JP2018053282A - Method for producing nickel oxide - Google Patents

Method for producing nickel oxide Download PDF

Info

Publication number
JP2018053282A
JP2018053282A JP2016187804A JP2016187804A JP2018053282A JP 2018053282 A JP2018053282 A JP 2018053282A JP 2016187804 A JP2016187804 A JP 2016187804A JP 2016187804 A JP2016187804 A JP 2016187804A JP 2018053282 A JP2018053282 A JP 2018053282A
Authority
JP
Japan
Prior art keywords
roasting
fluid
nickel oxide
nickel hydroxide
fluid medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016187804A
Other languages
Japanese (ja)
Inventor
幸弘 合田
Sachihiro Aida
幸弘 合田
井関 隆士
Takashi Izeki
隆士 井関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016187804A priority Critical patent/JP2018053282A/en
Publication of JP2018053282A publication Critical patent/JP2018053282A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing nickel oxide, in a process where nickel hydroxide is roasted using a fluid roasting furnace to produce nickel oxide, characterized in that inexpensive white molten alumina and brown molten alumina are used as fluid media.SOLUTION: In the process where nickel hydroxide is roasted using a fluid roasting furnace to produce nickel oxide, by using white molten alumina and brown molten alumina as fluid media, nickel oxide in which the grade of Si in the roasted matter is low is inexpensively produced. More concretely, the average particle size of the fluid media and the treated product lies in the range of 0.1 to 10 by the ratio of the fluid media/the nickel hydroxide. Further, the roasting temperature is 800 to 1,200°C.SELECTED DRAWING: None

Description

本発明は、流動焙焼炉を用いて水酸化ニッケルを焙焼し酸化ニッケルを製造する方法に関する。 The present invention relates to a method for producing nickel oxide by roasting nickel hydroxide using a fluid roasting furnace.

一般的な流動焙焼炉は、ガスを供給しながら焙焼させる粒状の原料をあたかも流体のように浮遊すなわち流動化させることで、効率的に焙焼が行える炉である。一方で、原料の粒度が50μmを下回るような、微粉末の場合は、細かすぎて原料を単独で流動化することが困難な場合が多く、このため流動化が容易な物質を流動媒体として用い、原料と流動媒体を混合して流動化しやすくする方法が行われる。 A general fluid roasting furnace is a furnace in which granular raw materials to be roasted while supplying gas can be efficiently roasted by floating, that is, fluidizing, like a fluid. On the other hand, in the case of fine powder such that the particle size of the raw material is less than 50 μm, it is often difficult to fluidize the raw material alone, and thus a material that is easy to fluidize is used as the fluidizing medium. The raw material and the fluid medium are mixed to facilitate fluidization.

また供給された原料を確実に焙焼するためには、流動焙焼炉に装入するガス流速を最小流動化速度以上とし、同時に終末速度以下に安定して維持する必要がある。ガス流速が最小流動化速度未満まで小さくなると、原料が流動化せず、その結果、焙焼が均一に進まずに、原料の凝集が発生するなどの問題が生じる。一方、ガス流速が終末速度を超えて大きくなると、流速が速すぎて原料がガスとともに炉外に流されてしまい、その結果十分に焙焼できず、十分な品質が得られなかったり、収率が大きく低下してしまったりする問題がある。すなわち、微粉末を原料とする流動焙焼においては、ガス流量の安定化とともに、適切な流動媒体を選定する必要がある。
工業プロセスとしての流動焙焼炉に用いる流動媒体に求められる特性としては、反応温度において原料と反応しないこと、また安価で一般に入手容易であることも求められる。
Further, in order to reliably roast the supplied raw material, it is necessary to make the gas flow rate charged in the fluid roasting furnace equal to or higher than the minimum fluidization speed and at the same time stably maintain the terminal speed or lower. When the gas flow rate is reduced to less than the minimum fluidization speed, the raw material does not fluidize, and as a result, problems such as occurrence of aggregation of the raw material without roasting proceeding uniformly occur. On the other hand, if the gas flow rate becomes larger than the terminal velocity, the flow rate is too high and the raw material is flowed out of the furnace together with the gas, so that it cannot be sufficiently roasted and sufficient quality cannot be obtained, or the yield There is a problem that the value of the value drops significantly. That is, in fluid roasting using fine powder as a raw material, it is necessary to select an appropriate fluid medium as well as stabilizing the gas flow rate.
The characteristics required of a fluid medium used in a fluid roasting furnace as an industrial process are required not to react with the raw material at the reaction temperature, and to be inexpensive and generally available.

