JP2007292379A - Manufacturing method and device of heat treated particle - Google Patents

Manufacturing method and device of heat treated particle Download PDF

Info

Publication number
JP2007292379A
JP2007292379A JP2006120089A JP2006120089A JP2007292379A JP 2007292379 A JP2007292379 A JP 2007292379A JP 2006120089 A JP2006120089 A JP 2006120089A JP 2006120089 A JP2006120089 A JP 2006120089A JP 2007292379 A JP2007292379 A JP 2007292379A
Authority
JP
Japan
Prior art keywords
heat
particles
fluidized bed
temperature
treated particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006120089A
Other languages
Japanese (ja)
Inventor
Kaoru Kimura
薫 木村
Satoshi Kimura
諭史 木村
Mitsuaki Kurita
光暁 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006120089A priority Critical patent/JP2007292379A/en
Publication of JP2007292379A publication Critical patent/JP2007292379A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat treatment furnace suitably used in manufacturing, in particular, foamed ceramic particles, by continuously performing batch treatment while utilizing the advantages of batch type heat treatment of a constant residence time, charging/recovering a particulate material as it is, and performing the heat treatment such as burning while keeping the advantages of the batch treatment, in a method of performing heat treatment on the particulate material by a medium fluidized bed. <P>SOLUTION: The particulate material is introduced to the medium fluidized bed in a reaction chamber, properly fluidized by the airflow applied within a range not scattering and not fusing/flocculating the treated particulate 6, and treated by heat while residing in the reaction chamber for a specific time. Then the heat treated particles are discharged to the outside of the medium fluidized bed in accompany with the airflow while increasing the airflow, and separated from the airflow by a separator 4 installed at a latter part of the fluidized bed to be recovered. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、各種粉体材料の焼成が可能な媒体流動層炉を連続バッチ運転させる為の改良並びに熱処理粒子、特には高性能微粒人工軽量骨材の製造方法並びに製造装置に関する。   The present invention relates to an improvement for continuous batch operation of a medium fluidized bed furnace capable of firing various powder materials, and a method and apparatus for producing heat treated particles, particularly high-performance fine artificial lightweight aggregate.

従来の流動層技術は、バッチ型と連続型の2種類に大別できる。バッチ型では流動層容器に処理対象粉粒体を投入し、各種処理して処理品を容器の下部や側面から抜き出すものが主流であった。特殊なものとして、処理後、ピストン式に層下部を持ち上げて、対象粒子の排出を促進する技術(特許文献1参照)もあるが、一般的ではない。
連続式においては、流動層容器の下部や壁面に抜き出し口を設けたものや、層表面からの溢流を利用したもの、気流によって常時層上部へ排出されていく形態のものが主流である。
流動媒体(媒体粒子)を用いる媒体流動層は、対象物が流動化困難な場合や、熱媒体効果や流動化促進を期待する場合にも用いられ、従来の焼却炉などのほかに、発泡粒子の製造にも応用されている。
しかしながら、対象物が粉粒体の媒体流動層の連続化には、媒体粒子を層内に残し、対象粒子を選別回収する、もしくは対象粒子と媒体粒子を共に回収後、選別して媒体粒子だけを流動層にリターンする必要がある。この媒体粒子の選別回収が、バッチ式流動層の連続化を困難にしている要因の一つである。
Conventional fluidized bed technology can be broadly divided into two types: batch type and continuous type. In the batch type, the mainstream is one in which the granular material to be treated is introduced into a fluidized bed container, and various treatments are performed to extract a treated product from the lower part or side surface of the container. As a special technique, there is a technique (see Patent Document 1) that promotes the discharge of target particles by lifting the lower layer in a piston manner after processing, but it is not general.
In the continuous type, the mainstream is one in which a fluidized bed container is provided with an outlet at the bottom or wall surface, one that uses overflow from the bed surface, or one that is constantly discharged to the top of the bed by an air flow.
Media fluidized bed using fluidized media (medium particles) is also used when the object is difficult to fluidize or when the heat medium effect or fluidization promotion is expected. In addition to conventional incinerators, expanded particles It is also applied to the manufacture of
However, for the continuation of the fluidized bed in which the object is a granular material, the medium particles are left in the layer and the target particles are sorted and collected, or after collecting both the target particles and the medium particles, the medium particles are sorted and collected. Must be returned to the fluidized bed. This selective collection of media particles is one of the factors that make it difficult to keep the batch fluidized bed continuous.

一方、発泡体の焼成炉に関しては、発泡原理によって装置が異なり、短時間発泡(数秒単位)においては、気流層および原料通過型の媒体流動層(特許文献3参照)があり、長時間発泡(数分単位)においては、ロータリーキルンが主に用いられている。ここで、短時間発泡の粒子は、主に超軽量・低強度のバルーン形状であり、長時間発泡の粒子はそれに比べてやや重く、高強度の多孔質形状である。一般的に発泡時間を長時間にするほど、気泡の独立性が高く、均質な発泡体が得られ易い。しかしながら、粒子を溶融状態にして長く炉内に保持する必要があり、微粒であるほど融着トラブルが起こり易い。よって、1mm以下の高強度発泡体の製品化は困難であった。
特開平07−016457号公報 特開2004−293900号公報 特開2001−278646号公報
On the other hand, the apparatus for firing a foam differs depending on the foaming principle. In short-time foaming (in units of several seconds), there are an air flow layer and a material passing type medium fluidized bed (see Patent Document 3), and foaming for a long time ( In several minutes, rotary kilns are mainly used. Here, the short-expanded particles are mainly in the form of an ultra-light and low-strength balloon, and the long-expanded particles are slightly heavier and have a high-strength porous shape. In general, the longer the foaming time, the higher the independence of the bubbles and the easier it is to obtain a homogeneous foam. However, it is necessary to keep the particles in a molten state for a long time, and as the particles become finer, a fusing trouble is more likely to occur. Therefore, it has been difficult to produce a high-strength foam of 1 mm or less.
Japanese Patent Laid-Open No. 07-016457 JP 2004-293900 A JP 2001-278646 A

本発明は粉粒体材料を媒体流動層によって熱処理すべく研究したものであり、滞留時間一定のバッチ型熱処理の長所を生かしつつ、そのバッチを連続操業できるようにするものである。すなわち、粉粒体材料をそのまま投入・回収できて、しかもバッチ式の長所を持ったまま焼成等の熱処理を可能とするものである。特に高性能微粒人工軽量骨材の製造に好適な熱処理粒子の製造方法及び熱処理粒子の製造装置を提供せんとするものである。   The present invention has been studied in order to heat-treat a granular material by means of a medium fluidized bed, and makes it possible to continuously operate the batch while taking advantage of the batch-type heat treatment with a constant residence time. That is, the granular material can be input and recovered as it is, and heat treatment such as firing can be performed while maintaining the batch-type advantages. In particular, the present invention is to provide a method for producing heat-treated particles and an apparatus for producing heat-treated particles suitable for producing high-performance fine artificial lightweight aggregates.

本発明は、上記課題を解決するため下記(1)〜(10)の構成よりなる。
(1)粉粒体材料を気流によって形成した反応室内の媒体流動層に導入し、該粉粒体材料を媒体粒子と共に流動化状態とし、熱処理をして熱処理粒子とした後、気流を増加させて該熱処理粒子を該増加した気流に同伴させて該媒体流動層外に排出させ、気固分離装置により熱処理粒子を回収することを特徴とする熱処理粒子の製造方法。
(2)前記熱処理において基準温度からの温度差を単位時間ごとに累積する積算温度によって熱処理の終了時期を決定する前記(1)記載の熱処理粒子の製造方法。
(3)前記流動化状態を均一流動化、気泡流動化状態のいずれかとし、流動化の様式を通常の流動層、噴流層、外部振動を付与した流動層の少なくともいずれかとする前記(1)又は(2)に記載の熱処理粒子の製造方法。
(4)前記気固分離装置が、チャンバー、フィルター又はサイクロンである前記(1)〜(3)のいずれか一に記載の熱処理粒子の製造方法。
(5)前記熱処理を前記媒体流動層外に排出させる際の気流の流速を段階的に又は連続的に増加させる前記(1)〜(4)のいずれか一に記載の熱処理粒子の製造方法。
(6)前記粉粒体材料として、高性能微粒人工軽量骨材を得るための火山ガラス、石炭灰、焼却灰、各種ガラスを少なくとも主原料としたものとする前記(1)〜(5)のいずれか一項に記載の熱処理粒子の製造方法。
In order to solve the above-mentioned problems, the present invention has the following configurations (1) to (10).
(1) The granular material is introduced into a medium fluidized bed in a reaction chamber formed by an air flow, the granular material is fluidized with the medium particles, heat treated to form heat treated particles, and then the air flow is increased. The heat treated particles are caused to be discharged from the medium fluidized bed along with the increased air flow, and the heat treated particles are recovered by a gas-solid separation device.
(2) The method for producing heat-treated particles according to (1), wherein an end time of the heat treatment is determined by an integrated temperature in which a temperature difference from a reference temperature is accumulated every unit time in the heat treatment.
(3) The fluidization state is any one of a uniform fluidization state and a bubble fluidization state, and the fluidization mode is at least one of a normal fluidized bed, a spouted bed, and a fluidized bed provided with external vibration. Or the manufacturing method of the heat-processed particle as described in (2).
(4) The method for producing heat-treated particles according to any one of (1) to (3), wherein the gas-solid separation device is a chamber, a filter, or a cyclone.
(5) The method for producing heat-treated particles according to any one of (1) to (4), wherein a flow rate of an air flow when the heat treatment is discharged out of the medium fluidized bed is increased stepwise or continuously.
(6) Of the above (1) to (5), volcanic glass, coal ash, incinerated ash, and various glasses for obtaining high-performance fine artificial lightweight aggregates are used as the main raw materials. The manufacturing method of the heat-processing particle | grains as described in any one.

