JP7044995B2 - Fluid roasting furnace - Google Patents

Fluid roasting furnace Download PDF

Info

Publication number
JP7044995B2
JP7044995B2 JP2018002345A JP2018002345A JP7044995B2 JP 7044995 B2 JP7044995 B2 JP 7044995B2 JP 2018002345 A JP2018002345 A JP 2018002345A JP 2018002345 A JP2018002345 A JP 2018002345A JP 7044995 B2 JP7044995 B2 JP 7044995B2
Authority
JP
Japan
Prior art keywords
roasting
furnace
roasted
fluidized
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018002345A
Other languages
Japanese (ja)
Other versions
JP2019120473A (en
Inventor
隆士 井関
幸弘 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018002345A priority Critical patent/JP7044995B2/en
Publication of JP2019120473A publication Critical patent/JP2019120473A/en
Application granted granted Critical
Publication of JP7044995B2 publication Critical patent/JP7044995B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Description

本発明は、流動焙焼炉に関する。さらに詳しくは、高品位が要求される被焙焼物を焙焼可能な流動焙焼炉に関する。 The present invention relates to a fluidized roasting furnace. More specifically, the present invention relates to a fluidized roasting furnace capable of roasting an object to be roasted, which requires high quality.

一般的に、流動焙焼炉は、原料単独、もしくは流動媒体を用いてガスを供給しながら焙焼対象の粒状の原料をあたかも流体のように浮遊させることによって媒体との混合状態をつくり上げ、効率的に焙焼する装置である。焙焼対象の原料と流動媒体とを混合させた状態で焙焼することにより原料と流動媒体とが衝突しながら焙焼が進み、また、原料が流動層内に比較的長時間滞留できるため、効率的に焙焼することができる。 In general, a fluidized roasting furnace creates a mixed state with a medium by suspending the granular raw material to be roasted as if it were a fluid while supplying gas with the raw material alone or using a fluid medium, and is efficient. It is a device for roasting. By roasting in a state where the raw material to be roasted and the fluidized medium are mixed, roasting proceeds while the raw material and the fluidized medium collide with each other, and the raw material can stay in the fluidized bed for a relatively long time. It can be roasted efficiently.

このような流動焙焼炉を用いて供給した原料に対する焙焼を確実に行うためには、ガスの流速を、原料(以下、本明細書において「被焙焼物」と称することがある)と流動媒体との混合物の空塔速度が、最小流動化速度以上、終末速度未満の範囲となるように正確に制御されなければならない。 In order to reliably roast the raw material supplied using such a fluidized roasting furnace, the flow velocity of the gas is changed to the raw material (hereinafter, may be referred to as “roasted object” in the present specification) and the flow rate. The superficial velocity of the mixture with the medium must be precisely controlled to be in the range above the minimum fluidization velocity and below the terminal velocity.

ここで、「空塔速度」とは、ガス流量/炉内断面積で求められる実速度である。ここで「炉内断面積」は、炉芯の軸心に垂直な平面における炉内の面積をいう。また、「最小流動化速度」とは、粉体(被焙焼物と流動媒体との混合物)が流動を始める最小の速度である。「終末速度」とは、流動層から粉体が上昇して飛び出し始める速度をいう。 Here, the "superficial velocity" is the actual velocity obtained by the gas flow rate / the cross-sectional area in the furnace. Here, the "in-furnace cross-sectional area" refers to the area inside the furnace in a plane perpendicular to the axis of the furnace core. The "minimum fluidization rate" is the minimum rate at which the powder (mixture of the material to be roasted and the fluid medium) begins to flow. The "terminal velocity" is the speed at which the powder rises from the fluidized bed and begins to pop out.

上記のように速度制御が正確に行われる必要があるのは、以下のような理由のためである。すなわち、供給するガスの流速が、原料と流動媒体との混合物の「最小流動化速度」未満であると、原料が流動化しないために焙焼が均一に進まず、原料の凝集が発生する等の問題が生じる。 The reason why the speed control needs to be performed accurately as described above is as follows. That is, if the flow velocity of the supplied gas is less than the "minimum fluidization rate" of the mixture of the raw material and the flow medium, roasting does not proceed uniformly because the raw material does not fluidize, and the raw materials aggregate. Problem arises.

一方で、ガスの流速がその混合物の「終末速度」以上であると、流速が速すぎて原料または流動媒体がガスと共に流されてしまい、効果的に焙焼を施すことができないという問題、または回収率が大きく低下するという問題が生じる。 On the other hand, if the flow rate of the gas is equal to or higher than the "terminal velocity" of the mixture, the flow rate is too high and the raw material or the fluid medium is flown together with the gas, and roasting cannot be performed effectively. There is a problem that the recovery rate is greatly reduced.

つまり、流動焙焼では、ガス流量を適切な範囲内で制御して、原料を焙焼に足る時間、流動層内で流動化させることが必要となる。 That is, in fluidized roasting, it is necessary to control the gas flow rate within an appropriate range and fluidize the raw material in the fluidized bed for a time sufficient for roasting.

特許文献1、2には、上で記載した流動焙焼炉の構成が開示されている。これらの流動焙焼炉は、工業的に生産を行うためにいくつかの問題点が挙げられる。以下に記載した4つは、そのうちの重要と考えられるものである。 Patent Documents 1 and 2 disclose the configuration of the fluidized roasting furnace described above. These fluid roasting furnaces have some problems in order to carry out industrial production. The four listed below are considered to be important.

第1の問題点として、連続処理が困難であるという点である。効率化の観点から、連続処理に際しては、原料を連続的に投入する。この際、焙焼中の原料と焙焼されていない原料とが混ざってしまい、効率的に焙焼を行うことができないと、被焙焼物の品質が低下したことになり好ましくない。 The first problem is that continuous processing is difficult. From the viewpoint of efficiency, raw materials are continuously added during continuous processing. At this time, if the raw material being roasted and the raw material not roasted are mixed and roasting cannot be performed efficiently, the quality of the product to be roasted is deteriorated, which is not preferable.

上記の問題を解決するために、原料投入口と原料回収口とを離して原料が投入口から回収口へ向かうようにすることも考えられるが、流動焙焼の場合には、粒状の原料が流体の如く流動化しているため、投入直後の焙焼されていない原料と、暫く炉内を浮遊して焙焼が進んだ原料とがすぐに混ざってしまい、焙焼が完了した原料だけを回収することはできず、どうしても焙焼が不十分な原料も混合した状態で回収される。このため、品質的に低いものが回収され、また、焙焼効率も悪くなってしまう。 In order to solve the above problem, it is conceivable to separate the raw material input port and the raw material recovery port so that the raw material goes from the input port to the recovery port, but in the case of liquid roasting, the granular raw material is used. Since it is fluidized like a fluid, the raw materials that have not been roasted immediately after being put in and the raw materials that have been floating in the furnace for a while and have been roasted are immediately mixed, and only the raw materials that have been roasted are collected. It is not possible to do so, and raw materials that are inadequately roasted are also recovered in a mixed state. For this reason, low quality products are collected, and the roasting efficiency is also deteriorated.

特許文献1には、古砂ダストを流動焙焼炉の焙焼室内に供給し、その焙焼室内に置いて流動焙焼させ、焙焼室内に形成される流動層の上部位置に開口する溢流口からオーバーフローさせて、再生処理ダストとして回収する技術が開示されている。ここで古砂ダストは、鋳物古砂再生用の管乾式再生機で発生したダストを集じんして得たものである。また、流動焙焼炉の底部には、珪砂をベース砂として収容されている。 In Patent Document 1, old sand dust is supplied into a roasting chamber of a fluidized roasting furnace, placed in the roasting chamber for fluidized roasting, and overflows at an upper position of a fluidized bed formed in the roasting chamber. A technique for overflowing from a flow port and collecting it as recycled dust is disclosed. Here, the old sand dust is obtained by collecting dust generated by a pipe-drying remanufacturing machine for regenerating old cast sand. In addition, silica sand is housed as base sand in the bottom of the fluidized roasting furnace.

加えて、シュートの投入口部に設けた圧縮空気吹込管で、その先端に形成したノズルから圧縮空気がシュートの出口に向って吹き込まれるようになっていることも開示されている。すなわち、古砂ダストをシュートに向かって圧縮空気を吹き込みながら炉内に供給し、溢流口から古砂ダストをオーバーフローさせて回収している。 In addition, it is also disclosed that the compressed air blowing pipe provided at the inlet of the chute allows compressed air to be blown toward the outlet of the chute from a nozzle formed at the tip thereof. That is, the old sand dust is supplied into the furnace while compressed air is blown toward the chute, and the old sand dust is overflowed and collected from the overflow port.

特許文献1で開示されている流動焙焼炉では、古砂ダストの供給高さ位置と溢流口(回収口)の高さ位置とがほとんど同じであることから、流動化している古砂ダストについて、焙焼されたものだけが確実に溢流口からオーバーフローして回収されることはない。 In the fluidized roasting furnace disclosed in Patent Document 1, since the supply height position of the old sand dust and the height position of the overflow port (collection port) are almost the same, the old sand dust is fluidized. As for, only the roasted ones are not surely overflowed from the overflow port and collected.

