture and recover from the roasting gas. ing.

しかしながら特許文献2には、微粉酸化鉄を焙焼ガスと共に流出させて焙焼ガス中より捕捉回収すると記載されているものの、具体的にどのように微粉酸化鉄を焙焼ガスと共に流出させるかについては明確に示されていない。すなわち、微粉酸化鉄と焙焼ガスとをどのように効率的に分離し、微粉酸化鉄を捕捉回収するかについては全く不明である。   However, although it is described in Patent Document 2 that the finely powdered iron oxide is made to flow out with the torrefaction gas and captured and recovered from the torrefaction gas, specifically how to flow out the finely divided iron oxide with the torrefaction gas Is not clearly shown. That is, how to separate finely powdered iron oxide and roasting gas efficiently and to capture and recover finely powdered iron oxide is completely unknown.

また、特許文献2には、剥離酸化皮膜を流動焙焼炉排ガスに随伴させて炉外に排出させることも開示されているが、どのような方法で流動焙焼炉排ガスに随伴させ炉外に排出させるのかについても不明確である。   Further, Patent Document 2 also discloses that the exfoliated oxide film is caused to accompany the flowing roasting furnace exhaust gas and discharged out of the furnace, but it is accompanied by the flowing roasting furnace exhaust gas by any method and it is disclosed outside the furnace It is also unclear as to whether it will be discharged.

第3の問題点は、焙焼を行う被焙焼物によって求められる製品の純度などが異なる点である。流動焙焼炉の原料の具体的な例を挙げて説明する。その原料として、例えば2次電池の材料として多く用いられる酸化ニッケル(NiO)は、純度などの点で非常に厳しい被焙焼物となる。酸化ニッケルは、硫酸ニッケル(NiSO)を含有する水溶液にアルカリを添加し、中和して水酸化ニッケル(Ni(OH))を得て、その水酸化ニッケルを焙焼して製造される。 The third problem is that the product purity and the like required for the roasted material to be roasted differ. The specific example of the raw material of a fluidized roasting furnace is mentioned and demonstrated. For example, nickel oxide (NiO), which is often used as a material of secondary batteries as its raw material, becomes a very hard-to-heat roasted product in terms of purity and the like. Nickel oxide is produced by adding an alkali to an aqueous solution containing nickel sulfate (NiSO 4 ) to neutralize it to obtain nickel hydroxide (Ni (OH) 2 ) and roasting the nickel hydroxide. .

この酸化ニッケルについては、得られた酸化ニッケルに含まれた不純物の硫黄品位が高く、例えば100ppmを超えると、酸化ニッケルから製造した電池の特性を低下させる等の影響が生じるなど好ましくない。このため、洗浄等の前処理で付着した硫黄を除去するとともに、均一かつ確実に焙焼して硫黄を低減することが欠かせない。すなわち特許文献1等で開示されている流動焙焼炉の構成では、所定の原料に対して焙焼の均一性を十分に上げることができないという問題がある。   With respect to this nickel oxide, the sulfur grade of the impurities contained in the obtained nickel oxide is high, for example, when it exceeds 100 ppm, it is not preferable because the influence of lowering the characteristics of the battery manufactured from nickel oxide occurs. For this reason, it is essential to reduce sulfur by roasting uniformly and reliably while removing the sulfur adhering by pretreatments, such as washing. That is, in the configuration of the fluidized roasting furnace disclosed in Patent Document 1 etc., there is a problem that the uniformity of roasting can not be sufficiently improved for a predetermined raw material.

第4の問題点は、焙焼を行う被焙焼物の特性に関する点である。前述の水酸化ニッケルの流動焙焼に際しては、発生するガスの影響を考慮する必要もある。つまり、水酸化ニッケルを焙焼して酸化ニッケルが生成するのと同時に、水酸化ニッケルの分解に伴って水(HO)、すなわち水蒸気ガスも発生する。この発生した水蒸気ガスの体積によって流動焙焼炉内での流速が急激に上昇し、その結果被焙焼物が不完全な焙焼のまま流出させられ、品質と回収率が低下する問題を生じる。 The fourth problem relates to the characteristics of the roasted material to be roasted. In the case of the above-mentioned fluid roasting of nickel hydroxide, it is also necessary to consider the influence of the generated gas. That is, at the same time as the nickel hydroxide is roasted to form nickel oxide, water (H 2 O), that is, water vapor gas is also generated along with the decomposition of the nickel hydroxide. Due to the volume of the generated steam gas, the flow velocity in the fluidized roasting furnace is rapidly increased, and as a result, the roasted material is discharged as it is with incomplete roasting, causing a problem that the quality and the recovery rate decrease.

上記の焙焼に伴って発生したガスによる影響は、水酸化ニッケルなどの場合以外でも、例えば銅精鉱を焙焼して砒素を分離しようとする際にも生じる。すなわち、銅精鉱が不活性ガス中で焙焼されると砒素の硫化物が気体となって生成し、銅精鉱が炉外に流し出されてしまう。   The influence of the gas generated with the above-described roasting also occurs, for example, when roasting copper concentrate to separate arsenic, other than in the case of nickel hydroxide and the like. That is, when copper concentrate is roasted in an inert gas, arsenic sulfide is formed as a gas, and copper concentrate is flushed out of the furnace.

この第4の問題点に対して、焙焼によってガスが発生する場合、流動焙焼炉から未反応原料の排出を防止するためには、発生するガスの量をあらかじめ予測し、発生ガス量に相当する量の流動化に送気するガス量を減少することが必要となる。しかし上記の水蒸気ガスなどは流動層内で焙焼反応に伴って発生するものであり、流動化のためのガス供給量を一律に減少すると、流動化が生じなくなり反応が進まなくなったり、過剰の流量となって目的とする焙焼が円滑に進まなくなったりする課題が生じる。   With respect to the fourth problem, in the case where gas is generated by roasting, in order to prevent the discharge of the unreacted raw material from the fluidized roasting furnace, the amount of gas to be generated is predicted in advance, and It is necessary to reduce the amount of gas delivered to a corresponding amount of fluidization. However, the above-mentioned steam gas and the like are generated along with the sinter reaction in the fluidized bed, and if the gas supply amount for fluidization is uniformly reduced, the fluidization does not occur and the reaction does not proceed, or the excess does not occur. It becomes a flow rate, and the subject that the target roasting does not advance smoothly arises.

この第4の問題点に対して、特許文献1では、流動焙焼炉の炉心本体の出口側に炉内断面積を拡大した部分を設置し、流動焙焼炉の炉内を流れてきたガスならびに被焙焼物の流速を断面積の広がりによって低減させて、焙焼が不十分な原料が排出されることを防いでいる。   With respect to the fourth problem, in Patent Document 1, a gas with an expanded cross-sectional area is provided on the outlet side of the core body of the fluidized-bed firing furnace, and the gas flowing in the furnace of the fluidized-bed roasting furnace Also, the flow velocity of the to-be-baked product is reduced by the spread of the cross-sectional area to prevent the discharge of the insufficiently roasted raw material.

特開2000−42515号公報JP 2000-42515 A 特開昭61−236616号公報Japanese Patent Application Laid-Open No. 61-236616

上記第3および第4の問題点に対し、特許文献1に記載の流動焙焼炉の炉心本体の出口側に炉内断面積を拡大した部分が設置された場合、すなわち流動焙焼を行っている流動層より上の部分で、炉内断面積を拡大した部分が設置された場合、流動焙焼が行なわれている流動層が形成されている部分では、炉内断面積が上下で変化しない直筒形状であるので、発生したガスにより、流動層内部で流動用ガスの速度が不均一となりやすく、そのため、被焙焼物が完全に焙焼されずに炉心本体の出口側に向うことが多く、品質と回収率が低下するという問題がある。   With respect to the above third and fourth problems, when a portion with an enlarged cross section in the furnace is installed on the outlet side of the core body of the fluidized bed calciner described in Patent Document 1, that is, fluidized roasting is performed. When a portion where the cross-sectional area in the furnace is enlarged is installed in the part above the existing fluidized bed, the cross-sectional area in the furnace does not change up and down in the part where the fluidized bed is being formed Because of the straight cylinder shape, the generated gas tends to make the velocity of the fluidizing gas nonuniform within the fluidized bed, and therefore, the to-be-baked product is often not fully burned but directed toward the outlet side of the core body. There is a problem that the quality and recovery rate decrease.