(7)流動媒体を装入してなる反応室を有し、その反応室に粉粒体材料の装入口を設け、又、反応室の下部には流速を変えることのできるブロワーを設け、分散器を介して熱気流を反応室内に送入するようになし、反応室に続いて分離装置を設けてなることを特徴とする熱処理粒子の製造装置。
(8)前記ブロワーが、前記粉粒体を流動化させるためのものと、前記熱処理粒子を前記流動層外に排出させるためのものを分離して設けてなる前記(7)記載の熱処理粒子の製造装置。
(9)前記ブロワーによる前記粉粒体の流動化状態を通常の流動化状態、噴流による流動化状態、気流に脈動を加えた流動化状態、旋回流動化状態、もしくは外部からの振動を付与した流動化状態、のいずれかを任意に組み合わせ可能に設けてなる前記(7)又は(8)に記載の熱処理粒子の製造装置。
(10)前記気流を反応室内に送入する手段が、基準温度からの温度差を単位時間ごとに累積する積算温度により熱処理の終点を制御する制御手段を有する前記(7)〜(9)のいずれか一に記載の熱処理粒子焼成粉粒体の製造装置。
(7) It has a reaction chamber filled with a fluid medium, an inlet for powdered material is provided in the reaction chamber, and a blower capable of changing the flow rate is provided at the bottom of the reaction chamber for dispersion An apparatus for producing heat-treated particles, characterized in that a hot air stream is fed into a reaction chamber through a vessel, and a separation device is provided following the reaction chamber.
(8) The heat treated particles according to (7), wherein the blower is provided separately for fluidizing the granular material and for discharging the heat treated particles out of the fluidized bed. Manufacturing equipment.
(9) The fluidized state of the granular material by the blower is a normal fluidized state, a fluidized state by a jet, a fluidized state in which a pulsation is added to an air flow, a swirl fluidized state, or external vibrations. The apparatus for producing heat-treated particles according to (7) or (8), wherein any one of fluidized states can be arbitrarily combined.
(10) The means according to (7) to (9), wherein the means for sending the airflow into the reaction chamber has control means for controlling the end point of the heat treatment by an integrated temperature that accumulates a temperature difference from a reference temperature every unit time. The manufacturing apparatus of the heat-processed particle baked granular material as described in any one.

本発明における熱処理とは、乾燥、焼成、焼結、溶融、化学反応、触媒反応など、加熱に伴い一定の効果を生じるものであれば含まれるが、特に高性能微粒人工軽量骨材の製造に好適に用いられる。軽量骨材を得るためであれば、火山ガラス、石炭灰、焼却灰、各種ガラスが原料として用いられる。
本発明では、炉体内に媒体粒子が充填され、その媒体粒子が炉体内に吹き込まれる気流により流動化して流動層が形成される。流動層は粉粒体材料の混合性が良く、粒子衝突による高伝熱性、加えて流動媒体の熱容量効果が期待でき、優れた熱処理効果をもっている。当然、流動化状態において、対象粒子が飛散せず、かつ融着・凝集を引き起こさず、なおかつ、対象粒子と媒体粒子の混合状態が保たれる(層分離しない)空塔速度に設定すべきである。流動層の高い粒子せん断効果と、媒体流動化による円滑な流動化によって、粒子融着トラブルを防ぎ、特に発泡体分野では従来困難であった、1mm以下の粒子まで焼成が期待できる。一般に媒体粒子は発泡体や原料粒子よりも比重が大きいため、流動層下部の分散板周辺で流動化し、流動化不良を起こし易い分散器ノズル間に原料粒子が滞留することを防ぐことで、融着トラブルを解消できる。上記の融着防止技術によって熱処理対象物を数分から数時間と任意に炉体内に保持することができる。流動層には熱電対のような温度センサーを挿入・浸漬することで、熱処理対象に直接接触する形で品温測定が可能である。加えて層内温度分布も少ないため、層内の数個所の温度データで、そのバッチ内の製品の温度を代表するものとして扱うことが可能である。この直接の品温測定は、他の焼成炉などでの間接的に雰囲気温度を測定する方式と比べて、より正確である。外部から与えた加熱条件で制御するよりも、現在の熱処理品の温度履歴から熱処理の終点をそのつど判断するというより高度な積算温度による制御方法に対応できる。
流動媒体は、1000℃以上の熱処理であれば、アルミナやムライトが好適で、800℃程度までであれば、シリカサンドが一般的に用いることができる。また、流動媒体の形状は球形であることが望ましく、寸法は被処理物によって違いがあるが0.1〜10mmの範囲が好ましい。
The heat treatment in the present invention includes drying, firing, sintering, melting, chemical reaction, catalytic reaction, etc., as long as it produces a certain effect with heating, particularly for the production of high-performance fine artificial lightweight aggregates. Preferably used. In order to obtain lightweight aggregates, volcanic glass, coal ash, incinerated ash, and various glasses are used as raw materials.
In the present invention, medium particles are filled in the furnace body, and the medium particles are fluidized by an air flow blown into the furnace body to form a fluidized bed. The fluidized bed has good mixing properties of the powder material, high heat transfer due to particle collisions, in addition to the heat capacity effect of the fluidized medium, and has an excellent heat treatment effect. Naturally, in the fluidized state, the target particles should not be scattered, cause no fusion / aggregation, and should be set to a superficial velocity at which the mixed state of the target particles and the medium particles is maintained (no layer separation). is there. Due to the high particle shear effect of the fluidized bed and smooth fluidization due to fluidization of the medium, troubles of particle fusion can be prevented, and it is expected to sinter to particles of 1 mm or less, which has heretofore been difficult in the foam field. In general, the media particles have a specific gravity greater than that of the foam and the raw material particles, and thus fluidize around the dispersion plate at the bottom of the fluidized bed to prevent the raw material particles from staying between the disperser nozzles that are prone to fluidization failure. You can eliminate wearing problems. The object to be heat-treated can be arbitrarily held in the furnace for several minutes to several hours by the above-described fusion prevention technique. By inserting and immersing a temperature sensor such as a thermocouple in the fluidized bed, the product temperature can be measured in direct contact with the heat treatment target. In addition, since the temperature distribution in the layer is small, it is possible to treat the temperature data at several points in the layer as representative of the temperature of the product in the batch. This direct product temperature measurement is more accurate than a method of indirectly measuring the ambient temperature in other firing furnaces or the like. Rather than controlling under the heating conditions given from the outside, it is possible to cope with a control method based on a higher integrated temperature in which the end point of the heat treatment is determined each time from the temperature history of the current heat treated product.
The fluid medium is preferably alumina or mullite if it is heat-treated at 1000 ° C. or higher, and silica sand can be generally used if it is up to about 800 ° C. In addition, the shape of the fluid medium is desirably a spherical shape, and the size varies depending on the object to be processed, but is preferably in the range of 0.1 to 10 mm.

常に原料供給と製品回収を行う一般的な連続式流動層の場合、粒子が完全混合に近いため、製品に滞留時間分布が生じる。比重が製品強度と比例関係にある発泡体の中でも、長時間発泡の発泡体では、滞留時間が著しく製品の比重に影響するため、単純な連続式流動層では、未発泡の重質粒子と過剰発泡の低強度粒子を含んだ幅広い分布をもった製品が得られることになる。この過剰発泡の粒子は、二次製品における欠陥になり、また、焼成工程においても、凝集トラブルを引き起こす危険性が高い。反対に発泡不足の重質な粒子が混合することで、製品の軽量化特性が著しく損なわれる。一般に軽量コンクリート・モルタルの分野では、強度・軽量性を両立させるべく,綿密な配合設計を行うために、不必要な比重分布を持った製品は望まれない。そのため、滞留時間が一定なバッチ方式を連続化するか、連続式で工程の内外で比重分離を行うか、のいずれかが必要となる。いずれにせよ、媒体流動層から製品を選別回収する必要がある。   In the case of a general continuous fluidized bed in which raw material supply and product recovery are always performed, the residence time distribution is generated in the product because the particles are nearly completely mixed. Among the foams whose specific gravity is proportional to product strength, the long-time foamed foam has a significant effect on the specific gravity of the product because the residence time significantly affects the specific gravity of the product. A product with a broad distribution containing low-strength particles of foam will be obtained. This excessively expanded particle becomes a defect in the secondary product, and also has a high risk of causing agglomeration trouble in the firing process. On the other hand, the mixing of heavy particles with insufficient foaming significantly impairs the weight reduction characteristics of the product. In general, in the field of lightweight concrete and mortar, a product with an unnecessary specific gravity distribution is not desired in order to carry out a thorough blending design in order to achieve both strength and lightness. For this reason, either a batch system with a constant residence time or a specific gravity separation between the inside and outside of the process is required. In any case, it is necessary to select and collect the product from the medium fluidized bed.

