JP2004025061A - Fluidizing treatment equipment for powdery material - Google Patents

Fluidizing treatment equipment for powdery material Download PDF

Info

Publication number
JP2004025061A
JP2004025061A JP2002186460A JP2002186460A JP2004025061A JP 2004025061 A JP2004025061 A JP 2004025061A JP 2002186460 A JP2002186460 A JP 2002186460A JP 2002186460 A JP2002186460 A JP 2002186460A JP 2004025061 A JP2004025061 A JP 2004025061A
Authority
JP
Japan
Prior art keywords
gas
powdery material
powdery
porous body
dispersion plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002186460A
Other languages
Japanese (ja)
Other versions
JP3541841B2 (en
Inventor
Atsushi Hirayama
平山 敦
Toru Shiomitsu
塩満 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2002186460A priority Critical patent/JP3541841B2/en
Publication of JP2004025061A publication Critical patent/JP2004025061A/en
Application granted granted Critical
Publication of JP3541841B2 publication Critical patent/JP3541841B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluidizing treatment equipment for powdery material in which enables a stable operation for a long time with a small pressure loss of a dispersion plate without fall of a powdery material and clogging. <P>SOLUTION: In the fluidizing treatment equipment for powdery material provided with a gas discharge port at the upper part of a vertical container and an introduction port for gas fluidizing the powder at the lower part and further having a feed port and a taking out port for the powder, the above problem is solved by the fluidizing treatment device for powdery material which is characterized in that a rigid structure body and a flexible porous body are provided in combination at a bottom part of a powder accommodation part of the container as a dispersion plate for the gas. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、縦型容器の下部からガスを送って該容器内の粉状物を流動させて処理する装置に関するものである。
【0002】
【従来の技術】
縦型容器の内部に粉状物を入れて下部から送風することにより該粉状物を流動させて処理する装置は粉状物の乾燥や反応などに幅広く使用されている。
【0003】
この容器内には、粉状物の落下を防止しかつガスの噴出を均一にするために、粉状物の下に分散板が設けられている。この分散板は多数の細孔が均一に分布形成されているものが使用される。
【0004】
【発明が解決しようとする課題】
分散板の細孔の孔径が大きいと粉状物が分散板を通過して落下してしまい、一方、小さすぎると圧力損失が大きくなってブロワーに大容量のものが必要になり、エネルギーロスも問題になる。さらに、この中間の孔径では細孔が粉状物で目詰まりし、長期間の安定運転が確保できない。
【0005】
本発明の目的は、分散板の圧力損失が少なく粉状物の落下も目詰まりもなく長期間の安定運転が可能な粉状物の流動処理装置を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは上記課題を解決するべく鋭意検討の結果、フェルトや織布、不織布などの柔軟性多孔体が粒状物の目詰まりを起こしにくく、また、一旦細孔に粒状物が入ってしまってもその柔軟性により容易に払い落して長期間安定運転を続けうることを見出した。しかしながら、スケールアップしてテストを繰り返していくうちに柔軟性多孔体のみでは強度が不充分であることがわかった。そこで、柔軟性多孔体に剛性構造体を併用してその強度を補うことによって、前記目的を達成することができた。
【0007】
すなわち、本発明は、縦型容器の上部にガス排出口を備え、下部に粉状物を流動させるガスの導入口を備え、さらに粉状物の投入口と取出し口を有する粉状物の流動処理装置において、該容器の粉状物収容部の底部に前記ガスの分散板として、剛性構造体と柔軟性多孔体を併設したことを特徴とする粉状物の流動処理装置に関するものである。
【0008】
【発明の実施の形態】
縦型容器は、粉状物を入れるものであって、通常は筒状である。この形状は直筒のほか、テーパ部を設けて上部または下部を短径とする異径筒としてもよい。上下両面は通常は閉止されて全体は密閉構造をしている。上下両面は平面、湾曲面、円錐面等にされる。容積は処理する粉状物の量等に応じて設計されるが、通常0.01〜100m程度、特に0.2〜10m程度である。
【0009】
縦型容器には粉状物の出入口のほか、粉状物を流動させるガスの出入口が必要である。ガスは粉状物を流動させるために、容器の下部にガスの導入口を上部にガス排出口を設けて、ガスを容器に収容されている粉状物層の下から吹き込んで上方に抜けるようにする。このガス排出口には必要によりダストフィルター、サイクロン電気集塵器、セラミックフィルタ等のダスト除去装置を設けることができる。
【0010】
一方、粉状物の投入口と取出し口はそれぞれ粉状物の投入、排出ができれば如何なる位置に設けてもよい。本発明の流動処理装置が粉状廃棄物を加熱処理する装置である場合には、粉状物の投入口を容器の上部に、そして取出し口を下部に設けることが好ましい。バッチ処理等では投入口と取出し口を兼用させることも可能である。
【0011】
この縦型容器の粉状物収容部底面にはガスの分散板を設けるが、本発明ではこの分散板に柔軟性多孔体と剛性構造体を組み合わせて用いるところに特徴がある。
【0012】
柔軟性多孔体は、ガスを分散させる機能と粒状物の落下を防止する機能を有するもので、ガスを通過させる貫通細孔が略全面にほぼ均一に分散形成されているものである。この細孔の平均孔径は、0.01〜50μm程度、好ましくは0.1〜20μm程度で、粒状物の平均粒径の1〜90%程度、好ましくは1〜40%程度、特に好ましくは1〜20%程度のものが適当である。多孔体はシート状であって、厚さは1〜20mm程度、好ましくは1〜5mm程度である。柔軟性とは、手で軽く負荷をかける程度でたわみ、また、この多孔体を分散板として用いた時、通風時に上下に軽く振動するような物をいう。柔軟性多孔体の例としては、金属やセラミックからなる多孔質のフェルトや織布、不織布等を挙げることができる。一般にバグフィルタに使用されているものは好適に使用することができる。なかでも400℃以上の耐熱性、機械的強度、耐食性に優れているものが好ましく、例えばAl・SiOからなるセラミック製の織布等が挙げられる。
【0013】