本発明は上記事情に鑑み、焙焼によりガスが発生する被焙焼物であっても、焙焼後の品質と回収率を高くすることができる流動焙焼炉を提供することを目的とする。   An object of the present invention is to provide a fluidized roasting furnace capable of enhancing the quality and recovery rate after roasting even if the roasted product generates gas due to roasting, in view of the above circumstances.

第1発明の流動焙焼炉は、下側から上側へ向けて流れるガスを用いて被焙焼物が焙焼される筒状炉心部が設けられ、該筒状炉心部は、前記被焙焼物が焙焼される流動層が形成されている高さ方向の領域において、炉内断面積が異なる複数の内面鉛直部を有し、上側に位置する前記内面鉛直部の炉内断面積が、下側に位置する前記内面鉛直部の炉内断面積よりも大きいことを特徴とする。
第2発明の流動焙焼炉は、第1発明において、前記筒状炉心部は、3以上の前記内面鉛直部を有することを特徴とする。
第3発明の流動焙焼炉は、第1発明または第2発明において、最下段に位置する前記内面鉛直部よりも上側に位置する前記内面鉛直部の炉内断面積が、最下段に位置する前記内面鉛直部の炉内断面積の1.5倍以上5倍以下であることを特徴とする。
第4発明の流動焙焼炉は、第1発明から第3発明のいずれかにおいて、炉内断面積が異なる複数の前記内面鉛直部のうち、2つの前記内面鉛直部の焙焼温度の設定が異なっていることを特徴とする。
The fluidized-bed roasting furnace according to the first aspect of the present invention is provided with a cylindrical core portion in which a roasted material is roasted using gas flowing from the lower side to the upper side, and the cylindrical core portion In the region in the height direction in which the fluidized bed to be roasted is formed, the cross-sectional area of the inner vertical portion of the inner vertical portion located on the upper side has a lower side It is characterized by being larger than the cross-sectional area in the furnace of the above-mentioned inner surface perpendicular part located in.
A second aspect of the present invention is characterized in that, in the first aspect, the tubular core portion has three or more of the inner surface vertical portions.
In the flow roasting furnace according to the third aspect of the present invention, in the first aspect or the second aspect of the present invention, the cross section in the furnace of the inner surface vertical portion located above the inner surface vertical portion located in the lowermost position is located in the lowest position. It is characterized by being 1.5 times or more and 5 times or less the cross-sectional area in a furnace of the above-mentioned inner surface perpendicular part.
In the fluidized roasting furnace according to the fourth aspect of the present invention, in any one of the first aspect to the third aspect of the present invention, the setting of the roasting temperature of two of the inner surface vertical portions among the plurality of inner surface vertical portions having different furnace cross-sectional areas It is characterized by being different.

第1発明によれば、流動焙焼炉を形成する筒状炉心部が、流動層が形成される高さ方向の領域で、炉内断面積が異なる複数の内面鉛直部を有し、上側が下側よりも炉内断面積が大きいことから、被焙焼物の焙焼によりガスが発生した場合でも、発生したガスの体積増加分が上側の内面鉛直部で吸収されるため、流動層内部で流動用ガスの速度が均一に維持される。このため焙焼後の被焙焼物の品質と回収率が向上する。
第2発明によれば、筒状炉心部が3以上の内面鉛直部を有しているので、下から上に向けて段階的に炉内断面積を増やすことができるため、流動層内部で流動用ガスの速度がより均一に維持される。
第3発明によれば、上側の内面鉛直部の炉内断面積が、最下段の内面鉛直部の炉内断面積の1.5倍以上5倍以下であることにより、水蒸気などガス流量が大きく増える場合でも流動層内部で流動用ガスの速度を均一に維持できる。
第4発明によれば、2つの内面鉛直部の焙焼温度の設定が異なることにより、段階的に焙焼を進行させることができ、流動層内部で流動用ガスの速度がさらに均一に維持される。
According to the first aspect of the present invention, the cylindrical core portion forming the fluidized-bed roasting furnace has a plurality of inner surface vertical parts different in cross-sectional area in the furnace in the region in the height direction where the fluidized bed is formed Since the cross-sectional area in the furnace is larger than that on the lower side, the volume increase of the generated gas is absorbed by the inner surface vertical part on the upper side even when the gas is generated due to the roasting of the to-be-baked product. The velocity of the fluidizing gas is maintained uniform. This improves the quality and recovery of the roasted product after roasting.
According to the second aspect of the present invention, since the cylindrical core portion has three or more inner surface vertical portions, the cross-sectional area in the reactor can be increased stepwise from the bottom to the top, so that the fluid flow inside the fluidized bed The gas velocity is maintained more uniformly.
According to the third invention, the in-furnace cross-sectional area of the upper inner surface vertical portion is 1.5 to 5 times the in-furnace cross-sectional area of the lowermost inner surface vertical portion, so that the gas flow rate such as water vapor is large Even if the flow rate is increased, the velocity of the fluidizing gas can be maintained uniformly in the fluidized bed.
According to the fourth aspect of the present invention, by setting the roasting temperatures of the two inner surface vertical parts differently, the roasting can be progressed stepwise, and the velocity of the fluidizing gas can be maintained more uniformly inside the fluidized bed. Ru.

本発明の第1実施形態に係る流動焙焼炉の正面方向からの断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing from the front direction of the fluidized-bed roasting furnace which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る流動焙焼炉の正面方向からの断面図である。It is sectional drawing from the front direction of the fluidized-bed roasting furnace which concerns on 2nd Embodiment of this invention.

つぎに、本発明の実施形態を図面に基づき説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための流動焙焼炉およびその運転方法を例示するものであって、本発明は流動焙焼炉およびその運転方法を以下のものに特定しない。なお、各図面が示す部材の大きさまたは位置関係等は、説明を明確にするため誇張していることがある。   Next, an embodiment of the present invention will be described based on the drawings. However, the embodiments shown below exemplify a fluidized roasting furnace for embodying the technical idea of the present invention and an operating method thereof, and the present invention relates to a fluidized roasting furnace and an operating method thereof as follows. Not specific to Note that the size or positional relationship of members shown in each drawing may be exaggerated for the sake of clarity.

(第1実施形態)
図1には、本発明の第1実施形態に係る流動焙焼炉10の正面方向からの断面図を示す。図1において黒色の太線矢印は、流動用ガスの流れ方向を示している。本実施形態の流動焙焼炉10には、筒状炉心部11が、軸心を鉛直にした状態で設けられている。この筒状炉心部11の下部には固定層15が設けられている。固定層15は例えば球状のアルミナなどのセラミックスを充填したものを用いることができ、セラミックスはポーラスであってよく、高い充填率のものであってよい。そして被焙焼物が固定層15の下に落ち込まないように固定層15を何層かで構成してもよい。例えば固定層15の下側を球状のアルミナを用い、固定層15の上側をより小さな球状のアルミナを用いてもよい。この固定層15の下面には、筒状炉心部11の下部から流動用ガスを導入するための流動用ガス導入管12が設けられている。この流動用ガス導入管12から太線矢印で示す向きに流動用ガスが供給されることで、固定層15の上に位置している流動媒体31および原料32が流動化して流動層が生じ、この流動層内で原料32が浮遊した状態で焙焼が行なわれる。
First Embodiment
FIG. 1 shows a cross-sectional view from the front direction of the fluidized-bed roasting furnace 10 according to the first embodiment of the present invention. In FIG. 1, black thick arrows indicate the flow direction of the fluidizing gas. A cylindrical core portion 11 is provided in the flow roasting furnace 10 of the present embodiment in a state where the axis is vertical. A fixed bed 15 is provided below the cylindrical core portion 11. The fixed layer 15 may be, for example, one filled with a spherical ceramic such as alumina, and the ceramic may be porous and may have a high filling rate. Then, the fixed layer 15 may be composed of several layers so that the roasted object does not fall below the fixed layer 15. For example, spherical alumina may be used below the fixed layer 15 and smaller spherical alumina may be used above the fixed layer 15. A flow gas introduction pipe 12 for introducing flow gas from the lower portion of the cylindrical core portion 11 is provided on the lower surface of the fixed layer 15. Since the fluidizing gas is supplied from the fluidizing gas inlet pipe 12 in the direction indicated by the thick arrow, the fluidizing medium 31 and the raw material 32 located on the fixed bed 15 are fluidized to form a fluidizing bed. The roasting is carried out with the raw material 32 suspended in the fluidized bed.