気流は対象粒子と媒体粒子を一緒に流動化させるだけの風量が必要で、かつ、熱処理が終了した段階では、気流を増加させて処理品(熱処理粒子)をその増加した気流に同伴させて媒体粒子層外に排出させ(以下、風篩という)ることによって、流動媒体と分離するのに必要な風量を出す必要がある。したがって、1個のブロワーで風量を切り替え可能としても良いが、風量の異なるブロワーを複数設けて、それらをタイミングに応じて使い分けることが好ましい。風篩とは、各粒子が上昇気流によって層外に排出される終末速度の違いによって、粉体を分離する技術である。当然、排出の対象粒子は、残留する粒子より、粒径が大きい、比重が大きいなどの理由によって、終末速度が高い必要がある。
流動化状態は、均一流動化、気泡流動化のいずれかとする。気泡流動化とは、均一流動化より風量が高く、流動層内に攪拌作用をもった気泡が生成・合体・分裂を繰り返していくものである。
The air flow needs an air volume sufficient to fluidize the target particles and the medium particles together, and at the stage where the heat treatment is completed, the air flow is increased and the processed product (heat treated particles) is entrained in the increased air flow. It is necessary to produce an air volume necessary for separation from the fluidized medium by discharging it out of the particle layer (hereinafter referred to as an air sieve). Therefore, it is possible to switch the air volume with one blower, but it is preferable to provide a plurality of blowers with different air volumes and use them appropriately according to the timing. Wind sieving is a technology that separates powders by the difference in terminal speed at which each particle is discharged out of the bed by an updraft. Naturally, the particles to be discharged need to have a higher terminal velocity for reasons such as larger particle size and higher specific gravity than the remaining particles.
The fluidization state is either uniform fluidization or bubble fluidization. The bubble fluidization is a method in which air bubbles having a higher air volume than a uniform fluidization and bubbles having a stirring action are repeatedly generated, coalesced and broken.

本発明はバッチ式の高品質性と連続式の高生産性を兼ね備えるために発明されたものであるが、さらに、バッチ間の均質化のために以下の制御方式も採用できる。すなわち、本発明では使用する対象粒子の焼成完了までの熱量を、基準温度以上の温度の積算値(積算温度)として把握するように設定し、所定積算温度に達したら、自動的に熱処理から風篩に切り換えるようにしておく。そして、風篩が完了したら次の流動熱処理の段階に移行する。このようにして、バッチ間の均質性を保ちながら、バッチ式の熱処理が、同一炉の連続操業として繰返される。
基準温度の設定方法には、いくつかの予備実験から実験的に求める方法と、理論的に求める方法の二種類があると思われる。理論的な場合、当該発泡技術では、ガラス配合による各温度での粘度を推算し、気泡内におけるガラスと発泡剤の反応速度、発泡ガス生成速度と気泡内圧・ガラスの粘性の関係を明らかにした上で、推算式を立てねばならない。しかしながらこれは高度な学術的な考察・解析が必要なものである。しかしここでは、製造現場で用いられるという観点から、実験的な算出が望ましい。生産現場では予備的な検証試験を行うものであるし、各材料の比熱等を正確に測定し、熱量基準で分析するよりは、直接計れる時間・温度といった値のみで製品の出来を示せる方が簡便である。
本発明は、このような基準温度からの温度差を単位時間ごとに累積した積算温度を熱処理の終了時期を決定する指標として利用することを特徴とする。単位時間とは通常は1秒であるが、粉粒体材料によっては熱処理時間が数十分単位となることもあり、このような場合には単位時間を1分として積算温度を算出する場合もあり、任意な時間を設定可能である。
The present invention was invented in order to combine batch-type high quality and continuous-type high productivity, and the following control method can also be employed for homogenization between batches. That is, in the present invention, the amount of heat until the completion of firing of the target particles to be used is set so as to be grasped as an integrated value (integrated temperature) of a temperature equal to or higher than the reference temperature. Switch to a sieve. When the air sieving is completed, the process proceeds to the next fluidized heat treatment stage. In this way, batch-type heat treatment is repeated as a continuous operation of the same furnace while maintaining homogeneity between batches.
There are two methods for setting the reference temperature: a method that is experimentally obtained from several preliminary experiments and a method that is theoretically obtained. In the theoretical case, the foaming technology estimated the viscosity at each temperature depending on the glass composition, and clarified the relationship between the reaction rate of the glass and the foaming agent in the bubble, the foaming gas generation rate, the bubble pressure and the viscosity of the glass. Above, we have to make an estimation formula. However, this requires advanced academic considerations and analysis. However, experimental calculation is desirable here from the viewpoint of being used at the manufacturing site. Preliminary verification tests are performed at the production site, and it is better to show the result of the product only with values such as time and temperature that can be measured directly rather than accurately measuring the specific heat of each material and analyzing it based on the calorific value. Convenient.
The present invention is characterized in that an integrated temperature obtained by accumulating such a temperature difference from the reference temperature per unit time is used as an index for determining the end time of the heat treatment. The unit time is usually 1 second, but depending on the granular material, the heat treatment time may be several tens of minutes. In such a case, the integrated temperature may be calculated with the unit time as 1 minute. Yes, any time can be set.

従来の制御では、目標温度にまで到達したことを確認後、一定時間保持する制御が一般的であった。そのため、温度履歴(目標温度までの所用時間と温度履歴、目標温度以上へのオーバーシュート、一定温度保持中での温度のブレ)を補正することが不可能であった。焼成条件が比重・強度にシビアに影響を与える発泡体では、このようなバッチ間での加熱条件の違いは望ましくない。本発明の熱処理粒子の製造方法においては、基準温度からの温度差を一秒ごとに累積する積算温度を導入し、コンピューター制御によって各バッチで積算温度が一定量に達した時点で焼成完了とすることを特徴とするため、そのような加熱条件の違いを、積算温度という観点で一元化し、各バッチごとの品質のブレを解消することができる。図1に従来型制御と積算温度制御を比較したが、点線で塗られた部分の面積(積算温度)が等しくなるように制御することが特徴である。従来の制御は、仕込み量や立ち上げ条件が異なるなどの原因で、制御が追随しない場合、温度の変動が起こったりしやすく、これが設定温度は同じでも製品の品質が異なるという結果を生んだ。   In the conventional control, after confirming that the target temperature has been reached, the control is generally held for a certain period of time. For this reason, it has been impossible to correct the temperature history (the required time and temperature history up to the target temperature, the overshoot above the target temperature, and the temperature fluctuation while maintaining a constant temperature). In a foam in which the firing conditions severely affect the specific gravity and strength, such a difference in heating conditions between batches is undesirable. In the method for producing heat-treated particles of the present invention, an integrated temperature that accumulates the temperature difference from the reference temperature every second is introduced, and the firing is completed when the integrated temperature reaches a certain amount in each batch by computer control. Therefore, such differences in heating conditions can be unified from the viewpoint of integrated temperature, and quality fluctuations for each batch can be eliminated. The conventional control and the integrated temperature control are compared in FIG. 1, but the control is performed so that the area (integrated temperature) of the portion painted with a dotted line becomes equal. In the conventional control, if the control does not follow due to a difference in the charged amount or the start-up condition, the temperature is likely to fluctuate. This has resulted in the product quality being different even at the same set temperature.

それに対し、積算温度制御は、設定温度より温度過剰気味であれば、焼成時間を自動的に短くするなどして補正する。また、昇温過程も焼成に寄与していると判断しているため、一定温度を保持することなく、昇温過程のみで焼成を終わらせることも可能であり、結果的に積算温度制御の方が焼成時間を数割短縮できる。これにより、短時間高温焼成や長時間低温焼成も一元化し、炉の立ち上げで昇温が遅い場合や、仕込み量が少なく昇温が早い場合にも柔軟に対応できる。また、本発明の熱処理粒子の製造方法においては、熱電対により流動層内の温度測定が可能であるため、温度履歴を詳細に測定することが可能である。   On the other hand, the integrated temperature control is corrected by automatically shortening the baking time if the temperature is more excessive than the set temperature. In addition, since it is judged that the temperature raising process also contributes to the firing, it is possible to finish the firing only by the temperature raising process without maintaining a constant temperature. However, the firing time can be shortened by several percent. Thereby, short-time high-temperature firing and long-term low-temperature firing are unified, and it is possible to flexibly cope with a case where the temperature rise is slow due to the start-up of the furnace or a case where the amount of preparation is small and the temperature rise is fast. Moreover, in the manufacturing method of the heat-treated particle | grains of this invention, since the temperature in a fluidized bed can be measured with a thermocouple, it is possible to measure a temperature history in detail.