剛性構造体は柔軟性多孔体の機械的強度を補うことを一つの目的としている。ここでいう剛性構造体とは、手で強く負荷をかける程度ではたわまない強度の物をいう。この剛性構造体は、柔軟性多孔体とともにガスを分散させる機能を有するものであってもよい。この場合、剛性構造体も多孔体が用いられる。例としては金属粉燒結体や多孔性セラミックなどを挙げることができる。平均孔径は0.5〜50μm程度、好ましくは0.5〜20μm程度で、厚さが1〜100mm、好ましくは5〜20mm程度のものが好適である。剛性構造体は柔軟性多孔体の単なる支持体であってもよい。この場合、例えば金属やセラミックなどの格子状等のものが使用される。あるいは柔軟性多孔体の表面保護材とすることもできる。これは、柔軟性構造体は分散板の目詰まり防止としては機能するが、反面機械的強度は低く、例えば、粉体を流動させる手段として吹き込みガスに加え攪拌手段を設ける場合は、攪拌翼等による破損が考えられる。そこで、その保護層としてネットやメッシュを用いるものである。表面に被せるネットやメッシュは、目開き(平均孔径)10〜100mm程度のものが好ましい。目開きが小さすぎると、目詰まりの原因になってしまい、大きすぎると1つの孔に露出する柔軟性構造体の面積が大きくなり破損し易くなるためである。ネットやメッシュの材料は、金属やセラミック等機械的強度と耐熱性に優れているものが好ましい。
【0014】
分散板における柔軟性多孔体と、剛性構造体の配置枚数および配置順序について特に制限はなく、柔軟性多孔体/剛性構造体、剛性構造体/柔軟性多孔体、剛性構造体/柔軟性多孔体/剛性構造体等の組み合わせを採用することができる。
【0015】
縦型容器には、粉状物の処理目的に応じて各種の設備を付設することができる。例えば粉状廃棄物を加熱処理する場合には、加熱手段を設ける。加熱方式は容器外面から加熱する方式、内部に加熱器を設ける方式、粉状廃棄物を流動させるガスを熱風とする方式等いずれであってもよい。
【0016】
さらに、粉状廃棄物の流動を促進するために攪拌手段を設けることが望ましい。これによって、円筒型容器底部からの分散板を介したガスの吹き込みと容器内に設けられた攪拌翼による攪拌手段によって、粉状物の流動層を形成され、容器内では粉状物が層内を激しく循環するため、気固接触に優れる。さらに、この容器を加熱器として使用した場合、加熱器内壁に対する粉状物の交換速度も高いため、高温ガスの吹き込みによる加熱、加熱器内壁を介する外部加熱のどちらの場合にも効果的な加熱が可能となる。このように熱伝達効率に優れた加熱器を用いるため、飛灰を加熱処理する場合にも加熱器内壁の温度過剰に上昇させる必要もなく、内壁への飛灰の固着も防止される。結果として、飛灰を容易に高温に維持でき、安定したダイオキシン類除去性能が発揮される。好ましい攪拌手段は攪拌翼によるものである。
【0017】
本発明の流動処理される粉状物の種類は気流で流動させうるものであれば特に制限されないが、平均粒径が0.1〜1000μm程度、通常1〜200μm程度、好ましくは1〜50μm程度のものが適当である。密度では0.1〜5g/ml程度、通常0.5〜3g/ml程度のものである。具体例としては、粉状廃棄物、例えばごみ焼却炉から排出される焼却灰や飛灰、ダイオキシン等を吸着した活性炭等の有機ハロゲン化合物で汚染されたもの、上水・下水処理に伴って発生するスラッジ、汚泥、有機物、有機ハロゲン化学、重金属等で汚染された砂、土壌、川底泥、湖底泥、海低泥、トンネル等の掘削時に発生するスラリー状の廃土等を挙げることができる。例えば、粉状廃棄物の有機ハロゲン化合物の含有量が、JIS K 0311による測定法で0.1〜100ng−TEQ/g程度、特に1〜10ng−TEQ/g程度のものを処理できる。特に、流動処理対象が平均粒径10μm未満の微粒子の場合、その粒径の小ささ故、分散板の孔に微粒子が目詰まりを起こし、繰り返し運転することにより分散板の圧力損失が上昇しやすい。本発明の装置は平均粒径が10μm未満で0.1μmまでの微粒子の流動処理に特に有効である。
【0018】
粉状物の流動に使用されるガスも目的により適宜選択されるが、空気、焼却炉排ガス、窒素、水蒸気、He、Ar等が通常使用される。
【0019】
本発明の流動処理装置にはその処理目的に従って適宜付属設備が設けられる。例えば、流動処理が加熱を伴う有機ハロゲン化合物の気化除去の場合には排出ガスに同伴される有機ハロゲン化合物を熱分解する装置、有機ハロゲン化合物を触媒分解する装置等を適宜設ける。
【0020】
この場合、流動処理装置である加熱器のガス排出口には除塵装置を設けて廃棄物その他の粉塵を除去することが好ましい。この集塵装置にはバグフィルタ、サイクロン、電気集塵器、セラミックフィルタ等を使用できるが、排ガスの温度が350〜550℃程度でこれを次に更に加熱して熱分解するので、好ましいものは高温で除塵できるセラミックフィルタ等が好ましい。
【0021】
加熱器のガス排出口には、加熱器から排出される有害有機ハロゲン化合物を含むガスを加熱して、この有害有機ハロゲン化合物を熱分解する熱分解装置や有害有機ハロゲン化合物を触媒分解する触媒反応装置を接続する。熱分解装置は、密閉構造で熱分解するガスの入口と熱分解したガスの出口を有している。この熱分解装置は高温燃焼脱臭装置等に使用されている公知の装置を使用することができ、例えばバーナーを用いたもの、電気ヒータを用いたもの、高周波加熱、赤外線加熱、あるいは廃棄物焼却炉の高温部等が利用できる。
【0022】
触媒反応装置は固定床型、移動床、流動床型のいずれであってもよい。触媒は有害有機ハロゲン化合物の種類に応じて選択され、例えばダイオキシン等の有機ハロゲン化合物を分解する場合には、白金、パラジウム、ロジウム、ルテニウムなどの白金属元素、あるいは金のうち少なくとも1種等の貴金属触媒、酸化カルシウム、マンガン、コバルト、クロム、鉄、ニッケル、チタン、バナジウム、タングステン等の単独あるいは複合酸化物のうち少なくとも1種等の酸化物触媒等を使用できる。
【0023】
本発明の流動処理装置の運転条件は処理目的によって異なるが、例えば有機ハロゲン化合物で汚染された粉状廃棄物を加熱処理して有機ハロゲン化合物を気化除去する場合の加熱条件は、温度が350〜550℃程度、好ましくは400〜450℃程度で平均滞留時間5分〜180分程度、通常30分〜120分程度でよい。流動処理装置である加熱器内では有機ハロゲン化合物の気化ばかりでなく、分解も起こりうる。
【0024】
加熱器で有機ハロゲン化合物等を除去された粉状廃棄物は必要により2次処理され、あるいはそのまま廃棄されあるいは有効利用される。
【0025】
一方、気化した有機ハロゲン化合物を含むガスは必要により除塵装置で除塵が行われてから熱分解装置や触媒反応装置で有機ハロゲン化合物の分解が行われる。熱分解は800〜1000℃、好ましくは850〜950℃程度で、平均滞留時間0.5〜20秒程度、好ましくは1〜5秒程度で行われる。この熱分解によって有機ハロゲン化合物の50〜95%程度、好ましくは80〜95%程度を分解する。
【0026】
触媒反応は150〜500℃、好ましくは150〜400℃程度で空間速度1000〜10000h−1で行われる。この触媒反応によって有機ハロゲン化合物の90%以上、好ましくは95%以上を分解する。なお、熱分解装置と触媒反応装置を併用することにより、さらに分解率を向上させることができる。
【0027】
【実施例】
[実施例1]
本発明の一実施例で使用された流動処理装置の概略構成を図1に示す。
この流動処理装置1は、円筒状の縦型容器2の上部にガス排出口3と粉状物の投入口4が、そして下部にガス導入口5と粉状物の取出し口6が設けられている。容器2の中央部が粉状物収容部7であり、その底部にガスを分散させる分散板8が設けられている。容器1の外周には容器1内を加熱するヒータ11が設けられ、内部には粉状物を攪拌する攪拌翼12が設けられている。ガス排出口3にはガスを除塵する集塵器13が取着されている。14は攪拌翼12を回転させるモータである。
【0028】
ガス分散板8は、図2に示すように、粉状物収容部側に配置された柔軟性多孔体81と容器2の底部側に配置された微細孔を有する剛性構造体82よりなっている。柔軟性多孔体81の上面周縁と粉状物取出し口6周縁にはこれを固定する固定用バー83が取り付けられている。
【0029】
ガス分散板8の別の例を図3に示す。このガス分散板8は柔軟性多孔体81の上面に保護用メッシュ84を設けたほかは図2のものと同様である。
【0030】
ガス分散板8のさらに別の例を図4に示す。このガス分散板8は微細孔を有する剛性構造体82がなく、その代わりに支持体85があるほかは図3のものと同様である。
【0031】
上記の流動処理装置1に、図5に示すように、空気ボンベ9と圧力ゲージ10を取り付けて流動層モデルを作製した。圧力ゲージ10はガス分散板8の下の風箱部と粉状物収容部7において粉状物の流動層より上側の空間の間の差圧を測定するものである。
【0032】
上記の流動層モデルを用いて流動化実験を行った。容器2はSUS製で内径100mm、有効高さ600mmのものを用いた。柔軟性多孔体81と剛性構造体82または85にはそれぞれ下記のものを用いた。
【0033】