筒状炉心部11の下部には、流動媒体31等を一定の温度に保持するためのヒータ13が設けられている。なおこのヒータ13は原料32によっては設けられない場合もある。ヒータ13が用いられない場合は、例えば高温の流動用ガスを流して流動焙焼してもよい。   At the lower part of the cylindrical core portion 11, a heater 13 for holding the flowing medium 31 or the like at a constant temperature is provided. The heater 13 may not be provided depending on the raw material 32. In the case where the heater 13 is not used, for example, a high temperature fluidizing gas may be flowed to carry out the flow roasting.

筒状炉心部11に供給する原料32は、筒状炉心部11の側部に設けられた原料投入管14により適宜投入される。そして原料投入管14は原料投入後、蓋またはバルブで閉じる。   The raw material 32 to be supplied to the cylindrical core portion 11 is appropriately charged by the raw material charge pipe 14 provided on the side of the cylindrical core portion 11. Then, the raw material feeding pipe 14 is closed by a lid or a valve after the raw material feeding.

本実施形態の流動焙焼炉10の筒状炉心部11は、炉内断面積が異なる複数の内面鉛直部17を有する。本実施形態では、内面鉛直部17の断面は円形状である。これらの内面鉛直部17は、拡大部16によって互いに連結され一体となることで、筒状炉心部11が形成されている。本実施形態では内面鉛直部17は2つ設けられており、上側に位置する内面鉛直部17bの炉内断面積は、下側に位置する内面鉛直部17aの炉内断面積よりも大きくなっている。そして、被焙焼物が焙焼される流動層は、2つの内面鉛直部17に亘って形成されている。すなわち本実施形態で流動層は、下側の内面鉛直部17の高さ方向の領域の一部と、上側の内面鉛直部17の高さ方向の領域の一部とに亘って形成されている。ただし流動層は、いずれかの内面鉛直部17の高さ方向の全部に亘って形成される場合もある。なお本明細書では、内面鉛直部の全てを意味する場合は符号17とし、断面積が異なるそれぞれの内面鉛直部を意味する場合は符号17a、17bのように表示する。   The cylindrical core portion 11 of the fluidized bed roasting furnace 10 of the present embodiment has a plurality of inner surface vertical portions 17 having different cross-sectional areas in the reactor. In the present embodiment, the cross section of the inner surface vertical portion 17 is circular. The cylindrical core portion 11 is formed by connecting and integrating the inner surface vertical portions 17 with each other by the enlarged portions 16. In the present embodiment, two inner surface vertical parts 17 are provided, and the cross-sectional area in the furnace of the inner surface vertical part 17b located on the upper side is larger than the cross-sectional area in the furnace of the inner surface vertical part 17a located on the lower side There is. The fluidized bed in which the to-be-baked product is roasted is formed across the two inner surface vertical parts 17. That is, in the present embodiment, the fluidized bed is formed over part of the area in the height direction of the lower inner surface vertical part 17 and part of the area in the height direction of the upper inner surface vertical part 17 . However, the fluidized bed may be formed over the entire height direction of any one of the inner surface vertical parts 17. In the present specification, when all of the inner surface vertical parts are meant, reference numeral 17 is used, and when the inner surface vertical parts having different cross-sectional areas are meant, reference numerals 17a and 17b are used.

流動焙焼炉10を形成する筒状炉心部11が、流動層が形成される高さ方向の領域で、炉内断面積が異なる複数の内面鉛直部17を有し、上側が下側よりも炉内断面積が大きいことから、被焙焼物の焙焼によりガスが発生した場合でも、発生したガスの体積増加分が上側の内面鉛直部で吸収されるため、流動層内部で流動用ガスの速度が均一に維持される。このため焙焼後の被焙焼物の品質と回収率が向上する。   The cylindrical core portion 11 forming the fluidized bed roasting furnace 10 has a plurality of inner surface vertical parts 17 having different sectional areas in the furnace in a region in the height direction where the fluidized bed is formed, and the upper side is more than the lower side Since the cross-sectional area in the furnace is large, even when gas is generated by roasting of the to-be-baked object, the volume increase of the generated gas is absorbed by the upper surface vertical portion on the upper side. The speed is maintained uniformly. This improves the quality and recovery of the roasted product after roasting.

上側の内面鉛直部17bの炉内断面積は、最下段である下側の内面鉛直部17aの炉内断面積の1.2倍以上から10倍以下程度の範囲とする。さらに安定した流動焙焼を継続する点で、上側の内面鉛直部17bの炉内断面積は、最下段である下側の内面鉛直部17aの炉内断面積の1.5倍以上5倍以下の断面積とすることが好ましい。炉内断面積が1.2倍未満の場合、流速の変化が少なく安定性が保ちにくく、一方10倍を超えても効果に差は少なく、設備費または体積が増加するなど好ましくない。   The cross-sectional area in the furnace of the upper inner surface vertical portion 17b is in the range of about 1.2 to 10 times the cross-sectional area in the furnace of the lower inner surface vertical portion 17a which is the lowermost stage. The cross-sectional area in the furnace of the upper inner surface vertical portion 17b is 1.5 times to 5 times the cross-sectional area of the lower inner surface vertical portion 17a at the point of continuing the stable flow roasting. It is preferable to set the cross-sectional area of If the cross-sectional area in the furnace is less than 1.2 times, the change in flow velocity is small and it is difficult to maintain stability.

なお、断面積の差が生じる部分をつなぐ部分である拡大部16は水平であってもかまわないが、図1に示すように、炉芯側に向かって下がるように傾斜を設けて連結する構造が好ましい。このような構造とすることで、流動用ガスの流れがない空白部分が生じるのを防ぐことができ、被焙焼物が拡大部16に堆積するのを防止できるからである。   In addition, although the enlarged part 16 which is a part which connects the part which the difference in cross-sectional area produces may be horizontal, as shown in FIG. 1, it is a structure which provides an inclination so that it may go down toward the furnace core side and connects. Is preferred. With such a structure, it is possible to prevent the occurrence of a blank portion where there is no flow of the flow gas, and it is possible to prevent the to-be-baked product from being deposited on the enlarged portion 16.

また、拡大部16の炉外側にノッカー、バイブレータ、または超音波振動子等の振動を発生する装置を設けたり、外部からガスを吹き込む装置を設けたりして、堆積した被焙焼物を炉芯内に払い落とせる機構を設けることもできる。   In addition, a device for generating vibrations such as a knocker, a vibrator, or an ultrasonic transducer is provided outside the furnace of the enlarged portion 16 or a device for blowing gas from the outside is provided. It is also possible to provide a mechanism that can be paid off.