積算温度と発泡体比重との関係は図2に示すように、事前に予備試験において得ておくべきものである。ここで、閾値となる基準温度は、複数の温度履歴から最も積算温度と比重の相関性が得られるように値を上下させて定義する。とくに数種類の近似曲線を作成し、そのR二乗値が最大になるように決定すればよい。生産現場ではもっとも信頼性、再現性が得られ、かつ簡便な近似曲線を得るべきである。この近似曲線をコンピューターに入力しておき、目標とする発泡体比重を入力すると、必要な積算温度を自動算出させるシステムにする。このような積算温度制御は、直接流動層内に温度センサー(熱電対)を挿入でき、正確な品温測定が可能な流動層であるからこそ達成できるシステムである。   As shown in FIG. 2, the relationship between the integrated temperature and the specific gravity of the foam should be obtained in advance in a preliminary test. Here, the reference temperature serving as a threshold value is defined by raising and lowering the value so that the correlation between the integrated temperature and the specific gravity can be obtained most from a plurality of temperature histories. In particular, several types of approximate curves may be prepared and determined so that the R-square value is maximized. The most reliable, reproducible and simple approximation curve should be obtained at the production site. This approximate curve is input to a computer, and when a target foam specific gravity is input, a system for automatically calculating the necessary integrated temperature is obtained. Such integrated temperature control is a system that can be achieved because it is a fluidized bed in which a temperature sensor (thermocouple) can be inserted directly into the fluidized bed and accurate product temperature measurement is possible.

流動層炉の後段には対象粒子およびそれと共に飛来した媒体粒子を気流より分離回収する分離手段を設ける。分離手段としては、大型のチャンバー、フィルター、サイクロン等各種気固分離手段が用いられる。分離手段においては、分離の進行状況に応じて気流の流量を変化させると良い。
風篩において、回収すべき微粒(発泡体)と粗粒(流動媒体)とすると、粗粒子の飛び出し流束(kg/ms)は、空塔速度(m/s)だけでなく、微粒子の飛び出し流束(kg/ms)にも強く影響される。すなわち、飛び出した微粒子の流れが粗粒子から見ればさながら流体のように影響し、微粒子の流れに同伴して粗粒子が飛び出す傾向が高くなる。また、微粒子の飛び出しは粒子濃度の高い回収初期の方が多いため、粗粒子の同伴の危険性が高い。そこで、回収初期には風量を抑え、微粒子の飛び出し質量流量をある程度低く制御し、これが減少してきた段階で最終的に高い分離効率を示す風量まで徐々に増加させるなど、分離回収全体を通して、極端な微粒子の飛び出し質量流束の増加を防ぐことが重要である。これによって媒体粒子の同伴飛散を低減させることが可能となる。
A separation means for separating and collecting the target particles and the medium particles flying along with the target particles from the air stream is provided at the subsequent stage of the fluidized bed furnace. As the separation means, various gas-solid separation means such as a large chamber, a filter, and a cyclone are used. In the separation means, the flow rate of the airflow may be changed according to the progress of the separation.
In a wind sieve, when fine particles (foam) and coarse particles (fluid medium) to be collected are used, the coarse particle jumping flux (kg / m 2 s) is not only the superficial velocity (m / s) but also the fine particles. Is also strongly influenced by the pop-out flux (kg / m 2 s). That is, if the flow of the ejected fine particles is seen from the coarse particles, it influences like a fluid, and the tendency of the coarse particles to jump out accompanying the flow of the fine particles increases. In addition, since the fine particles jump out more in the early stage of recovery with a high particle concentration, there is a high risk of accompanying coarse particles. Therefore, by controlling the air volume at the initial stage of recovery, controlling the mass flow rate of the fine particles to a certain low level, and gradually increasing the air volume to finally show high separation efficiency when this has decreased, It is important to prevent the particle mass flux from increasing. This makes it possible to reduce the entrainment scattering of the medium particles.

加熱方式としては通常の燃料・酸素源を吹き込むバーナーのみでなく、電気炉、可燃ガス過剰雰囲気への酸素・空気吹き込み、重油噴霧などでも良く、又これらの併用でも良い。炉下部の熱風炉より燃料過剰の不完全燃焼を起こした上で、流動層部分でさらに空気や酸素ガスを吹き込んで二段燃焼させることも可能である。その結果、流動層に挿入するエアーノズルは着火部分が不要で、構造が簡便となり、又、気流によるノズル冷却効果で消耗が抑えられる。高濃度酸素を二段燃焼用に吹き込めば、燃焼排ガスの顕熱持ちだしが低減されるため、1200℃を超える高温の流動層を達成することも可能である。   As a heating method, not only a burner for blowing a normal fuel / oxygen source, but also an electric furnace, oxygen / air blowing into a combustible gas excess atmosphere, heavy oil spraying, etc., or a combination thereof may be used. It is also possible to cause two-stage combustion by injecting air or oxygen gas further in the fluidized bed portion after incomplete combustion with excess fuel from the hot stove at the bottom of the furnace. As a result, the air nozzle to be inserted into the fluidized bed does not require an ignited portion, the structure is simple, and consumption is suppressed by the nozzle cooling effect by the airflow. If high-concentration oxygen is blown into the two-stage combustion, the sensible heat of the combustion exhaust gas is reduced, so that it is possible to achieve a high-temperature fluidized bed exceeding 1200 ° C.

流動層に用いる分散板などの多孔板は熱遮断効果を持つ。すなわち、多孔板に高温ガスを流通させた場合、多孔板で高温ガスの輻射熱が反射し、下流側(上部)には、対流伝熱でしか熱伝達が行えなくなる。逆に上流部は反射した輻射エネルギーによって温度が上昇する。この現象は燃焼領域の保温、熱効率向上として用いられることもあるが、流動層焼成のように熱風炉で予熱し、分散板を経て流動層への熱供給を行う場合、熱遮断効果によって熱風炉からの供給熱量が低下する。この現象は、対流伝熱より輻射伝熱が支配的な800℃以上の温度領域で顕著である。よって、1000℃以上の分散板をもつ流動層焼成では、まず熱風炉と流動層内での二段加熱を採用せざるを得ない。   A porous plate such as a dispersion plate used for a fluidized bed has a heat blocking effect. That is, when high-temperature gas is circulated through the perforated plate, the radiant heat of the high-temperature gas is reflected by the perforated plate, and heat can be transferred to the downstream side (upper part) only by convective heat transfer. Conversely, the temperature of the upstream portion rises due to the reflected radiant energy. This phenomenon is sometimes used to keep the combustion area warm and improve the thermal efficiency. However, when preheating is performed in a hot stove like fluidized bed firing and heat is supplied to the fluidized bed via a dispersion plate, The amount of heat supplied from is reduced. This phenomenon is remarkable in a temperature region of 800 ° C. or higher where radiant heat transfer is dominant over convective heat transfer. Therefore, in fluidized bed firing having a dispersion plate of 1000 ° C. or higher, first, two-stage heating in a hot air furnace and a fluidized bed must be employed.

粒子の投入方法は、流動層上部からの投入が望ましい。融着の危険性が少ないものは、流動層下部、分散板手前から吹き込むことも可能である。流動層のバーナーの位置は、融着付着するものは、融着付着の程度にもよるが、なるべく流動媒体の濃厚な層下部に挿入する方が望ましい。
粒子が濃厚でないフリーボードでの燃焼は、保温程度に設定すべきである。
As a method for charging the particles, it is desirable to input from the upper part of the fluidized bed. Those having a low risk of fusion can be blown from the lower part of the fluidized bed or before the dispersion plate. As for the position of the burner in the fluidized bed, it is desirable to insert the burner attached to the lower part of the dense layer of the fluidized medium as much as possible, although it depends on the degree of fusion adhesion.
Combustion on a free board where particles are not rich should be set to a temperature-retaining level.

媒体粒子は、終末速度が対象粒子より大きいことは勿論であるが、できれば、粒径にもある程度の隔たりがある方が望ましい。それは、非常停止時や運転条件次第では、媒体粒子と対象粒子が混ざった状態で抜き出し、篩などで分級処理することがあるためである。おおよそ媒体粒子の方が高比重・粗大となるが、状況によって、アルミナより低比重のムライト粒子にし、その分、粒径を大きくするなどの調整が必要となる。一方で、良好な流動化状態を得るためには、媒体粒子と対象粒子の流動化開始速度に差がありすぎてはならない。
発泡体などでは、発泡前と発泡後で、比重・粒径が大幅に異なることも留意しなくてはならない。塔径の2倍以上の静止層高に相当する量の粒子を流動化させた場合、粒子層と空気層が上下にわかれてピストン運動をするスラッギング流動化状態になることがあり、温度・流動化の制御が困難になる。発泡体などは、発泡前後で静止層高が2倍になることもあるため、原料の充填量は塔径と同程度が望ましい。
Of course, the medium particles have a terminal velocity larger than that of the target particles. This is because, depending on the emergency stop or operating conditions, the medium particles and the target particles may be extracted in a mixed state and classified by a sieve or the like. The medium particles are generally higher in specific gravity and coarser. However, depending on the situation, it is necessary to make adjustments such as making mullite particles having a specific gravity lower than that of alumina and increasing the particle size accordingly. On the other hand, in order to obtain a good fluidization state, the fluidization start speed of the medium particles and the target particles should not be too different.
It should also be noted that the specific gravity and particle size of foamed materials differ greatly before and after foaming. When the amount of particles equivalent to the height of the stationary layer more than twice the tower diameter is fluidized, the particle layer and the air layer may be separated into a slugging fluidized state in which the piston moves. It becomes difficult to control the conversion. For foams and the like, the height of the stationary layer may double before and after foaming, so the raw material filling amount is preferably about the same as the tower diameter.