特許文献1は、流動層ボイラにおいて、流動媒体が供給配管内で固化することを防ぐ技術に関するものであり、流動媒体の材質は石炭の灰と石灰石のカルシウム分であると記されている。
しかしこの例では、酸化ニッケルのように焙焼後に高い純度が必要となる機能性材料として用いられるものを製造するものではなく、流動媒体と処理物間の反応については良くわからなかった。
このように、酸化ニッケルのように微細でかつ様々な機能材料や電子材料やエネルギー材料に用いられる材料を得るために、必要な流動媒体やその具体的な使用方法は知られていなかった。
Patent Document 1 relates to a technique for preventing a fluid medium from solidifying in a supply pipe in a fluidized bed boiler, and describes that the material of the fluid medium is coal ash and calcium of limestone.
However, in this example, what is used as a functional material that requires high purity after roasting, such as nickel oxide, is not manufactured, and the reaction between the fluidized medium and the processed material is not well understood.
Thus, in order to obtain a fine material such as nickel oxide that can be used for various functional materials, electronic materials, and energy materials, a necessary fluid medium and its specific method of use have not been known.

特開平06−249407号公報Japanese Patent Laid-Open No. 06-249407

本発明は、流動焙焼炉を用いて水酸化ニッケルを焙焼して微細な酸化ニッケルを製造する工程において、被焙焼物の品質に影響を及ぼすことがなく、安定して流動状態を維持することができる流動媒体とその使用方法を提供しようとするものである。   The present invention stably maintains a fluid state without affecting the quality of the material to be baked in the step of producing fine nickel oxide by roasting nickel hydroxide using a fluid roasting furnace. It is intended to provide a fluid medium that can be used and its method of use.

本発明者は、上述した課題を解決するために鋭意検討を重ねた。その結果、水酸化ニッケルを焙焼して酸化ニッケルを製造する工程において、流動焙焼炉を用いて焙焼し、かつ水酸化ニッケルを焙焼して酸化ニッケルを製造する際に白色溶融アルミナまたは褐色溶融アルミナを流動媒体とすることで、安定的な流動状態を保ち、流動媒体からの不純物混入のない高品質の酸化ニッケルを製造できることを見出し、本発明に至った。すなわち、本発明は以下のものを提供する。   This inventor repeated earnest examination in order to solve the subject mentioned above. As a result, in the step of producing nickel oxide by roasting nickel hydroxide, it is roasted using a fluid roasting furnace, and white molten alumina or The inventors have found that by using brown molten alumina as a fluid medium, it is possible to produce a high-quality nickel oxide that maintains a stable fluid state and does not contain impurities from the fluid medium. That is, the present invention provides the following.

本発明の第1の発明は、水酸化ニッケルを流動焙焼炉に装入して焙焼し、酸化ニッケルを製造する工程において、水酸化ニッケルとともに流動焙焼炉に装入する流動媒体として、白色溶融アルミナおよびまたは褐色溶融アルミナを使用することを特徴とする酸化ニッケルの製造方法である。   In the first aspect of the present invention, nickel hydroxide is charged into a fluid roasting furnace and roasted, and in the step of producing nickel oxide, as a fluid medium charged into the fluid roasting furnace together with nickel hydroxide, A method for producing nickel oxide, characterized by using white fused alumina and / or brown fused alumina.

また、本発明の第2の発明は、上記第1の発明の焙焼において、装入する流動媒体の平均粒度と装入する水酸化ニッケルの平均粒度が流動媒体/水酸化ニッケルの比で0.1以上10以下の範囲の値になるように流動媒体の大きさおよびまたは水酸化ニッケルの大きさを調整することを特徴とする酸化ニッケルの製造方法である。   In the second aspect of the present invention, in the roasting of the first aspect, the average particle size of the fluid medium to be charged and the average particle size of the nickel hydroxide to be charged are 0 in the ratio of fluid medium / nickel hydroxide. The method for producing nickel oxide is characterized in that the size of the fluidized medium and / or the size of nickel hydroxide is adjusted to a value in the range of 1 to 10.