すなわち、流動化し焙焼中の古砂ダストの中に、次々に焙焼前の古砂ダストが供給されるため、溢流口から回収されている古砂ダストには焙焼が不十分な古砂ダストが混在する。そのためこの点で連続処理が困難である。 That is, since the old sand dust before roasting is supplied one after another to the old sand dust that has been fluidized and roasted, the old sand dust collected from the overflow port is insufficiently roasted. Sand dust is mixed. Therefore, continuous processing is difficult at this point.

上記第1の問題点に対し、特許文献1に開示の方法で、可能な限り焙焼が進んだ古砂ダストを回収するためには、古砂ダストの供給速度を極力遅くする必要があると考えられる。ただし、この場合流動焙焼炉による処理は、非常に効率の悪いものとなり、やはり連続処理は困難である。 Regarding the first problem above, in order to recover the old sand dust that has been roasted as much as possible by the method disclosed in Patent Document 1, it is necessary to slow down the supply speed of the old sand dust as much as possible. Conceivable. However, in this case, the treatment by the fluidized roasting furnace is very inefficient, and continuous treatment is still difficult.

第2の問題点としては、焙焼後に焙焼に用いられたガスと焙焼後の被焙焼物とを分離することが困難であるという点である。 The second problem is that it is difficult to separate the gas used for roasting after roasting and the object to be roasted after roasting.

特許文献2には、金属鉄源を流動焙焼炉で酸化焙焼する工程と、焙焼炉の溢流口より排出された粗粒子の酸化層を剥離する工程と、剥離工程後の酸化鉄と金属鉄粉を流動焙焼炉に循環する工程と、生成した微粉酸化鉄を焙焼ガスと共に流出させて焙焼ガス中より捕捉回収する工程とからなる高品位酸化鉄の製造方法が開示されている。 Patent Document 2 describes a step of oxidatively roasting a metallic iron source in a fluidized roasting furnace, a step of peeling an oxide layer of coarse particles discharged from an overflow port of the roasting furnace, and a step of peeling iron oxide after the peeling step. A method for producing high-grade iron oxide is disclosed, which comprises a step of circulating metallic iron powder in a fluidized roasting furnace and a step of flowing out the produced fine iron oxide together with the roasting gas and capturing and recovering it from the roasting gas. ing.

しかしながら特許文献2には、微粉酸化鉄を焙焼ガスと共に流出させて焙焼ガス中より捕捉回収すると記載されているものの、具体的にどのように微粉酸化鉄を焙焼ガスと共に流出させるかについては明確に示されていない。すなわち、微粉酸化鉄と焙焼ガスとをどのように効率的に分離し、微粉酸化鉄を捕捉回収するかについては全く不明である。 However, although Patent Document 2 describes that fine iron oxide is discharged together with roasting gas and captured and recovered from the roasting gas, specifically how fine iron oxide is discharged together with roasting gas is described. Is not clearly shown. That is, it is completely unknown how to efficiently separate the fine iron oxide and the roasting gas and capture and recover the fine iron oxide.

また、特許文献2には、剥離酸化皮膜を流動焙焼炉排ガスに随伴させて炉外に排出させることも開示されているが、どのような方法で流動焙焼炉排ガスに随伴させ炉外に排出させるのかについても不明確である。 Further, Patent Document 2 also discloses that the exfoliated oxide film is accompanied by the exhaust gas of the fluidized roasting furnace and discharged to the outside of the furnace. It is also unclear whether it will be discharged.

第3の問題点は、焙焼を行う被焙焼物によって求められる製品の純度などが異なる点である。流動焙焼炉の原料の具体的な例を挙げて説明する。その原料として、例えば2次電池の材料として多く用いられる酸化ニッケル(NiO)は、純度などの点で非常に厳しい被焙焼物となる。酸化ニッケルは、硫酸ニッケル(NiSO)を含有する水溶液にアルカリを添加し、中和して水酸化ニッケル(Ni(OH))を得て、その水酸化ニッケルを焙焼して製造される。 The third problem is that the purity of the product required for the product to be roasted differs depending on the product to be roasted. A specific example of the raw material of the fluidized roasting furnace will be described. Nickel oxide (NiO), which is often used as a raw material for a secondary battery, for example, is a very strict product to be roasted in terms of purity and the like. Nickel oxide is produced by adding an alkali to an aqueous solution containing nickel sulfate (NiSO 4 ), neutralizing it to obtain nickel hydroxide (Ni (OH) 2 ), and roasting the nickel hydroxide. ..

この酸化ニッケルについては、得られた酸化ニッケルに含まれた不純物の硫黄品位が高く、例えば100ppmを超えると、酸化ニッケルから製造した電池の特性を低下させる等の影響が生じるなど好ましくない。このため、洗浄等の前処理で付着した硫黄を除去するとともに、均一かつ確実に焙焼して硫黄を低減することが欠かせない。すなわち特許文献1等で開示されている流動焙焼炉の構成では、所定の原料に対して焙焼の均一性を十分に上げることができないという問題がある。 With respect to this nickel oxide, the sulfur grade of the impurities contained in the obtained nickel oxide is high, and if it exceeds 100 ppm, for example, the characteristics of the battery manufactured from nickel oxide are deteriorated, which is not preferable. Therefore, it is indispensable to remove sulfur adhering by pretreatment such as washing and to reduce sulfur by roasting uniformly and surely. That is, the configuration of the fluidized roasting furnace disclosed in Patent Document 1 and the like has a problem that the uniformity of roasting cannot be sufficiently improved with respect to a predetermined raw material.

第4の問題点は、焙焼を行う被焙焼物の特性に関する点である。前述の水酸化ニッケルの流動焙焼に際しては、発生するガスの影響を考慮する必要もある。つまり、水酸化ニッケルを焙焼して酸化ニッケルが生成するのと同時に、水酸化ニッケルの分解に伴って水(HO)、すなわち水蒸気ガスも発生する。この発生した水蒸気ガスの体積によって流動焙焼炉内での流速が急激に上昇し、その結果被焙焼物が不完全な焙焼のまま流出させられ、品質と回収率が低下する問題を生じる。 The fourth problem is related to the characteristics of the object to be roasted. In the above-mentioned liquid roasting of nickel hydroxide, it is also necessary to consider the influence of the generated gas. That is, at the same time that nickel hydroxide is roasted to generate nickel oxide, water ( H2O ), that is, steam gas, is also generated along with the decomposition of nickel hydroxide. Due to the volume of the generated steam gas, the flow velocity in the fluidized roasting furnace rapidly increases, and as a result, the object to be roasted is discharged with incomplete roasting, which causes a problem that the quality and the recovery rate are deteriorated.

上記の焙焼に伴って発生したガスによる影響は、水酸化ニッケルなどの場合以外でも、例えば銅精鉱を焙焼して砒素を分離しようとする際にも生じる。すなわち、銅精鉱が不活性ガス中で焙焼されると砒素の硫化物が気体となって生成し、銅精鉱が炉外に流し出されてしまう。 The influence of the gas generated by the above roasting occurs not only in the case of nickel hydroxide or the like, but also in the case of roasting copper concentrate, for example, to separate arsenic. That is, when the copper concentrate is roasted in an inert gas, arsenic sulfide is generated as a gas, and the copper concentrate is flushed out of the furnace.

この第4の問題点に対して、焙焼によってガスが発生する場合、流動焙焼炉から未反応原料の排出を防止するためには、発生するガスの量をあらかじめ予測し、発生ガス量に相当する量の流動化に送気するガス量を減少することが必要となる。しかし上記の水蒸気ガスなどは流動層内で焙焼反応に伴って発生するものであり、流動化のためのガス供給量を一律に減少すると、流動化が生じなくなり反応が進まなくなったり、過剰の流量となって目的とする焙焼が円滑に進まなくなったりする課題が生じる。 Regarding this fourth problem, when gas is generated by roasting, in order to prevent the discharge of unreacted raw materials from the fluidized roasting furnace, the amount of generated gas is predicted in advance and the amount of generated gas is used. It is necessary to reduce the amount of gas sent to a considerable amount of fluidization. However, the above-mentioned water vapor gas and the like are generated in the fluidized bed in association with the roasting reaction, and if the amount of gas supplied for fluidization is uniformly reduced, fluidization does not occur and the reaction does not proceed or is excessive. There arises a problem that the desired roasting does not proceed smoothly due to the flow rate.

この第4の問題点に対して、特許文献1では、流動焙焼炉の炉心本体の出口側に炉内断面積を拡大した部分を設置し、流動焙焼炉の炉内を流れてきたガスならびに被焙焼物の流速を断面積の広がりによって低減させて、焙焼が不十分な原料が排出されることを防いでいる。 In response to this fourth problem, in Patent Document 1, a portion having an enlarged in-furnace cross-sectional area is installed on the outlet side of the core body of the fluidized roasting furnace, and the gas flowing in the furnace of the fluidized roasting furnace is provided. In addition, the flow velocity of the object to be roasted is reduced by expanding the cross-sectional area to prevent the discharge of raw materials that are insufficiently roasted.