Figure 2004025061
【0034】
粉状物には平均粒径の異なる2種のアルミナ粉末を用いた。各アルミナを静止層高が100mmとなるように充填した。加熱空気を流動層内温度400℃で容器内部の線流速が10cm/secとなるよう吹き込み、攪拌翼12を回転させながら60分間流動させた。その後、加熱器内から粉末を取り除き分散板の圧力損失を測定した。再度新たな粉末を充填し、同様の操作を行い圧力損失がほぼ一定になった時の数値を使用後の圧力損失とした。試験結果を表1に示す。
【0035】
【表1】
Figure 2004025061
【0036】
[実施例2]
上記の流動処理装置1の出口側に有機ハロゲン化合物の熱分解装置と触媒反応装置を直列に配置して図6に示す廃棄物処理装置を作製した。
【0037】
熱分解装置には、電気ヒータを加熱に用い、電気ヒータが外部に取り付けられた管路をガスが流れることでガスが加熱される方式となっている。
【0038】
このとき、電気ヒータはガス温度が900℃になるようにコントロールされ、また900℃での滞留時間が2sec以上となるように管路の長さが調節されている。
【0039】
触媒反応装置には、触媒としてシリカ・アルミナ系セラミックス担体に白金を担持させた触媒50lを用いており、担体はハニカム形状をとっている。また、このとき空間速度2000h−1となるように触媒量が決められており、触媒温度は400℃である。
【0040】
上記の廃棄物処理装置を用いてダイオキシン等で汚染された飛灰を処理した。ダイオキシン等の有害有機物の分析はJIS K 0311に従って行った。
【0041】
飛灰の処理量は100kg/hで、これを加熱器で420℃で60分間処理した。揮発促進ガスには空気を用いた。加熱器から排出された加熱処理済の飛灰には十分に低い濃度の有害有機物しか検出されなかった。このときの濃度は、0.004ng−TEQ/gである。
【0042】
加熱器からダストフィルタを経由して排出される排ガスを、熱分解装置のみ(I)、触媒反応装置のみ(II)、熱分解装置と触媒反応装置の併用(III)、の3つの方法で処理した。また、この時汚染濃度の異なる飛灰を用いて、排ガス中のダイオキシン濃度が異なる場合の検討も行った。
【0043】
排ガスの排出量はいずれも100Nm/hであり、熱分解は900℃、2秒間で行い、触媒反応は400℃で行った。
得られた結果を表2に示す。
【0044】
【表2】
Figure 2004025061
【0045】
【発明の効果】
本発明により、粉状物の流動処理運転を長期間にわたり安定して行うことができる。
【図面の簡単な説明】
【図1】本発明の一実施例である流動処理装置の構造を示す図である。
【図2】この流動処理装置に用いた分散板の一例の構造を示す図である。
【図3】この流動処理装置に用いた分散板の別例の構造を示す図である。
【図4】この流動処理装置に用いた分散板のさらに別例の構造を示す図である。
【図5】本発明の実施例で用いた流動層モデルの構成を示す図である。
【図6】本発明の実施例で用いた廃棄物処理装置の構成を示す図である。
【符号の説明】
1…流動処理装置
2…縦型容器
3…ガス排出口
4…粉状物の投入口
5…ガス導入口
6…粉状物の取出し口
7…粉状物収容部
8…分散板
81…柔軟性多孔体
82…剛性構造体
83…固定用バー
84…保護用メッシュ(剛性構造体)
85…支持体(剛性構造体)
9…空気ボンベ
10…圧力ゲージ
11…ヒータ
12…攪拌翼
13…集塵器
14…モータ[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to an apparatus for sending gas from a lower part of a vertical container to flow and process powdery material in the container.
[0002]
[Prior art]
2. Description of the Related Art An apparatus for processing a powdery substance by flowing the powdery substance into a vertical container and blowing it from below is widely used for drying and reacting the powdery substance.
[0003]
In this container, a dispersion plate is provided below the powder material to prevent the powder material from falling and to make the gas ejection uniform. As the dispersion plate, a dispersion plate in which many pores are uniformly formed is used.
[0004]
[Problems to be solved by the invention]
If the diameter of the pores of the dispersion plate is large, the powdery material falls through the dispersion plate and drops, while if it is too small, the pressure loss increases and a large-capacity blower is required, and the energy loss also decreases. It becomes a problem. Further, in the case of the intermediate pore diameter, the pores are clogged with a powdery substance, and a long-term stable operation cannot be ensured.
[0005]
An object of the present invention is to provide a powdery material flow treatment apparatus capable of performing stable operation for a long period of time without causing pressure loss of the dispersion plate, falling and clogging of the powdery material.
[0006]
[Means for Solving the Problems]
The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, flexible porous materials such as felt, woven fabric, and nonwoven fabric are unlikely to cause clogging of granular materials, and once granular materials have entered pores. However, it has been found that, due to its flexibility, it can be easily wiped off and stable operation can be continued for a long time. However, as the test was repeated with scale-up, it was found that the strength was insufficient with only the flexible porous body. Therefore, the above object was achieved by supplementing the strength of the flexible porous body by using the rigid structure together.
[0007]
That is, the present invention provides a vertical container having a gas outlet at an upper portion, a gas inlet at a lower portion for flowing a powdery material, and a powdery material having an inlet and an outlet for the powdery material. The present invention relates to a fluid processing apparatus for a powdery material, wherein a rigid structure and a flexible porous body are provided together as a gas dispersion plate at the bottom of the powdery material storage portion of the container.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The vertical container holds a powdery substance and is usually cylindrical. This shape may be a straight cylinder or a different-diameter cylinder having a tapered portion and an upper or lower portion having a shorter diameter. The upper and lower surfaces are usually closed and the whole has a closed structure. The upper and lower surfaces are flat, curved, conical, and the like. Although the volume is designed in accordance with the amount or the like of the powdery material to be processed, is usually 0.01~100M 3 nm, in particular 0.2 to 10 m 3 approximately.
[0009]
The vertical container needs an inlet / outlet for a gas for flowing the powdery material in addition to an inlet / outlet for the powdery material. In order for the gas to flow the powdery material, a gas inlet is provided at the lower part of the container and a gas outlet is provided at the upper part, so that the gas is blown from below the powdery layer stored in the container and escapes upward. To If necessary, a dust removing device such as a dust filter, a cyclone dust collector, and a ceramic filter can be provided at the gas outlet.
[0010]
On the other hand, the inlet and outlet for the powdery material may be provided at any positions as long as the powdery material can be charged and discharged. When the fluidized treatment apparatus of the present invention is an apparatus for heat-treating powdery waste, it is preferable to provide an inlet for the powdery substance at the upper part of the container and a discharge port at the lower part. In batch processing or the like, it is also possible to use both the input port and the output port.
[0011]
A gas dispersion plate is provided on the bottom surface of the powdery material accommodating portion of the vertical container. The present invention is characterized in that a flexible porous body and a rigid structure are used in combination for the dispersion plate.
[0012]
The flexible porous body has a function of dispersing the gas and a function of preventing the particulate matter from falling, and has a through-hole for allowing the gas to pass therethrough and is formed substantially uniformly over substantially the entire surface. The average pore diameter of these pores is about 0.01 to 50 μm, preferably about 0.1 to 20 μm, and is about 1 to 90%, preferably about 1 to 40%, particularly preferably about 1 to 40% of the average particle diameter of the granular material. Those having about 20% are suitable. The porous body has a sheet shape and a thickness of about 1 to 20 mm, preferably about 1 to 5 mm. The flexibility refers to a material that bends to the extent that a load is applied lightly by hand, and that when this porous body is used as a dispersion plate, it vibrates up and down lightly when ventilated. Examples of the flexible porous body include porous felt, woven fabric, and nonwoven fabric made of metal or ceramic. Those generally used for bag filters can be preferably used. Among them, those excellent in heat resistance of 400 ° C. or more, mechanical strength, and corrosion resistance are preferable, and examples thereof include ceramic woven fabric made of Al 2 O 3 .SiO 2 .
[0013]
One purpose of the rigid structure is to supplement the mechanical strength of the flexible porous body. The rigid structure here refers to a material having a strength that does not bend even when a load is applied strongly by hand. The rigid structure may have a function of dispersing gas together with the flexible porous body. In this case, a porous body is used for the rigid structure. Examples include sintered metal powders and porous ceramics. An average pore diameter of about 0.5 to 50 μm, preferably about 0.5 to 20 μm, and a thickness of 1 to 100 mm, preferably about 5 to 20 mm are suitable. The rigid structure may be a simple support of a flexible porous body. In this case, for example, a lattice-like material such as metal or ceramic is used. Alternatively, it can be used as a surface protection material for a flexible porous body. This is because the flexible structure functions to prevent clogging of the dispersion plate, but has low mechanical strength. For example, when a stirring means is provided in addition to the blowing gas as a means for flowing the powder, a stirring blade or the like is used. Damage due to Therefore, a net or mesh is used as the protective layer. The net or mesh to be covered on the surface preferably has an opening (average pore diameter) of about 10 to 100 mm. If the aperture is too small, it causes clogging. If the aperture is too large, the area of the flexible structure exposed in one hole becomes large and the flexible structure is easily broken. The material of the net or mesh is preferably a material having excellent mechanical strength and heat resistance, such as metal and ceramic.
[0014]
There is no particular limitation on the number and order of the flexible porous bodies and the rigid structures in the dispersion plate, and the flexible porous body / rigid structure, the rigid structure / flexible porous body, and the rigid structure / flexible porous body. / A combination of rigid structures and the like can be adopted.
[0015]
Various equipment can be added to the vertical container according to the purpose of processing the powdery material. For example, when heat treatment is performed on powdery waste, a heating means is provided. The heating method may be any of a method of heating from the outer surface of the container, a method of providing a heater inside, and a method of using gas for flowing powdery waste as hot air.
[0016]
Further, it is desirable to provide a stirring means in order to promote the flow of the powdery waste. Thereby, the fluidized bed of the powdery material is formed by the gas blowing from the bottom of the cylindrical container through the dispersion plate and the stirring means by the stirring blade provided in the container, and the powdery material is formed in the layer in the container. Circulates violently, and is excellent in gas-solid contact. Furthermore, when this container is used as a heater, the exchange rate of the powdery material with respect to the inner wall of the heater is high, so that effective heating can be performed in both cases of heating by blowing hot gas and external heating through the inner wall of the heater. Becomes possible. Since the heater having excellent heat transfer efficiency is used, it is not necessary to raise the temperature of the inner wall of the heater excessively even when the fly ash is subjected to the heat treatment, and the fly ash is prevented from sticking to the inner wall. As a result, fly ash can be easily maintained at a high temperature, and stable dioxin removal performance is exhibited. A preferred stirring means is by a stirring blade.
[0017]