また、本発明の第3の発明は、上記第1および第2の発明において、焙焼時の炉内温度が800℃〜1200℃の範囲であることを特徴とする酸化ニッケルの製造方法である。   The third invention of the present invention is the method for producing nickel oxide according to the first and second inventions, wherein the furnace temperature during roasting is in the range of 800 ° C to 1200 ° C. .

本発明によれば、水酸化ニッケルを焙焼して酸化ニッケルを製造する工程において、流動焙焼炉を用いて焙焼し、かつ水酸化ニッケルを焙焼して酸化ニッケルを製造する際に、白色溶融アルミナまたは褐色溶融アルミナを流動媒体とすることで、安定的な流動状態を保ち、流動媒体からの不純物混入のない高品質の酸化ニッケルを製造できる。   According to the present invention, in the step of roasting nickel hydroxide to produce nickel oxide, when roasting using a fluid roasting furnace, and roasting nickel hydroxide to produce nickel oxide, By using white molten alumina or brown molten alumina as a fluid medium, it is possible to produce a high-quality nickel oxide that maintains a stable fluid state and does not contain impurities from the fluid medium.

本発明では、流動焙焼炉を用いて粉末状の水酸化ニッケルを焙焼して酸化ニッケルを得る工程において、流動媒体に研磨剤としても使用されている白色溶融アルミナまたは褐色溶融アルミナを用いることを特徴とする。
さらに上記流動媒体を用いてガスには大気を用いることで、安定的な流動状態を保ち、流動媒体からの不純物混入のない高品質の酸化ニッケルを製造できる。
In the present invention, in the step of obtaining nickel oxide by roasting powdered nickel hydroxide using a fluid roasting furnace, white molten alumina or brown molten alumina that is also used as an abrasive is used for the fluid medium. It is characterized by.
Further, by using the above-mentioned fluid medium and the atmosphere as the gas, it is possible to produce a high-quality nickel oxide that maintains a stable fluid state and does not contain impurities from the fluid medium.

以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について、詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。   Hereinafter, a specific embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail. In addition, this invention is not limited to the following embodiment, A various change is possible in the range which does not change the summary of this invention.

[1.原料]
本発明における流動焙焼を行うために用いられる原料は、水酸化ニッケル(Ni(OH)))である。
この水酸化ニッケルを焙焼して、例えば電池材料の原料として用いる高純度の酸化ニッケル(NiO)を得ようとする場合、Siが含有されていると電池特性を低下させる可能性がある。そこでこのような用途に対しては流動媒体に二酸化ケイ素(SiO)を含有しないものが望ましい。
本発明では、流動媒体としてアルミナを使用する。このため、Si品位の低い高純度の酸化ニッケルを製造することが可能である。
本発明における流動焙焼を行うために用いられる水酸化ニッケルの粒径は、平均粒径が数μm〜数100μmのものを用いると、粒子の内部まで比較的短時間で均一に焙焼できるので好ましい。
一方、平均粒径が1mmを超えるような粗粒を用いると、粒子内部まで均一に焙焼するのに時間がかかるうえ、部分的に焙焼の進み方に偏りが生じて品質的に不均一になり易くなるため、好ましくない。
[1. material]
The raw material used for fluid roasting in the present invention is nickel hydroxide (Ni (OH) 2 )).
When this nickel hydroxide is roasted to obtain, for example, high-purity nickel oxide (NiO) used as a raw material for battery materials, if Si is contained, battery characteristics may be deteriorated. Therefore, for such applications, it is desirable that the fluid medium does not contain silicon dioxide (SiO 2 ).
In the present invention, alumina is used as the fluid medium. For this reason, it is possible to manufacture high purity nickel oxide with low Si quality.
The particle size of nickel hydroxide used for fluid roasting in the present invention can be uniformly roasted in a relatively short time to the inside of the particles when the average particle size is several μm to several 100 μm. preferable.
On the other hand, if coarse particles with an average particle size exceeding 1 mm are used, it takes time to uniformly roast the inside of the particles, and the method of partial roasting is partially biased, resulting in non-uniform quality. Since it becomes easy to become, it is not preferable.