特開2000-42515号公報Japanese Unexamined Patent Publication No. 2000-42515 特開昭61-236616号公報Japanese Unexamined Patent Publication No. 61-236616

上記第3および第4の問題点に対し、特許文献1に記載の流動焙焼炉の炉心本体の出口側に炉内断面積を拡大した部分が設置された場合、すなわち流動焙焼を行っている流動層より上の部分で、炉内断面積を拡大した部分が設置された場合、流動焙焼が行なわれている流動層が形成されている部分では、炉内断面積が上下で変化しない直筒形状であるので、発生したガスにより、流動層内部で流動用ガスの速度が不均一となりやすく、そのため、被焙焼物が完全に焙焼されずに炉心本体の出口側に向うことが多く、品質と回収率が低下するという問題がある。 In response to the third and fourth problems, when a portion having an expanded cross-sectional area in the furnace is installed on the outlet side of the core body of the fluidized bed described in Patent Document 1, that is, fluidized roasting is performed. If a part with an expanded in-furnace cross-sectional area is installed above the fluidized bed, the in-furnace cross-sectional area does not change up and down in the part where the fluidized bed where fluidized roasting is performed is formed. Due to the straight cylinder shape, the generated gas tends to make the speed of the fluidized bed non-uniform inside the fluidized bed, and as a result, the object to be roasted is often not completely roasted and tends toward the outlet side of the core body. There is a problem that quality and recovery rate are reduced.

本発明は上記事情に鑑み、焙焼によりガスが発生する被焙焼物であっても、焙焼後の品質と回収率を高くすることができる流動焙焼炉を提供することを目的とする。 In view of the above circumstances, it is an object of the present invention to provide a fluidized roasting furnace capable of increasing the quality and recovery rate after roasting even for a roasted product for which gas is generated by roasting.

第1発明の流動焙焼炉は、下側から上側へ向けて流れるガスを用いて被焙焼物が焙焼される筒状炉心部と、該筒状炉心部の外周に設けられた電気式ヒータと、が設けられ、該筒状炉心部は、前記電気式ヒータが設けられている高さ方向の領域において、炉内断面積が異なる複数の内面鉛直部を有し、上側に位置する前記内面鉛直部の炉内断面積が、下側に位置する前記内面鉛直部の炉内断面積よりも大きいことを特徴とする。
第2発明の流動焙焼炉は、第1発明において、前記筒状炉心部は、3以上の前記内面鉛直部を有することを特徴とする。
発明の流動焙焼炉は、第1発明または明において、炉内断面積が異なる複数の前記内面鉛直部のうち、2つの前記内面鉛直部の焙焼温度の設定を前記電気式ヒータにより異ならせることができることを特徴とする。
The fluidized roasting furnace of the first invention has a tubular core portion in which the object to be roasted is roasted using gas flowing from the lower side to the upper side, and an electric heater provided on the outer periphery of the tubular core portion. The tubular core portion has a plurality of inner vertical portions having different cross-sectional areas in the furnace in the region in the height direction in which the electric heater is provided , and the inner surface is located on the upper side. It is characterized in that the in-core cross-sectional area of the vertical portion is larger than the in-core cross-sectional area of the inner vertical portion located on the lower side.
The fluidized roasting furnace of the second invention is characterized in that, in the first invention, the tubular core portion has three or more vertical inner surface portions.
In the fluidized roasting furnace of the third invention, in the first invention or the second invention, the roasting temperature of two of the inner vertical portions having different cross-sectional areas in the furnace is set . It is characterized in that it can be made different by the electric heater .

第1発明によれば、流動焙焼炉を形成する筒状炉心部が、電気式ヒータが設けられている高さ方向の領域で、炉内断面積が異なる複数の内面鉛直部を有し、上側が下側よりも炉内断面積が大きいことから、被焙焼物の焙焼によりガスが発生した場合でも、発生したガスの体積増加分が上側の内面鉛直部で吸収されるため、流動層内部で流動用ガスの速度が均一に維持される。このため焙焼後の被焙焼物の品質と回収率が向上する。
第2発明によれば、筒状炉心部が3以上の内面鉛直部を有しているので、下から上に向けて段階的に炉内断面積を増やすことができるため、流動層内部で流動用ガスの速度がより均一に維持される。
発明によれば、2つの内面鉛直部の焙焼温度の設定を異ならせることができることにより、段階的に焙焼を進行させることができ、流動層内部で流動用ガスの速度がさらに均一に維持される。
According to the first invention, the tubular core portion forming the fluidized roasting furnace has a plurality of inner vertical portions having different cross-sectional areas in the furnace in the region in the height direction in which the electric heater is provided. Since the upper side has a larger cross-sectional area in the furnace than the lower side, even if gas is generated by roasting the object to be roasted, the volume increase of the generated gas is absorbed by the vertical part of the inner surface of the upper side, so that the fluidized bed The velocity of the fluidized gas is kept uniform inside. Therefore, the quality and recovery rate of the roasted product after roasting are improved.
According to the second invention, since the tubular core portion has three or more vertical inner surface portions, the cross-sectional area inside the furnace can be gradually increased from the bottom to the top, so that the flow occurs inside the fluidized bed. The velocity of the gas is maintained more uniform.
According to the third invention, since the roasting temperature of the two inner vertical portions can be set differently, the roasting can be progressed step by step, and the speed of the fluidized gas inside the fluidized bed is further increased. It is kept uniform.

本発明の第1実施形態に係る流動焙焼炉の正面方向からの断面図である。It is sectional drawing from the front direction of the fluid roasting furnace which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る流動焙焼炉の正面方向からの断面図である。It is sectional drawing from the front direction of the fluid roasting furnace which concerns on 2nd Embodiment of this invention.

つぎに、本発明の実施形態を図面に基づき説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための流動焙焼炉およびその運転方法を例示するものであって、本発明は流動焙焼炉およびその運転方法を以下のものに特定しない。なお、各図面が示す部材の大きさまたは位置関係等は、説明を明確にするため誇張していることがある。 Next, an embodiment of the present invention will be described with reference to the drawings. However, the embodiments shown below exemplify the flow roasting furnace and its operation method for embodying the technical idea of the present invention, and the present invention describes the flow roasting furnace and its operation method as follows. Not specific to the one. The size or positional relationship of the members shown in each drawing may be exaggerated for the sake of clarity.

(第1実施形態)
図1には、本発明の第1実施形態に係る流動焙焼炉10の正面方向からの断面図を示す。図1において黒色の太線矢印は、流動用ガスの流れ方向を示している。本実施形態の流動焙焼炉10には、筒状炉心部11が、軸心を鉛直にした状態で設けられている。この筒状炉心部11の下部には固定層15が設けられている。固定層15は例えば球状のアルミナなどのセラミックスを充填したものを用いることができ、セラミックスはポーラスであってよく、高い充填率のものであってよい。そして被焙焼物が固定層15の下に落ち込まないように固定層15を何層かで構成してもよい。例えば固定層15の下側を球状のアルミナを用い、固定層15の上側をより小さな球状のアルミナを用いてもよい。この固定層15の下面には、筒状炉心部11の下部から流動用ガスを導入するための流動用ガス導入管12が設けられている。この流動用ガス導入管12から太線矢印で示す向きに流動用ガスが供給されることで、固定層15の上に位置している流動媒体31および原料32が流動化して流動層が生じ、この流動層内で原料32が浮遊した状態で焙焼が行なわれる。
(First Embodiment)
FIG. 1 shows a cross-sectional view of the fluidized roasting furnace 10 according to the first embodiment of the present invention from the front direction. In FIG. 1, the thick black arrow indicates the flow direction of the flowing gas. The fluidized roasting furnace 10 of the present embodiment is provided with a tubular core portion 11 in a state where the axis is vertical. A fixed layer 15 is provided at the lower part of the tubular core portion 11. As the fixed layer 15, for example, one filled with ceramics such as spherical alumina can be used, and the ceramics may be porous or may have a high filling factor. Then, the fixed layer 15 may be composed of several layers so that the object to be roasted does not fall under the fixed layer 15. For example, spherical alumina may be used on the lower side of the fixed layer 15, and smaller spherical alumina may be used on the upper side of the fixed layer 15. On the lower surface of the fixed layer 15, a flow gas introduction pipe 12 for introducing the flow gas from the lower part of the tubular core portion 11 is provided. When the fluidized gas is supplied from the fluidized gas introduction pipe 12 in the direction indicated by the thick arrow, the fluidized medium 31 and the raw material 32 located on the fixed layer 15 are fluidized to form a fluidized bed. Roasting is performed with the raw material 32 floating in the fluidized bed.

筒状炉心部11の下部には、流動媒体31等を一定の温度に保持するためのヒータ13が設けられている。なおこのヒータ13は原料32によっては設けられない場合もある。ヒータ13が用いられない場合は、例えば高温の流動用ガスを流して流動焙焼してもよい。 A heater 13 for holding the flow medium 31 and the like at a constant temperature is provided in the lower part of the tubular core portion 11. The heater 13 may not be provided depending on the raw material 32. When the heater 13 is not used, for example, a high-temperature flow gas may be flowed to perform flow roasting.