水酸化ニッケル(Ni(OH))は、焙焼温度によって被焙焼物の性状が大きく変化したり、性状の異なるガスが発生したりする。このような原料の場合、焙焼温度が一つの温度帯の中に位置しているとガスが一気に発生したり、被焙焼物の性状が一気に変わって、均一な流動ができなくなったりする。そして、発生したガスによって被焙焼物が、焙焼が不完全な状態で持ち出される場合がある。 In nickel hydroxide (Ni (OH) 2 ), the properties of the to-be-baked product change greatly depending on the to-be-baked temperature, or gases having different properties are generated. In the case of such a raw material, if the roasting temperature is located in one temperature zone, gas will be generated at a stretch, or the properties of the roasted product will change at a stretch, and uniform flow can not be achieved. Then, the to-be-fired roasted product may be brought out in a state where the roasting is incomplete due to the generated gas.

具体的に、水酸化ニッケルでは、100℃でまず含有水分が揮発し、次に300℃前後で水酸基(OH基)が分解して水蒸気が発生し、さらに700℃前後で含有する硫黄が飛び始める。   Specifically, in nickel hydroxide, the contained water first evaporates at 100 ° C., then the hydroxyl group (OH group) is decomposed at about 300 ° C. to generate steam, and the contained sulfur starts to fly at about 700 ° C. .

本実施形態の流動焙焼炉10では、流動焙焼炉10の筒状炉心部11に、複数の内面鉛直部17を持つ構造としたうえで、それぞれの内面鉛直部17ごとに温度を変えて焙焼することもできる。   In the flow roasting furnace 10 of the present embodiment, the cylindrical core portion 11 of the flow roasting furnace 10 is configured to have a plurality of inner surface vertical portions 17, and then the temperature is changed for each inner surface vertical portion 17 You can also bake it.

例えば、ヒータ13を内面鉛直部17ごとに設けることで、異なる温度に制御することが可能となる。ヒータ13は電気式であることが好ましい。電気式であると高精度に制御することが可能であるからである。また、ヒータ13の設置密度を内面鉛直部17内の上下で異ならせることが好ましい。この場合、上下方向になだらかに温度変化を生じさせることができる。   For example, by providing the heater 13 for each of the inner surface vertical parts 17, it is possible to control to different temperatures. The heater 13 is preferably an electric type. It is because it is possible to control with high accuracy if it is an electrical type. Moreover, it is preferable to make the installation density of the heater 13 different in the upper and lower sides in the inner surface vertical part 17. In this case, the temperature change can be gently generated in the vertical direction.

2つの内面鉛直部17の焙焼温度の設定が異なることにより、段階的に焙焼を進行させることができ、流動層内部で流動用ガスの速度がさらに均一に維持される。よって、ガス発生等の変動による被焙焼物の飛び出しを抑制し、その結果高い回収率で高品質な被焙焼物を得ることができる。   By setting the roasting temperatures of the two inner vertical portions 17 differently, the roasting can be progressed in stages, and the velocity of the fluidizing gas can be maintained more uniformly inside the fluidized bed. Therefore, it is possible to suppress the popping out of the to-be-baked material due to the fluctuation of the gas generation and the like, and as a result, it is possible to obtain the to-be-heated product of high quality with high recovery rate.

(第1実施形態に係る流動焙焼炉10の運転方法)
図1に示すように、流動焙焼炉10には、原料32と一緒に流動層を生じさせるための流動媒体31が装入されている。流動焙焼炉10に流動用ガス導入管12から流動用ガスが導入されるとともに、原料32があらかじめ定められた量だけ投入される。流動用ガスの流速は、原料32と流動媒体31との混合物の「空塔速度」が、「最小流動化速度」以上で「終末速度」未満であるように調整する。
(Operation method of fluidized bed roasting furnace 10 according to the first embodiment)
As shown in FIG. 1, a fluidized bed baking furnace 10 is charged with a fluidized medium 31 for producing a fluidized bed together with a raw material 32. The fluidizing gas is introduced from the fluidizing gas introduction pipe 12 into the fluidizing and burning furnace 10, and the raw material 32 is charged in a predetermined amount. The flow velocity of the fluidizing gas is adjusted so that the "spatial velocity" of the mixture of the feedstock 32 and the fluid medium 31 is greater than or equal to the "minimum fluidization velocity" and less than the "end velocity".

流動焙焼炉10はヒータ13により加熱した状態にしておき、原料32を投入して焙焼することが好ましい。原料投入後、加熱すると時間がかかり効率が悪くなるからである。ヒータ13は電気式であることが、制御が容易である点で好ましい。また、図示していないが、ガスバーナなどはコスト面で安く、好ましい。   It is preferable that the fluidized roasting furnace 10 be heated by the heater 13, and the raw material 32 be charged and roasted. It is because it will take time and heating efficiency if it heats after raw material injection | throwing-in. It is preferable that the heater 13 be an electric type in terms of easy control. Although not shown, a gas burner or the like is preferable because it is inexpensive and inexpensive.

(第2実施形態)
図2には、第2実施形態に係る流動焙焼炉10の正面方向からの断面図を示す。第1実施形態の流動焙焼炉10との相違点は、筒状炉心部11が3つの内面鉛直部17を有している点である。なお本実施形態では内面鉛直部17は3つであるが、4以上あっても問題ない。
Second Embodiment
FIG. 2 shows a cross-sectional view from the front direction of the fluidized-bed roasting furnace 10 according to the second embodiment. The difference from the flow roasting furnace 10 of the first embodiment is that the cylindrical core portion 11 has three inner vertical portions 17. In the present embodiment, the number of the inner surface vertical parts 17 is three, but there is no problem if there are four or more.

本実施形態では、内面鉛直部17の断面は円形状である。3つの内面鉛直部17は、それらの間に存する、2つの拡大部16によって互いに連結され一体となることで、筒状炉心部11が形成されている。本実施形態では、上側に位置する2つの内面鉛直部17b、17cの炉内断面積は、最下段に位置する内面鉛直部17aの炉内断面積よりも大きくなっている。また、最上段に位置する内面鉛直部17cの炉内断面積は、中段に位置する内面鉛直部17bの炉内断面積よりも大きくなっている。そして、被焙焼物が焙焼される流動層は、3つの内面鉛直部17に亘って形成されている。すなわち本実施形態で流動層は、最下段の内面鉛直部17aの高さ方向の領域の一部から、最上段の内面鉛直部17cの高さ方向の領域の一部に亘って形成されている。ただし流動層は、最上段または最下段の内面鉛直部17の高さ方向の領域の全部に亘って形成される場合もある。   In the present embodiment, the cross section of the inner surface vertical portion 17 is circular. The cylindrical core portion 11 is formed by connecting and integrating the three inner surface vertical portions 17 with each other by two enlarged portions 16 existing therebetween. In the present embodiment, the cross-sectional area in the furnace of the two inner surface vertical parts 17b and 17c located on the upper side is larger than the cross-sectional area in the furnace of the inner surface vertical part 17a located on the lowermost stage. In addition, the cross-sectional area in the furnace of the inner surface vertical portion 17c located in the uppermost stage is larger than the cross-sectional area in the furnace of the inner surface vertical portion 17b located in the middle step. The fluidized bed in which the to-be-baked product is roasted is formed across the three inner surface vertical portions 17. That is, in the present embodiment, the fluidized bed is formed from part of the area in the height direction of the lowermost inner surface vertical part 17a to part of the area in the height direction of the uppermost inner surface vertical part 17c. . However, the fluidized bed may be formed over the entire area in the height direction of the uppermost or lowermost inner surface vertical portion 17.