[2.流動焙焼処理]
本発明における流動焙焼炉は、炉の下方からガスを流し、原料および流動媒体を流動化させた状態で焙焼する。
本発明において使用できる流動焙焼炉の概略を説明すると、通常の縦型の構造を持つ流動焙焼炉を使用することができる。炉底部にはガス導入管の上に固定層がありその上に流動媒体が置かれる。固定層と流動媒体が置かれた部分およびその上方にかけて炉心管周辺にはヒーターを設け、必要な焙焼温度を維持する。また、静置状態で流動媒体のレベルよりも上方となる炉心管の位置に水酸化ニッケルを投入する原料投入管を有する。炉心管の上部は回収サイクロンに接続され、ここでガスと焙焼して生成した酸化ニッケルとが分離され、ガスは排気され酸化ニッケルが回収される。
さらに詳しくは、炉の下部にビーズ形状のアルミナによって固定層を作り、ガスを整流する。固定層は処理物とは直接は接触しないため、必ずしもアルミナである必要はない。その固定層の上に流動媒体を入れる。流動媒体の粒度は、装入する流動媒体の平均粒度と装入する水酸化ニッケルの平均粒度が流動媒体/水酸化ニッケルの比が0.1以上10以下の範囲の値になるように選定すればよい。
焙焼時の温度は、800℃以上1200℃以下であることが好ましい。800℃未満では焙焼するのに時間がかかってしまったり、温度が低いため均一な焙焼ができなくなったりする可能性がある。一方、1200℃を超えても搬送が促進されることは少なく、エネルギーコストが増加したり、ヒーターや炉体の寿命が短くなったりして好ましくない。
焙焼温度が850℃以上1000℃以下であれば、効率的、かつ均一に焙焼でき、かつランニングコストも抑えられるので好ましい。
被焙焼物の焙焼時間はとくに限定されないが、短すぎると焙焼が不十分になって品質、純度が低下してしまう。一方、必要以上に焙焼時間が長すぎると電気コストや燃料費が高くなってしまったり処理時間が長くなってしまったりするので好ましくない。被焙焼物の処理時間は、装置の大きさや構造の影響もあるが、概ね3分以上50分以下とすることが好ましい。この範囲であれば効率的で均一な焙焼を行うことができる。
[2. Fluid roasting process]
The fluidized roasting furnace in the present invention is fired in a state where gas is flowed from the lower side of the furnace and the raw material and the fluidized medium are fluidized.
The outline of the fluid roasting furnace that can be used in the present invention will be described. A fluid roasting furnace having a normal vertical structure can be used. At the bottom of the furnace, there is a fixed layer on the gas inlet tube, on which a fluid medium is placed. A heater is provided in the periphery of the core tube over and above the portion where the fixed bed and the fluid medium are placed to maintain the necessary roasting temperature. Moreover, it has the raw material injection | throwing-in pipe | tube which introduce | transduces nickel hydroxide in the position of the core tube which is above the level of a fluid medium in a stationary state. The upper part of the core tube is connected to a recovery cyclone, where the gas and the nickel oxide produced by roasting are separated, the gas is exhausted, and the nickel oxide is recovered.
More specifically, a fixed layer is made of bead-shaped alumina at the bottom of the furnace to rectify the gas. Since the fixed layer is not in direct contact with the processed material, it is not necessarily required to be alumina. A fluid medium is placed on the fixed bed. The particle size of the fluid medium is selected such that the average particle size of the fluid medium charged and the average particle size of the nickel hydroxide charged are in the range of the fluid medium / nickel hydroxide ratio of 0.1 to 10. That's fine.
The temperature during roasting is preferably 800 ° C. or higher and 1200 ° C. or lower. If it is less than 800 ° C., it may take a long time to roast, or it may be impossible to perform uniform roasting because the temperature is low. On the other hand, even if it exceeds 1200 ° C., the conveyance is hardly promoted, which is not preferable because the energy cost is increased and the life of the heater and the furnace body is shortened.
A roasting temperature of 850 ° C. or higher and 1000 ° C. or lower is preferable because it can be efficiently and uniformly roasted and the running cost can be suppressed.
The roasting time of the to-be-roasted object is not particularly limited, but if it is too short, roasting becomes insufficient and the quality and purity are lowered. On the other hand, if the roasting time is longer than necessary, the electric cost and the fuel cost become high and the processing time becomes long. The treatment time of the to-be-roasted object is preferably about 3 minutes or more and 50 minutes or less, although there is an influence of the size and structure of the apparatus. Within this range, efficient and uniform roasting can be performed.