筒状炉心部11に供給する原料32は、筒状炉心部11の側部に設けられた原料投入管14により適宜投入される。そして原料投入管14は原料投入後、蓋またはバルブで閉じる。 The raw material 32 to be supplied to the tubular core portion 11 is appropriately charged by the raw material input pipe 14 provided on the side portion of the tubular core portion 11. Then, after the raw material is charged, the raw material input pipe 14 is closed with a lid or a valve.

本実施形態の流動焙焼炉10の筒状炉心部11は、炉内断面積が異なる複数の内面鉛直部17を有する。本実施形態では、内面鉛直部17の断面は円形状である。これらの内面鉛直部17は、拡大部16によって互いに連結され一体となることで、筒状炉心部11が形成されている。本実施形態では内面鉛直部17は2つ設けられており、上側に位置する内面鉛直部17bの炉内断面積は、下側に位置する内面鉛直部17aの炉内断面積よりも大きくなっている。そして、被焙焼物が焙焼される流動層は、2つの内面鉛直部17に亘って形成されている。すなわち本実施形態で流動層は、下側の内面鉛直部17の高さ方向の領域の一部と、上側の内面鉛直部17の高さ方向の領域の一部とに亘って形成されている。ただし流動層は、いずれかの内面鉛直部17の高さ方向の全部に亘って形成される場合もある。なお本明細書では、内面鉛直部の全てを意味する場合は符号17とし、断面積が異なるそれぞれの内面鉛直部を意味する場合は符号17a、17bのように表示する。 The tubular core portion 11 of the fluidized roasting furnace 10 of the present embodiment has a plurality of inner vertical portions 17 having different cross-sectional areas in the furnace. In the present embodiment, the cross section of the inner vertical portion 17 is circular. These inner vertical portions 17 are connected to each other by the enlarged portion 16 and integrated to form a tubular core portion 11. In the present embodiment, two inner vertical portions 17 are provided, and the in-core cross-sectional area of the inner vertical portion 17b located on the upper side is larger than the in-furnace cross-sectional area of the inner vertical portion 17a located on the lower side. There is. The fluidized bed in which the object to be roasted is roasted is formed over the two inner vertical portions 17. That is, in the present embodiment, the fluidized bed is formed over a part of a region in the height direction of the lower inner surface vertical portion 17 and a part of a region in the height direction of the upper inner surface vertical portion 17. .. However, the fluidized bed may be formed over the entire height direction of any of the inner vertical portions 17. In the present specification, reference numeral 17 is used to mean all of the vertical inner surface portions, and reference numerals 17a and 17b are used to mean the vertical vertical portions of the inner surface having different cross-sectional areas.

流動焙焼炉10を形成する筒状炉心部11が、流動層が形成される高さ方向の領域で、炉内断面積が異なる複数の内面鉛直部17を有し、上側が下側よりも炉内断面積が大きいことから、被焙焼物の焙焼によりガスが発生した場合でも、発生したガスの体積増加分が上側の内面鉛直部で吸収されるため、流動層内部で流動用ガスの速度が均一に維持される。このため焙焼後の被焙焼物の品質と回収率が向上する。 The tubular core portion 11 forming the fluidized roasting furnace 10 has a plurality of inner vertical portions 17 having different cross-sectional areas in the furnace in the region in the height direction in which the fluidized bed is formed, and the upper side is higher than the lower side. Since the cross-sectional area inside the furnace is large, even if gas is generated by roasting the object to be roasted, the increased volume of the generated gas is absorbed by the upper vertical part of the inner surface, so that the fluidized gas is absorbed inside the fluidized bed. The speed is kept uniform. Therefore, the quality and recovery rate of the roasted product after roasting are improved.

上側の内面鉛直部17bの炉内断面積は、最下段である下側の内面鉛直部17aの炉内断面積の1.2倍以上から10倍以下程度の範囲とする。さらに安定した流動焙焼を継続する点で、上側の内面鉛直部17bの炉内断面積は、最下段である下側の内面鉛直部17aの炉内断面積の1.5倍以上5倍以下の断面積とすることが好ましい。炉内断面積が1.2倍未満の場合、流速の変化が少なく安定性が保ちにくく、一方10倍を超えても効果に差は少なく、設備費または体積が増加するなど好ましくない。 The in-core cross-sectional area of the upper vertical inner surface portion 17b shall be in the range of 1.2 times or more and 10 times or less of the in-core cross-sectional area of the lower inner surface vertical portion 17a, which is the lowermost stage. In terms of continuing stable fluid roasting, the in-core cross-sectional area of the upper inner vertical portion 17b is 1.5 times or more and 5 times or less of the in-core cross-sectional area of the lower inner vertical portion 17a, which is the lowermost stage. It is preferable to use the cross-sectional area of. When the cross-sectional area in the furnace is less than 1.2 times, the change in the flow velocity is small and it is difficult to maintain the stability, while when it exceeds 10 times, the difference in the effect is small and the equipment cost or the volume is not preferable.

なお、断面積の差が生じる部分をつなぐ部分である拡大部16は水平であってもかまわないが、図1に示すように、炉芯側に向かって下がるように傾斜を設けて連結する構造が好ましい。このような構造とすることで、流動用ガスの流れがない空白部分が生じるのを防ぐことができ、被焙焼物が拡大部16に堆積するのを防止できるからである。 The enlarged portion 16 which is a portion connecting the portions where the difference in cross-sectional area occurs may be horizontal, but as shown in FIG. 1, the structure is provided with an inclination so as to be lowered toward the furnace core side. Is preferable. This is because such a structure can prevent the formation of a blank portion where the flow gas does not flow, and can prevent the object to be roasted from accumulating on the enlarged portion 16.

また、拡大部16の炉外側にノッカー、バイブレータ、または超音波振動子等の振動を発生する装置を設けたり、外部からガスを吹き込む装置を設けたりして、堆積した被焙焼物を炉芯内に払い落とせる機構を設けることもできる。 Further, by providing a device for generating vibration such as a knocker, a vibrator, or an ultrasonic vibrator on the outside of the furnace of the enlarged portion 16, or a device for blowing gas from the outside, the deposited material to be roasted is placed inside the furnace core. It is also possible to provide a mechanism that can be wiped off.

水酸化ニッケル(Ni(OH))は、焙焼温度によって被焙焼物の性状が大きく変化したり、性状の異なるガスが発生したりする。このような原料の場合、焙焼温度が一つの温度帯の中に位置しているとガスが一気に発生したり、被焙焼物の性状が一気に変わって、均一な流動ができなくなったりする。そして、発生したガスによって被焙焼物が、焙焼が不完全な状態で持ち出される場合がある。 Nickel hydroxide (Ni (OH) 2 ) greatly changes the properties of the object to be roasted depending on the roasting temperature, and gas with different properties is generated. In the case of such raw materials, if the roasting temperature is located in one temperature range, gas may be generated at once, or the properties of the object to be roasted may change at once, and uniform flow may not be possible. Then, the generated gas may bring out the object to be roasted in an incompletely roasted state.

具体的に、水酸化ニッケルでは、100℃でまず含有水分が揮発し、次に300℃前後で水酸基(OH基)が分解して水蒸気が発生し、さらに700℃前後で含有する硫黄が飛び始める。 Specifically, in nickel hydroxide, the water content is first volatilized at 100 ° C, then the hydroxyl groups (OH groups) are decomposed at around 300 ° C to generate water vapor, and the sulfur contained at around 700 ° C begins to fly. ..

本実施形態の流動焙焼炉10では、流動焙焼炉10の筒状炉心部11に、複数の内面鉛直部17を持つ構造としたうえで、それぞれの内面鉛直部17ごとに温度を変えて焙焼することもできる。 In the fluidized roasting furnace 10 of the present embodiment, the tubular core portion 11 of the fluidized roasting furnace 10 has a plurality of inner vertical portions 17, and the temperature is changed for each of the inner vertical portions 17. It can also be roasted.

例えば、ヒータ13を内面鉛直部17ごとに設けることで、異なる温度に制御することが可能となる。ヒータ13は電気式であることが好ましい。電気式であると高精度に制御することが可能であるからである。また、ヒータ13の設置密度を内面鉛直部17内の上下で異ならせることが好ましい。この場合、上下方向になだらかに温度変化を生じさせることができる。 For example, by providing the heater 13 for each of the inner vertical portions 17, it is possible to control the temperature to a different temperature. The heater 13 is preferably an electric type. This is because it is possible to control with high accuracy if it is an electric type. Further, it is preferable that the installation density of the heater 13 is different between the upper and lower parts of the inner vertical portion 17. In this case, the temperature can be gently changed in the vertical direction.