本発明は、媒体流動層によって、融着防止効果があり、溶融を伴う熱処理を行うことができる。これにより、例えば軽量骨材の分野では従来困難であった、300μm以下の微粒焼成も容易となり、かかる微粒の単独粒度での商品化も可能となる。媒体粒子による伝熱特性と流動層本来の温度均一性によって、温度制御が容易となる。加えて、対象粒子を流動化させ、そこに熱電対等センサーを挿入できるため、直接対象粒子の温度が測定できる。このことにより、対象粉体の熱履歴が正確に測定できる。バッチ焼成には、温度履歴がつきものであるが、上記の正確な熱履歴測定に加え、一定温度以上の積算温度制御によって、バッチ間での焼成もより均質にすることができる。したがってバッチ式の熱処理におけるバッチ内滞留時間一定による高均質性の長所を持ったまま連続式の熱処理による高生産性の特徴を発揮して、効率の良い熱処理を提供することができる。特に高性能微粒人工軽量骨材の製造に有効である。   In the present invention, the medium fluidized bed has an anti-fusing effect, and heat treatment with melting can be performed. Thereby, for example, it is easy to fire fine particles of 300 μm or less, which has been difficult in the field of lightweight aggregates, and commercialization of such fine particles with a single particle size is also possible. Temperature control is facilitated by the heat transfer characteristics of the medium particles and the inherent temperature uniformity of the fluidized bed. In addition, since the target particles can be fluidized and a sensor such as a thermocouple can be inserted there, the temperature of the target particles can be measured directly. This makes it possible to accurately measure the thermal history of the target powder. Batch firing is accompanied by a temperature history, but in addition to the above accurate thermal history measurement, the firing between batches can be made more uniform by controlling the integrated temperature above a certain temperature. Therefore, it is possible to provide an efficient heat treatment by exhibiting the characteristics of high productivity by the continuous heat treatment while having the advantage of high homogeneity due to the constant residence time in the batch in the heat treatment of the batch method. It is particularly effective for the production of high-performance fine artificial lightweight aggregates.

以下、本発明を具体的な実施例をもって説明する。図3は本発明を実施するに適した装置の一例を示す。図中、1は流動化エアーの予熱・分散を行う熱風炉部分、2は流動層を形成する濃厚層部分、3は粒子が層表面から飛散・落下を繰り返すフリーボード部分であり、これが焼成炉として筒体を形成する。4は気固分離装置としてのサイクロンであり、サイクロン4と流動層部分の間には、装置の熱膨張収縮を緩和するベローズ5等で連結することが妥当である。冷却層16は、製品の冷却機能だけでなく、品質管理の機能も設けている。   Hereinafter, the present invention will be described with specific examples. FIG. 3 shows an example of an apparatus suitable for carrying out the present invention. In the figure, 1 is a hot blast furnace part for preheating and dispersing fluidized air, 2 is a concentrated layer part for forming a fluidized bed, and 3 is a free board part in which particles are repeatedly scattered and dropped from the surface of the layer. As a cylinder. 4 is a cyclone as a gas-solid separation device, and it is appropriate to connect between the cyclone 4 and the fluidized bed portion with a bellows 5 or the like that reduces thermal expansion and contraction of the device. The cooling layer 16 has not only a product cooling function but also a quality control function.

焼成炉としては、(1)予熱期間、(2)原料投入・温度回復期間、(3)流動化熱処理期間、(4)風篩期間を順に繰り返して行う。冷却層においては、(4)の風篩期間に同期させて(1)´投入期間を開始し、これ以降、(2)´冷却期間、(3)´品質管理期間、(4)´排出期間と繰り返す。ここで焼成炉と冷却層のバッチ間隔が等しくなるように冷却時間を調整する。また、非常停止・規格外品発生にも対応するよう、各所で対策が可能な機構が設けてある。   As the firing furnace, (1) preheating period, (2) raw material charging / temperature recovery period, (3) fluidizing heat treatment period, and (4) wind sieving period are repeated in order. In the cooling layer, the (1) ′ input period is started in synchronization with the wind sieve period of (4), and thereafter (2) ′ cooling period, (3) ′ quality control period, and (4) ′ discharge period. Repeat. Here, the cooling time is adjusted so that the batch interval between the firing furnace and the cooling layer becomes equal. In addition, there are mechanisms that can take countermeasures at various locations to cope with emergency stops and non-standard products.

焼成炉の濃厚層2には、粒径1.0−0.5mmからなるムライト質媒体粒子6が装入してある。これは後から投入される原料および発泡体7と流動化によってある程度まざりあって存在する。また、流動化に伴って気泡8が発生する。本発明においては、熱風の流速を0.5〜1.2m/s(過剰ガス流束0.3〜0.9m/s)とする。より好ましくは0.9m/s以下(過剰ガス流速0.7m/s以下)である。   The dense layer 2 of the baking furnace is charged with mullite medium particles 6 having a particle size of 1.0 to 0.5 mm. This is present to some extent depending on the raw material and the foam 7 to be added later and fluidization. Further, bubbles 8 are generated with fluidization. In the present invention, the flow rate of the hot air is set to 0.5 to 1.2 m / s (excess gas flux 0.3 to 0.9 m / s). More preferably, it is 0.9 m / s or less (excess gas flow velocity 0.7 m / s or less).

12は分散板、13は充填層式分散器であり、流動層全体を流動化させるためにガスの分散を行う。流動層部分は1100℃以上に昇温するため、流動層直下の分散器は、金属や各種耐火物の一体成型物ではその耐熱性より使用が困難である。そこで、粒子と直接接触する部分の分散器13には、取替えが可能で、かつ耐熱性が高いセラミックス粒子による充填層式の分散器を採用した。直径3−4cmのアルミナボールを充填した。分散板9は、漏斗状の抜出部分を持っており、22に示すシャッター等で固定層13が保持されている。非常停止時などの粒子排出時には、このシャッター22をあけることで、固定層粒子13、媒体粒子6、原料および発泡粒子7が回収できる。また、この抜出管より層内に送風し、空気分散をより均一化させたり、過剰にこの風量を高めると、層中央に強い上昇流をもった噴流流動層も形成させたりすることができる。   12 is a dispersion plate, and 13 is a packed bed type disperser, which performs gas dispersion in order to fluidize the entire fluidized bed. Since the temperature of the fluidized bed is raised to 1100 ° C. or higher, it is difficult to use the disperser directly below the fluidized bed because of its heat resistance in the case of an integrally molded product of metal or various refractories. Therefore, the disperser 13 in the portion in direct contact with the particles employs a packed bed type disperser made of ceramic particles that can be replaced and has high heat resistance. Alumina balls with a diameter of 3-4 cm were filled. The dispersion plate 9 has a funnel-shaped extraction portion, and the fixed layer 13 is held by a shutter or the like indicated by 22. When the particles are discharged during an emergency stop or the like, the fixed layer particles 13, the medium particles 6, the raw materials and the expanded particles 7 can be recovered by opening the shutter 22. Moreover, if air is blown into the layer from this extraction pipe to make the air dispersion more uniform, or if this air volume is excessively increased, a jet fluidized bed with a strong upward flow can be formed in the center of the layer. .

流動化熱処理期間では、流動化ブロワー9で送風された空気を、流量計10で調節し、バーナー11で燃焼させ、コーン型ガス分散器12、充填層式分散器13を経て、流動層2に流通させる。風篩期間では、風篩ブロワー14もあわせて運転し、発泡体7は流動層2からサイクロン4へ輸送され、ここで気流分離された後、分岐弁15を経て、冷却層16に落下させて、流動化しながら傾斜分散板17に沿って回収口25から回収される。風篩ブロワー14と流動化ブロワー9は変速できるものが一つでも良いし、速度の変化に対応できる複数のものでも良い。発泡体粒子7が層内にあまり存在しない予熱期間では、媒体粒子6の流動化が維持できる範囲であれば、バーナー11の風量を落とし、顕熱持ち出しを減少させ熱効率を向上させてもよい。   In the fluidizing heat treatment period, the air blown by the fluidizing blower 9 is adjusted by the flow meter 10 and burned by the burner 11, passed through the cone type gas disperser 12 and the packed bed type disperser 13, and then into the fluidized bed 2. Circulate. During the wind sieve period, the wind sieve blower 14 is also operated, and the foam 7 is transported from the fluidized bed 2 to the cyclone 4 where it is separated from the airflow and then dropped into the cooling layer 16 via the branch valve 15. The fluid is recovered from the recovery port 25 along the inclined dispersion plate 17 while fluidizing. The wind sieve blower 14 and the fluidizing blower 9 may be one that can change speed, or may be a plurality that can respond to changes in speed. In the preheating period in which the foam particles 7 do not exist so much in the layer, as long as the fluidization of the medium particles 6 can be maintained, the air volume of the burner 11 may be reduced to reduce the sensible heat takeout and improve the thermal efficiency.