以上、述べたように本発明により、原料と混合状態で流動化し、反応温度において原料と反応せず、安価であり一般に入手可能な流動媒体使用することにより、目的とする被焙焼物を工業的に製造できる。   As described above, according to the present invention, the intended to-be-baked product is industrialized by using a fluid medium that is fluidized in a mixed state with the raw material, does not react with the raw material at the reaction temperature, and is inexpensive and generally available. Can be manufactured.

以下、実施例、比較例及び参考例を示して本発明をより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 EXAMPLES Hereinafter, although an Example, a comparative example, and a reference example are shown and this invention is demonstrated more concretely, this invention is not limited to a following example at all.

[実施例1〜3]
[原料]
まず焙焼する原料として、公知の方法で作製した水酸化ニッケルを準備した。平均粒径は22.5〜24.5μmの大きさの範囲のものである。まずこの水酸化ニッケルの結晶に付着される水分を除去するため、真空中で180℃を2時間継続する真空加熱処理を行った。この真空加熱処理により水酸化ニッケルに付着する水分を実質的に除去した。
なお、準備した水酸化ニッケルは実際に操業に用いるもとを同等のものを用いたが、硫黄分が約1.7〜2.3重量%程度含有する。その他、不可避的に含まれる成分は含有量が少なく、実質的に無視できる。
[Examples 1 to 3]
[material]
First, nickel hydroxide prepared by a known method was prepared as a raw material to be roasted. The average particle size is in the range of 22.5 to 24.5 μm. First, in order to remove moisture adhering to the nickel hydroxide crystals, vacuum heat treatment was performed in vacuum at 180 ° C. for 2 hours. The water adhering to the nickel hydroxide was substantially removed by this vacuum heat treatment.
In addition, although the prepared nickel hydroxide used the thing which is actually used for an operation, the same thing was used, but about 1.7 to 2.3 weight% of sulfur content is contained. In addition, components inevitably included are small in content and can be substantially ignored.

[流動焙焼処理]
流動焙焼は、新島ネオライト工業(株)製の流動焙焼炉を用いた。炉心の内径は直径100mm、有効な均熱帯は高さ方向で約500mmのサイズである。
まず固定層であるアルミナを投入後、流動媒体である平均粒度100μmの褐色溶融アルミナ(実施例1)、平均粒度100μmの白色溶融アルミナ(実施例2)、平均粒度150μmの白色溶融アルミナ(実施例3)をそれぞれ投入した。
流動媒体である上記の各種溶融アルミナは、一般に研磨剤として使用されているもので、工業的に大量生産されており、安定して供給されかつ安価で入手可能で、本発明の実施に適する。
次に、空気を流しながら所定の焙焼温度まで昇温する。空気の流量は全ての試料において焙焼時は同じ流量を流し、この値を1として焙焼時の流量を相対的に表現した。全ての試料において、焙焼温度は900℃、焙焼時間は30分とした。
各試料の評価は、焙焼後試料の酸化ニッケルの含有量およびアルミニウム含有量で評価した。具体的には以下のように評価した。
[Flow roasting]
For fluid roasting, a fluid roasting furnace manufactured by Niijima Neolite Industry Co., Ltd. was used. The inner diameter of the core is 100 mm in diameter, and the effective soaking zone is about 500 mm in height.
First, alumina as a fixed layer is added, and then the molten medium is brown molten alumina having an average particle size of 100 μm (Example 1), white molten alumina having an average particle size of 100 μm (Example 2), and white molten alumina having an average particle size of 150 μm (Example). 3) was introduced.
The above-mentioned various molten aluminas that are fluid media are generally used as abrasives, are industrially mass-produced, are stably supplied and are available at low cost, and are suitable for the practice of the present invention.
Next, the temperature is raised to a predetermined roasting temperature while flowing air. The air flow rate was the same for all samples during roasting, and this value was set to 1 to relatively represent the flow rate during roasting. In all samples, the roasting temperature was 900 ° C. and the roasting time was 30 minutes.
Each sample was evaluated based on the nickel oxide content and aluminum content of the sample after roasting. Specifically, the evaluation was as follows.