The type of the powdery material to be subjected to the flow treatment of the present invention is not particularly limited as long as it can be flowed by an air stream, but the average particle size is about 0.1 to 1000 μm, usually about 1 to 200 μm, preferably about 1 to 50 μm. Is appropriate. The density is about 0.1 to 5 g / ml, usually about 0.5 to 3 g / ml. Specific examples include powdered waste, for example, incineration ash and fly ash discharged from refuse incinerators, those contaminated with organic halogen compounds such as activated carbon that has adsorbed dioxin, etc., generated with water and sewage treatment. Slurry, sludge, organic matter, organic halogen chemistry, sand contaminated with heavy metals, soil, riverbed mud, lake bottom mud, low sea mud, slurry-like waste soil generated at the time of excavation of tunnels, and the like. For example, powdery waste having an organic halogen compound content of about 0.1 to 100 ng-TEQ / g, particularly about 1 to 10 ng-TEQ / g, according to JIS K 0311 can be treated. In particular, when the flow processing target is fine particles having an average particle diameter of less than 10 μm, due to the small particle diameter, the fine particles are clogged in the holes of the dispersion plate, and the pressure loss of the dispersion plate is likely to increase due to repeated operation. . The apparatus of the present invention is particularly effective for the flow treatment of fine particles having an average particle size of less than 10 μm and up to 0.1 μm.
[0018]
The gas used for the flow of the powdery material is also appropriately selected depending on the purpose, but air, incinerator exhaust gas, nitrogen, steam, He, Ar, and the like are usually used.
[0019]
The fluidized processing apparatus of the present invention is provided with appropriate auxiliary equipment according to the processing purpose. For example, in the case where the fluidization treatment involves vaporization and removal of an organic halogen compound accompanied by heating, a device for thermally decomposing the organic halogen compound entrained in the exhaust gas, a device for catalytically decomposing the organic halogen compound, and the like are appropriately provided.
[0020]
In this case, it is preferable to provide a dust removing device at a gas outlet of a heater as a fluid processing device to remove waste and other dust. A bag filter, a cyclone, an electric dust collector, a ceramic filter, and the like can be used for this dust collector. However, since the temperature of the exhaust gas is about 350 to 550 ° C. and this is further heated and thermally decomposed, the preferred one is A ceramic filter or the like that can remove dust at a high temperature is preferable.
[0021]
At the gas outlet of the heater, a gas containing harmful organic halogen compounds discharged from the heater is heated to thermally decompose the harmful organic halogen compounds, or a catalytic reaction to catalytically decompose the harmful organic halogen compounds. Connect the device. The thermal decomposition apparatus has an inlet for a gas that is thermally decomposed in a closed structure and an outlet for a gas that has been thermally decomposed. As the thermal decomposition apparatus, a known apparatus used in a high-temperature combustion deodorizing apparatus or the like can be used. For example, a device using a burner, a device using an electric heater, high-frequency heating, infrared heating, or a waste incinerator High temperature part etc. can be used.
[0022]
The catalytic reactor may be any of a fixed bed type, a moving bed type, and a fluidized bed type. The catalyst is selected according to the type of the harmful organic halogen compound. For example, when decomposing an organic halogen compound such as dioxin, at least one of platinum, palladium, rhodium, ruthenium and other white metal elements or gold is used. A noble metal catalyst, an oxide catalyst such as calcium oxide, manganese, cobalt, chromium, iron, nickel, titanium, vanadium, tungsten and the like, or an oxide catalyst of at least one of composite oxides can be used.
[0023]
The operating conditions of the fluidized treatment apparatus of the present invention vary depending on the treatment purpose. For example, the heating conditions for evaporating and removing the organic halogen compound by heat-treating the powdery waste contaminated with the organic halogen compound are as follows. The average residence time is about 550 ° C, preferably about 400 to 450 ° C, and about 5 to 180 minutes, usually about 30 to 120 minutes. In the heater, which is a fluid processing apparatus, not only the vaporization of the organic halogen compound but also the decomposition may occur.
[0024]
The powdery waste from which organic halogen compounds and the like have been removed by the heater is subjected to secondary treatment as necessary, or is discarded or used as it is.
[0025]
On the other hand, the gas containing the vaporized organic halogen compound is subjected to dust removal by a dust remover if necessary, and then the organic halogen compound is decomposed by a thermal decomposition device or a catalytic reaction device. The thermal decomposition is performed at 800 to 1000 ° C., preferably about 850 to 950 ° C., and the average residence time is about 0.5 to 20 seconds, preferably about 1 to 5 seconds. By this thermal decomposition, about 50 to 95%, preferably about 80 to 95% of the organic halogen compound is decomposed.
[0026]
The catalytic reaction is carried out at 150 to 500 ° C., preferably about 150 to 400 ° C., at a space velocity of 1000 to 10000 h −1 . By this catalytic reaction, 90% or more, preferably 95% or more of the organic halogen compound is decomposed. The decomposition rate can be further improved by using the thermal decomposition device and the catalytic reaction device together.
[0027]
【Example】
[Example 1]
FIG. 1 shows a schematic configuration of a fluid processing apparatus used in one embodiment of the present invention.
The fluidized processing apparatus 1 has a cylindrical vertical container 2 provided with a gas outlet 3 and a powdery material inlet 4 at an upper portion thereof, and a gas inlet 5 and a powdery material outlet 6 at a lower portion thereof. I have. The powdery substance container 7 is located at the center of the container 2, and a dispersion plate 8 for dispersing the gas is provided at the bottom. A heater 11 for heating the inside of the container 1 is provided on the outer periphery of the container 1, and a stirring blade 12 for stirring the powdery material is provided inside. A dust collector 13 for removing gas is attached to the gas outlet 3. A motor 14 rotates the stirring blade 12.
[0028]
As shown in FIG. 2, the gas dispersion plate 8 is composed of a flexible porous body 81 arranged on the powdery material storage side and a rigid structure 82 having micropores arranged on the bottom side of the container 2. . A fixing bar 83 for fixing the flexible porous body 81 to the periphery of the upper surface and the periphery of the powdery material outlet 6 is attached.
[0029]
Another example of the gas distribution plate 8 is shown in FIG. This gas dispersion plate 8 is the same as that of FIG. 2 except that a protective mesh 84 is provided on the upper surface of a flexible porous body 81.
[0030]
FIG. 4 shows still another example of the gas distribution plate 8. This gas dispersion plate 8 is the same as that of FIG. 3 except that there is no rigid structure 82 having micropores and a support 85 is provided instead.
[0031]
As shown in FIG. 5, an air cylinder 9 and a pressure gauge 10 were attached to the fluid processing apparatus 1 to prepare a fluidized bed model. The pressure gauge 10 measures the differential pressure between the air box below the gas dispersion plate 8 and the space above the fluidized bed of the powder in the powder container 7.
[0032]
Fluidization experiments were performed using the above fluidized bed model. The container 2 was made of SUS and had an inner diameter of 100 mm and an effective height of 600 mm. The following were used for the flexible porous body 81 and the rigid structure 82 or 85, respectively.
[0033]
Figure 2004025061
[0034]
Two types of alumina powders having different average particle diameters were used as the powder. Each alumina was filled so that the height of the stationary layer was 100 mm. Heated air was blown at a temperature in the fluidized bed of 400 ° C. so that the linear flow rate inside the vessel was 10 cm / sec, and the mixture was allowed to flow for 60 minutes while rotating the stirring blade 12. Thereafter, the powder was removed from the heater, and the pressure loss of the dispersion plate was measured. A new powder was charged again, the same operation was performed, and the value when the pressure loss became substantially constant was determined as the pressure loss after use. Table 1 shows the test results.
[0035]
[Table 1]
Figure 2004025061
[0036]
[Example 2]
A waste treatment apparatus shown in FIG. 6 was prepared by arranging an organic halogen compound thermal decomposition apparatus and a catalytic reaction apparatus in series at the outlet side of the fluid treatment apparatus 1.
[0037]
The pyrolysis apparatus employs a method in which an electric heater is used for heating, and the gas is heated by flowing the gas through a pipe in which the electric heater is mounted outside.
[0038]
At this time, the electric heater is controlled so that the gas temperature becomes 900 ° C., and the length of the conduit is adjusted so that the residence time at 900 ° C. becomes 2 sec or more.
[0039]
The catalyst reaction apparatus uses a catalyst 50 l in which platinum is supported on a silica-alumina ceramic carrier as a catalyst, and the carrier has a honeycomb shape. At this time, the amount of the catalyst is determined so that the space velocity becomes 2000 h −1 , and the catalyst temperature is 400 ° C.
[0040]
Fly ash contaminated with dioxin or the like was treated using the above waste treatment apparatus. Analysis of harmful organic substances such as dioxin was performed according to JIS K 0311.
[0041]
The processing amount of fly ash was 100 kg / h, which was treated with a heater at 420 ° C. for 60 minutes. Air was used as the volatilization promoting gas. Only a sufficiently low concentration of harmful organic substances was detected in the heat-treated fly ash discharged from the heater. The concentration at this time is 0.004 ng-TEQ / g.
[0042]
Exhaust gas discharged from the heater via the dust filter is treated by three methods: only the thermal decomposition unit (I), only the catalytic reactor (II), and the combined use of the thermal decomposition unit and the catalytic reactor (III). did. At this time, using fly ash with different contaminant concentration, the case where dioxin concentration in exhaust gas was different was also examined.
[0043]
The exhaust gas emissions were all 100 Nm 3 / h, thermal decomposition was performed at 900 ° C. for 2 seconds, and catalytic reaction was performed at 400 ° C.
Table 2 shows the obtained results.
[0044]
[Table 2]
Figure 2004025061
[0045]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the flow processing operation | movement of a powdery substance can be performed stably over a long period of time.
[Brief description of the drawings]
FIG. 1 is a diagram showing the structure of a fluid processing apparatus according to one embodiment of the present invention.
FIG. 2 is a diagram illustrating a structure of an example of a dispersion plate used in the fluid processing apparatus.
FIG. 3 is a view showing the structure of another example of the dispersion plate used in the fluid processing apparatus.
FIG. 4 is a view showing the structure of still another example of the dispersion plate used in the fluid processing apparatus.
FIG. 5 is a diagram showing a configuration of a fluidized bed model used in an example of the present invention.
FIG. 6 is a diagram showing a configuration of a waste disposal apparatus used in an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Fluid processing apparatus 2 ... Vertical container 3 ... Gas discharge port 4 ... Powder inlet 5 ... Gas inlet 6 ... Powder outlet 7 ... Powder holder 8 ... Dispersion plate 81 ... Flexible Porous body 82 ... rigid structure 83 ... fixing bar 84 ... protective mesh (rigid structure)
85 ... Support (rigid structure)
9 air cylinder 10 pressure gauge 11 heater 12 stirring blade 13 dust collector 14 motor