最下段より上側に位置する内面鉛直部17b、17cの炉内断面積は、最下段の内面鉛直部17aの炉内断面積の1.2倍以上から10倍以下程度の範囲とする。さらに安定した流動焙焼を継続する点で、最下段より上側に位置する内面鉛直部17b、17cの炉内断面積は、最下段である下側の内面鉛直部17aの炉内断面積の1.5倍以上5倍以下の断面積とすることが好ましい。炉内断面積が1.2倍未満の場合、流速の変化が少なく安定性が保ちにくく、一方10倍を超えても効果に差は少なく、設備費または体積が増加するなど好ましくない。   The cross-sectional area in the furnace of the inner surface vertical parts 17b and 17c located above the lowermost stage is in the range of about 1.2 to 10 times the cross-sectional area in the furnace of the lower surface inner vertical part 17a. Further, the cross-sectional area in the furnace of the inner surface vertical parts 17b and 17c located above the lowermost stage is 1 of the cross-sectional area in the furnace of the lower inner surface vertical part 17a at the point of continuing the stable flow roasting. Preferably, the cross-sectional area is not less than 5 times and not more than 5 times. If the cross-sectional area in the furnace is less than 1.2 times, the change in flow velocity is small and it is difficult to maintain stability.

筒状炉心部11が3以上の内面鉛直部17を有しているので、下から上に向けて段階的に炉内断面積を増やすことができるため、流動層内部で流動用ガスの速度がより均一に維持される。なお、流動焙焼炉10の運転方法は、第1実施形態と同じである。   Since the cylindrical core portion 11 has three or more inner surface vertical portions 17, the cross-sectional area in the reactor can be gradually increased from the bottom to the top, so the velocity of the fluidizing gas in the fluidized bed can be increased. It is maintained more uniformly. In addition, the operating method of the flow | style-burning furnace 10 is the same as 1st Embodiment.

以下、本発明に関連する実験を行い、本発明の各実施形態の実施例を示して説明する。なお、本発明は以下の実施例に何ら限定されるものではない。   Hereinafter, experiments related to the present invention will be performed, and examples of each embodiment of the present invention will be shown and described. The present invention is not limited to the following examples.

(実験1)(複数の内面鉛直部の検証、原料:水酸化ニッケル)
<原料>
焙焼対象の原料(被焙焼物)32として、水酸化ニッケル(Ni(OH))を準備した。水酸化ニッケルは、平均粒径が22.3〜24.3μmのものであり、あらかじめ真空中で175℃、3時間の真空加熱処理が行われ、含有水分が実質的に除去された。分析すると硫黄分が2.1〜2.3重量%の割合で含まれていた。その他の不純物成分は、実質的に無視できる程度だった。
(Experiment 1) (Verification of plural inner surface vertical parts, raw material: nickel hydroxide)
<Raw material>
Nickel hydroxide (Ni (OH) 2 ) was prepared as a raw material to be roasted (to be roasted) 32. The nickel hydroxide had an average particle diameter of 22.3 to 24.3 μm, and was subjected to vacuum heat treatment at 175 ° C. for 3 hours in vacuum beforehand to substantially remove the contained water. It was analyzed that sulfur was contained in a proportion of 2.1 to 2.3% by weight. The other impurity components were substantially negligible.

なお、以下の各実験においては、バッチ処理を行った。すなわち各原料32は所定量を流動焙焼炉10に装入し、次に空気を流動用ガスとして炉内下部から送り込んで流動化するとともに所定の温度に昇温し維持して流動焙焼を行い、焙焼後の流動用ガスは上部から排出するようにした。   In each of the following experiments, batch processing was performed. That is, a predetermined amount of each raw material 32 is charged into the fluidized roasting furnace 10, and then air is sent from the lower part of the furnace as a fluidized gas to be fluidized and heated to a predetermined temperature and maintained to be fluidized roasting It was done, and it was made for the flow gas after roasting to be discharged from the upper part.

<流動焙焼処理>
実験1では図1に示す第1実施形態に係る流動焙焼炉10と、図2に示す第2実施形態に係る流動焙焼炉10と、内面鉛直部17が1種類の、直筒の焙焼炉と、が用いられた。これらの焙焼炉により、原料の水酸化ニッケルが焙焼され、焙焼物である酸化ニッケル(NiO)が回収された。
<Flow roasting process>
In Experiment 1, the flow roasting furnace 10 according to the first embodiment shown in FIG. 1, the flow roasting furnace 10 according to the second embodiment shown in FIG. A furnace was used. The raw material nickel hydroxide was roasted by these roasting furnaces, and the roasted product nickel oxide (NiO) was recovered.

具体的に、第1実施形態の流動焙焼炉10は、最下段の炉内断面積に対する上側の炉内断面積の比を表1に示すように変更して用いられた。また第2実施形態の流動焙焼炉10は、最下段の炉内断面積に対する中段の炉内断面積の比を1.6とし、最下段の炉内断面積に対する最上段の炉内断面積の比を表1に示すように変更して用いられた。第1実施形態の流動焙焼炉10で焙焼されたものが実施例1〜5、第2実施形態の流動焙焼炉で焙焼されたものが実施例6〜10、段のない焙焼炉で焙焼されたものが比較例1である。   Specifically, in the fluidized-bed roasting furnace 10 of the first embodiment, the ratio of the cross-sectional area in the upper furnace to the cross-sectional area in the lowermost stage was changed as shown in Table 1 and used. In the second embodiment, the ratio of the cross-sectional area of the middle stage to the cross-sectional area of the lowermost stage is 1.6, and the cross-sectional area of the uppermost stage to the cross-sectional area of the lowermost stage. The ratio of H was changed as shown in Table 1 and used. Examples 1 to 5 which were roasted in the flow roasting furnace 10 of the first embodiment and examples 6 to 10 which were roasted in the flow roasting furnace of the second embodiment The sample roasted in a furnace is Comparative Example 1.

表では、最下段の内面鉛直部17aを1段目、1段目の内面鉛直部17aの次の上側に位置する内面鉛直部17bを2段目、2段目の内面鉛直部17bの次の上側に位置する内面鉛直部17cを3段目として表示した。   In the table, the lowermost inner surface vertical portion 17a is the first step, the inner surface vertical portion 17b located on the upper side next to the first surface inner surface vertical portion 17a is the second step, and the second surface is next to the inner surface vertical portion 17b The inner surface vertical part 17c located in the upper side was displayed as 3rd step | stage.

投入原料の重量は、全て同一とし、焙焼条件は全て同一条件とした。具体的には焙焼温度は900℃、焙焼時間は20分、流動用ガスには空気が用いられた。所定の焙焼後炉を冷却し、炉内の被焙焼物を回収した。   The weights of the input materials were all the same, and the roasting conditions were all the same. Specifically, the roasting temperature was 900 ° C., the roasting time was 20 minutes, and air was used as the fluidizing gas. After the predetermined roasting, the furnace was cooled and the roasted material in the furnace was recovered.

<評価>
実施例1〜10、比較例1のそれぞれの処理において、焙焼により得られた試料の回収率(すなわち実収率)、回収した試料中における酸化ニッケルの含有量、および、回収した試料中における硫黄の含有量が評価された。表1に、測定結果を示す。なお、評価方法は以下の通りである。
<Evaluation>
In each of the treatments of Examples 1 to 10 and Comparative Example 1, the recovery rate (that is, the actual yield) of the sample obtained by roasting, the content of nickel oxide in the recovered sample, and sulfur in the recovered sample Content was evaluated. Table 1 shows the measurement results. The evaluation method is as follows.

[焙焼により得られた試料の回収率]
焙焼により得られた試料の回収率は、下記の数1により算出した。
[Recovery rate of sample obtained by roasting]
The recovery rate of the sample obtained by roasting was calculated by the following equation 1.