[焙焼した試料中の酸化ニッケルの含有率]
焙焼後に回収された試料中の酸化ニッケルと水酸化ニッケルの含有量を算出し、この2つの値から酸化ニッケルの割合を求めた。
本発明である実施例1〜3では、得た焙焼物の酸化ニッケルの品位は、99.9%、99.7%、99.8%であり、アルミ品位はいずれも0.01%未満と良好で、供給した水酸化ニッケルのほとんど全量を酸化ニッケルへ焙焼できた。また、実施例1〜3で用いた流動媒体の褐色溶融アルミナや白色溶融アルミナは、いずれも1kgあたり300〜400円程度と安価に入手することができ、工業的なコストへの影響はわずかである。
一方、本発明である実施例1〜3で用いた流動媒体は、市販価格が1kgあたり350円程度と比較的安価である。
[Content of nickel oxide in roasted sample]
The contents of nickel oxide and nickel hydroxide in the sample recovered after roasting were calculated, and the ratio of nickel oxide was determined from these two values.
In Examples 1 to 3 according to the present invention, the quality of nickel oxide of the obtained roasted product is 99.9%, 99.7%, 99.8%, and the aluminum quality is less than 0.01%. It was good and almost all of the supplied nickel hydroxide could be roasted into nickel oxide. Moreover, both the brown fused alumina and the white fused alumina of the fluid media used in Examples 1 to 3 can be obtained at a low price of about 300 to 400 yen per kg, and the influence on industrial costs is slight. is there.
On the other hand, the fluid medium used in Examples 1 to 3 according to the present invention has a commercial price of about 350 yen per kg and is relatively inexpensive.

[比較例1]
流動媒体に流動媒体に直径が100μmの高純度アルミナビーズを用いた以外は、上記実施例1〜3と同じ方法を用いて水酸化ニッケルを流動焙焼し、酸化ニッケルを得た。
焙焼物の酸化ニッケルの品位は99.7%、アルミの含有量は0.01%未満であり品質的には実施例1〜3と同等の結果を得たものの、使用した流動媒体の高純度アルミナビーズは、市販価格で1kgあたり80,000円程度と高価で、工業的に使用するとコストへの影響が大きくなる。
[Comparative Example 1]
Nickel hydroxide was fluidly roasted using the same method as in Examples 1 to 3 above, except that high-purity alumina beads having a diameter of 100 μm were used as the fluid medium, thereby obtaining nickel oxide.
Although the quality of nickel oxide in the roasted product is 99.7% and the aluminum content is less than 0.01%, the quality is equivalent to that of Examples 1 to 3, but the high purity of the fluidized medium used. Alumina beads are expensive at a commercial price of about 80,000 yen per kg, and when used industrially, the impact on the cost becomes large.

このように、本発明の流動媒体と流動焙焼炉を用いて水酸化ニッケルを焙焼することで、生産性が高く、高品質の酸化ニッケルを製造できることが確かめられた。   Thus, it was confirmed that high-quality nickel oxide can be produced with high productivity by roasting nickel hydroxide using the fluid medium and the fluid roasting furnace of the present invention.

Claims (3)