【0007】
すなわち、本発明は、縦型容器の上部にガス排出口と粉状物の投入口を備え、底部に粉状物を流動させるガスの導入口と粉状物の取出し口を備え、さらに内部に攪拌手段をそして外周部には加熱手段を有する粉状物の流動加熱処理装置において、該容器の粉状物収容部の底部に前記ガスの分散板として、剛性構造体と柔軟性多孔体を併設したことを特徴とする粉状物の流動加熱処理装置に関するものである。
[0007]
That is, the present invention has a gas outlet and a powdery material inlet at the top of the vertical container, a gas inlet and a powdery material outlet at the bottom at the bottom, and further has a powdery material outlet inside. In a fluidized fluid heat treatment apparatus having a stirring means and a heating means on the outer periphery, a rigid structure and a flexible porous body are provided as a dispersion plate of the gas at the bottom of the powdery material accommodating portion of the container. The present invention relates to a fluidized heat treatment apparatus for a powdery material.

【0009】
縦型容器には粉状物の出入口のほか、粉状物を流動させるガスの出入口が必要である。ガスは粉状物を流動させるために、容器の底部にガスの導入口を上部にガス排出口を設けて、ガスを容器に収容されている粉状物層の下から吹き込んで上方に抜けるようにする。このガス排出口には必要によりダストフィルター、サイクロン電気集塵器、セラミックフィルタ等のダスト除去装置を設けることができる。
[0009]
The vertical container needs an inlet / outlet for a gas for flowing the powdery material in addition to an inlet / outlet for the powdery material. Gas is provided with a gas inlet at the bottom of the container and a gas outlet at the top to make the powder flow, so that gas can be blown from below the powder layer contained in the container and escape upward. To If necessary, a dust removing device such as a dust filter, a cyclone dust collector, and a ceramic filter can be provided at the gas outlet.