層内には、重油バーナー18を挿入し、温度制御は、媒体粒子6、発泡体7に挿入した熱電対19によって行う。粉粒体材料の投入は、投入ホッパー20を経て、投入ノズル21より行う。熱電対19は、媒体層のみの状態と、発泡体も層内に残留している状態の二通りの状態で、それぞれ流動層部分に浸されるように配置することが重要である。発泡体7層部分に挿入された熱電対は、熱処理段階に入ってからの必要積算温度を算出し、熱処理の終了時点をチェックしてその結果を風篩用ブロワー14に指示するようになっている。   A heavy oil burner 18 is inserted into the layer, and temperature control is performed by a thermocouple 19 inserted in the medium particles 6 and the foam 7. The powder material is charged through a charging hopper 20 and from a charging nozzle 21. It is important to arrange the thermocouple 19 so as to be immersed in the fluidized bed portion in two states, that is, only the medium layer and the state in which the foam remains in the layer. The thermocouple inserted into the foam 7-layer part calculates the required integrated temperature after entering the heat treatment stage, checks the end point of the heat treatment, and instructs the blow sieve 14 for the result. Yes.

23は流動化状態観察のための覗き穴である。24は、圧力センサープローブであり、差圧式センサーで測定できる。流動層用は、主に層内の流動化状態を判断するために用いる。
分岐弁15は、流動化熱処理期間中にまれに飛散する未発泡粒子や磨耗粉を冷却層に導入させないように外部に排出するために用いるもので、風篩期間は、冷却層とサイクロンを連結させる。また、非常停止時に風篩回収する際にも規格外品を製品ライン外へ誘導することもできる。
23 is a peephole for fluidization state observation. Reference numeral 24 denotes a pressure sensor probe, which can be measured with a differential pressure sensor. The fluidized bed is mainly used for judging the fluidized state in the bed.
The branch valve 15 is used to discharge unfoamed particles and wear powder that rarely scatter during the fluidization heat treatment period so as not to be introduced into the cooling layer. During the air sieve period, the cooling layer and the cyclone are connected. Let In addition, non-standard products can also be guided out of the product line when collecting wind sieves during an emergency stop.

冷却層16は、冷却工程ではどのような流動化状態でもよいが、製品管理の際には、発泡体の簡易比重測定と、流動媒体の偏析を行うため、均一流動化状態にすることが望ましい。ここで、冷却層用圧力センサープローブ24の区間差圧より、ΔP(区間圧力損失)≒ρ(発泡体見かけ密度)×g(重力加速度)×ε(粒子空間率)/ΔL(区間長さ)の関係より、その区間で流動化している発泡体見かけ密度を概算することができる。これにより、製品の発泡度合いのリアルタイム測定とインライン品質管理が可能である。また、大気圧との差圧を測定することで、回収された製品の全量も常時確認でき、融着トラブルによる収率低下や層内への蓄積も察知できる。また、均一流動化によって、高比重の媒体粒子を沈降分離することが可能であり、高さを変えた複数の抜出口25より、発泡体のみを回収することができる。これにより風篩で混入した媒体粒子もさらに除去し、製品の純度を高めることが出来る。   Although the cooling layer 16 may be in any fluidized state in the cooling process, it is desirable that the product be managed in a uniform fluidized state in order to perform simple specific gravity measurement of the foam and segregation of the fluid medium. . Here, from the section differential pressure of the cooling layer pressure sensor probe 24, ΔP (section pressure loss) ≈ρ (foam apparent density) × g (gravity acceleration) × ε (particle space ratio) / ΔL (section length) From the relationship, the apparent density of the foam fluidized in the section can be estimated. This enables real-time measurement of the degree of foaming of the product and in-line quality control. In addition, by measuring the differential pressure from the atmospheric pressure, the total amount of the recovered product can always be confirmed, and a decrease in yield due to a fusing problem and accumulation in the layer can be detected. Moreover, it is possible to settle and separate medium particles having a high specific gravity by uniform fluidization, and only the foam can be recovered from the plurality of outlets 25 having different heights. As a result, the medium particles mixed with the air sieve can be further removed, and the purity of the product can be increased.

図3ではバーナーによる加熱方式を示してあるが、流動層炉に管状電気炉を配置して、電気炉による加熱方式を採用しても良い。廃ガラスなど低融点の原料を用いた場合、焼成温度を大幅に低減させることができ、炉の材質・構造、バーナーなどによる加熱方式の選択肢が広がる。特に1000℃以下の流動層焼成においては、流動層下部の熱風炉による高温燃焼ガス供給のみで焼成が可能である。   Although FIG. 3 shows a heating method using a burner, a heating method using an electric furnace may be adopted by arranging a tubular electric furnace in a fluidized bed furnace. When raw materials with low melting points such as waste glass are used, the firing temperature can be greatly reduced, and the choice of heating method based on the furnace material / structure, burner, etc. is expanded. In particular, in fluidized bed firing at 1000 ° C. or lower, firing is possible only by supplying high-temperature combustion gas from a hot air furnace below the fluidized bed.

以下、上記装置によって軽量骨材を製造する例について具体的な実施例を説明する。
充填層式分散器13として、流動層内部にアルミナボール(直径2−3cm)を、分散板12の上に充填し用いた。熱電対19は、流動層下部(媒体粒子層内の上部)、流動層中央(発泡体粒子層の中央付近)の二点をメインに測定した。
Hereinafter, a specific Example is described about the example which manufactures a lightweight aggregate with the said apparatus.
As the packed bed type disperser 13, alumina balls (diameter 2-3 cm) were filled on the dispersion plate 12 and used inside the fluidized bed. The thermocouple 19 was measured mainly at two points, the lower part of the fluidized bed (upper part in the medium particle layer) and the middle of the fluidized bed (near the center of the foam particle layer).

(原料の配合)
下記の原料をリボンミキサーによって混合し、それを平均粒径15μmまでチューブミル粉砕したものを15wt%から17wt%の添加水によって造粒した。後に、ロータリードライヤーでの乾燥を経て、300μmから600μmに分級したものに、アルミナパウダー(平均粒径1.1μm)をまぶすようにしてコーティングして、主な原料粒子とした。媒体粒子には伊藤忠セラテック製アルミナイトボール0.5−1mm規格品を0.6−1mmに分級して用いた。
抗火石の粉砕粉末(平均粒径56μm) 100wt%
ベントナイト 7.0wt%
超微粉SiC 0.4wt%
(Combination of raw materials)
The following raw materials were mixed with a ribbon mixer, and the mixture was pulverized with a tube mill to an average particle size of 15 μm and granulated with 15 to 17 wt% added water. Later, after drying with a rotary dryer, the particles classified from 300 μm to 600 μm were coated so as to be coated with alumina powder (average particle size 1.1 μm) to obtain main raw material particles. The medium particles used were ITON CERATECH aluminum knight balls 0.5-1 mm standard products classified to 0.6-1 mm.
Anti-fluorite ground powder (average particle size 56μm) 100wt%
Bentonite 7.0wt%
Ultra fine SiC 0.4wt%

媒体流動層6内が1050℃程度になったら(予熱期間)、上記原料粒子を焼成炉2内に装入口21から装入する。流動媒体6と共に炉内で流動化状態に保ち、加熱を行う(投入・温度回復期間)。
その間、炉内の材料濃厚部における熱電対19と接続したコンピューターシステムによって、基準温度を超えた時点から、温度を積算する(流動化熱処理期間)。積算値が目標まで達したら、風篩ブロワー14を起動して風量を上げ、温度を低下させて焼結を止め、同時に焼結品を風篩してサイクロン4に移送する(風篩期間)。この時、若干の流動媒体6は焼結品と共に、サイクロン4に移動する。
When the inside of the medium fluidized bed 6 reaches about 1050 ° C. (preheating period), the raw material particles are charged into the firing furnace 2 from the charging port 21. A fluidized state is maintained in the furnace together with the fluidized medium 6 and heating is performed (input / temperature recovery period).
In the meantime, the temperature is integrated from the time when the reference temperature is exceeded by a computer system connected to the thermocouple 19 in the material rich portion in the furnace (fluidization heat treatment period). When the integrated value reaches the target, the air sieve blower 14 is started to increase the air volume, the temperature is lowered, the sintering is stopped, and the sintered product is simultaneously air sieved and transferred to the cyclone 4 (wind sieve period). At this time, some of the fluid medium 6 moves to the cyclone 4 together with the sintered product.

風篩が一段落した段階では、次の焼成段階に入るために、装入口21から新らしい粉粒体材料を投入し、上述の焼成工程並びに風篩工程を繰返す。これにより、バッチ式連続操業が達成される。
熱風炉1は、熱遮蔽によって過剰に加熱されやすく、かつ下流への熱供給効率が低下するため、常時1000℃以下になるように重油供給量を制御する。流動化の空塔速度は、0.5から0.9m/sである。
In the stage where the wind sieve has broken down, in order to enter the next firing stage, a new powder material is introduced from the inlet 21 and the above firing process and wind sieve process are repeated. Thereby, batch type continuous operation is achieved.
The hot stove 1 is easily heated excessively by heat shielding, and the heat supply efficiency to the downstream is lowered, so the heavy oil supply amount is controlled so that it is always 1000 ° C. or lower. The superficial velocity of fluidization is 0.5 to 0.9 m / s.