[数1]
R=W/(W−S)×100
[Equation 1]
R = W 1 / (W 2 −S) × 100

R:回収率[%]
:回収した試料の重量
:投入した原料32(今回はNi(OH))が全て焙焼された(今回はNiO)ときの重量
S:投入した原料32に含まれている硫黄の重量
R: Recovery rate [%]
W 1 : Weight of collected sample W 2 : Weight S of the loaded raw material 32 (this time Ni (OH) 2 ) was completely roasted (this time NiO) S: Sulfur contained in the loaded raw material 32 Weight of

[回収した試料中における酸化ニッケルの含有量の割合]
回収した試料中における酸化ニッケルの含有量の割合は、回収した試料中に含まれる酸化ニッケル(NiO)と水酸化ニッケル(Ni(OH))の含有量をそれぞれ算出し、それぞれの含有量の合計値に対するNiO含有量の割合(重量%)として算出した。
[Proportion of the content of nickel oxide in the collected sample]
The ratio of the content of nickel oxide in the collected sample is calculated by calculating the content of nickel oxide (NiO) and nickel hydroxide (Ni (OH) 2 ) contained in the collected sample, respectively. It calculated as a ratio (weight%) of NiO content to a total value.

[回収した試料中における硫黄の含有量]
回収した試料中における硫黄の含有量は、硫黄分析装置(三菱化学株式会社製,型式:TOX−100)を用いて測定した。
[Sulfur content in the collected sample]
The content of sulfur in the recovered sample was measured using a sulfur analyzer (manufactured by Mitsubishi Chemical Corporation, model: TOX-100).

Figure 2019120473
Figure 2019120473

表1に示すように、第1実施形態または第2実施形態の流動焙焼炉10を用いた実施例1〜10は、良好な結果が得られた。すなわち、回収率(実収率)は全て99%以上の高い値を示し、その回収物中における酸化ニッケルの含有割合も全て99%以上でNiOに焙焼できた。また、ほとんどが酸化ニッケルである回収物中の硫黄品位も低く、高品質な酸化ニッケルを得ることができた。   As shown in Table 1, Examples 1 to 10 using the fluidized-bed roasting furnace 10 of the first embodiment or the second embodiment gave good results. That is, the recovery rates (actual yields) all show high values of 99% or more, and the content of nickel oxide in the recovered products was all roasted to NiO at 99% or more. Moreover, the sulfur grade in the collection | recovery thing which is mostly nickel oxide was also low, and high quality nickel oxide was able to be obtained.

一方、直筒の焙焼炉が用いられた比較例1では、実施例に比較して、回収率は低く、回収物中における硫黄品位も高くなった。   On the other hand, in Comparative Example 1 in which the straight-tube roasting furnace was used, the recovery rate was lower and the sulfur grade in the recovered material was also higher than in the example.

(実験2)(複数の内面鉛直部の検証、原料:銅精鉱)
<原料>
焙焼対象の原料(被焙焼物)32として、表2に示した砒素、硫黄品位の銅精鉱を用いた。
(Experiment 2) (Verification of multiple inner surface vertical parts, raw material: copper concentrate)
<Raw material>
Arsenic and sulfur grade copper concentrates shown in Table 2 were used as raw materials (to be baked) 32 to be roasted.

Figure 2019120473
Figure 2019120473

<流動焙焼処理>
実験2では実験1と同様、図1に示す第1実施形態に係る流動焙焼炉10と、図2に示す第2実施形態に係る流動焙焼炉10と、内面鉛直部17が1種類の、直筒の焙焼炉と、が用いられた。これらの焙焼炉により、原料の銅精鉱が焙焼された。
<Flow roasting process>
In Experiment 2, as in Experiment 1, the flow roasting furnace 10 according to the first embodiment shown in FIG. 1, the flow roasting furnace 10 according to the second embodiment shown in FIG. , A straight-tube smoldering furnace was used. Raw material copper concentrate was roasted by these roasting furnaces.

具体的に、第1実施形態の流動焙焼炉10は、最下段の炉内断面積に対する上側の炉内断面積の比を表3に示すように変更して用いられた。また第2実施形態の流動焙焼炉10は、最下段の炉内断面積に対する中段の炉内断面積の比を1.6とし、最下段の炉内断面積に対する最上段の炉内断面積の比を表3に示すように変更して用いられた。第1実施形態の流動焙焼炉10で焙焼されたものが実施例11〜15、第2実施形態の流動焙焼炉で焙焼されたものが実施例16〜20、段のない焙焼炉で焙焼されたものが比較例2である。表での内面鉛直部17の表記は実験1と同じである。   Specifically, in the fluidized-bed roasting furnace 10 of the first embodiment, the ratio of the cross-sectional area in the upper furnace to the cross-sectional area in the lowermost stage was changed as shown in Table 3 and used. In the second embodiment, the ratio of the cross-sectional area of the middle stage to the cross-sectional area of the lowermost stage is 1.6, and the cross-sectional area of the uppermost stage to the cross-sectional area of the lowermost stage. The ratio of H was changed as shown in Table 3 and used. Examples 11 to 15 were roasted in the flow roasting furnace 10 of the first embodiment, Examples 16 to 20 were roasted in the flow roasting furnace of the second embodiment, a stepless roasting The sample roasted in a furnace is Comparative Example 2. The notation of the inner surface vertical portion 17 in the table is the same as in Experiment 1.

投入原料の重量は、全て同一とし、焙焼条件は全て同一条件とした。具体的には焙焼温度は900℃、焙焼時間は4.0時間とし、流動用ガスには窒素が用いられた。所定の焙焼後炉を冷却し、炉内の被焙焼物を回収した。   The weights of the input materials were all the same, and the roasting conditions were all the same. Specifically, the roasting temperature was 900 ° C., the roasting time was 4.0 hours, and nitrogen was used as the fluidizing gas. After the predetermined roasting, the furnace was cooled and the roasted material in the furnace was recovered.

<評価>
実施例11〜20、比較例2のそれぞれの処理において、フィルターでの試料の回収率(飛散率)、及び、銅精鉱中の砒素含有量について以下の方法で評価した。表3に、測定結果を示す。なお、評価方法は以下の通りである。
<Evaluation>
In each of the treatments of Examples 11 to 20 and Comparative Example 2, the recovery rate (scattering rate) of the sample on the filter and the arsenic content in the copper concentrate were evaluated by the following methods. Table 3 shows the measurement results. The evaluation method is as follows.

[フィルターでの試料の回収率]
焙焼後、排気ガスとともに流し出された試料をバグフィルターで回収し、その回収量から下式によって回収率(飛散率)を算出した。なお、本来銅精鉱がフィルターで捕集されるのはロスになり好ましくなくこの回収率(飛散率)は低い方が好ましい。
[Recovery rate of sample on filter]
After roasting, the sample flushed with the exhaust gas was collected by a bag filter, and the recovery rate (scattering rate) was calculated by the following equation from the recovered amount. In addition, it is a loss that the copper concentrate is originally collected by the filter, which is not preferable, and the recovery rate (scattering rate) is preferably low.

[数2]
=W/W×100
[Equation 2]
R 2 = W 3 / W 4 × 100

:フィルターでの回収率[%]
:回収した試料の重量
:投入した原料(今回は銅精鉱)の重量
R 2 : Recovery rate with filter [%]
W 3 : Weight of collected sample W 4 : Weight of input material (in this case, copper concentrate)

[実験前後の試料中の砒素含有量]
実験前後の試料については、ICP発光分光分析装置を用いて砒素と硫黄を分析した。
[Arsenic content of sample before and after experiment]
The samples before and after the experiment were analyzed for arsenic and sulfur using an ICP emission spectrometer.

Figure 2019120473
Figure 2019120473

表3に示すように、第1実施形態または第2実施形態の流動焙焼炉10を用いた実施例11〜20は、良好な結果が得られた。すなわち、実施例において砒素は0.1重量%未満であり、精鉱中の砒素と硫黄の含有量が大きく減少した。銅精鉱中の砒素、硫黄が減少したため、銅精鉱中の銅含有量が流動焙焼によって10%以上増加し銅を濃縮できた。   As shown in Table 3, good results were obtained in Examples 11 to 20 using the fluidized-bed roasting furnace 10 of the first embodiment or the second embodiment. That is, in the examples, the content of arsenic was less than 0.1% by weight, and the content of arsenic and sulfur in the concentrate was greatly reduced. As arsenic and sulfur in the copper concentrate decreased, the copper content in the copper concentrate was increased by 10% or more by fluid roasting, and copper could be concentrated.