【0010】
一方、粉状物の投入口と取出し口はそれぞれ粉状物の投入、排出ができれば如何なる位置に設けてもよい。本発明の流動処理装置が粉状廃棄物を加熱処理する装置である場合には、粉状物の投入口を容器の上部に、そして取出し口を底部に設けることが好ましい。バッチ処理等では投入口と取出し口を兼用させることも可能である。
[0010]
On the other hand, the inlet and outlet for the powdery material may be provided at any positions as long as the powdery material can be charged and discharged. In the case where the fluidized treatment apparatus of the present invention is an apparatus for heat-treating powdery waste, it is preferable to provide a powdery substance inlet at the top of the container and a discharge port at the bottom. In batch processing or the like, it is also possible to use both the input port and the output port.

【0013】
剛性構造体は柔軟性多孔体の機械的強度を補うことを一つの目的としている。ここでいう剛性構造体とは、手で強く負荷をかける程度ではたわまない強度の物をいう。この剛性構造体は、柔軟性多孔体とともにガスを分散させる機能を有するものであってもよい。この場合、剛性構造体も多孔体が用いられる。例としては金属粉燒結体や多孔性セラミックなどを挙げることができる。平均孔径は0.5〜50μm程度、好ましくは0.5〜20μm程度で、厚さが1〜100mm、好ましくは5〜20mm程度のものが好適である。剛性構造体は柔軟性多孔体の単なる支持体であってもよい。この場合、例えば金属やセラミックなどの格子状等のものが使用される。あるいは柔軟性多孔体の表面保護材とすることもできる。これは、柔軟性多孔体は分散板の目詰まり防止としては機能するが、反面機械的強度は低く、例えば、粉体を流動させる手段として吹き込みガスに加え攪拌手段を設ける場合は、攪拌翼等による破損が考えられる。そこで、その保護層としてネットやメッシュを用いるものである。表面に被せるネットやメッシュは、目開き(平均孔径)10〜100mm程度のものが好ましい。目開きが小さすぎると、目詰まりの原因になってしまい、大きすぎると1つの孔に露出する柔軟性構造体の面積が大きくなり破損し易くなるためである。ネットやメッシュの材料は、金属やセラミック等機械的強度と耐熱性に優れているものが好ましい。
[0013]
One purpose of the rigid structure is to supplement the mechanical strength of the flexible porous body. The rigid structure here refers to a material having a strength that does not bend even when a load is applied strongly by hand. The rigid structure may have a function of dispersing gas together with the flexible porous body. In this case, a porous body is used for the rigid structure. Examples include sintered metal powders and porous ceramics. An average pore diameter of about 0.5 to 50 μm, preferably about 0.5 to 20 μm, and a thickness of 1 to 100 mm, preferably about 5 to 20 mm are suitable. The rigid structure may be a simple support of a flexible porous body. In this case, for example, a lattice-like material such as metal or ceramic is used. Alternatively, it can be used as a surface protection material for a flexible porous body. This is because the flexible porous material functions to prevent clogging of the dispersion plate, but has low mechanical strength. For example, when a stirring means is provided in addition to the blowing gas as a means for flowing the powder, a stirring blade or the like is used. Damage due to Therefore, a net or mesh is used as the protective layer. The net or mesh to be covered on the surface preferably has an opening (average pore diameter) of about 10 to 100 mm. If the aperture is too small, it causes clogging. If the aperture is too large, the area of the flexible structure exposed in one hole becomes large and the flexible structure is easily broken. The material of the net or mesh is preferably a material having excellent mechanical strength and heat resistance, such as metal and ceramic.