2つの内面鉛直部17の焙焼温度の設定が異なることにより、段階的に焙焼を進行させることができ、流動層内部で流動用ガスの速度がさらに均一に維持される。よって、ガス発生等の変動による被焙焼物の飛び出しを抑制し、その結果高い回収率で高品質な被焙焼物を得ることができる。 By setting the roasting temperature of the two inner vertical portions 17, the roasting can proceed step by step, and the speed of the fluidized gas is more uniformly maintained inside the fluidized bed. Therefore, it is possible to suppress the popping out of the roasted product due to fluctuations such as gas generation, and as a result, it is possible to obtain a high quality roasted product with a high recovery rate.

(第1実施形態に係る流動焙焼炉10の運転方法)
図1に示すように、流動焙焼炉10には、原料32と一緒に流動層を生じさせるための流動媒体31が装入されている。流動焙焼炉10に流動用ガス導入管12から流動用ガスが導入されるとともに、原料32があらかじめ定められた量だけ投入される。流動用ガスの流速は、原料32と流動媒体31との混合物の「空塔速度」が、「最小流動化速度」以上で「終末速度」未満であるように調整する。
(Operation method of the fluidized roasting furnace 10 according to the first embodiment)
As shown in FIG. 1, the fluidized roasting furnace 10 is charged with a fluidized medium 31 for forming a fluidized bed together with the raw material 32. The flow gas is introduced into the flow roasting furnace 10 from the flow gas introduction pipe 12, and the raw material 32 is charged in a predetermined amount. The flow velocity of the fluidizing gas is adjusted so that the "superficial velocity" of the mixture of the raw material 32 and the fluidizing medium 31 is equal to or higher than the "minimum fluidization velocity" and less than the "terminal velocity".

流動焙焼炉10はヒータ13により加熱した状態にしておき、原料32を投入して焙焼することが好ましい。原料投入後、加熱すると時間がかかり効率が悪くなるからである。ヒータ13は電気式であることが、制御が容易である点で好ましい。また、図示していないが、ガスバーナなどはコスト面で安く、好ましい。 It is preferable that the fluidized roasting furnace 10 is kept heated by the heater 13 and the raw material 32 is charged and roasted. This is because if the raw material is heated after being charged, it takes time and the efficiency deteriorates. It is preferable that the heater 13 is an electric type because it is easy to control. Further, although not shown, a gas burner or the like is preferable because it is cheap in terms of cost.

(第2実施形態)
図2には、第2実施形態に係る流動焙焼炉10の正面方向からの断面図を示す。第1実施形態の流動焙焼炉10との相違点は、筒状炉心部11が3つの内面鉛直部17を有している点である。なお本実施形態では内面鉛直部17は3つであるが、4以上あっても問題ない。
(Second Embodiment)
FIG. 2 shows a cross-sectional view of the fluidized roasting furnace 10 according to the second embodiment from the front direction. The difference from the fluidized roasting furnace 10 of the first embodiment is that the tubular core portion 11 has three inner vertical portions 17. In this embodiment, the number of vertical portions 17 on the inner surface is three, but there is no problem even if there are four or more.

本実施形態では、内面鉛直部17の断面は円形状である。3つの内面鉛直部17は、それらの間に存する、2つの拡大部16によって互いに連結され一体となることで、筒状炉心部11が形成されている。本実施形態では、上側に位置する2つの内面鉛直部17b、17cの炉内断面積は、最下段に位置する内面鉛直部17aの炉内断面積よりも大きくなっている。また、最上段に位置する内面鉛直部17cの炉内断面積は、中段に位置する内面鉛直部17bの炉内断面積よりも大きくなっている。そして、被焙焼物が焙焼される流動層は、3つの内面鉛直部17に亘って形成されている。すなわち本実施形態で流動層は、最下段の内面鉛直部17aの高さ方向の領域の一部から、最上段の内面鉛直部17cの高さ方向の領域の一部に亘って形成されている。ただし流動層は、最上段または最下段の内面鉛直部17の高さ方向の領域の全部に亘って形成される場合もある。 In the present embodiment, the cross section of the inner vertical portion 17 is circular. The three inner vertical portions 17 are connected to each other by the two enlarged portions 16 existing between them to form a tubular core portion 11. In the present embodiment, the in-core cross-sectional area of the two inner vertical portions 17b and 17c located on the upper side is larger than the in-furnace cross-sectional area of the inner vertical portions 17a located in the lowermost stage. Further, the in-core cross-sectional area of the inner vertical portion 17c located at the uppermost stage is larger than the in-furnace cross-sectional area of the inner vertical portion 17b located at the middle stage. The fluidized bed in which the object to be roasted is roasted is formed over three vertical portions 17 on the inner surface. That is, in the present embodiment, the fluidized bed is formed from a part of the lowermost inner surface vertical portion 17a in the height direction to a part of the uppermost inner surface vertical portion 17c in the height direction. .. However, the fluidized bed may be formed over the entire height-wise region of the inner vertical portion 17 of the uppermost stage or the lowermost stage.

最下段より上側に位置する内面鉛直部17b、17cの炉内断面積は、最下段の内面鉛直部17aの炉内断面積の1.2倍以上から10倍以下程度の範囲とする。さらに安定した流動焙焼を継続する点で、最下段より上側に位置する内面鉛直部17b、17cの炉内断面積は、最下段である下側の内面鉛直部17aの炉内断面積の1.5倍以上5倍以下の断面積とすることが好ましい。炉内断面積が1.2倍未満の場合、流速の変化が少なく安定性が保ちにくく、一方10倍を超えても効果に差は少なく、設備費または体積が増加するなど好ましくない。 The in-furnace cross-sectional area of the inner vertical portions 17b and 17c located above the lowermost stage shall be in the range of 1.2 times or more and 10 times or less of the in-furnace cross-sectional area of the lowermost inner surface vertical portions 17a. In terms of continuing stable fluid roasting, the in-core cross-sectional area of the inner vertical portions 17b and 17c located above the bottom is 1 of the in-core cross-sectional area of the lower inner vertical portion 17a, which is the lowest. It is preferable that the cross-sectional area is 5 times or more and 5 times or less. When the cross-sectional area in the furnace is less than 1.2 times, the change in the flow velocity is small and it is difficult to maintain the stability, while when it exceeds 10 times, the difference in the effect is small and the equipment cost or the volume is not preferable.

筒状炉心部11が3以上の内面鉛直部17を有しているので、下から上に向けて段階的に炉内断面積を増やすことができるため、流動層内部で流動用ガスの速度がより均一に維持される。なお、流動焙焼炉10の運転方法は、第1実施形態と同じである。 Since the tubular core portion 11 has three or more inner vertical portions 17, the cross-sectional area inside the furnace can be gradually increased from the bottom to the top, so that the velocity of the fluidized gas increases inside the fluidized bed. It is maintained more evenly. The operation method of the fluidized roasting furnace 10 is the same as that of the first embodiment.

以下、本発明に関連する実験を行い、本発明の各実施形態の実施例を示して説明する。なお、本発明は以下の実施例に何ら限定されるものではない。 Hereinafter, experiments related to the present invention will be conducted, and examples of each embodiment of the present invention will be shown and described. The present invention is not limited to the following examples.

(実験1)(複数の内面鉛直部の検証、原料:水酸化ニッケル)
<原料>
焙焼対象の原料(被焙焼物)32として、水酸化ニッケル(Ni(OH))を準備した。水酸化ニッケルは、平均粒径が22.3~24.3μmのものであり、あらかじめ真空中で175℃、3時間の真空加熱処理が行われ、含有水分が実質的に除去された。分析すると硫黄分が2.1~2.3重量%の割合で含まれていた。その他の不純物成分は、実質的に無視できる程度だった。
(Experiment 1) (Verification of multiple vertical parts on the inner surface, raw material: nickel hydroxide)
<Raw materials>
Nickel hydroxide (Ni (OH) 2 ) was prepared as the raw material (to be roasted) 32 to be roasted. Nickel hydroxide had an average particle size of 22.3 to 24.3 μm, and was subjected to vacuum heat treatment at 175 ° C. for 3 hours in advance in a vacuum to substantially remove the water content. Analysis revealed that the sulfur content was 2.1 to 2.3% by weight. Other impurity components were virtually negligible.

なお、以下の各実験においては、バッチ処理を行った。すなわち各原料32は所定量を流動焙焼炉10に装入し、次に空気を流動用ガスとして炉内下部から送り込んで流動化するとともに所定の温度に昇温し維持して流動焙焼を行い、焙焼後の流動用ガスは上部から排出するようにした。 In each of the following experiments, batch processing was performed. That is, each raw material 32 is charged into the fluidized roasting furnace 10 in a predetermined amount, and then air is sent from the lower part of the furnace as a fluidizing gas to be fluidized, and the temperature is raised to a predetermined temperature to maintain the fluidized roasting. The flow gas after roasting was discharged from the upper part.