一方、直筒の焙焼炉が用いられた比較例2は好ましくない結果となった。すなわち、砒素品位が0.2重量%あり、フィルターでの回収量は10%以上とロスが大幅に増加した。   On the other hand, Comparative Example 2 in which the straight-tube smoldering furnace was used resulted in an undesirable result. That is, the arsenic grade was 0.2% by weight, and the loss with the filter was significantly increased to 10% or more.

(実験3)(複数の焙焼温度設定の検証、原料:水酸化ニッケル)
<原料>
焙焼対象の原料(被焙焼物)32として、水酸化ニッケル(Ni(OH))を準備した。水酸化ニッケルは、平均粒径が22.5〜24.5μmのものであり、あらかじめ真空中で175℃、3時間の真空加熱処理が行われ、含有水分が実質的に除去された。分析すると、水酸化ニッケルの硫黄品位は2.0〜2.2重量%だった。その他の不純物成分は実質的に無視できる程度だった。
(Experiment 3) (Verification of multiple roasting temperature settings, raw material: nickel hydroxide)
<Raw material>
Nickel hydroxide (Ni (OH) 2 ) was prepared as a raw material to be roasted (to be roasted) 32. Nickel hydroxide had an average particle diameter of 22.5 to 24.5 μm, and was subjected to vacuum heat treatment under vacuum at 175 ° C. for 3 hours in advance to substantially remove the contained water. When analyzed, the sulfur grade of nickel hydroxide was 2.0 to 2.2% by weight. Other impurity components were substantially negligible.

<流動焙焼処理>
実験3では図1に示す第1実施形態に係る流動焙焼炉10が用いられた。この焙焼炉により、原料の水酸化ニッケルが焙焼され、焙焼物である酸化ニッケル(NiO)が回収された。
<Flow roasting process>
In Experiment 3, the fluidized-bed roasting furnace 10 according to the first embodiment shown in FIG. 1 was used. Raw material nickel hydroxide was roasted by this roasting furnace, and the roasted product nickel oxide (NiO) was recovered.

具体的に、第1実施形態の流動焙焼炉10は、最下段の炉内断面積に対する上側の炉内断面積の比を表4に示すように変更して用いられた。なお表4では、最下段の内面鉛直部17aを1段目、1段目の内面鉛直部17aの次の上側に位置する内面鉛直部17bを2段目として表示した。実施例21〜25では、1段目の内面鉛直部17aでの焙焼温度は400℃、2段目の内面鉛直部17bでの焙焼温度は900℃である。実施例26〜30では、1段目、2段目の内面鉛直部17a、17bでの焙焼温度はどちらとも900℃である。   Specifically, in the fluidized-bed roasting furnace 10 of the first embodiment, the ratio of the cross-sectional area in the upper furnace to the cross-sectional area in the lowermost stage was changed as shown in Table 4 and used. In Table 4, the lowermost inner surface vertical portion 17a is displayed as the first step, and the inner surface vertical portion 17b located on the upper side next to the first inner surface vertical portion 17a is displayed as the second step. In Examples 21 to 25, the roasting temperature at the first inner surface vertical portion 17a is 400 ° C., and the roasting temperature at the second inner surface vertical portion 17b is 900 ° C. In Examples 26 to 30, the roasting temperatures at the first and second internal vertical portions 17a and 17b are both 900.degree.

投入原料の重量は、全て同一とし、焙焼温度以外の焙焼条件は全て同一条件とした。具体的には、焙焼時間は20分とし、流動用ガスには空気が用いられた。所定の焙焼後炉を冷却し、炉内の被焙焼物を回収した。   The weights of the input materials were all the same, and the roasting conditions other than the roasting temperature were all the same. Specifically, the roasting time was 20 minutes, and air was used as the fluidizing gas. After the predetermined roasting, the furnace was cooled and the roasted material in the furnace was recovered.

<評価>
実施例21〜30のそれぞれの処理において、焙焼により得られた試料の回収率(すなわち実収率)、回収した試料中における酸化ニッケルの含有量、および、回収した試料中における硫黄の含有量が評価された。表4に、測定結果を示す。なお、評価方法は実験1と同じである。
<Evaluation>
In each of the treatments of Examples 21 to 30, the recovery rate of the sample obtained by roasting (ie, the actual yield), the content of nickel oxide in the recovered sample, and the content of sulfur in the recovered sample It was evaluated. Table 4 shows the measurement results. The evaluation method is the same as in Experiment 1.

Figure 2019120473
Figure 2019120473

表4に示すように、1段目の焙焼温度を低くした実施例21〜25は、同じ焙焼温度であった実施例26〜30と比較して、良好な結果が得られた。すなわち、実施例21〜25では、同じ断面積比である実施例で比較すると、回収率は全て高い値を示し、その回収物中における酸化ニッケルの含有割合もすべて高い割合を示した。また、同じ断面積比で比較すると硫黄品位も実施例21〜25は低い値を示した。   As shown in Table 4, Examples 21 to 25 in which the first-stage roasting temperature was lowered gave good results as compared with Examples 26 to 30 in which the same roasting temperature was used. That is, in Examples 21 to 25, when compared in Examples having the same cross-sectional area ratio, the recovery rates all showed high values, and the content ratio of nickel oxide in the recovered products also showed high rates. Further, when compared at the same sectional area ratio, Examples 21 to 25 showed lower values for sulfur grade.

(実験4)(複数の焙焼温度設定の検証、原料:銅精鉱)
<原料>
焙焼対象の原料(被焙焼物)32として、上記実験2の表2に示した組成の銅精鉱を原料に用いた。
(Experiment 4) (Verification of multiple roasting temperature settings, raw material: copper concentrate)
<Raw material>
The copper concentrate having the composition shown in Table 2 of Experiment 2 above was used as the raw material (the to-be-baked product) 32 to be roasted.

<流動焙焼処理>
実験4では図1に示す第1実施形態に係る流動焙焼炉10が用いられた。この焙焼炉により、原料の銅精鉱が焙焼された。
<Flow roasting process>
In Experiment 4, the fluidized-bed roasting furnace 10 according to the first embodiment shown in FIG. 1 was used. Raw material copper concentrate was roasted by this roasting furnace.

具体的に、第1実施形態の流動焙焼炉10は、最下段の炉内断面積に対する上側の炉内断面積の比を表5に示すように変更して用いられた。なお表5では、最下段の内面鉛直部17aを1段目、1段目の内面鉛直部17aの次の上側に位置する内面鉛直部17bを2段目として表示した。実施例31〜35では、1段目の内面鉛直部17aでの焙焼温度は200℃、2段目の内面鉛直部17bでの焙焼温度は900℃である。実施例36〜40では、1段目、2段目の内面鉛直部17a、17bでの焙焼温度はどちらとも900℃である。   Specifically, in the fluidized-bed roasting furnace 10 of the first embodiment, the ratio of the cross-sectional area in the upper furnace to the cross-sectional area in the lowermost stage was changed as shown in Table 5 and used. In Table 5, the lowermost inner surface vertical portion 17a is displayed as the first step, and the inner surface vertical portion 17b located on the upper side next to the first inner surface vertical portion 17a is displayed as the second step. In Examples 31 to 35, the roasting temperature at the first inner surface vertical portion 17a is 200 ° C., and the roasting temperature at the second inner surface vertical portion 17b is 900 ° C. In Examples 36 to 40, the roasting temperatures at the first and second internal vertical portions 17a and 17b are both 900.degree.

投入原料の重量は、全て同一とし、焙焼温度以外の焙焼条件は全て同一条件とした。具体的には焙焼時間は4.0時間とし、流動用ガスには窒素が用いられた。焙焼終了後、炉を冷却し炉内の試料を回収した。   The weights of the input materials were all the same, and the roasting conditions other than the roasting temperature were all the same. Specifically, the roasting time was 4.0 hours, and nitrogen was used as the fluidizing gas. After the completion of roasting, the furnace was cooled and samples in the furnace were collected.