【0027】
【実施例】
[実施例1]
本発明の一実施例で使用された流動処理装置の概略構成を図1に示す。
この流動処理装置1は、円筒状の縦型容器2の上部にガス排出口3と粉状物の投入口4が、そして底部にガス導入口5と粉状物の取出し口6が設けられている。容器2の中央部が粉状物収容部7であり、その底部にガスを分散させる分散板8が設けられている。容器1の外周には容器1内を加熱するヒータ11が設けられ、内部には粉状物を攪拌する攪拌翼12が設けられている。ガス排出口3にはガスを除塵する集塵器13が取着されている。14は攪拌翼12を回転させるモータである。
[0027]
【Example】
[Example 1]
FIG. 1 shows a schematic configuration of a fluid processing apparatus used in one embodiment of the present invention.
The fluid treatment apparatus 1 has a gas outlet 3 and a powder inlet 4 at the top of a cylindrical vertical container 2, and a gas inlet 5 and a powder outlet 6 at the bottom. I have. The powdery substance container 7 is located at the center of the container 2, and a dispersion plate 8 for dispersing the gas is provided at the bottom. A heater 11 for heating the inside of the container 1 is provided on the outer periphery of the container 1, and a stirring blade 12 for stirring the powdery material is provided inside. A dust collector 13 for removing gas is attached to the gas outlet 3. A motor 14 rotates the stirring blade 12.

【0001】
【発明の属する技術分野】
本発明は、縦型容器の下部からガスを送って該容器内の粉状廃棄物を流動させて処理する装置に関するものである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for sending gas from the lower part of a vertical container to flow and treat powdery waste in the container.

【0005】
本発明の目的は、分散板の圧力損失が少なく粉状物の落下も目詰まりもなく長期間の安定運転が可能な粉状廃棄物の流動処理装置を提供することにある。
[0005]
An object of the present invention is to provide a powdery waste fluid treatment apparatus capable of performing stable operation for a long period of time without causing pressure loss of the dispersion plate, falling and clogging of the powdery material.

【0007】
すなわち、本発明は、縦型容器の上部にガス排出口と粉状物の投入口を備え、底部に粉状物を流動させるガスの導入口と粉状物の取出し口を備え、さらに内部に攪拌手段をそして外周部には加熱手段を有する粉状物の流動加熱処理装置において、該容器の粉状物収容部の底部に前記ガスの分散板として、フェルトや織布、不織布等よりなる平均孔径が0.1〜20μmの柔軟性多孔体とこれを支持する剛性構造体を併設したことを特徴とする、ごみ焼却炉から排出される焼却灰や飛灰等の粉状廃棄物の流動加熱処理装置に関するものである。
[0007]
That is, the present invention has a gas outlet and a powdery material inlet at the top of the vertical container, a gas inlet and a powdery material outlet at the bottom at the bottom, and further has a powdery material outlet inside. In a fluidized fluid heat treatment apparatus having a stirring means and a heating means on the outer peripheral portion, an average of a felt, a woven cloth, a nonwoven cloth, etc., as a gas dispersion plate at the bottom of the powdery substance storage portion of the container. Flow heating of powdered waste such as incineration ash and fly ash discharged from a refuse incinerator, characterized by having a flexible porous body having a pore diameter of 0.1 to 20 μm and a rigid structure supporting the same. The present invention relates to a processing device.

【0012】
柔軟性多孔体は、ガスを分散させる機能と粒状物の落下を防止する機能を有するもので、ガスを通過させる貫通細孔が略全面にほぼ均一に分散形成されているものである。この細孔の平均孔径は、0.1〜20μm程度で、粒状物の平均粒径の1〜90%程度、好ましくは1〜40%程度、特に好ましくは1〜20%程度のものが適当である。多孔体はシート状であって、厚さは1〜20mm程度、好ましくは1〜5mm程度である。柔軟性とは、手で軽く負荷をかける程度でたわみ、また、この多孔体を分散板として用いた時、通風時に上下に軽く振動するような物をいう。柔軟性多孔体の例としては、金属やセラミックからなる多孔質のフェルトや織布、不織布等を挙げることができる。一般にバグフィルタに使用されているものは好適に使用することができる。なかでも400℃以上の耐熱性、機械的強度、耐食性に優れているものが好ましく、例えばAl・SiOからなるセラミック製の織布等が挙げられる。
[0012]
The flexible porous body has a function of dispersing the gas and a function of preventing the particulate matter from falling, and has a through-hole for allowing the gas to pass therethrough and is formed substantially uniformly over substantially the entire surface. The average pore diameter of these pores is about 0.1 to 20 μm, and about 1 to 90%, preferably about 1 to 40%, particularly preferably about 1 to 20% of the average particle diameter of the granular material is appropriate. is there. The porous body has a sheet shape and a thickness of about 1 to 20 mm, preferably about 1 to 5 mm. The flexibility refers to a material that bends to the extent that a load is applied lightly by hand, and that when this porous body is used as a dispersion plate, it vibrates up and down lightly when ventilated. Examples of the flexible porous body include porous felt, woven fabric, and nonwoven fabric made of metal or ceramic. Those generally used for bag filters can be suitably used. Among them, those excellent in heat resistance of 400 ° C. or more, mechanical strength, and corrosion resistance are preferable, and examples thereof include ceramic woven fabric made of Al 2 O 3 .SiO 2 .

【0017】
本発明の流動処理される粉状廃棄物は、平均粒径が1〜50μm程度のものが適当である。密度では0.1〜5g/ml程度、通常0.5〜3g/ml程度のものである。具体例としては、粉状廃棄物、例えばごみ焼却炉から排出される焼却灰や飛灰、ダイオキシン等を吸着した活性炭等の有機ハロゲン化合物で汚染されたもの等を挙げることができる。例えば、粉状廃棄物の有機ハロゲン化合物の含有量が、JIS
K 0311による測定法で0.1〜100ng−TEQ/g程度、特に1〜10ng−TEQ/g程度のものを処理できる。特に、流動処理対象が平均粒径10μm未満の微粒子の場合、その粒径の小ささ故、分散板の孔に微粒子が目詰まりを起こし、繰り返し運転することにより分散板の圧力損失が上昇しやすい。本発明の装置は平均粒径が10μm未満で0.1μmまでの微粒子の流動処理に特に有効である。
[0017]
The powdery waste to be fluidized according to the present invention preferably has an average particle size of about 1 to 50 μm. The density is about 0.1 to 5 g / ml, usually about 0.5 to 3 g / ml. Specific examples include powdery waste, for example, incineration ash and fly ash discharged from a refuse incinerator, and those contaminated with an organic halogen compound such as activated carbon adsorbing dioxin and the like. For example, the content of organic halogen compounds in powdery waste is JIS
According to the measuring method according to K0311, about 0.1 to 100 ng-TEQ / g, particularly about 1 to 10 ng-TEQ / g can be treated. In particular, when the flow processing target is fine particles having an average particle diameter of less than 10 μm, due to the small particle diameter, the fine particles are clogged in the holes of the dispersion plate, and the pressure loss of the dispersion plate is likely to increase due to repeated operation. . The apparatus of the present invention is particularly effective for the flow treatment of fine particles having an average particle size of less than 10 μm and up to 0.1 μm.

【0036】
上記の流動処理装置1の出口側に有機ハロゲン化合物の熱分解装置と触媒反応装置を直列に配置して図6に示す廃棄物処理装置を作製した。
[0036]
A waste treatment apparatus shown in FIG. 6 was prepared by arranging an organic halogen compound thermal decomposition apparatus and a catalytic reaction apparatus in series at the outlet side of the fluid treatment apparatus 1.