<流動焙焼処理>
実験1では図1に示す第1実施形態に係る流動焙焼炉10と、図2に示す第2実施形態に係る流動焙焼炉10と、内面鉛直部17が1種類の、直筒の焙焼炉と、が用いられた。これらの焙焼炉により、原料の水酸化ニッケルが焙焼され、焙焼物である酸化ニッケル(NiO)が回収された。
<Fluid roasting process>
In Experiment 1, the flow roasting furnace 10 according to the first embodiment shown in FIG. 1, the flow roasting furnace 10 according to the second embodiment shown in FIG. 2, and the inner surface vertical portion 17 are one type of roasting of a straight cylinder. With a furnace was used. Nickel hydroxide as a raw material was roasted in these roasting furnaces, and nickel oxide (NiO), which was a roasted product, was recovered.

具体的に、第1実施形態の流動焙焼炉10は、最下段の炉内断面積に対する上側の炉内断面積の比を表1に示すように変更して用いられた。また第2実施形態の流動焙焼炉10は、最下段の炉内断面積に対する中段の炉内断面積の比を1.6とし、最下段の炉内断面積に対する最上段の炉内断面積の比を表1に示すように変更して用いられた。第1実施形態の流動焙焼炉10で焙焼されたものが実施例1~5、第2実施形態の流動焙焼炉で焙焼されたものが実施例6~10、段のない焙焼炉で焙焼されたものが比較例1である。 Specifically, the fluidized roasting furnace 10 of the first embodiment was used by changing the ratio of the upper furnace cross-sectional area to the lowermost furnace cross-sectional area as shown in Table 1. Further, in the fluidized roasting furnace 10 of the second embodiment, the ratio of the in-furnace cross-sectional area of the middle stage to the in-furnace cross-sectional area of the lowest stage is 1.6, and the in-furnace cross-sectional area of the uppermost stage with respect to the in-furnace cross-sectional area of the lowest stage. The ratio of was changed as shown in Table 1 and used. Examples 1 to 5 are roasted in the fluidized roasting furnace 10 of the first embodiment, and Examples 6 to 10 are roasted in the fluidized roasting furnace of the second embodiment. The one roasted in the furnace is Comparative Example 1.

表では、最下段の内面鉛直部17aを1段目、1段目の内面鉛直部17aの次の上側に位置する内面鉛直部17bを2段目、2段目の内面鉛直部17bの次の上側に位置する内面鉛直部17cを3段目として表示した。 In the table, the inner surface vertical portion 17a at the bottom is the first stage, the inner surface vertical portion 17b located on the upper side next to the inner surface vertical portion 17a of the first stage is the second stage, and the inner surface vertical portion 17b at the second stage is next to the inner surface vertical portion 17b. The inner vertical portion 17c located on the upper side is displayed as the third stage.

投入原料の重量は、全て同一とし、焙焼条件は全て同一条件とした。具体的には焙焼温度は900℃、焙焼時間は20分、流動用ガスには空気が用いられた。所定の焙焼後炉を冷却し、炉内の被焙焼物を回収した。 The weights of the input raw materials were all the same, and the roasting conditions were all the same. Specifically, the roasting temperature was 900 ° C., the roasting time was 20 minutes, and air was used as the flowing gas. After the predetermined roasting, the furnace was cooled and the roasted material in the furnace was recovered.

<評価>
実施例1~10、比較例1のそれぞれの処理において、焙焼により得られた試料の回収率(すなわち実収率)、回収した試料中における酸化ニッケルの含有量、および、回収した試料中における硫黄の含有量が評価された。表1に、測定結果を示す。なお、評価方法は以下の通りである。
<Evaluation>
In each of the treatments of Examples 1 to 10 and Comparative Example 1, the recovery rate (that is, the actual yield) of the sample obtained by roasting, the content of nickel oxide in the recovered sample, and the sulfur in the recovered sample. Content was evaluated. Table 1 shows the measurement results. The evaluation method is as follows.

[焙焼により得られた試料の回収率]
焙焼により得られた試料の回収率は、下記の数1により算出した。
[Recovery rate of samples obtained by roasting]
The recovery rate of the sample obtained by roasting was calculated by the following equation 1.

[数1]
R=W/(W-S)×100
[Number 1]
R = W 1 / (W2 - S) x 100

R:回収率[%]
:回収した試料の重量
:投入した原料32(今回はNi(OH))が全て焙焼された(今回はNiO)ときの重量
S:投入した原料32に含まれている硫黄の重量
R: Recovery rate [%]
W 1 : Weight of the recovered sample W 2 : Weight when all the charged raw material 32 (this time Ni (OH) 2 ) is roasted (this time NiO) S: Sulfur contained in the charged raw material 32 Weight

[回収した試料中における酸化ニッケルの含有量の割合]
回収した試料中における酸化ニッケルの含有量の割合は、回収した試料中に含まれる酸化ニッケル(NiO)と水酸化ニッケル(Ni(OH))の含有量をそれぞれ算出し、それぞれの含有量の合計値に対するNiO含有量の割合(重量%)として算出した。
[Ratio of nickel oxide content in the recovered sample]
For the ratio of the nickel oxide content in the recovered sample, the contents of nickel oxide (NiO) and nickel hydroxide (Ni (OH) 2 ) contained in the recovered sample were calculated, respectively, and the respective contents were calculated. It was calculated as the ratio (% by weight) of the NiO content to the total value.

[回収した試料中における硫黄の含有量]
回収した試料中における硫黄の含有量は、硫黄分析装置(三菱化学株式会社製,型式:TOX-100)を用いて測定した。
[Sulfur content in the recovered sample]
The sulfur content in the recovered sample was measured using a sulfur analyzer (manufactured by Mitsubishi Chemical Corporation, model: TOX-100).

Figure 0007044995000001
Figure 0007044995000001

表1に示すように、第1実施形態または第2実施形態の流動焙焼炉10を用いた実施例1~10は、良好な結果が得られた。すなわち、回収率(実収率)は全て99%以上の高い値を示し、その回収物中における酸化ニッケルの含有割合も全て99%以上でNiOに焙焼できた。また、ほとんどが酸化ニッケルである回収物中の硫黄品位も低く、高品質な酸化ニッケルを得ることができた。 As shown in Table 1, good results were obtained in Examples 1 to 10 using the fluidized roasting furnace 10 of the first embodiment or the second embodiment. That is, the recovery rates (actual yields) all showed high values of 99% or more, and the content ratio of nickel oxide in the recovered products was 99% or more, and NiO could be roasted. In addition, the sulfur grade in the recovered product, which is mostly nickel oxide, was low, and high-quality nickel oxide could be obtained.

一方、直筒の焙焼炉が用いられた比較例1では、実施例に比較して、回収率は低く、回収物中における硫黄品位も高くなった。 On the other hand, in Comparative Example 1 in which a straight-cylinder roasting furnace was used, the recovery rate was low and the sulfur grade in the recovered product was high as compared with Examples.

(実験2)(複数の内面鉛直部の検証、原料:銅精鉱)
<原料>
焙焼対象の原料(被焙焼物)32として、表2に示した砒素、硫黄品位の銅精鉱を用いた。
(Experiment 2) (Verification of multiple vertical parts on the inner surface, raw material: copper concentrate)
<Raw materials>
As the raw material (to be roasted) 32 to be roasted, the arsenic and sulfur grade copper concentrates shown in Table 2 were used.

Figure 0007044995000002
Figure 0007044995000002

<流動焙焼処理>
実験2では実験1と同様、図1に示す第1実施形態に係る流動焙焼炉10と、図2に示す第2実施形態に係る流動焙焼炉10と、内面鉛直部17が1種類の、直筒の焙焼炉と、が用いられた。これらの焙焼炉により、原料の銅精鉱が焙焼された。
<Fluid roasting process>
In Experiment 2, as in Experiment 1, the fluid roasting furnace 10 according to the first embodiment shown in FIG. 1, the fluidized roasting furnace 10 according to the second embodiment shown in FIG. 2, and the inner vertical portion 17 are one type. , A straight-cylinder roasting furnace, was used. The raw material copper concentrate was roasted in these roasting furnaces.

具体的に、第1実施形態の流動焙焼炉10は、最下段の炉内断面積に対する上側の炉内断面積の比を表3に示すように変更して用いられた。また第2実施形態の流動焙焼炉10は、最下段の炉内断面積に対する中段の炉内断面積の比を1.6とし、最下段の炉内断面積に対する最上段の炉内断面積の比を表3に示すように変更して用いられた。第1実施形態の流動焙焼炉10で焙焼されたものが実施例11~15、第2実施形態の流動焙焼炉で焙焼されたものが実施例16~20、段のない焙焼炉で焙焼されたものが比較例2である。表での内面鉛直部17の表記は実験1と同じである。 Specifically, the fluidized roasting furnace 10 of the first embodiment was used by changing the ratio of the upper furnace cross-sectional area to the lowermost furnace cross-sectional area as shown in Table 3. Further, in the fluidized roasting furnace 10 of the second embodiment, the ratio of the in-furnace cross-sectional area of the middle stage to the in-furnace cross-sectional area of the lowest stage is 1.6, and the in-furnace cross-sectional area of the uppermost stage with respect to the in-furnace cross-sectional area of the lowest stage. The ratio of was changed as shown in Table 3 and used. Examples 11 to 15 were roasted in the fluidized roasting furnace 10 of the first embodiment, and Examples 16 to 20 were roasted in the fluidized roasting furnace of the second embodiment. The one roasted in the furnace is Comparative Example 2. The notation of the inner vertical portion 17 in the table is the same as in Experiment 1.