風篩ブロワー14を起動させ、開始から1分かけて、目標値までまで上昇させる。回収時間は2−3分である。空塔速度としてはおよそ2.6m/s(at1000℃)であり、流動化ブロワーと合算すれば、およそ3.5m/sの流速が得られる。これは、1000℃での媒体粒子(0.5−1mm 見かけ比重3.75)の終末速度8.0m/sより低く、発泡体(0.6−1mm 見かけ比重0.8)の終末速度3.2m/sより高い。   The wind sieve blower 14 is activated and raised to the target value over 1 minute from the start. The collection time is 2-3 minutes. The superficial velocity is about 2.6 m / s (at 1000 ° C.), and when combined with the fluidizing blower, a flow rate of about 3.5 m / s is obtained. This is lower than the final velocity 8.0 m / s of the medium particles (0.5-1 mm apparent specific gravity 3.75) at 1000 ° C., and the final velocity 3 of the foam (0.6-1 mm apparent specific gravity 0.8). Higher than 2 m / s.

(結果)
粒子融着を起こさずに、図4に示すように比重0.7から1.4程度の発泡体が得られた。粒子の粒径は100μmからおよそ1.2mmまで、同一のバッチで焼成できることが立証された。これは、製品ラインナップとして、3号(0.6−1.2mm)、4号(0.3−0.6mm)、5号(0.15−0.3mm)の3種類にまたがるものである。100μm以下の粒子は焼成中でもサイクロンから排出されており、焼成不十分であった。
(result)
Without causing particle fusion, a foam having a specific gravity of about 0.7 to 1.4 was obtained as shown in FIG. It has been demonstrated that the particle size can be fired in the same batch from 100 μm to approximately 1.2 mm. This is a product lineup that spans three types: No. 3 (0.6-1.2 mm), No. 4 (0.3-0.6 mm), No. 5 (0.15-0.3 mm). . Particles of 100 μm or less were discharged from the cyclone even during firing, and firing was insufficient.

昇温履歴の一例を図5に示す。結果、熱風炉1は風篩で温度が1100℃から600℃程度まで下がるが、熱容量が低いため、温度回復も早い。風篩によって、層内温度も1000℃近くまで低下するが、原料投入と同程度であり、プロセス全体で致命的とはなっていない。
当社3号から5号製品を同時に焼成した場合、1mm以上の発泡粒子が、層内に残存しており、これは全体重量の1割弱であった。またそのとき回収された粒子のうち、混入した媒体粒子の占める重量割合は1割程度であった。そのほとんどが回収された3号製品に混入してきた。
よって、この技術で完璧な分離を目指す場合、0.6−1mmの流動媒体に対し、4号(0.3−0.6mm)、5号(0.15−0.3mm)を中心に焼成すべきであり、その場合、層内残存、混入を共に0.5wt%以下に減らせることが確認されている。
An example of the temperature rise history is shown in FIG. As a result, although the temperature of the hot stove 1 is reduced from about 1100 ° C. to about 600 ° C. with a wind sieve, the temperature recovery is quick because the heat capacity is low. Although the temperature inside the layer is lowered to nearly 1000 ° C. by the air sieve, it is almost the same as the raw material input and is not fatal in the whole process.
When our No. 3 to No. 5 products were fired simultaneously, expanded particles of 1 mm or more remained in the layer, which was less than 10% of the total weight. Further, among the particles collected at that time, the mixed medium particles accounted for about 10% by weight. Most of them have been mixed into the recovered No. 3 product.
Therefore, when aiming at perfect separation with this technology, firing is centered on No. 4 (0.3-0.6 mm) and No. 5 (0.15-0.3 mm) against a fluid medium of 0.6-1 mm. In that case, it has been confirmed that both in-layer residuals and contamination can be reduced to 0.5 wt% or less.

(I)加熱度制御の検証
パイロットプラントの前身のベンチ炉によって、焼成試験を行った。プロパンガスの空気燃焼と炉心管へのヒーター加熱を併用した。前述の図2はこの流動層ベンチ炉による骨材焼成において、得られた各種製品比重と積算温度の曲線であり、その誤差はわずか3%程度である。
(I) Verification of heating degree control A firing test was conducted with a bench furnace that was the predecessor of the pilot plant. Propane gas combustion and heater heating to the core tube were combined. FIG. 2 is a curve of various product specific gravity and accumulated temperature obtained in the aggregate firing by the fluidized bed bench furnace, and the error is only about 3%.

(II)多種の材料への対応
・ 廃ガラス
廃ガラス(褐色瓶ガラス)95wt% ベントナイト5wt% SiC0.3wt%の配合で、840℃、10分保持で、比重0.84、粒径600−1200μmの粒子が焼成できた。また、ここでは、熱風炉による加熱のみで、ガラスビーズの焼成を行った。
・ 石炭飛灰
フライアッシュ70wt% 廃ガラス30wt% ベントナイト5wt% SiC0.15wt%の配合で、1170℃、20分保持で、比重1.29、粒径600−1200μmの粒子が焼成できた。電気炉と可燃ガス過剰雰囲気での空気吹き込み方式の両方を行い、発泡体焼成が確認できている。
(II) Correspondence to various materials ・ Waste glass Waste glass (brown bottle glass) 95wt% Bentonite 5wt% SiC 0.3wt%, 840 ° C, 10 minutes hold, specific gravity 0.84, particle size 600-1200μm Particles could be fired. Here, the glass beads were fired only by heating with a hot stove.
-Coal fly ash Fly ash 70 wt% Waste glass 30 wt% Bentonite 5 wt% SiC 0.15 wt% A specific gravity of 1.29 and a particle size of 600-1200 µm could be fired at 1170 ° C for 20 minutes. Both the electric furnace and the air blowing method in an atmosphere with excess combustible gas were performed, and foam firing was confirmed.

上記実施例では人工軽量骨材の製造について述べたが、その他にも焼結処理、溶融による球形化・表面円滑化処理にも応用することが可能である。   In the above embodiment, the production of the artificial lightweight aggregate has been described, but it can also be applied to a sintering process, a spheroidization / smoothing process by melting, and the like.

一定温度以上の積算値によって焼成の終点を判断する積算温度制御方法の一例An example of an integrated temperature control method that determines the end point of firing based on an integrated value above a certain temperature 積算温度と製品比重の相関関係を示したグラフGraph showing the correlation between accumulated temperature and product specific gravity 本発明を実施するための装置例Example apparatus for carrying out the present invention 本発明による製品の比重と強度の関係を示すグラフGraph showing the relationship between specific gravity and strength of products according to the present invention 風篩工程による連続バッチ化の温度履歴Temperature history of continuous batching by wind sieving process

符号の説明Explanation of symbols

1 熱風炉部分
2 流動層濃厚層部分
3 フリーボード部分
4 サイクロン
5 ベローズ
6 媒体粒子
7 発泡体
8 気泡
9 流動化ブロワー
10 流量計
11 バーナー
12 コーン型ガス分散器
13 充填層式分散器
14 風篩ブロワー
15 分岐弁
16 冷却層
17 傾斜分散板
18 重油バーナー
19 熱電対
20 投入ホッパー
21 投入ノズル
22 シャッター
23 覗き穴
24 圧力センサープローブ

DESCRIPTION OF SYMBOLS 1 Hot-blast furnace part 2 Fluidized bed thick layer part 3 Free board part 4 Cyclone 5 Bellows 6 Media particle 7 Foam 8 Bubble 9 Fluidizing blower 10 Flowmeter 11 Burner 12 Cone type gas disperser 13 Packed bed type disperser 14 Wind sieve Blower 15 Branch valve 16 Cooling layer 17 Inclined dispersion plate 18 Heavy oil burner 19 Thermocouple 20 Input hopper 21 Input nozzle 22 Shutter 23 Peep hole 24 Pressure sensor probe

Claims (10)