水酸化ニッケルを流動焙焼炉に装入して焙焼し、酸化ニッケルを製造する工程において、水酸化ニッケルとともに流動焙焼炉に装入する流動媒体として、白色溶融アルミナおよびまたは褐色溶融アルミナを使用することを特徴とする酸化ニッケルの製造方法。   In the process of charging nickel hydroxide into a fluid roasting furnace and baking it to produce nickel oxide, white molten alumina and / or brown molten alumina is used as a fluid medium charged into the fluid roasting furnace together with nickel hydroxide. The manufacturing method of the nickel oxide characterized by using. 上記請求項1の焙焼において、装入する流動媒体の平均粒度と装入する水酸化ニッケルの平均粒度が流動媒体/水酸化ニッケルの比で0.1以上10以下の範囲の値になるように流動媒体の大きさおよびまたは水酸化ニッケルの大きさを調整することを特徴とする酸化ニッケルの製造方法。   In the roasting according to claim 1, the average particle size of the fluid medium to be charged and the average particle size of the nickel hydroxide to be charged are in the range of 0.1 to 10 in terms of the fluid medium / nickel hydroxide ratio. And adjusting the size of the fluid medium and / or the size of nickel hydroxide. 上記請求項1および2において、焙焼時の炉内温度が800℃〜1200℃の範囲であることを特徴とする酸化ニッケルの製造方法。   3. The method for producing nickel oxide according to claim 1 or 2, wherein the temperature in the furnace during roasting is in the range of 800C to 1200C.
JP2016187804A 2016-09-27 2016-09-27 Method for producing nickel oxide Pending JP2018053282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016187804A JP2018053282A (en) 2016-09-27 2016-09-27 Method for producing nickel oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016187804A JP2018053282A (en) 2016-09-27 2016-09-27 Method for producing nickel oxide

Publications (1)

Publication Number Publication Date
JP2018053282A true JP2018053282A (en) 2018-04-05

Family

ID=61835301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016187804A Pending JP2018053282A (en) 2016-09-27 2016-09-27 Method for producing nickel oxide

Country Status (1)

Country Link
JP (1) JP2018053282A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289569A (en) * 2000-03-31 2001-10-19 Asahi Tec Corp Wearproof device for inner wall face of fluidized bed furnace
JP2007292379A (en) * 2006-04-25 2007-11-08 Satoshi Kimura Manufacturing method and device of heat treated particle
JP2012031446A (en) * 2010-07-28 2012-02-16 Sumitomo Metal Mining Co Ltd Method for producing ferronickel smelting raw material from low grade lateritic nickel ore

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289569A (en) * 2000-03-31 2001-10-19 Asahi Tec Corp Wearproof device for inner wall face of fluidized bed furnace
JP2007292379A (en) * 2006-04-25 2007-11-08 Satoshi Kimura Manufacturing method and device of heat treated particle
JP2012031446A (en) * 2010-07-28 2012-02-16 Sumitomo Metal Mining Co Ltd Method for producing ferronickel smelting raw material from low grade lateritic nickel ore

Similar Documents

Publication Publication Date Title
CA2802165C (en) Environmentally friendly system and method for manufacturing iron powder
AU2015293370B2 (en) Method for producing pellets and method for producing iron-nickel alloy
AU2015297793B2 (en) Method for producing pellets and method for producing iron-nickel alloy
AU2005245362B2 (en) Scour media for titanium dioxide production
AU2015297792B2 (en) Method for smelting nickel oxide ore
CN104070173A (en) Preparation method of spherical tungsten powder
JP6459879B2 (en) Nickel powder manufacturing method and reaction facility operation method
JP6870231B2 (en) Nickel oxide manufacturing method, fluidized roasting furnace
JP2018053282A (en) Method for producing nickel oxide
JP6561925B2 (en) Nickel oxide manufacturing method, fluid roasting furnace
JP2016073919A (en) Granule manufacturing method
JP2009510190A (en) Use of this abrasive in a method for producing an abrasive and a method for producing rutile titanium dioxide
JP2018012624A (en) Method for producing nickel oxide and fluidization calcinating furnace
JP2015160780A (en) Method of producing nickel oxide, and nickel oxide fine powder obtainable therefrom
WO2021214784A1 (en) System and method for producing magnetite from red mud using two stage reactors
JP6565803B2 (en) Nickel oxide manufacturing method, fluid roasting furnace
CN104561426A (en) Method for processing sponge iron by using primary reduced powder
JP6561924B2 (en) Method for producing nickel oxide
JP2018012623A (en) Method for producing nickel oxide
JP2013147718A (en) Method for producing sintered ore
JP2019152385A (en) Fluidization roasting furnace
JP6634974B2 (en) Method for producing nickel oxide
JP5892317B2 (en) Production method of raw materials for blast furnace
JP7251922B2 (en) Fluidized roasting furnace
JP4447364B2 (en) Process for producing 1,2-dichloroethane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201006