投入原料の重量は、全て同一とし、焙焼条件は全て同一条件とした。具体的には焙焼温度は900℃、焙焼時間は4.0時間とし、流動用ガスには窒素が用いられた。所定の焙焼後炉を冷却し、炉内の被焙焼物を回収した。 The weights of the input raw materials were all the same, and the roasting conditions were all the same. Specifically, the roasting temperature was 900 ° C., the roasting time was 4.0 hours, and nitrogen was used as the fluid gas. After the predetermined roasting, the furnace was cooled and the roasted material in the furnace was recovered.

<評価>
実施例11~20、比較例2のそれぞれの処理において、フィルターでの試料の回収率(飛散率)、及び、銅精鉱中の砒素含有量について以下の方法で評価した。表3に、測定結果を示す。なお、評価方法は以下の通りである。
<Evaluation>
In each of the treatments of Examples 11 to 20 and Comparative Example 2, the recovery rate (scattering rate) of the sample by the filter and the arsenic content in the copper concentrate were evaluated by the following methods. Table 3 shows the measurement results. The evaluation method is as follows.

[フィルターでの試料の回収率]
焙焼後、排気ガスとともに流し出された試料をバグフィルターで回収し、その回収量から下式によって回収率(飛散率)を算出した。なお、本来銅精鉱がフィルターで捕集されるのはロスになり好ましくなくこの回収率(飛散率)は低い方が好ましい。
[Sample recovery rate with filter]
After roasting, the sample discharged together with the exhaust gas was collected with a bag filter, and the recovery rate (scattering rate) was calculated from the recovered amount by the following formula. It is not preferable that the copper concentrate is originally collected by the filter because it is a loss, and it is preferable that the recovery rate (scattering rate) is low.

[数2]
=W/W×100
[Number 2]
R 2 = W 3 / W 4 x 100

:フィルターでの回収率[%]
:回収した試料の重量
:投入した原料(今回は銅精鉱)の重量
R 2 : Recovery rate with filter [%]
W 3 : Weight of recovered sample W 4 : Weight of input raw material (copper concentrate this time)

[実験前後の試料中の砒素含有量]
実験前後の試料については、ICP発光分光分析装置を用いて砒素と硫黄を分析した。
[Arsenic content in the sample before and after the experiment]
For the samples before and after the experiment, arsenic and sulfur were analyzed using an ICP emission spectrophotometer.

Figure 0007044995000003
Figure 0007044995000003

表3に示すように、第1実施形態または第2実施形態の流動焙焼炉10を用いた実施例11~20は、良好な結果が得られた。すなわち、実施例において砒素は0.1重量%未満であり、精鉱中の砒素と硫黄の含有量が大きく減少した。銅精鉱中の砒素、硫黄が減少したため、銅精鉱中の銅含有量が流動焙焼によって10%以上増加し銅を濃縮できた。 As shown in Table 3, good results were obtained in Examples 11 to 20 using the fluidized roasting furnace 10 of the first embodiment or the second embodiment. That is, in the examples, the amount of arsenic was less than 0.1% by weight, and the contents of arsenic and sulfur in the concentrate were greatly reduced. Since the amount of arsenic and sulfur in the copper concentrate decreased, the copper content in the copper concentrate increased by 10% or more by fluid roasting, and copper could be concentrated.

一方、直筒の焙焼炉が用いられた比較例2は好ましくない結果となった。すなわち、砒素品位が0.2重量%あり、フィルターでの回収量は10%以上とロスが大幅に増加した。 On the other hand, Comparative Example 2 in which a straight-cylinder roasting furnace was used gave unfavorable results. That is, the arsenic grade was 0.2% by weight, and the amount recovered by the filter was 10% or more, which greatly increased the loss.

(実験3)(複数の焙焼温度設定の検証、原料:水酸化ニッケル)
<原料>
焙焼対象の原料(被焙焼物)32として、水酸化ニッケル(Ni(OH))を準備した。水酸化ニッケルは、平均粒径が22.5~24.5μmのものであり、あらかじめ真空中で175℃、3時間の真空加熱処理が行われ、含有水分が実質的に除去された。分析すると、水酸化ニッケルの硫黄品位は2.0~2.2重量%だった。その他の不純物成分は実質的に無視できる程度だった。
(Experiment 3) (Verification of multiple roasting temperature settings, raw material: nickel hydroxide)
<Raw materials>
Nickel hydroxide (Ni (OH) 2 ) was prepared as the raw material (to be roasted) 32 to be roasted. Nickel hydroxide had an average particle size of 22.5 to 24.5 μm, and was subjected to vacuum heat treatment at 175 ° C. for 3 hours in advance in a vacuum to substantially remove the water content. When analyzed, the sulfur grade of nickel hydroxide was 2.0 to 2.2% by weight. Other impurity components were virtually negligible.

<流動焙焼処理>
実験3では図1に示す第1実施形態に係る流動焙焼炉10が用いられた。この焙焼炉により、原料の水酸化ニッケルが焙焼され、焙焼物である酸化ニッケル(NiO)が回収された。
<Fluid roasting process>
In Experiment 3, the fluidized roasting furnace 10 according to the first embodiment shown in FIG. 1 was used. The raw material nickel hydroxide was roasted in this roasting furnace, and nickel oxide (NiO), which was a roasted product, was recovered.

具体的に、第1実施形態の流動焙焼炉10は、最下段の炉内断面積に対する上側の炉内断面積の比を表4に示すように変更して用いられた。なお表4では、最下段の内面鉛直部17aを1段目、1段目の内面鉛直部17aの次の上側に位置する内面鉛直部17bを2段目として表示した。実施例21~25では、1段目の内面鉛直部17aでの焙焼温度は400℃、2段目の内面鉛直部17bでの焙焼温度は900℃である。実施例26~30では、1段目、2段目の内面鉛直部17a、17bでの焙焼温度はどちらとも900℃である。 Specifically, the fluidized roasting furnace 10 of the first embodiment was used by changing the ratio of the upper furnace cross-sectional area to the lowermost furnace cross-sectional area as shown in Table 4. In Table 4, the inner vertical portion 17a at the bottom is shown as the first stage, and the inner vertical portion 17b located on the upper side next to the inner vertical portion 17a at the first stage is displayed as the second stage. In Examples 21 to 25, the roasting temperature at the inner vertical portion 17a of the first stage is 400 ° C., and the roasting temperature at the inner vertical portion 17b of the second stage is 900 ° C. In Examples 26 to 30, the roasting temperature at the inner vertical portions 17a and 17b of the first stage and the second stage are both 900 ° C.

投入原料の重量は、全て同一とし、焙焼温度以外の焙焼条件は全て同一条件とした。具体的には、焙焼時間は20分とし、流動用ガスには空気が用いられた。所定の焙焼後炉を冷却し、炉内の被焙焼物を回収した。 The weights of the input raw materials were all the same, and the roasting conditions other than the roasting temperature were all the same. Specifically, the roasting time was 20 minutes, and air was used as the flowing gas. After the predetermined roasting, the furnace was cooled and the roasted material in the furnace was recovered.

<評価>
実施例21~30のそれぞれの処理において、焙焼により得られた試料の回収率(すなわち実収率)、回収した試料中における酸化ニッケルの含有量、および、回収した試料中における硫黄の含有量が評価された。表4に、測定結果を示す。なお、評価方法は実験1と同じである。
<Evaluation>
In each of the treatments of Examples 21 to 30, the recovery rate (that is, the actual yield) of the sample obtained by roasting, the content of nickel oxide in the recovered sample, and the sulfur content in the recovered sample were determined. It was evaluated. Table 4 shows the measurement results. The evaluation method is the same as in Experiment 1.

Figure 0007044995000004
Figure 0007044995000004

表4に示すように、1段目の焙焼温度を低くした実施例21~25は、同じ焙焼温度であった実施例26~30と比較して、良好な結果が得られた。すなわち、実施例21~25では、同じ断面積比である実施例で比較すると、回収率は全て高い値を示し、その回収物中における酸化ニッケルの含有割合もすべて高い割合を示した。また、同じ断面積比で比較すると硫黄品位も実施例21~25は低い値を示した。 As shown in Table 4, Good results were obtained in Examples 21 to 25 in which the roasting temperature of the first stage was lowered as compared with Examples 26 to 30 in which the roasting temperature was the same. That is, in Examples 21 to 25, when compared with Examples having the same cross-sectional area ratio, the recovery rates were all high, and the nickel oxide content in the recovery was also high. Further, when compared with the same cross-sectional area ratio, the sulfur grades of Examples 21 to 25 also showed low values.

(実験4)(複数の焙焼温度設定の検証、原料:銅精鉱)
<原料>
焙焼対象の原料(被焙焼物)32として、上記実験2の表2に示した組成の銅精鉱を原料に用いた。
(Experiment 4) (Verification of multiple roasting temperature settings, raw material: copper concentrate)
<Raw materials>
As the raw material (to be roasted) 32 to be roasted, the copper concentrate having the composition shown in Table 2 of the above experiment 2 was used as the raw material.