粉粒体材料を気流によって形成した反応室内の媒体流動層に導入し、該粉粒体材料を媒体粒子と共に流動化状態とし、熱処理をして熱処理粒子とした後、気流を増加させて該熱処理粒子を該増加した気流に同伴させて該媒体流動層外に排出させ、気固分離手段により熱処理粒子を回収することを特徴とする熱処理粒子の製造方法。 The granular material is introduced into a medium fluidized bed in a reaction chamber formed by an air flow, the granular material is fluidized with the medium particles, heat treated to form heat treated particles, and then the air flow is increased to increase the heat treatment. A method for producing heat-treated particles, characterized in that the particles are entrained in the increased air flow and discharged out of the fluidized bed of the medium, and the heat-treated particles are recovered by gas-solid separation means. 前記熱処理において、基準温度からの温度差を単位時間ごとに累積した積算温度により熱処理の終了時期を決定する請求項1記載の熱処理粒子の製造方法。 2. The method for producing heat treated particles according to claim 1, wherein in the heat treatment, the heat treatment end time is determined by an integrated temperature obtained by accumulating a temperature difference from a reference temperature every unit time. 前記流動化状態を均一流動化、気泡流動化状態のいずれかとし、流動化の様式を通常の流動層、噴流層、外部振動を付与した流動層の少なくともいずれかとする請求項1又は2に記載の熱処理粒子の製造方法。 The fluidization state is any one of a uniform fluidization state and a bubble fluidization state, and the fluidization mode is at least one of a normal fluidized bed, a spouted bed, and a fluidized bed provided with external vibration. A method for producing heat-treated particles. 前記気固分離手段が、チャンバー、フィルター又はサイクロンのいずれか一以上である請求項1〜3のいずれか一項に記載の熱処理粒子の製造方法。 The method for producing heat-treated particles according to any one of claims 1 to 3, wherein the gas-solid separation means is any one or more of a chamber, a filter, and a cyclone. 前記熱処理粒子を前記媒体流動層外に排出させる際の気流の流速を段階的に又は連続的に増加させる請求項1〜4のいずれか一項に記載の熱処理粒子の製造方法。 The method for producing heat-treated particles according to any one of claims 1 to 4, wherein a flow velocity of an air flow when discharging the heat-treated particles out of the medium fluidized bed is increased stepwise or continuously. 前記粉粒体材料として、高性能微粒人工軽量骨材を得るための火山ガラス、石炭灰、焼却灰、各種ガラスを少なくとも主原料としたものとする請求項1〜5のいずれか一項に記載の熱処理粒子の製造方法。 The volcanic glass, coal ash, incineration ash, and various glasses for obtaining a high-performance fine artificial lightweight aggregate as the powder material are at least a main raw material. A method for producing heat-treated particles. 流動媒体を装入してなる反応室を有し、その反応室上部に粉粒体材料の装入口を設け、又、反応室の下部には流速を変えることのできるブロワーを設け、分散器を介して気流を反応室内に送入するようになし、反応室に続いて分離装置を設けてなることを特徴とする熱処理粒子の製造装置。 It has a reaction chamber filled with a fluid medium, an inlet for powdered material is provided at the upper part of the reaction chamber, a blower capable of changing the flow rate is provided at the lower part of the reaction chamber, and a disperser is provided. An apparatus for producing heat-treated particles, characterized in that an air stream is fed into the reaction chamber through a separator and a separation device is provided following the reaction chamber. 前記ブロワーが、前記粉粒体を流動化させるためのものと、前記熱処理粒子を前記流動層外に排出させるためのものを分離して設けてなる請求項7記載の熱処理粒子の製造装置。 The apparatus for producing heat treated particles according to claim 7, wherein the blower is provided separately for fluidizing the powder particles and for discharging the heat treated particles out of the fluidized bed. 前記ブロワーによる前記粉粒体の流動化状態を通常の流動化状態、噴流による流動化状態、気流に脈動を加えた流動化状態、旋回流動化状態もしくは外部からの振動を付与した流動化状態、のいずれかを任意に組み合わせ可能に設けてなる請求項7又は請求項8に記載の熱処理粒子の製造装置。 The fluidized state of the granular material by the blower is a normal fluidized state, a fluidized state by a jet, a fluidized state in which a pulsation is added to an air current, a swirl fluidized state, or a fluidized state to which external vibration is applied, The apparatus for producing heat-treated particles according to claim 7 or 8, wherein any of the above can be arbitrarily combined. 前記気流を反応室内に送入する手段が、基準温度からの温度差を単位時間ごとに累積した積算温度により熱処理の終点を制御する制御手段を有する請求項7〜9のいずれか一項に記載の熱処理粒子の製造装置。
The means for sending the air stream into the reaction chamber has a control means for controlling an end point of the heat treatment by an integrated temperature obtained by accumulating a temperature difference from a reference temperature every unit time. Heat treatment particle manufacturing equipment.
JP2006120089A 2006-04-25 2006-04-25 Manufacturing method and device of heat treated particle Pending JP2007292379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006120089A JP2007292379A (en) 2006-04-25 2006-04-25 Manufacturing method and device of heat treated particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006120089A JP2007292379A (en) 2006-04-25 2006-04-25 Manufacturing method and device of heat treated particle

Publications (1)

Publication Number Publication Date
JP2007292379A true JP2007292379A (en) 2007-11-08

Family

ID=38763153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006120089A Pending JP2007292379A (en) 2006-04-25 2006-04-25 Manufacturing method and device of heat treated particle

Country Status (1)

Country Link
JP (1) JP2007292379A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053016A (en) * 2008-07-28 2010-03-11 Setekku:Kk Method for firing powdery calcium carbonate
JP2011168445A (en) * 2010-02-18 2011-09-01 Setekku:Kk Method of calcining powdery calcium carbonate
JP2017226589A (en) * 2016-06-24 2017-12-28 住友金属鉱山株式会社 Method for producing nickel oxide
JP2017226591A (en) * 2016-06-24 2017-12-28 住友金属鉱山株式会社 Method for producing nickel oxide and fluidization roasting furnace
JP2017226592A (en) * 2016-06-24 2017-12-28 住友金属鉱山株式会社 Method for producing nickel oxide and fluidization roasting furnace
JP2017226590A (en) * 2016-06-24 2017-12-28 住友金属鉱山株式会社 Method for producing nickel oxide
JP2018053282A (en) * 2016-09-27 2018-04-05 住友金属鉱山株式会社 Method for producing nickel oxide
CN112521981A (en) * 2020-11-28 2021-03-19 陕西延长石油(集团)有限责任公司 Device and method for detecting and automatically controlling material level of accompanying bed of circulating fluidized bed

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240439A (en) * 2000-02-28 2001-09-04 Niijima Bussan Kk Method for producing artificial light weight ceramic particle using fluidizing bed system
JP2001278646A (en) * 2000-03-30 2001-10-10 Taiheiyo Cement Corp Method of producing baked and foamed fine particles
JP2004091283A (en) * 2002-09-02 2004-03-25 Kagoshima Prefecture Method and apparatus for manufacturing fired cellular pumice

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240439A (en) * 2000-02-28 2001-09-04 Niijima Bussan Kk Method for producing artificial light weight ceramic particle using fluidizing bed system
JP2001278646A (en) * 2000-03-30 2001-10-10 Taiheiyo Cement Corp Method of producing baked and foamed fine particles
JP2004091283A (en) * 2002-09-02 2004-03-25 Kagoshima Prefecture Method and apparatus for manufacturing fired cellular pumice

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053016A (en) * 2008-07-28 2010-03-11 Setekku:Kk Method for firing powdery calcium carbonate
JP4474533B2 (en) * 2008-07-28 2010-06-09 株式会社 セテック Method for firing powdered calcium carbonate
JP2011168445A (en) * 2010-02-18 2011-09-01 Setekku:Kk Method of calcining powdery calcium carbonate
JP2017226589A (en) * 2016-06-24 2017-12-28 住友金属鉱山株式会社 Method for producing nickel oxide
JP2017226591A (en) * 2016-06-24 2017-12-28 住友金属鉱山株式会社 Method for producing nickel oxide and fluidization roasting furnace
JP2017226592A (en) * 2016-06-24 2017-12-28 住友金属鉱山株式会社 Method for producing nickel oxide and fluidization roasting furnace
JP2017226590A (en) * 2016-06-24 2017-12-28 住友金属鉱山株式会社 Method for producing nickel oxide
JP2018053282A (en) * 2016-09-27 2018-04-05 住友金属鉱山株式会社 Method for producing nickel oxide
CN112521981A (en) * 2020-11-28 2021-03-19 陕西延长石油(集团)有限责任公司 Device and method for detecting and automatically controlling material level of accompanying bed of circulating fluidized bed
CN112521981B (en) * 2020-11-28 2021-11-23 陕西延长石油(集团)有限责任公司 Device and method for detecting and automatically controlling material level of accompanying bed of circulating fluidized bed

Similar Documents

Publication Publication Date Title
JP2007292379A (en) Manufacturing method and device of heat treated particle
US6054073A (en) Method for producing inorganic spherical particles
WO2019181619A1 (en) Fly ash modification method
JP3876296B2 (en) Method for continuously producing hollow glass spheres
JPS6086062A (en) Manufacture and apparatus for expandable mineral material
CA1285761C (en) Plant for manufacturing cement clinker
CN109877330A (en) A kind of device and application method producing 3D printing spherical metal powder
EA022252B1 (en) A method and installation for beneficiation of fly ash particles by flash combustion
JPH02243545A (en) Method and device for manufacture of cement clinker from raw material metal
JP2001240439A (en) Method for producing artificial light weight ceramic particle using fluidizing bed system
JP4901505B2 (en) Spray drying apparatus and spray drying method using the same
EP0059757A1 (en) Apparatus for continuously burning particles in air stream in a vertical furnace
CN105879796B (en) A kind of recirculating fluidized bed
JP2596694B2 (en) Large lump discharge device from fluidized bed furnace
EP0088181B1 (en) Manufacture of highly porous refractory material
JP3001190B2 (en) Jet type internal heat low temperature carbonization equipment
JPS62237939A (en) Multistage jet stream bed apparatus using peripheral wall jet stream type fluidized bed
JPH06277495A (en) Apparatus for adjusting layer differential pressure in fluidized bed
JPS6156177B2 (en)
JP3507015B2 (en) Method and apparatus for producing artificial sand
JP5490768B2 (en) Manufacturing method of artificial lightweight aggregate
JPH04506700A (en) Cement vertical suspension furnace and manufacturing method
DK2732228T3 (en) CHAKING OVEN FOR THE HEAT CONDITION Foaming of Particles of a Bulk Material
JPH0324422B2 (en)
JPH02107516A (en) Production of inorganic globular particle and device therefor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121109