<評価>
実施例31〜40のそれぞれの処理において、フィルターで捕集された試料の回収率(飛散率)と銅精鉱中の砒素含有量について評価された。表5に、測定結果を示す。なお、評価方法は実験2と同じである。
<Evaluation>
In each of the treatments of Examples 31 to 40, the recovery rate (scattering rate) of the sample collected by the filter and the arsenic content in the copper concentrate were evaluated. Table 5 shows the measurement results. The evaluation method is the same as in Experiment 2.

Figure 2019120473
Figure 2019120473

表5に示すように、1段目の焙焼温度を低くした実施例31〜36は、同じ焙焼温度であった実施例36〜40と比較して、良好な結果が得られた。すなわち、実施例31〜35では、同じ断面積比である実施例で比較すると、フィルターでの回収率は低い値を示した。   As shown in Table 5, Examples 31 to 36 in which the first-stage roasting temperature was lowered gave good results as compared with Examples 36 to 40 in which the same roasting temperature was used. That is, in Examples 31 to 35, when compared in Examples having the same cross-sectional area ratio, the recovery rate with the filter showed a low value.

10 流動焙焼炉
11 筒状炉心部
17 内面鉛直部
10 flow roasting furnace 11 cylindrical core portion 17 inner vertical portion

Claims (4)

下側から上側へ向けて流れるガスを用いて被焙焼物が焙焼される筒状炉心部が設けられ、
該筒状炉心部は、前記被焙焼物が焙焼される流動層が形成されている高さ方向の領域において、炉内断面積が異なる複数の内面鉛直部を有し、
上側に位置する前記内面鉛直部の炉内断面積が、下側に位置する前記内面鉛直部の炉内断面積よりも大きい、
ことを特徴とする流動焙焼炉。
A cylindrical core portion is provided in which a to-be-fired roasted product is roasted using gas flowing from the lower side to the upper side,
The cylindrical core portion has a plurality of inner surface vertical portions having different in-furnace cross-sectional areas in a region in a height direction in which a fluidized bed in which the to-be-stokered material is roasted is formed,
The cross-sectional area in the furnace of the inner surface vertical portion located on the upper side is larger than the cross-sectional area in the furnace of the inner surface vertical portion located on the lower side
A fluid roasting furnace characterized by
前記筒状炉心部は、3以上の前記内面鉛直部を有する、
ことを特徴とする請求項1記載の流動焙焼炉。
The cylindrical core portion has three or more of the inner surface vertical portions.
The fluidized-bed roasting furnace according to claim 1, characterized in that
最下段に位置する前記内面鉛直部よりも上側に位置する前記内面鉛直部の炉内断面積が、最下段に位置する前記内面鉛直部の炉内断面積の1.5倍以上5倍以下である、
ことを特徴とする請求項1または2記載の流動焙焼炉。
The cross-sectional area in the furnace of the inner surface vertical part located above the inner surface vertical part located in the lowermost stage is 1.5 to 5 times the cross-sectional area in the furnace of the inner surface vertical part located in the lowermost stage is there,
The fluidized-bed roasting furnace according to claim 1 or 2, characterized in that
炉内断面積が異なる複数の前記内面鉛直部のうち、2つの前記内面鉛直部の焙焼温度の設定が異なっている、
ことを特徴とする請求項1から3のいずれかに記載の流動焙焼炉。
Among the plurality of inner surface vertical portions having different cross-sectional areas in the furnace, the setting of the roasting temperature of the two inner surface vertical portions is different,
The fluidized-bed roasting furnace according to any one of claims 1 to 3, characterized in that
JP2018002345A 2018-01-11 2018-01-11 Fluid roasting furnace Active JP7044995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018002345A JP7044995B2 (en) 2018-01-11 2018-01-11 Fluid roasting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018002345A JP7044995B2 (en) 2018-01-11 2018-01-11 Fluid roasting furnace

Publications (2)

Publication Number Publication Date
JP2019120473A true JP2019120473A (en) 2019-07-22
JP7044995B2 JP7044995B2 (en) 2022-03-31

Family

ID=67307155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018002345A Active JP7044995B2 (en) 2018-01-11 2018-01-11 Fluid roasting furnace

Country Status (1)

Country Link
JP (1) JP7044995B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728982A (en) * 1980-07-29 1982-02-16 Nittetsu Mining Co Ltd Continuous air stream baking furnace for granular solid
JPH0860215A (en) * 1994-08-17 1996-03-05 Kawasaki Heavy Ind Ltd Fluidized bed furnace and smelting reduction apparatus using it
JPH08217423A (en) * 1995-02-07 1996-08-27 Shin Etsu Chem Co Ltd Fluidized bed reaction unit for producing metal nitride
JP2000354757A (en) * 1999-06-16 2000-12-26 Mitsubishi Materials Corp Diffusion plate structure for fluidized bed device
JP2004025061A (en) * 2002-06-26 2004-01-29 Jfe Engineering Kk Fluidizing treatment equipment for powdery material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728982A (en) * 1980-07-29 1982-02-16 Nittetsu Mining Co Ltd Continuous air stream baking furnace for granular solid
JPH0860215A (en) * 1994-08-17 1996-03-05 Kawasaki Heavy Ind Ltd Fluidized bed furnace and smelting reduction apparatus using it
JPH08217423A (en) * 1995-02-07 1996-08-27 Shin Etsu Chem Co Ltd Fluidized bed reaction unit for producing metal nitride
JP2000354757A (en) * 1999-06-16 2000-12-26 Mitsubishi Materials Corp Diffusion plate structure for fluidized bed device
JP2004025061A (en) * 2002-06-26 2004-01-29 Jfe Engineering Kk Fluidizing treatment equipment for powdery material

Also Published As

Publication number Publication date
JP7044995B2 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
RU2568017C2 (en) Device for particle separation for chemical combustion loop
JP2007292379A (en) Manufacturing method and device of heat treated particle
JP2019113237A (en) Fluidization roasting furnace
AU2016275707B2 (en) Apparatus and process for thermal denitration, use of such an apparatus and product obtained by means of such a process
EP2851437B1 (en) Method for loading raw material into blast furnace
JP2019120473A (en) Fluidization roasting furnace
JP6870231B2 (en) Nickel oxide manufacturing method, fluidized roasting furnace
JP6561925B2 (en) Nickel oxide manufacturing method, fluid roasting furnace
JP2019120472A (en) Fluidization roasting furnace
JP6741393B2 (en) Fluidized bed apparatus and method for dry classification of coal using the same
JP6565803B2 (en) Nickel oxide manufacturing method, fluid roasting furnace
JP7102965B2 (en) Fluid roasting furnace
JP2018012624A (en) Method for producing nickel oxide and fluidization calcinating furnace
JP7444533B2 (en) Fluidized roasting furnace
EP3483119A1 (en) Production of activated carbon
JP2019105415A (en) Fluidized roasting furnace, and method for operating fluidized roasting furnace
JP7251922B2 (en) Fluidized roasting furnace
JP2019152384A (en) Fluidization roasting furnace
JP6561924B2 (en) Method for producing nickel oxide
JP2018012625A (en) Method for producing nickel oxide and fluidization calcinating furnace
KR20060059272A (en) Apparatus for reducing metal oxide with hydrogen and method for hydrogen reduction using the same
JP6634974B2 (en) Method for producing nickel oxide
JPS62237939A (en) Multistage jet stream bed apparatus using peripheral wall jet stream type fluidized bed
JP7548073B2 (en) Method for smelting nickel oxide ore
JP2021167460A (en) Method for smelting oxide ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220301

R150 Certificate of patent or registration of utility model

Ref document number: 7044995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150