<流動焙焼処理>
実験4では図1に示す第1実施形態に係る流動焙焼炉10が用いられた。この焙焼炉により、原料の銅精鉱が焙焼された。
<Fluid roasting process>
In Experiment 4, the fluidized roasting furnace 10 according to the first embodiment shown in FIG. 1 was used. The raw material copper concentrate was roasted in this roasting furnace.

具体的に、第1実施形態の流動焙焼炉10は、最下段の炉内断面積に対する上側の炉内断面積の比を表5に示すように変更して用いられた。なお表5では、最下段の内面鉛直部17aを1段目、1段目の内面鉛直部17aの次の上側に位置する内面鉛直部17bを2段目として表示した。実施例31~35では、1段目の内面鉛直部17aでの焙焼温度は200℃、2段目の内面鉛直部17bでの焙焼温度は900℃である。実施例36~40では、1段目、2段目の内面鉛直部17a、17bでの焙焼温度はどちらとも900℃である。 Specifically, the fluidized roasting furnace 10 of the first embodiment was used by changing the ratio of the upper furnace cross-sectional area to the lowermost furnace cross-sectional area as shown in Table 5. In Table 5, the inner vertical portion 17a at the bottom is shown as the first stage, and the inner vertical portion 17b located on the upper side next to the inner vertical portion 17a at the first stage is displayed as the second stage. In Examples 31 to 35, the roasting temperature at the inner vertical portion 17a of the first stage is 200 ° C., and the roasting temperature at the inner vertical portion 17b of the second stage is 900 ° C. In Examples 36 to 40, the roasting temperatures in the first-stage and second-stage inner vertical portions 17a and 17b are both 900 ° C.

投入原料の重量は、全て同一とし、焙焼温度以外の焙焼条件は全て同一条件とした。具体的には焙焼時間は4.0時間とし、流動用ガスには窒素が用いられた。焙焼終了後、炉を冷却し炉内の試料を回収した。 The weights of the input raw materials were all the same, and the roasting conditions other than the roasting temperature were all the same. Specifically, the roasting time was 4.0 hours, and nitrogen was used as the fluid gas. After the roasting was completed, the furnace was cooled and the sample in the furnace was collected.

<評価>
実施例31~40のそれぞれの処理において、フィルターで捕集された試料の回収率(飛散率)と銅精鉱中の砒素含有量について評価された。表5に、測定結果を示す。なお、評価方法は実験2と同じである。
<Evaluation>
In each of the treatments of Examples 31 to 40, the recovery rate (scattering rate) of the sample collected by the filter and the arsenic content in the copper concentrate were evaluated. Table 5 shows the measurement results. The evaluation method is the same as in Experiment 2.

Figure 0007044995000005
Figure 0007044995000005

表5に示すように、1段目の焙焼温度を低くした実施例31~36は、同じ焙焼温度であった実施例36~40と比較して、良好な結果が得られた。すなわち、実施例31~35では、同じ断面積比である実施例で比較すると、フィルターでの回収率は低い値を示した。 As shown in Table 5, Good results were obtained in Examples 31 to 36 in which the roasting temperature of the first stage was lowered as compared with Examples 36 to 40 in which the roasting temperature was the same. That is, in Examples 31 to 35, the recovery rate with the filter showed a low value when compared with Examples having the same cross-sectional area ratio.

10 流動焙焼炉
11 筒状炉心部
17 内面鉛直部
10 Flow roasting furnace 11 Cylindrical core 17 Inner vertical part

Claims (3)

下側から上側へ向けて流れるガスを用いて被焙焼物が焙焼される筒状炉心部と、
該筒状炉心部の外周に設けられた電気式ヒータと、が設けられ、
該筒状炉心部は、前記電気式ヒータが設けられている高さ方向の領域において、炉内断面積が異なる複数の内面鉛直部を有し、
上側に位置する前記内面鉛直部の炉内断面積が、下側に位置する前記内面鉛直部の炉内断面積よりも大きい、
ことを特徴とする流動焙焼炉。
A cylindrical core in which the object to be roasted is roasted using gas flowing from the lower side to the upper side .
An electric heater provided on the outer periphery of the tubular core portion is provided.
The tubular core portion has a plurality of inner vertical portions having different cross-sectional areas in the furnace in a region in the height direction in which the electric heater is provided .
The in-combustion cross-sectional area of the inner vertical portion located on the upper side is larger than the in-core cross-sectional area of the inner vertical portion located on the lower side.
A fluid roasting furnace characterized by that.
前記筒状炉心部は、3以上の前記内面鉛直部を有する、
ことを特徴とする請求項1記載の流動焙焼炉。
The tubular core portion has three or more vertical inner surface portions.
The fluidized roasting furnace according to claim 1.
炉内断面積が異なる複数の前記内面鉛直部のうち、2つの前記内面鉛直部の焙焼温度の設定を前記電気式ヒータにより異ならせることができる
ことを特徴とする請求項1または2に記載の流動焙焼炉。
Of the plurality of vertical inner surface portions having different cross-sectional areas in the furnace, the roasting temperature settings of the two vertical inner surface portions can be set differently by the electric heater .
The fluidized roasting furnace according to claim 1 or 2 .
JP2018002345A 2018-01-11 2018-01-11 Fluid roasting furnace Active JP7044995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018002345A JP7044995B2 (en) 2018-01-11 2018-01-11 Fluid roasting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018002345A JP7044995B2 (en) 2018-01-11 2018-01-11 Fluid roasting furnace

Publications (2)

Publication Number Publication Date
JP2019120473A JP2019120473A (en) 2019-07-22
JP7044995B2 true JP7044995B2 (en) 2022-03-31

Family

ID=67307155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018002345A Active JP7044995B2 (en) 2018-01-11 2018-01-11 Fluid roasting furnace

Country Status (1)

Country Link
JP (1) JP7044995B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354757A (en) 1999-06-16 2000-12-26 Mitsubishi Materials Corp Diffusion plate structure for fluidized bed device
JP2004025061A (en) 2002-06-26 2004-01-29 Jfe Engineering Kk Fluidizing treatment equipment for powdery material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022273B2 (en) * 1980-07-29 1985-05-31 日鉄鉱業株式会社 Continuous air flow firing furnace for powder and granular materials
JPH0860215A (en) * 1994-08-17 1996-03-05 Kawasaki Heavy Ind Ltd Fluidized bed furnace and smelting reduction apparatus using it
JP3180603B2 (en) * 1995-02-07 2001-06-25 信越化学工業株式会社 Fluidized bed reactor for metal nitride production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354757A (en) 1999-06-16 2000-12-26 Mitsubishi Materials Corp Diffusion plate structure for fluidized bed device
JP2004025061A (en) 2002-06-26 2004-01-29 Jfe Engineering Kk Fluidizing treatment equipment for powdery material

Also Published As

Publication number Publication date
JP2019120473A (en) 2019-07-22

Similar Documents

Publication Publication Date Title
US2621034A (en) Apparatus for expanding minerals
JP2012507469A (en) Apparatus and process for hydrogenation of silicon tetrahalides and silicon to trihalosilanes
CN107649643A (en) A kind of regenerating used method of selective laser sintering mound precoated sand
JP7044995B2 (en) Fluid roasting furnace
JP6939519B2 (en) Fluid roasting furnace
AU2016275707B2 (en) Apparatus and process for thermal denitration, use of such an apparatus and product obtained by means of such a process
JP2007292379A (en) Manufacturing method and device of heat treated particle
JP6870231B2 (en) Nickel oxide manufacturing method, fluidized roasting furnace
JP6939582B2 (en) Fluid roasting furnace
WO2017056626A1 (en) Method for manufacturing nickel powder, and method for operating reaction facility
JP6561925B2 (en) Nickel oxide manufacturing method, fluid roasting furnace
JP2006511704A (en) Heat treatment method and plant for sulfide ore
JP6939498B2 (en) Fluid roasting furnace
JP6565803B2 (en) Nickel oxide manufacturing method, fluid roasting furnace
JP6729126B2 (en) Nickel oxide manufacturing method, fluidized roasting furnace
JP7444533B2 (en) Fluidized roasting furnace
JP7102965B2 (en) Fluid roasting furnace
JP6561924B2 (en) Method for producing nickel oxide
JP7251922B2 (en) Fluidized roasting furnace
JP6942942B2 (en) Nickel oxide manufacturing method, fluid roasting furnace
JP6708038B2 (en) Method for producing nickel oxide
JP2017226589A (en) Method for producing nickel oxide
KR20060059272A (en) Apparatus for reducing metal oxide with hydrogen and method for hydrogen reduction using the same
JP2019152384A (en) Fluidization roasting furnace
JPS62237939A (en) Multistage jet stream bed apparatus using peripheral wall jet stream type fluidized bed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220301

R150 Certificate of patent or registration of utility model

Ref document number: 7044995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150