【0007】
すなわち、本発明は、縦型容器の上部にガス排出口と粉状物の投入口を備え、底部に粉状物を流動させるガスの導入口と粉状物の取出し口を備え、さらに内部に攪拌手段をそして外周部には加熱手段を有する粉状物の流動加熱処理装置において、該容器の粉状物収容部の底部に前記ガスの分散板として、フェルトや織布、不織布等よりなる平均孔径が0.1〜20μmの柔軟性多孔体とその機械的強度を補う剛性構造体を併設したことを特徴とする、ごみ焼却炉から排出される焼却灰や飛灰等の粉状廃棄物の流動加熱処理装置に関するものである。
[0007]
That is, the present invention has a gas outlet and a powdery material inlet at the top of the vertical container, a gas inlet and a powdery material outlet at the bottom at the bottom, and further has a powdery material outlet inside. In a fluidized fluid heat treatment apparatus having a stirring means and a heating means on the outer peripheral portion, an average of a felt, a woven cloth, a nonwoven cloth, etc., as a gas dispersion plate at the bottom of the powdery substance storage portion of the container. A powdered waste such as incinerated ash or fly ash discharged from a refuse incinerator, which is provided with a flexible porous body having a pore size of 0.1 to 20 μm and a rigid structure for supplementing its mechanical strength. The present invention relates to a fluidized heat treatment apparatus.

Claims (7)

縦型容器の上部にガス排出口を備え、下部に粉状物を流動させるガスの導入口を備え、さらに粉状物の投入口と取出し口を有する粉状物の流動処理装置において、該容器の粉状物収容部の底部に前記ガスの分散板として、剛性構造体と柔軟性多孔体を併設したことを特徴とする粉状物の流動処理装置A vertical container provided with a gas outlet at an upper portion thereof, a gas inlet at a lower portion thereof for introducing a gas to flow the powdery material, and a powdery material flow treatment apparatus having a powdery material input port and a powdery material outlet; Characterized in that a rigid structure and a flexible porous body are provided together as a gas dispersion plate at the bottom of a powdery material storage portion of the present invention. 剛性構造体が微細孔を有していることを特徴とする請求項1に記載の粉状物の流動処理装置2. The powdery fluid processing apparatus according to claim 1, wherein the rigid structure has fine holes. 分散板の粉状物に接する面が、柔軟性多孔体で形成されていることを特徴とする請求項1または請求項2に記載の粉状物の流動処理装置The powdery material flow treatment device according to claim 1 or 2, wherein a surface of the dispersion plate in contact with the powdery material is formed of a flexible porous body. 柔軟性多孔体の上面に、剛性メッシュを被覆したことを特徴とする請求項3に記載の粉状物の流動処理装置4. A powdery fluid processing apparatus according to claim 3, wherein a rigid mesh is coated on an upper surface of the flexible porous body. 柔軟性多孔体が、セラミックスまたは金属の繊維で形成されていることを特徴とする請求項1乃至請求項4のいずれか1項に記載の粉状物の流動処理装置The apparatus according to any one of claims 1 to 4, wherein the flexible porous body is formed of ceramic or metal fibers. 前記ガス排出口より排出されたガスの無害化処理装置を備え、該無害化処理装置が、有機ハロゲン化合物分解触媒を使用する装置であることを特徴とする請求項1乃至請求項5のいずれか1項に記載の粉状物の処理装置6. A detoxifying apparatus for detoxifying a gas discharged from the gas discharge port, wherein the detoxifying apparatus is an apparatus using an organic halogen compound decomposition catalyst. Item 2. An apparatus for treating powdery substances according to item 前記ガス排出口より排出されたガスの無害化処理装置を備え、該無害化処理装置が、有機ハロゲン化合物の熱分解装置であることを特徴とする請求項1乃至請求項5のいずれか1項に記載の粉状物の処理装置6. The detoxifying apparatus for detoxifying a gas discharged from the gas discharge port, the detoxifying apparatus being a thermal decomposition apparatus for an organic halogen compound. Powder processing equipment described in
JP2002186460A 2002-06-26 2002-06-26 Fluid flow treatment equipment Expired - Fee Related JP3541841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002186460A JP3541841B2 (en) 2002-06-26 2002-06-26 Fluid flow treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002186460A JP3541841B2 (en) 2002-06-26 2002-06-26 Fluid flow treatment equipment

Publications (2)

Publication Number Publication Date
JP2004025061A true JP2004025061A (en) 2004-01-29
JP3541841B2 JP3541841B2 (en) 2004-07-14

Family

ID=31181808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002186460A Expired - Fee Related JP3541841B2 (en) 2002-06-26 2002-06-26 Fluid flow treatment equipment

Country Status (1)

Country Link
JP (1) JP3541841B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120473A (en) * 2018-01-11 2019-07-22 住友金属鉱山株式会社 Fluidization roasting furnace
CN115608261A (en) * 2022-10-20 2023-01-17 南通市康桥油脂有限公司 Preparation device for hydrogenated oil production and use method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120473A (en) * 2018-01-11 2019-07-22 住友金属鉱山株式会社 Fluidization roasting furnace
JP7044995B2 (en) 2018-01-11 2022-03-31 住友金属鉱山株式会社 Fluid roasting furnace
CN115608261A (en) * 2022-10-20 2023-01-17 南通市康桥油脂有限公司 Preparation device for hydrogenated oil production and use method thereof
CN115608261B (en) * 2022-10-20 2023-06-27 南通市康桥油脂有限公司 Preparation device for hydrogenated oil production and application method thereof

Also Published As

Publication number Publication date
JP3541841B2 (en) 2004-07-14

Similar Documents

Publication Publication Date Title
JP2006096615A (en) Method of treating exhaust gas from cement kiln
JP2002355531A (en) Method of treating exhaust gas in cement production
JP2015504504A (en) Method and equipment for thermally treating auxiliary materials
JP2015504504A5 (en)
CN108079785A (en) A kind of double-movement bed reactor and its purposes and processing method in flue gas ash removal denitrification integrated device
KR0120837B1 (en) Device for treating exhaust gas
JP3541841B2 (en) Fluid flow treatment equipment
JP3465708B1 (en) Heat treatment equipment for powdery waste
JP2000140627A (en) Dioxin removing material, dioxin removing method and regenerating method of dioxin removing material
TW380055B (en) Exhaust gas treatment apparatus and exhaust gas treatment equipment
JP3676768B2 (en) Method and apparatus for treating incineration ash
JP4252166B2 (en) Dust removal and harmful gas decomposition equipment
JP3449356B2 (en) Powdery waste heat treatment equipment
JPH09201590A (en) Simultaneous treatment of organic solid waste and liquid waste
JP2000126550A (en) Combustion device and method for treating exhaust gas therefrom, ash cooling device therefor
JP4084742B2 (en) Organohalogen compound processing equipment
JP3465691B2 (en) Heat treatment method and apparatus for powdery waste
JP2004121977A (en) Heat treatment apparatus for powdery waste
JP3753309B2 (en) Waste treatment equipment
JP2000111020A (en) Heat recovery device
CN216677735U (en) Waste gas microwave treatment device
JP3971578B2 (en) Exhaust gas treatment equipment
JP3465692B2 (en) Powdery waste heat treatment equipment
US20220169582A1 (en) Organic waste disposal plant and method
JP2004121976A (en) Method of operating heat treatment apparatus for powdery waste

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees