JP2019120472A - Fluidization roasting furnace - Google Patents

Fluidization roasting furnace Download PDF

Info

Publication number
JP2019120472A
JP2019120472A JP2018002344A JP2018002344A JP2019120472A JP 2019120472 A JP2019120472 A JP 2019120472A JP 2018002344 A JP2018002344 A JP 2018002344A JP 2018002344 A JP2018002344 A JP 2018002344A JP 2019120472 A JP2019120472 A JP 2019120472A
Authority
JP
Japan
Prior art keywords
roasting
roasted
furnace
fluidized
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018002344A
Other languages
Japanese (ja)
Other versions
JP6939582B2 (en
Inventor
井関 隆士
Takashi Izeki
隆士 井関
幸弘 合田
Sachihiro Aida
幸弘 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018002344A priority Critical patent/JP6939582B2/en
Publication of JP2019120472A publication Critical patent/JP2019120472A/en
Application granted granted Critical
Publication of JP6939582B2 publication Critical patent/JP6939582B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a fluidization roasting furnace capable of improving quality and the rate of collection after roasting even with respect to objects to be roasted that cause gas due to roasting.SOLUTION: A cylindrical furnace core 11 composing a fluidization roasting furnace 10 has an expansion part 17 having a larger upper cross-sectional area than a lower cross-sectional area, and an inner surface of the expansion part 17 is a conical shape where an upper surface is larger than a lower surface. In a region in a height direction where the expansion part 17 exists, a fluidized layer where objects to be roasted are roasted is formed. An expansion angle made of a straight line expressing a side part of a truncated cone on a cross-section including an axial center of the truncated cone and an axial center of the truncated cone is between 3 degrees and 40 degrees. In this composition, even when gas is generated by roasting the objects to be roasted, a volume increase of the generated gas is absorbed by the expansion part, so that speed of the flow gas is maintained evenly inside the fluidized layer. Thus, quality and the collection ratio of the objects to be roasted after roasting are improved.SELECTED DRAWING: Figure 1

Description

本発明は、流動焙焼炉に関する。さらに詳しくは、高品位が要求される被焙焼物を焙焼可能な流動焙焼炉に関する。   The present invention relates to a fluid roaster. More particularly, the present invention relates to a fluidized roaster capable of roasting a roasted toast that requires high quality.

流動焙焼炉は、供給するガスの流れによって単独もしくは流動媒体とともに供給した原料を流動化させ、あたかも流体のように浮遊させた状態で焙焼を行う炉である。流動焙焼は、原料と流動媒体が混合させた状態の流動層内で焙焼させることができるので、原料と流動媒体とが衝突する効果もむらなく焙焼反応を進行させるために利用でき、効率的に焙焼できる特徴がある。   The fluidized-bed roasting furnace is a furnace that performs the roasting in a floating state as if it were floated by fluidizing the raw material supplied alone or together with the fluidized medium by the flow of the supplied gas. Since the fluid roasting can be roasted in the fluidized bed in which the raw material and the fluid medium are mixed, the effect of the collision between the raw material and the fluid medium can be used to progress the roasting reaction evenly, There is a feature that can be roasted efficiently.

流動焙焼炉を用いて供給した原料に対して確実に焙焼を行うには、供給するガスの流速が、原料(以下、「被焙焼物」と称する)と流動媒体との混合物の「空塔速度」が、「最小流動化速度」以上で「終末速度」未満の範囲の速度になるように、正確に制御されなければならない。   In order to ensure the sinter by using the fluidized sinter furnace, the flow rate of the supplied gas is the "empty" of the mixture of the material (hereinafter referred to as "the to-be-sintered material") and the fluid medium. The column velocity must be accurately controlled to be in the range of velocity above the "minimum fluidization velocity" and below the "end velocity".

なお、「空塔速度」とは、ガス流量を、ガスの流れ方向に対し直角な面における炉の断面積(以下、「炉内断面積」と称することがある)で除した炉内での単位面積当たりの速度である。また、「最小流動化速度」とは、被焙焼物と流動媒体との混合物が流動(すなわち浮上)できる最小の速度のことである。さらに「終末速度」とは、流動層のなかから被焙焼物と流動媒体との混合物が上昇して流動焙焼炉から飛び出し始める速度を意味する。   Note that “empty velocity” refers to the gas flow rate in the furnace divided by the cross-sectional area of the furnace in a plane perpendicular to the gas flow direction (hereinafter sometimes referred to as “in-furnace cross-sectional area”). It is the speed per unit area. Also, the "minimum fluidization velocity" is the minimum velocity at which the mixture of the to-be-baked product and the fluid medium can flow (ie, float). Furthermore, the term "end velocity" means the velocity at which the mixture of the to-be-baked product and the fluid medium rises from the fluid bed and begins to leave the fluid calciner.

上記のように速度制御が正確に行われる必要があるのは、以下のような理由のためである。すなわち、供給するガスの流速が、原料と流動媒体との混合物の上記の「最小流動化速度」未満の速度であると、原料が流動化しないために焙焼が均一に進行しなかったり、原料が凝集してしまったりする等の問題が生じる。   As described above, the speed control needs to be performed accurately for the following reasons. That is, if the flow rate of the supplied gas is less than the above-mentioned "minimum fluidization speed" of the mixture of the raw material and the fluid medium, the raw material is not fluidized and the roasting does not proceed uniformly, or the raw material Problems such as clumping.

一方で、ガスの流速が前記の混合物の「終末速度」以上に大きい(速い)と、流速が速すぎて原料または流動媒体が、焙焼が終わる前でもガスと共に炉外に流されてしまい、効果的に焙焼を施すことができなくなる。これにより品質の低下または回収率の低下などの問題が生じる。   On the other hand, if the flow velocity of the gas is higher (faster) than the "end velocity" of the mixture, the flow velocity is too fast, and the raw material or the fluid medium is allowed to flow out of the furnace with the gas even before the completion of roasting. It will not be possible to roast it effectively. This causes problems such as a reduction in quality or a reduction in recovery rate.

つまり、流動焙焼においては、ガス流量を適切な範囲内に制御して、原料を焙焼に必要な時間だけ、流動焙焼炉内の流動層内に流動化して留まらせることが必要となる。   That is, in the fluid roasting, it is necessary to control the gas flow rate within an appropriate range and fluidize and retain the raw material in the fluid bed in the fluid roasting furnace only for the time necessary for roasting. .

特許文献1、2には、上で記載した流動焙焼炉の構成が開示されている。これらの流動焙焼炉は、工業的に生産を行うためにいくつかの問題点が挙げられる。以下に記載した4つは、そのうちの重要と考えられるものである。   Patent Literatures 1 and 2 disclose the configuration of the above-described fluidized roasting furnace. These fluidized roasters have several problems in order to produce them industrially. The four listed below are considered to be important among them.

第1の問題点として、連続処理が困難であるという点である。効率化の観点から、連続処理に際しては、原料を連続的に投入する。この際、焙焼前の原料が焙焼中または焙焼後の原料と混じって流動焙焼炉から排出される「後入れ先出し」状態が生じると、被焙焼物の品質が低下したことになり好ましくない。   The first problem is that continuous processing is difficult. From the viewpoint of efficiency, raw materials are continuously fed in continuous processing. At this time, if the raw material before roasting mixes with the raw material during roasting or roasting and the "last-in first-out" state occurs in which the material is discharged from the fluidized roasting furnace, the quality of the roasted roasted product is degraded. Not desirable.

一般的な高温加熱による熔解炉または酸および中和剤等を添加して反応させる湿式法の反応槽などの場合は、連続操業において上述した「後入れ先出し」状態を防ぐために、例えば原料投入口と原料回収口(排出口)を物理的に離して設置し、併せて反応槽内に邪魔板を設置するなどして、原料のショートパスを防ぐようにしたり、複数の反応槽を設けて反応が完全に終了するように配置したりすることが行われる。   In the case of a reaction furnace or the like of a wet method in which a general melting furnace by high temperature heating or an acid and a neutralizing agent are added and reacted, in order to prevent the above-mentioned "last in first out" state in continuous operation, for example And the raw material recovery port (discharge port) physically separated, and at the same time, a baffle plate is installed in the reaction tank to prevent short paths of the raw material, or a plurality of reaction tanks are provided for reaction Are arranged to be completely terminated.

しかしながら、一般的に流動焙焼の場合、原料が流体の如く流動化しているため、投入直後の焙焼されていない原料と、暫く炉内を浮遊して焙焼が進んだ原料あるいは終了した原料が混合しやすい。このため、焙焼が終了した原料だけを回収することは容易でなく、焙焼が不十分な原料が混合した状態で回収されることが避けられなかった。すなわち、連続処理を行うと、品質的に低いものが回収され、また、焙焼効率も悪くなってしまう。   However, in general, in the case of flow roasting, since the raw material is fluidized like a fluid, the raw material which has not been roasted immediately after charging and the raw material which has floated in the furnace for a while and the roasting has progressed Is easy to mix. For this reason, it is not easy to recover only the raw material for which the roasting has ended, and it has been inevitable that the raw materials for which the roasting has not been completed are collected in a mixed state. That is, when the continuous processing is performed, those with low quality are recovered, and the roasting efficiency is also deteriorated.

特許文献1には、古砂ダストを流動焙焼炉の焙焼室内に供給し、その焙焼室内において流動焙焼させ、焙焼室内に形成される流動層の上部位置に開口する溢流口からオーバーフローさせて、再生処理ダストとして回収する技術が開示されている。ここで、古砂ダストは、鋳物古砂再生用の乾式再生機で発生したダストを集じんして得たものである。また、流動焙焼炉の底部には、珪砂がベース砂として収容されている。   According to Patent Document 1, old sand dust is supplied into the roasting chamber of a fluidized roasting furnace, fluidized roasting is performed in the roasting chamber, and an overflow opening is provided at the upper position of the fluidized bed formed in the roasting chamber. Discloses a technology for overflowing and recovering as recycled dust. Here, the old sand dust is obtained by collecting dust generated by a dry regenerator for regenerating the cast old sand. In addition, silica sand is accommodated as base sand at the bottom of the fluidized roasting furnace.

加えて、シュートの投入口部に設けた圧縮空気吹込管で、その先端に形成したノズルから圧縮空気がシュートの出口に向って吹き込まれるようになっていることも開示されている。すなわち、古砂ダストをシュートに向かって圧縮空気を吹き込みながら炉内に供給し、溢流口から古砂ダストをオーバーフローさせて回収している。   In addition, it is also disclosed that compressed air is blown toward the outlet of the chute from a nozzle formed at the tip of the compressed air blowing pipe provided at the inlet of the chute. That is, the old sand dust is supplied into the furnace while blowing compressed air toward the chute, and the old sand dust is overflowed and collected from the overflow port.

特許文献1で開示されている流動焙焼炉では、古砂ダストの供給高さ位置と溢流口(回収口)の高さ位置とがほとんど同じであることから、流動化している古砂ダストについて、焙焼されたものだけが確実に溢流口からオーバーフローして回収されることはない。   In the fluidized-bed roaster disclosed in Patent Document 1, the old sand dust is fluidized since the old sand dust supply height position is almost the same as the height position of the overflow (recovery port). For sure, only those that have been roasted can not overflow and be recovered from the overflow.

すなわち、流動化し焙焼中の古砂ダストの中に、次々に焙焼前の古砂ダストが供給されるため、溢流口から回収されている古砂ダストに焙焼が不十分な古砂ダストが混在する。そのため、この点で連続処理が困難である。   That is, since old sand dust before roasting is supplied one after another into old sand dust being fluidized and roasted, old sand whose roasting is insufficient for old sand dust recovered from the overflow port Dust is mixed. Therefore, continuous processing is difficult at this point.

上記第1の点に対し、特許文献1に開示の方法で、可能な限り焙焼が進んだ古砂ダストを回収するためには、古砂ダストの供給速度を極力遅くする必要があると考えられる。ただし、この場合流動焙焼炉による処理は、非常に効率の悪いものとなり、やはり連続処理は困難である。   With respect to the above first point, in order to recover old sand dust which has been roasted as much as possible by the method disclosed in Patent Document 1, it is considered necessary to slow the supply speed of old sand dust as much as possible. Be However, in this case, the treatment with the fluidized roasting furnace becomes very inefficient, and again, continuous treatment is difficult.

第2の問題点としては、焙焼後に焙焼に用いられたガスと焙焼後の被焙焼物とを分離することが困難であるという点である。   The second problem is that it is difficult to separate the gas used for roasting after roasting and the roasted material after roasting.

特許文献2には、金属鉄源を流動焙焼炉で酸化焙焼する工程と、焙焼炉の溢流口より排出された粗粒子の酸化層を剥離する工程と、剥離工程後の酸化鉄と金属鉄粉を流動焙焼炉に循環する工程と、生成した微粉酸化鉄を焙焼ガスと共に流出させて焙焼ガス中より捕捉回収する工程とからなる高品位酸化鉄の製造方法が開示されている。   In Patent Document 2, a step of oxidizing and roasting a metal iron source in a fluidized roasting furnace, a step of peeling off an oxide layer of coarse particles discharged from an overflow port of the roasting furnace, and iron oxide after the peeling step A process for producing high-grade iron oxide is disclosed, which comprises the steps of: circulating the metal iron powder in a fluidized roasting furnace, and flowing out the produced finely powdered iron oxide together with the roasting gas to capture and recover from the roasting gas. ing.

しかしながら特許文献2には、微粉酸化鉄を焙焼ガスと共に流出させて焙焼ガス中より捕捉回収すると記載されているものの、具体的にどのように微粉酸化鉄を焙焼ガスと共に流出させるかについては明確に開示されていない。すなわち、微粉酸化鉄と焙焼ガスとをどのように効率的に分離し、微粉酸化鉄を捕捉回収するかの課題が依然として解決されているとは言い難い。   However, although it is described in Patent Document 2 that the finely powdered iron oxide is made to flow out with the torrefaction gas and captured and recovered from the torrefaction gas, specifically how to flow out the finely divided iron oxide with the torrefaction gas Is not clearly disclosed. That is, it can not be said that the problem of how to separate finely powdered iron oxide and roasting gas efficiently and to capture and recover finely powdered iron oxide is still solved.

また、特許文献2には、剥離酸化皮膜を流動焙焼炉排ガスに随伴させて炉外に排出させることも開示されているが、どのような方法で流動焙焼炉排ガスに随伴させ炉外に排出させるのかについても不明確である。   Further, Patent Document 2 also discloses that the exfoliated oxide film is caused to accompany the flowing roasting furnace exhaust gas and discharged out of the furnace, but it is accompanied by the flowing roasting furnace exhaust gas by any method and it is disclosed outside the furnace It is also unclear as to whether it will be discharged.

第3の問題点は、焙焼を行う被焙焼物によって求められる製品の純度などが異なる点である。流動焙焼炉の原料の具体的な例を挙げて説明する。その原料として、例えば2次電池の材料として多く用いられる酸化ニッケル(NiO)は、純度などの点で非常に厳しい被焙焼物となる。酸化ニッケルは、硫酸ニッケル(NiSO)を含有する水溶液にアルカリを添加し、中和して水酸化ニッケル(Ni(OH))を得、その水酸化ニッケルを焙焼して製造される。 The third problem is that the product purity and the like required for the roasted material to be roasted differ. The specific example of the raw material of a fluidized roasting furnace is mentioned and demonstrated. For example, nickel oxide (NiO), which is often used as a material of secondary batteries as its raw material, becomes a very hard-to-heat roasted product in terms of purity and the like. Nickel oxide is produced by adding an alkali to an aqueous solution containing nickel sulfate (NiSO 4 ) to neutralize it to obtain nickel hydroxide (Ni (OH) 2 ), and roasting the nickel hydroxide.

この酸化ニッケルについては、得られた酸化ニッケルに含まれた不純物の硫黄品位が高く、例えば100ppmを超えると、酸化ニッケルから製造した電池の特性を低下させる等の影響が生じるなど好ましくない。このため、洗浄等の前処理で付着した硫黄を除去するとともに、均一かつ確実に焙焼して硫黄を低減することが欠かせない。すなわち特許文献1等で開示されている流動焙焼炉の構成では、所定の原料に対して焙焼の均一性を十分に上げることができないという問題がある。   With respect to this nickel oxide, the sulfur grade of the impurities contained in the obtained nickel oxide is high, for example, when it exceeds 100 ppm, it is not preferable because the influence of lowering the characteristics of the battery manufactured from nickel oxide occurs. For this reason, it is essential to reduce sulfur by roasting uniformly and reliably while removing the sulfur adhering by pretreatments, such as washing. That is, in the configuration of the fluidized roasting furnace disclosed in Patent Document 1 etc., there is a problem that the uniformity of roasting can not be sufficiently improved for a predetermined raw material.

第4の問題点は、焙焼を行う被焙焼物の特性に関する点である。前述の水酸化ニッケルの流動焙焼に際しては、発生するガスの影響を考慮する必要もある。つまり、水酸化ニッケルを焙焼して酸化ニッケルが生成するのと同時に、水酸化ニッケルの分解に伴って水(HO)、すなわち水蒸気ガスも発生する。この発生した水蒸気ガスの体積によって流動焙焼炉内での流速が急激に上昇し、その結果被焙焼物が不完全な焙焼のまま流出させられ、品質と回収率が低下する問題を生じる。 The fourth problem relates to the characteristics of the roasted material to be roasted. In the case of the above-mentioned fluid roasting of nickel hydroxide, it is also necessary to consider the influence of the generated gas. That is, at the same time as the nickel hydroxide is roasted to form nickel oxide, water (H 2 O), that is, water vapor gas is also generated along with the decomposition of the nickel hydroxide. Due to the volume of the generated steam gas, the flow velocity in the fluidized roasting furnace is rapidly increased, and as a result, the roasted material is discharged as it is with incomplete roasting, causing a problem that the quality and the recovery rate decrease.

上記の焙焼に伴って発生したガスによる影響は、水酸化ニッケルなどの場合以外でも、例えば銅精鉱を焙焼して砒素を分離しようとする際にも生じる。   The influence of the gas generated with the above-described roasting also occurs, for example, when roasting copper concentrate to separate arsenic, other than in the case of nickel hydroxide and the like.

この第4の問題点に対して、焙焼によってガスが発生する場合、流動焙焼炉から未反応原料の排出を防止するためには、発生するガスの量をあらかじめ予測し、発生ガス量に相当する量の流動化に送気するガス量を減少することが必要となる。しかし上記の水蒸気ガスなどは流動層内で焙焼反応に伴って発生するものであり、流動化のためのガス供給量を一律に減少すると、流動化が生じなくなり反応が進まなくなったり、過剰の流量となって目的とする焙焼が円滑に進まなくなったりする課題が生じる。   With respect to the fourth problem, in the case where gas is generated by roasting, in order to prevent the discharge of the unreacted raw material from the fluidized roasting furnace, the amount of gas to be generated is predicted in advance, and It is necessary to reduce the amount of gas delivered to a corresponding amount of fluidization. However, the above-mentioned steam gas and the like are generated along with the sinter reaction in the fluidized bed, and if the gas supply amount for fluidization is uniformly reduced, the fluidization does not occur and the reaction does not proceed, or the excess does not occur. It becomes a flow rate, and the subject that the target roasting does not advance smoothly arises.

この第4の問題点に対して、特許文献1では、流動焙焼炉の炉心本体の出口側に炉内断面積を拡大した部分(以下この部分を「減速部」と称する)を設置し、流動焙焼炉の炉内を流れてきたガスならびに被焙焼物の流速を断面積の広がりによって低減させて、焙焼が不十分な原料が排出されることを防いでいる。   With respect to the fourth problem, in Patent Document 1, a portion (hereinafter, this portion is referred to as a "deceleration portion") in which the cross-sectional area in the furnace is enlarged is installed on the outlet side of the core body of the fluidized bed calciner. The flow velocity of the gas flowing to the inside of the fluidized roasting furnace and the flow rate of the roasted roasted product are reduced by the spread of the cross-sectional area to prevent the discharge of the raw material which is insufficiently roasted.

特開2000−42515号公報JP 2000-42515 A 特開昭61−236616号公報Japanese Patent Application Laid-Open No. 61-236616

上記第3および第4の問題点に対し、特許文献1に記載の流動焙焼炉の炉心本体の出口側に炉内断面積を拡大した部分が設置された場合、すなわち流動焙焼を行っている流動層より上の部分で、炉内断面積を拡大した部分が設置された場合、流動焙焼が行なわれている流動層が形成されている部分では、炉内断面積が上下で変化しない直筒形状であるので、発生したガスにより、流動層内部で流動ガスの速度が不均一となりやすく、そのため、被焙焼物が完全に焙焼されずに炉心本体の出口側に向うことが多く、品質と回収率が低下するという問題がある。   With respect to the above third and fourth problems, when a portion with an enlarged cross section in the furnace is installed on the outlet side of the core body of the fluidized bed calciner described in Patent Document 1, that is, fluidized roasting is performed. When a portion where the cross-sectional area in the furnace is enlarged is installed in the part above the existing fluidized bed, the cross-sectional area in the furnace does not change up and down in the part where the fluidized bed is being formed Due to the straight cylinder shape, the generated gas tends to make the velocity of the fluidizing gas nonuniform inside the fluidized bed, and therefore, the to-be-baked material often goes to the outlet side of the core body without being completely calcined. And the recovery rate is reduced.

また、特許文献1に記載の流動焙焼炉では、焙焼が不十分なまま排出口側に運ばれた被焙焼物は、減速部で流速が低下し、重力によって浮遊が抑制されて流動焙焼炉に落下して焙焼されるものが大部分であるが、一部は減速部と炉心本体で異なる断面積をつなぐ部分(以下この部分を「拡張部」と称する)に引っ掛かり堆積してしまうという問題がある。   Further, in the fluidized roasting furnace described in Patent Document 1, the roasted roasted product carried to the outlet side while the roasting is insufficient is reduced in flow velocity at the speed reduction portion, and the floating is suppressed by gravity, and the flowing crucible Most of them fall to the baking furnace and are roasted, but some of them are caught on the part connecting different cross-sectional areas in the speed reduction part and core body (hereinafter this part is referred to as the “expanded part”) There is a problem of

このように、焙焼が不十分な被焙焼物の堆積が生じると、炉内のガス流れ等に対する障害となったり、堆積物が成長した状態で、急に堆積が剥離して落下し炉心本体内で閉塞を生じたり、流動の障害の原因となるなど好ましくない。   As described above, if deposition of a to-be-baked material with insufficient torrefaction occurs, it becomes an obstacle to gas flow within the furnace, or in a state where the deposit has grown, the deposit peels off suddenly and falls, and the core body It is not preferable because it causes blockages inside and causes flow problems.

この堆積物を除去するための方法としては、炉内を均一にし、未反応な原料(被焙焼物)を分離して必要な程度まで再度焙焼させるなどの処置をすることもできる。しかし、連続操業する流動焙焼炉から未反応な原料を取り出して再度焙焼させることは容易でなく、手間がかかり生産性が低下する問題がある。   As a method for removing the deposits, it is possible to make the inside of the furnace uniform, separate the unreacted raw materials (to-be-baked substances), and carry out re-sintering to a required extent. However, it is not easy to take out the unreacted raw material from the continuously operating fluidized roasting furnace and roast it again, which takes time and labor, and there is a problem that the productivity is lowered.

本発明は上記事情に鑑み、焙焼によりガスが発生する被焙焼物であっても、焙焼後の品質と回収率を高くすることができる流動焙焼炉を提供することを目的とする。   An object of the present invention is to provide a fluidized roasting furnace capable of enhancing the quality and recovery rate after roasting even if the roasted product generates gas due to roasting, in view of the above circumstances.

第1発明の流動焙焼炉は、下側から上側へ向けて流れるガスを用いて被焙焼物が焙焼される筒状炉心部が設けられ、該筒状炉心部は、下側の断面積よりも上側の断面積が大きい拡大部を有し、該拡大部の内面は、下面よりも上面が大きい円錐台の形状であり、該拡大部が存する高さ方向の領域において前記被焙焼物が焙焼される流動層が形成され、前記円錐台の軸心を含む断面での前記円錐台の側部を含んでいる直線と、前記円錐台の軸心と、が交差する角度である拡大角度が3度以上40度以下であることを特徴とする。
第2発明の流動焙焼炉は、第1発明において、前記拡大部には、内部の堆積物を剥離する振動装置が設けられていることを特徴とする。
The fluidized-bed roasting furnace according to the first aspect of the present invention is provided with a cylindrical core portion in which a to-be-baked material is roasted using gas flowing from the lower side to the upper side, and the cylindrical core portion has a lower cross-sectional area The enlarged surface has a larger cross-sectional area on the upper side, and the inner surface of the enlarged area is in the shape of a truncated cone having a larger upper surface than the lower surface, and An enlargement angle at which a fluid bed to be roasted is formed, and a straight line including the side of the truncated cone in a cross section including the axis of the truncated cone intersects with the axis of the truncated cone Is 3 degrees or more and 40 degrees or less.
The fluidized-bed roasting furnace according to a second aspect of the present invention is characterized in that, in the first aspect, the expanded portion is provided with a vibrating device for separating the deposit inside.

第1発明によれば、流動焙焼炉が備えている筒状炉心部が拡大部を有し、この拡大部が円錐台の形状であるとともに、拡大角度が3度以上40度以下であることにより、被焙焼物の焙焼によりガスが発生した場合でも、発生したガスの体積増加分が拡大部で吸収されるため、流動層内部で流動ガスの速度がより均一に維持される。このため焙焼後の被焙焼物の品質と回収率が向上する。
第2発明によれば、前記拡大部に設けられた振動装置により筒状炉心部の内部の堆積物が剥離されるので、筒状炉心部内のガスの流れの障害となるものがなく、流動ガスがより均一に流動する。このため被焙焼物の品質と回収率がより向上する。
According to the first aspect of the present invention, the cylindrical core portion provided in the flow roasting furnace has an enlarged portion, and the enlarged portion has the shape of a truncated cone, and the enlargement angle is 3 degrees or more and 40 degrees or less Thus, even when gas is generated by roasting of the to-be-baked product, the volume increase of the generated gas is absorbed by the expanded portion, and therefore the velocity of the fluidizing gas is maintained more uniformly in the fluidized bed. This improves the quality and recovery of the roasted product after roasting.
According to the second aspect of the present invention, since the deposits inside the cylindrical core portion are separated by the vibration device provided in the expanded portion, there is no obstacle to the flow of gas in the cylindrical core portion, Flows more uniformly. For this reason, the quality and the recovery rate of the to-be-baked material further improve.

本発明の第1実施形態に係る流動焙焼炉の正面方向からの断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing from the front direction of the fluidized-bed roasting furnace which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る流動焙焼炉の正面方向からの断面図である。It is sectional drawing from the front direction of the fluidized-bed roasting furnace which concerns on 2nd Embodiment of this invention.

つぎに、本発明の実施形態を図面に基づき説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための流動焙焼炉およびその運転方法を例示するものであって、本発明は流動焙焼炉およびその運転方法を以下のものに特定しない。なお、各図面が示す部材の大きさまたは位置関係等は、説明を明確にするため誇張していることがある。   Next, an embodiment of the present invention will be described based on the drawings. However, the embodiments shown below exemplify a fluidized roasting furnace for embodying the technical idea of the present invention and an operating method thereof, and the present invention relates to a fluidized roasting furnace and an operating method thereof as follows. Not specific to Note that the size or positional relationship of members shown in each drawing may be exaggerated for the sake of clarity.

(第1実施形態)
図1には、本発明の第1実施形態に係る流動焙焼炉10の正面方向からの断面図を示す。図1において黒色の太線矢印は、流動用ガスの流れ方向を示している。本実施形態の流動焙焼炉10には、筒状炉心部11が、軸心を鉛直にした状態で設けられている。この筒状炉心部11の下部には固定層15が設けられている。
First Embodiment
FIG. 1 shows a cross-sectional view from the front direction of the fluidized-bed roasting furnace 10 according to the first embodiment of the present invention. In FIG. 1, black thick arrows indicate the flow direction of the fluidizing gas. A cylindrical core portion 11 is provided in the flow roasting furnace 10 of the present embodiment in a state where the axis is vertical. A fixed bed 15 is provided below the cylindrical core portion 11.

固定層15は例えば球状のアルミナなどのセラミックスを充填したものを用いることができ、セラミックスはポーラスであってよく、高い充填率のものであってよい。そして被焙焼物が固定層15の下に落ち込まないように固定層15を何層かで構成してもよい。例えば固定層15の下の方を球状のアルミナを用い、固定層15の上部をより小さな球状のアルミナを用いてもよい。この固定層15の下面には、筒状炉心部11の下部から流動用ガスを導入するための流動用ガス導入管12が設けられている。この流動用ガス導入管12から太線矢印で示す向きに流動用ガスが供給されることで、固定層15の上に位置している流動媒体31および原料32が流動化して流動層が生じ、この流動層内で原料32が浮遊した状態で焙焼が行なわれる。   The fixed layer 15 may be, for example, one filled with a spherical ceramic such as alumina, and the ceramic may be porous and may have a high filling rate. Then, the fixed layer 15 may be composed of several layers so that the roasted object does not fall below the fixed layer 15. For example, spherical alumina may be used below the fixed layer 15 and smaller spherical alumina may be used above the fixed layer 15. A flow gas introduction pipe 12 for introducing flow gas from the lower portion of the cylindrical core portion 11 is provided on the lower surface of the fixed layer 15. Since the fluidizing gas is supplied from the fluidizing gas inlet pipe 12 in the direction indicated by the thick arrow, the fluidizing medium 31 and the raw material 32 located on the fixed bed 15 are fluidized to form a fluidizing bed. The roasting is carried out with the raw material 32 suspended in the fluidized bed.

筒状炉心部11の下部には、流動媒体31等を一定の温度に保持するためのヒータ13が設けられている。なおこのヒータ13は原料32によっては設けられない場合もある。ヒータ13が用いられない場合は、例えば高温のガスを流して流動焙焼してもよい。   At the lower part of the cylindrical core portion 11, a heater 13 for holding the flowing medium 31 or the like at a constant temperature is provided. The heater 13 may not be provided depending on the raw material 32. In the case where the heater 13 is not used, for example, high temperature gas may be flowed to carry out flow baking.

またヒータ13は、筒状炉心部11の上下で複数設置することが好ましい。また、筒状炉心部11の上下でヒータ13の設置密度が異なっていることが好ましい。これらのような構成により筒状炉心部11の温度を上下で異ならせることができ、焙焼を細かく制御することが可能となる。   Preferably, a plurality of heaters 13 are provided above and below the cylindrical core portion 11. Moreover, it is preferable that the installation density of the heater 13 differs in the upper and lower sides of the cylindrical core part 11. As shown in FIG. With such a configuration, the temperature of the cylindrical core portion 11 can be made different up and down, and it becomes possible to control the roasting finely.

筒状炉心部11に供給する原料32は、筒状炉心部11の側部に設けられた原料投入管14により適宜投入される。そして原料投入管14は原料投入後、蓋またはバルブで閉じる。   The raw material 32 to be supplied to the cylindrical core portion 11 is appropriately charged by the raw material charge pipe 14 provided on the side of the cylindrical core portion 11. Then, the raw material feeding pipe 14 is closed by a lid or a valve after the raw material feeding.

本実施形態に係る流動焙焼炉10では、筒状炉心部11は、下側の断面積よりも上側の断面積が大きい拡大部17を有している。なおここでの断面積は、炉内断面積であり、筒状炉心部11の軸心に対し直角な断面における、筒状炉心部11の内面の断面積である。本明細書では拡大部17の内面は、下面よりも上面が大きい円錐台の形状をしている。円錐台は、円錐を底面に平行な平面で切って、小さい円錐を取り除いた形状である。ただし、本明細書では、円錐台の概念には、上面部と下面部を含まない。拡大部17は、この円錐台の2つの平面のうち小さい方の面を下にし、大きい方の面を上にした際の、側方から見た形状となっている。このとき、拡大部17の軸心Cとは、円錐台の軸心C、すなわち円錐台の上下の平面を形成する2つの円の中心を通る直線となる。   In the flow roasting furnace 10 according to the present embodiment, the cylindrical core portion 11 has an enlarged portion 17 in which the cross-sectional area on the upper side is larger than the cross-sectional area on the lower side. The cross-sectional area here is the cross-sectional area in the reactor, and is the cross-sectional area of the inner surface of the cylindrical core portion 11 at a cross section perpendicular to the axis of the cylindrical core portion 11. In the present specification, the inner surface of the enlarged portion 17 is in the shape of a truncated cone whose upper surface is larger than the lower surface. The truncated cone has a shape obtained by cutting a cone in a plane parallel to the bottom and removing a small cone. However, in the present specification, the concept of the truncated cone does not include the upper surface and the lower surface. The enlarged portion 17 has a shape viewed from the side when the smaller of the two flat surfaces of the truncated cone is down and the larger surface is up. At this time, the axial center C of the enlarged portion 17 is a straight line passing through the axial center C of the truncated cone, that is, the centers of two circles forming the upper and lower planes of the truncated cone.

拡大部17では、焙焼時に、被焙焼物が焙焼される流動層の全部または一部が形成される。なお、流動層の全部が、拡大部17の下端から上端の間に位置していることが望ましい。拡大部17の下端については、固定層15の上端と一致していることが望ましい。ただし、拡大部17の下端よりも下側、または拡大部17の上端よりも上側に流動層が位置する場合もある。   In the expansion portion 17, all or a part of a fluidized bed in which the roasted material is roasted is formed at the time of roasting. Preferably, all of the fluidized bed is located between the lower end and the upper end of the enlarged portion 17. The lower end of the enlarged portion 17 is preferably coincident with the upper end of the fixed layer 15. However, the fluidized bed may be located below the lower end of the enlarged portion 17 or above the upper end of the enlarged portion 17.

本実施形態に係る流動焙焼炉10では、拡大部17の軸心Cを含む断面(例えば図1で流動焙焼炉10を切断している断面)において、円錐台の側部を含んでいる直線Sと、円錐台の軸心Cとが交差する角度である拡大角度θが3度以上40度以下である。   In the flow roasting furnace 10 according to the present embodiment, the side of the truncated cone is included in the cross section including the axial center C of the enlarged portion 17 (for example, the cross section cutting the flow roasting furnace 10 in FIG. 1). An enlargement angle θ, which is an angle at which the straight line S intersects with the axial center C of the truncated cone, is 3 degrees or more and 40 degrees or less.

流動焙焼炉10が備えている筒状炉心部11が拡大部17を有し、この拡大部17が円錐台の側方から見た形状であるとともに、拡大角度θが3度以上40度以下であることにより、被焙焼物の焙焼によりガスが発生した場合でも、発生したガスの体積増加分が拡大部17で吸収されるため、流動層内部で流動ガスの速度がより均一に維持される。このため焙焼後の被焙焼物の品質と回収率が向上する。   The cylindrical core portion 11 provided in the flow roasting furnace 10 has the enlarged portion 17, and the enlarged portion 17 has a shape viewed from the side of the truncated cone, and the enlargement angle θ is 3 degrees or more and 40 degrees or less By this, even when gas is generated by roasting of the to-be-baked product, the volume increase of the generated gas is absorbed by the expansion part 17, so the velocity of the fluidizing gas is maintained more uniformly inside the fluid bed. Ru. This improves the quality and recovery of the roasted product after roasting.

本実施形態では特許文献1と同様、流動層の上の部分において、炉内断面積が拡大する部分がある。この形状により、筒状炉心部11の上側(ガスの流れでいえば下流側)ほど、炉内断面積が連続的に拡大し、上側でのガスの流速を下側より低下させることができる。これによって乱流状態にある流動焙焼炉内において部分的にガス流速が終末速度を超えてしまうことがあっても、炉の焙焼部分から原料32が、焙焼が不完全なまま炉外に持ち去られることを回避できる。   In this embodiment, as in Patent Document 1, there is a portion where the cross-sectional area in the furnace is expanded in the portion above the fluidized bed. With this shape, the cross-sectional area in the reactor can be continuously expanded as the upper side of the cylindrical core portion 11 (downstream as far as the flow of gas flows), and the flow velocity of the gas on the upper side can be reduced from the lower side. Even if the gas flow velocity partially exceeds the final velocity in the turbulent flow condition in the fluidized roasting furnace, the raw material 32 from the roasted portion of the furnace is still outside the kiln with incomplete roasting. It is possible to avoid being taken away by

すなわち、上部においては炉内断面積が大きい分、ガス流速が下がり、原料が炉の下部に落ちてきて、焙焼できる。このため効率的に焙焼できるとともに熱を均一に被焙焼物に与え続けられるため、確実かつ均一に焙焼でき、よって高品質の製品を得ることができる。また、被焙焼物を終末速度以下で流動焙焼できることから飛び去ることなく、高い回収率を得ることができる。   That is, in the upper part, the gas flow velocity is lowered by the large cross section in the furnace, and the raw material falls to the lower part of the furnace and can be roasted. Therefore, since the roasting can be performed efficiently and the heat can be uniformly applied to the roasted product, the roasting can be performed reliably and uniformly, so that high quality products can be obtained. Also, high recovery can be obtained without flying away because the roasted product can be flow-fired at a final velocity or less.

加えて本実施形態に係る流動焙焼炉10では、流動層が形成されている高さ方向の領域において、筒状炉心部11の上側から下側にかけて一定の割合で炉内断面積が少なくなっているため、被焙焼物の焙焼によりガスが発生した場合でも、発生したガスの体積増加分が拡大部17の上部で吸収されるため、流動層内部で流動ガスの速度がより均一に維持される。また、筒状炉心部11の下部では上部よりも平均流速が速くなり、直筒の炉芯よりも効率的に流動焙焼が行える。   In addition, in the fluidized-bed roasting furnace 10 according to the present embodiment, in the region in the height direction in which the fluidized bed is formed, the cross-sectional area in the furnace decreases at a constant rate from the upper side to the lower side of the cylindrical core portion 11 Therefore, even when gas is generated by roasting of the to-be-baked product, the volume increase of the generated gas is absorbed by the upper portion of the expansion portion 17, so the velocity of the flowing gas is maintained more uniformly in the fluidized bed Be done. Further, the average flow velocity is higher in the lower part of the cylindrical core portion 11 than in the upper part, and the flow roasting can be performed more efficiently than the core of the straight cylinder.

本実施形態に係る流動焙焼炉10では、拡大角度θは、3°以上40°以下の範囲である。3°未満では円筒直管とほとんど変わらず、本発明の効果が得られない。一方、40°を超えると炉内断面積の増加の割合が大きくなり、流動用ガスの流速の減速が急激に生じ、さらに拡大部17の内面がなだらかになりすぎ、被焙焼物の堆積が生じやすくなる。拡大角度θを上記の範囲とすることで一層効率的に焙焼が進行し、その結果高い回収率を得ることができる。   In the fluidized-bed roasting furnace 10 according to the present embodiment, the expansion angle θ is in the range of 3 ° to 40 °. If it is less than 3 °, it is almost the same as a cylindrical straight pipe, and the effect of the present invention can not be obtained. On the other hand, if it exceeds 40 °, the rate of increase of the cross-sectional area in the furnace becomes large, the flow velocity of the flow gas rapidly decelerates, and the inner surface of the enlarged portion 17 becomes too smooth, causing accumulation of to-be-fired materials. It will be easier. By setting the expansion angle θ within the above range, roasting proceeds more efficiently, and as a result, a high recovery rate can be obtained.

(第1実施形態に係る流動焙焼炉10の運転方法)
図1に示すように、流動焙焼炉10には、原料32と一緒に流動層を生じさせるための流動媒体31が装入されている。流動焙焼炉10に流動用ガス導入管12から流動用ガスが導入されるとともに、原料32があらかじめ定められた量だけ投入される。流動用ガスの流速は、原料32と流動媒体31との混合物の「空塔速度」が、「最小流動化速度」以上で「終末速度」未満であるように調整する。
(Operation method of fluidized bed roasting furnace 10 according to the first embodiment)
As shown in FIG. 1, a fluidized bed baking furnace 10 is charged with a fluidized medium 31 for producing a fluidized bed together with a raw material 32. The fluidizing gas is introduced from the fluidizing gas introduction pipe 12 into the fluidizing and burning furnace 10, and the raw material 32 is charged in a predetermined amount. The flow velocity of the fluidizing gas is adjusted so that the "spatial velocity" of the mixture of the feedstock 32 and the fluid medium 31 is greater than or equal to the "minimum fluidization velocity" and less than the "end velocity".

流動焙焼炉10はヒータ13により加熱した状態にしておき、原料32を投入して焙焼することが好ましい。原料投入後、加熱すると時間がかかり効率が悪くなるからである。ヒータ13は電気式であることが、制御が容易である点で好ましい。また、図示していないが、ガスバーナなどはコスト面で安く、好ましい。   It is preferable that the fluidized roasting furnace 10 be heated by the heater 13, and the raw material 32 be charged and roasted. It is because it will take time and heating efficiency if it heats after raw material injection | throwing-in. It is preferable that the heater 13 be an electric type in terms of easy control. Although not shown, a gas burner or the like is preferable because it is inexpensive and inexpensive.

(第2実施形態)
図2には、第2実施形態に係る流動焙焼炉10の正面方向からの断面図を示す。第1実施形態の流動焙焼炉10との相違点は、拡大部17に、この拡大部17の内面に堆積した被焙焼物を剥離するための振動装置が設けられている点である。本実施形態の流動焙焼炉10では、振動装置は、例えばノッカー20が該当する。本実施形態ではノッカー20は拡大部17の全周に亘って配置されているのが好ましい。
Second Embodiment
FIG. 2 shows a cross-sectional view from the front direction of the fluidized-bed roasting furnace 10 according to the second embodiment. The difference from the fluidized-bed roasting furnace 10 of the first embodiment is that the enlarged portion 17 is provided with a vibration device for separating the roasted toasts deposited on the inner surface of the enlarged portion 17. For example, the knocker 20 corresponds to the vibration device in the fluidized bed baking furnace 10 of the present embodiment. In the present embodiment, it is preferable that the knocker 20 be disposed over the entire circumference of the enlarged portion 17.

振動装置は、ノッカー20に限定されない。振動を与える装置は、他にもバイブレータ、および超音波発振装置などが該当する。   The vibrating device is not limited to the knocker 20. Other devices that apply vibration include vibrators and ultrasonic oscillators.

ノッカー20の種類は特に限定されないが、エアー式ノッカーを用いることが好ましい。エアー式ノッカーは一般的に普及しており、安価に入手できて効果も大きいためである。
バイブレータの種類は特に限定されないが、ノッカー20と同様に安価で効果が大きいエアー式が好ましい。
超音波発振装置は耐熱性がノッカー20等に比べて低いため断熱または冷却を行うことが好ましい。
The type of knocker 20 is not particularly limited, but it is preferable to use an air-type knocker. The air type knocker is generally popular, and can be obtained inexpensively and has a large effect.
Although the type of the vibrator is not particularly limited, it is preferable to use an air type that is inexpensive and has a large effect, like the knocker 20.
The heat resistance of the ultrasonic oscillator is lower than that of the knocker 20 or the like, so that it is preferable to perform heat insulation or cooling.

本実施形態に係る流動焙焼炉10は、振動装置によって拡大部17に振動を与えることで拡大部17における被焙焼物の堆積を抑制する。すなわち拡大部17に被焙焼物が堆積した場合には、振動装置から拡大部17へ振動を与えることにより、拡大部17の内面に堆積した被焙焼物を流動焙焼炉10の筒状炉心部11の下部に落とすので、再度、流動焙焼させることができる。   The fluidized-bed roasting furnace 10 according to the present embodiment suppresses the deposition of the to-be-heated roasted product in the enlarged portion 17 by giving vibration to the enlarged portion 17 by the vibration device. That is, when the to-be-baked object is deposited on the expanded portion 17, the to-be-burned object deposited on the inner surface of the expanded portion 17 is vibrated by the vibration device to the expanded portion 17. Since it falls to the lower part of 11, it can be made to carry out the flow roasting again.

上記のように、拡大部17に設けられた振動装置が振動すると、筒状炉心部11の内部の堆積物が剥離されるので、筒状炉心部11内のガスの流れの障害となるものがなく、流動ガスがより均一に流動する。このため被焙焼物の品質と回収率がより向上する。   As described above, when the vibration device provided in the enlarged portion 17 vibrates, the deposits inside the cylindrical core portion 11 are separated, and therefore, the obstruction of the flow of gas in the cylindrical core portion 11 Instead, the flowing gas flows more uniformly. For this reason, the quality and the recovery rate of the to-be-baked material are further improved.

また、拡大部17に堆積した被焙焼物が除去されることで、流動焙焼炉10の長期に亘る生産性を維持できる。また、振動装置は拡大部17の外側に設置されているので、振動装置のメンテナンスを容易に行うことができる。   Moreover, by removing the to-be-baked material deposited in the expansion part 17, the productivity over a long period of the fluidized roasting furnace 10 can be maintained. Further, since the vibration device is installed outside the enlarged portion 17, maintenance of the vibration device can be easily performed.

(第2実施形態に係る流動焙焼炉10の運転方法)
流動層を生じさせて焙焼する工程は第1実施形態に係る流動焙焼炉10と同じである。第2実施形態では、流動焙焼炉10の使用者は、拡大部17の内面に被焙焼物が付着しないように、ノッカー20を運転する。ノッカー20の運転条件は、投入する原料により異なる。ノッカー20の運転は、例えば流動焙焼炉10の焙焼中連続で運転を行う場合もあり、また間欠的に1時間に数分程度運転を行う場合もある。
(Operation method of fluidization roasting furnace 10 according to the second embodiment)
The process of forming a fluidized bed and roasting is the same as the fluidized roasting furnace 10 according to the first embodiment. In the second embodiment, the user of the flow roasting furnace 10 operates the knocker 20 so that the roasted material does not adhere to the inner surface of the enlarged portion 17. The operating conditions of the knocker 20 differ depending on the raw material to be introduced. The operation of the knocker 20 may be continuous during, for example, the roasting of the fluidized roasting furnace 10, or may be intermittently performed for several minutes per hour.

以下、本発明に関連する実験を行い、本発明の各実施形態の実施例を示して説明する。なお、本発明は以下の実施例に何ら限定されるものではない。
(実験1)(拡大角度θの検証、原料:水酸化ニッケル)
<原料>
焙焼対象の原料(被焙焼物)32として、水酸化ニッケル(Ni(OH))を準備した。水酸化ニッケルは、平均粒径が22.2〜24.2μmのものであり、あらかじめ真空中において、175℃で3時間の真空加熱処理が行われ、含有水分が実質的に除去された。
なお、水酸化ニッケルの硫黄品位は1.9〜2.1重量%だった。また、他の不純物は実質的に無視できる程度だった。
Hereinafter, experiments related to the present invention will be performed, and examples of each embodiment of the present invention will be shown and described. The present invention is not limited to the following examples.
(Experiment 1) (Verification of expansion angle θ, raw material: nickel hydroxide)
<Raw material>
Nickel hydroxide (Ni (OH) 2 ) was prepared as a raw material to be roasted (to be roasted) 32. Nickel hydroxide had an average particle diameter of 22.2 to 24.2 μm, and was subjected to vacuum heat treatment at 175 ° C. for 3 hours in advance under vacuum to substantially remove the contained water.
The sulfur grade of nickel hydroxide was 1.9 to 2.1% by weight. In addition, other impurities were substantially negligible.

なお、以下の各実験においては、バッチ処理を行った。すなわち各原料32は所定量を流動焙焼炉10に装入し、次に空気を流動用ガスとして炉内下部から送り込んで流動化するとともに所定の温度に昇温し維持して流動焙焼を行い、焙焼後の流動用ガスは上部から排出するようにした。   In each of the following experiments, batch processing was performed. That is, a predetermined amount of each raw material 32 is charged into the fluidized roasting furnace 10, and then air is sent from the lower part of the furnace as a fluidized gas to be fluidized and heated to a predetermined temperature and maintained to be fluidized roasting It was done, and it was made for the flow gas after roasting to be discharged from the upper part.

<流動焙焼処理>
実験1では図1に示す第1実施形態に係る流動焙焼炉10と、拡大部17のない焙焼炉と、が用いられた。これらの焙焼炉により、原料の水酸化ニッケルが焙焼され、焙焼物である酸化ニッケル(NiO)が回収された。
<Flow roasting process>
In Experiment 1, the fluidized-bed roasting furnace 10 according to the first embodiment shown in FIG. 1 and the roasting furnace without the enlarged portion 17 were used. The raw material nickel hydroxide was roasted by these roasting furnaces, and the roasted product nickel oxide (NiO) was recovered.

第1実施形態の流動焙焼炉10は、拡大角度θを表1に示すように変更して用いられた。なお、拡大部17のある形状を「円錐台」として記載する。この流動焙焼炉10で焙焼されたものが実施例1〜3、比較例2、3である。拡大部17のない、直筒のみで構成される筒状炉心部11を用いて焙焼されたものが比較例1である。   The fluidized-bed roasting furnace 10 of the first embodiment was used with the expansion angle θ changed as shown in Table 1. In addition, the shape with the expansion part 17 is described as a "frustum." Examples 1 to 3 and Comparative Examples 2 and 3 are those roasted by the fluidized roasting furnace 10. It is Comparative Example 1 that is roasted using the cylindrical core portion 11 constituted only by the straight cylinder without the enlarged portion 17.

投入原料の重量は、すべて同一とし、焙焼条件は全て同一条件とした。具体的には焙焼温度は900℃、焙焼時間は20分とし、流動用ガスには空気を用いた。所定の焙焼後炉を冷却し、炉内の被焙焼物を回収した。   The weights of the input materials were all the same, and the roasting conditions were all the same. Specifically, the roasting temperature was 900 ° C., the roasting time was 20 minutes, and air was used as the fluidizing gas. After the predetermined roasting, the furnace was cooled and the roasted material in the furnace was recovered.

<評価>
実施例1〜3、比較例1〜3のそれぞれの処理において、焙焼により得られた試料の回収率(実収率)、回収した試料中における酸化ニッケルの含有量、および回収した試料中における硫黄の含有量が評価された。表1に測定結果を示す。なお評価方法は以下のとおりである。
<Evaluation>
In each treatment of Examples 1 to 3 and Comparative Examples 1 to 3, the recovery rate (actual yield) of the sample obtained by roasting, the content of nickel oxide in the recovered sample, and sulfur in the recovered sample Content was evaluated. Table 1 shows the measurement results. The evaluation method is as follows.

[焙焼により得られた試料の回収率]
焙焼により得られた試料の回収率は、下記の数1により算出した。
[Recovery rate of sample obtained by roasting]
The recovery rate of the sample obtained by roasting was calculated by the following equation 1.

[数1]
R=W/(W−S)×100
[Equation 1]
R = W 1 / (W 2 −S) × 100

R:回収率[%]
:回収した試料の重量
:投入した原料32(今回はNi(OH))が全て焙焼された(今回はNiO)ときの重量
S:投入した原料32に含まれている硫黄の重量
R: Recovery rate [%]
W 1 : Weight of collected sample W 2 : Weight S of the loaded raw material 32 (this time Ni (OH) 2 ) was completely roasted (this time NiO) S: Sulfur contained in the loaded raw material 32 Weight of

[回収した試料における酸化ニッケルの含有量の割合]
回収した試料中における酸化ニッケルの含有量の割合は、回収した試料中に含まれる酸化ニッケル(NiO)と水酸化ニッケル(Ni(OH))の含有量をそれぞれ算出し、それぞれの含有量の合計値に対するNiO含有量の割合(重量%)として算出した。
[Proportion of the content of nickel oxide in the collected sample]
The ratio of the content of nickel oxide in the collected sample is calculated by calculating the content of nickel oxide (NiO) and nickel hydroxide (Ni (OH) 2 ) contained in the collected sample, respectively. It calculated as a ratio (weight%) of NiO content to a total value.

[回収した試料中における硫黄の含有量]
回収した試料中における硫黄の含有量は、硫黄分析装置(三菱化学株式会社製,型式:TOX−100)を用いて測定した。
[Sulfur content in the collected sample]
The content of sulfur in the recovered sample was measured using a sulfur analyzer (manufactured by Mitsubishi Chemical Corporation, model: TOX-100).

表1に示すように、第1実施形態の、拡大部のある構造の流動焙焼炉10を用いた実施例1〜3では、3つの項目でバランスよく良好な結果が得られた。すなわち、回収率は全て98.6%以上の高い値を示し、回収された試料中における酸化ニッケルの含有割合も全て99.7%以上でほとんどNiOに焙焼できた。また、回収された試料中の硫黄の含有量も21ppm以下と低く、高品質な酸化ニッケルを得ることができた。   As shown in Table 1, in Examples 1 to 3 in which the fluidized-bed roasting furnace 10 of the structure with the enlarged portion of the first embodiment was used, good results were obtained with good balance in three items. That is, the recovery rates all showed high values of 98.6% or more, and the content ratio of nickel oxide in the recovered samples was almost all roasted to NiO at 99.7% or more. In addition, the content of sulfur in the recovered sample was as low as 21 ppm or less, and high quality nickel oxide could be obtained.

一方、直筒の焙焼炉が用いられた比較例1は、実施例に比較して、回収率は97%以下と低く、回収された試料中における硫黄品位も26ppmと高くなった。また、拡大角度θが3度よりも小さい比較例2は酸化ニッケル含有率が実施例と比較して低く、硫黄の含有量も23ppmと高い値となった。また拡大角度θが40度よりも大きい比較例3は、回収率は98.0%と低い値となった。このように、本発明の第1実施形態の流動焙焼炉10によって効率的に焙焼できることが分かった。   On the other hand, in Comparative Example 1 in which the straight-tube sinter furnace was used, the recovery rate was as low as 97% or less as compared with the example, and the sulfur grade in the recovered sample was as high as 26 ppm. Further, in Comparative Example 2 in which the expansion angle θ was smaller than 3 degrees, the nickel oxide content was lower than that of the example, and the sulfur content was also as high as 23 ppm. Further, in Comparative Example 3 in which the expansion angle θ was larger than 40 degrees, the recovery rate was a low value of 98.0%. As described above, it was found that the roasting furnace 10 of the first embodiment of the present invention can be roasted efficiently.

(実験2)(拡大角度θの検証、原料:銅精鉱)
<原料>
焙焼対象の原料(被焙焼物)32として、表2に示した砒素、硫黄品位の銅精鉱を用いた。
(Experiment 2) (Verification of expansion angle θ, raw material: copper concentrate)
<Raw material>
Arsenic and sulfur grade copper concentrates shown in Table 2 were used as raw materials (to be baked) 32 to be roasted.

<流動焙焼処理>
実験2では実験1と同様、図1に示す第1実施形態に係る流動焙焼炉10と、拡大部17のない焙焼炉と、が用いられた。これらの焙焼炉により、原料の銅精鉱が焙焼された。
<Flow roasting process>
In Experiment 2, as in Experiment 1, the fluidized-bed roasting furnace 10 according to the first embodiment shown in FIG. 1 and a roasting furnace without the enlarged portion 17 were used. Raw material copper concentrate was roasted by these roasting furnaces.

第1実施形態の流動焙焼炉10は、拡大角度θを表3に示すように変更して用いられた。なお、拡大部17のある形状を「円錐台」として記載する。この流動焙焼炉10で焙焼されたものが実施例4〜6、比較例5、6である。拡大部17のない、直筒のみで構成される筒状炉心部11を用いて焙焼されたものが比較例4である。   The fluidized-bed roasting furnace 10 of the first embodiment was used with the expansion angle θ changed as shown in Table 3. In addition, the shape with the expansion part 17 is described as a "frustum." Examples 4 to 6 and Comparative Examples 5 and 6 are those roasted by the fluidized roasting furnace 10. Comparative Example 4 is obtained by roasting using the cylindrical core portion 11 constituted only by the straight cylinder without the enlarged portion 17.

また投入試料量は実施例4〜6、比較例4〜6はいずれも同じとした。焙焼条件は焙焼温度900℃で焙焼時間を4.0時間としガスには窒素を用いた。各試験とも炉を冷却後、炉内の試料を回収した。   In addition, the amount of input sample was the same for all of Examples 4 to 6 and Comparative Examples 4 to 6. The roasting conditions were a roasting temperature of 900 ° C. and a roasting time of 4.0 hours, and nitrogen was used as the gas. After cooling the furnace in each test, samples in the furnace were collected.

<評価>
実施例、比較例のそれぞれの処理において、フィルターでの試料の回収率(飛散率)、及び、銅精鉱中の砒素含有量について評価した。表3に、測定結果を示す。なお、評価方法は以下の通りである。
<Evaluation>
In each treatment of the example and the comparative example, the recovery rate (scattering rate) of the sample on the filter and the arsenic content in the copper concentrate were evaluated. Table 3 shows the measurement results. The evaluation method is as follows.

[フィルターでの試料の回収率]
焙焼後、排気ガスとともに流し出された試料をバグフィルターで回収し、その回収量から下式によってフィルターでの回収率(飛散率)を算出した。なお、本来銅精鉱がフィルターで捕集されるのはロスになり好ましくなくこの回収率(飛散率)は低い方が好ましいのは言うまでもない。
[Recovery rate of sample on filter]
After roasting, the sample flowed out with the exhaust gas was collected by a bag filter, and the recovery rate (scattering rate) of the filter was calculated from the amount of recovery by the following equation. It is needless to say that copper concentrate is originally collected by the filter, which is a loss, and this recovery rate (scattering rate) is preferably low.

[数2]
=W/W×100
[Equation 2]
R 2 = W 3 / W 4 × 100

:フィルターでの回収率[%]
:回収した試料の重量
:投入した原料(今回は銅精鉱)の重量
R 2 : Recovery rate with filter [%]
W 3 : Weight of collected sample W 4 : Weight of input material (in this case, copper concentrate)

[実験前後の試料中の砒素含有量]
実験前後の試料についてはICP発光分光分析装置を用いて砒素と硫黄の分析を行った。
[Arsenic content of sample before and after experiment]
The samples before and after the experiment were analyzed for arsenic and sulfur using an ICP emission spectrometer.

表3に示すように、第1実施形態の拡大部のある構造の流動焙焼炉10を用いた実施例4〜6では2つの項目でバランスよく良好な結果が得られた。すなわち、全ての試料において砒素は0.1重量%未満に低減され、精鉱中の砒素と硫黄の含有量が大きく減少した。このように精鉱中の砒素、硫黄が減少したため、鉱石中の銅含有量は10%以上増加した。   As shown in Table 3, in Examples 4 to 6 in which the fluidized-bed roasting furnace 10 having the structure with the enlarged portion of the first embodiment was used, good results were obtained in a well-balanced manner in two items. That is, arsenic was reduced to less than 0.1% by weight in all samples, and the content of arsenic and sulfur in the concentrate was greatly reduced. Thus, the copper content in the ore increased by 10% or more because arsenic and sulfur in the concentrate decreased.

一方、比較例は好ましくない結果となった。すなわち、直筒で焙焼された比較例4は、砒素品位が0.1重量%あり、フィルターでの回収量は12%以上であった。拡大角度θが3度よりも小さい比較例5では、フィルターでの回収率(飛散率)が0.5%と実施例と比較して高い値となった。このように、本発明の第1実施形態の流動焙焼炉10によって効率的に焙焼できることが分かった。   On the other hand, the comparative example resulted in an undesirable result. That is, in Comparative Example 4 roasted with a straight cylinder, the arsenic grade was 0.1% by weight, and the recovery amount with the filter was 12% or more. In Comparative Example 5 in which the expansion angle θ was smaller than 3 degrees, the recovery rate (scattering rate) with the filter was 0.5%, which is a high value as compared with the example. As described above, it was found that the roasting furnace 10 of the first embodiment of the present invention can be roasted efficiently.

(実験3)(振動装置の有意性の検証、原料:水酸化ニッケル)
<原料>
焙焼対象の原料(被焙焼物)32として、水酸化ニッケル(Ni(OH))を準備した。水酸化ニッケルは、平均粒径が22.1〜24.1μmのものであり、真空中で175℃、3時間の真空加熱処理を行って、含有水分を実質的に除去した。また、その水酸化ニッケルについて分析したところ、硫黄分が1.7〜1.9重量%の割合で含まれるものであることが確認された。なお、その他の不純物成分は、実質的に無視できる程度だった。
(Experiment 3) (Verification of Significance of Vibratory Device, Raw Material: Nickel Hydroxide)
<Raw material>
Nickel hydroxide (Ni (OH) 2 ) was prepared as a raw material to be roasted (to be roasted) 32. The nickel hydroxide has an average particle diameter of 22.1 to 24. 1 μm, and was subjected to vacuum heat treatment under vacuum at 175 ° C for 3 hours to substantially remove the contained water. Moreover, when the nickel hydroxide was analyzed, it was confirmed that the sulfur content is contained at a ratio of 1.7 to 1.9% by weight. The other impurity components were substantially negligible.

<流動焙焼処理>
実験3では、図2に示す第2実施形態に係る流動焙焼炉10と、拡大部17のない焙焼炉と、が用いられた。これらの焙焼炉により、原料の水酸化ニッケルが焙焼され、焙焼物である酸化ニッケル(NiO)が回収された。
<Flow roasting process>
In Experiment 3, the fluidized-bed roasting furnace 10 according to the second embodiment shown in FIG. 2 and the roasting furnace without the enlarged portion 17 were used. The raw material nickel hydroxide was roasted by these roasting furnaces, and the roasted product nickel oxide (NiO) was recovered.

第2実施形態の流動焙焼炉10は、拡大角度θを表4に示すように変更して用いられた。なお、拡大部17のある形状を「円錐台」として記載する。この流動焙焼炉10で焙焼されたものが実施例7〜15、比較例7〜12である。拡大部17のない、直筒のみで構成される筒状炉心部11を用いて焙焼されたものが比較例13である。   The fluidized-bed roasting furnace 10 of the second embodiment was used with the expansion angle θ changed as shown in Table 4. In addition, the shape with the expansion part 17 is described as a "frustum." Examples 7 to 15 and comparative examples 7 to 12 are those roasted in the fluidized bed roasting furnace 10. Comparative example 13 is roasted using a cylindrical core portion 11 constituted only by a straight cylinder without the enlarged portion 17.

振動装置としては、図2に示すようにノッカー20を用いた場合と、バイブレータ、超音波発振装置を用いた場合の実験データを取得した。バイブレータ、超音波発振装置は、ノッカー20を取り外して、同じ位置に同じ数だけ配置した。   As vibration devices, as shown in FIG. 2, experimental data was obtained in the case of using the knocker 20, and in the case of using a vibrator and an ultrasonic oscillator. As for the vibrator and the ultrasonic oscillator, the knocker 20 was removed and the same number was arranged at the same position.

投入原料の重量は、全て同一とし、焙焼条件は全て同一条件とした。具体的には焙焼温度は900℃、焙焼時間は20分とし、流動用ガスには空気を用いた。所定の焙焼後炉を冷却し、炉内の被焙焼物を回収した。   The weights of the input materials were all the same, and the roasting conditions were all the same. Specifically, the roasting temperature was 900 ° C., the roasting time was 20 minutes, and air was used as the fluidizing gas. After the predetermined roasting, the furnace was cooled and the roasted material in the furnace was recovered.

<評価>
それぞれの処理において、焙焼により得られた試料の回収率(実収率)、回収した試料中における酸化ニッケルの含有量、および回収した試料中における硫黄の含有量が、上記実験1と同じ方法で評価された。表4に測定結果を示す。
<Evaluation>
In each treatment, the recovery rate (actual yield) of the sample obtained by roasting, the content of nickel oxide in the recovered sample, and the content of sulfur in the recovered sample are the same as in Experiment 1 above. It was evaluated. Table 4 shows the measurement results.

表4示すように、第2実施形態の振動装置のある構造の流動焙焼炉10を用いた実施例7〜15では、3つの項目でバランスよく良好な結果が得られた。すなわち、回収率は全て98.5%以上の高い値を示し、回収された試料中における酸化ニッケル含有割合も99.6%以上でほとんどNiOに焙焼できた。また、回収された試料中の硫黄の含有量も22ppm以下と低く、高品質な酸化ニッケルを得ることができた。   As shown in Table 4, in Examples 7 to 15 in which the flow roasting furnace 10 having a structure having the vibration device of the second embodiment was used, good results were obtained in a well-balanced manner in three items. That is, the recovery rates all showed high values of 98.5% or more, and the nickel oxide content ratio in the recovered sample was also almost completely roasted to NiO at 99.6% or more. In addition, the content of sulfur in the recovered sample was as low as 22 ppm or less, and high quality nickel oxide could be obtained.

一方、直筒の焙焼炉が用いられた比較例1は、実施例に比較して回収率は96.8%と低く、回収された試料中における硫黄品位も32ppmと高くなった。また、拡大角度が3度よりも小さい比較例7、9、11は酸化ニッケル含有率が実施例と比較して低く、硫黄の含有量も23ppm以上と高い値となった。また拡大角度θが40度よりも大きい比較例8、10、12は、回収率が98.2%以下と低い値となった。このように、本発明の第2実施形態の流動焙焼炉10によって、より効率的に焙焼できることが分かった。   On the other hand, in Comparative Example 1 in which the straight-tube roasting furnace was used, the recovery rate was as low as 96.8% as compared with the example, and the sulfur grade in the recovered sample was also as high as 32 ppm. Further, in Comparative Examples 7, 9 and 11 in which the expansion angle is smaller than 3 degrees, the nickel oxide content is lower than that of the example, and the sulfur content is also a high value of 23 ppm or more. In Comparative Examples 8, 10 and 12 in which the enlargement angle θ was larger than 40 degrees, the recovery rate was a low value of 98.2% or less. As described above, it was found that roasting can be performed more efficiently by the fluidized roasting furnace 10 of the second embodiment of the present invention.

(実験4)(振動装置の有意性の検証、原料:銅精鉱)
<原料>
対象の原料(被焙焼物)32として、上記実験2の表2に示した組成の銅精鉱を原料に用いた。
(Experiment 4) (Verification of Significance of Vibrator, Raw Material: Copper Concentrate)
<Raw material>
The copper concentrate of the composition shown in Table 2 of the above-mentioned experiment 2 was used as the raw material (the to-be-baked product) 32 as a target.

<流動焙焼処理>
実験4では、図2に示す第2実施形態に係る流動焙焼炉10と、拡大部17のない焙焼炉と、が用いられた。これらの焙焼炉により、原料の銅精鉱が焙焼された。
<Flow roasting process>
In Experiment 4, a fluidized-bed roasting furnace 10 according to the second embodiment shown in FIG. 2 and a roasting furnace without the enlarged portion 17 were used. Raw material copper concentrate was roasted by these roasting furnaces.

第2実施形態の流動焙焼炉10は、拡大角度θを表5に示すように変更して用いられた。なお、拡大部17のある形状を「円錐台」として記載する。この流動焙焼炉10で焙焼されたものが実施例16〜24、比較例14〜19である。拡大部17のない、直筒のみで構成される筒状炉心部11を用いて焙焼されたものが比較例20である。   The fluidized-bed roasting furnace 10 of the second embodiment was used with the expansion angle θ changed as shown in Table 5. In addition, the shape with the expansion part 17 is described as a "frustum." Examples 16 to 24 and comparative examples 14 to 19 are roasted by the fluidized roasting furnace 10. Comparative example 20 is roasted using the cylindrical core portion 11 formed of only straight cylinders without the enlarged portion 17.

振動装置としては、図2に示すようにノッカー20を用いた場合と、バイブレータ、超音波発振装置を用いた場合の実験データを取得した。バイブレータ、超音波発振装置は、ノッカー20を取り外して、同じ位置に同じ数だけ配置した。   As vibration devices, as shown in FIG. 2, experimental data was obtained in the case of using the knocker 20, and in the case of using a vibrator and an ultrasonic oscillator. As for the vibrator and the ultrasonic oscillator, the knocker 20 was removed and the same number was arranged at the same position.

投入原料の重量は、全て同一とし、焙焼条件は全て同一条件とした。具体的には焙焼温度は900℃、焙焼時間は4.0時間とし、流動用ガスには窒素を用いた。所定の焙焼後炉を冷却し、炉内の被焙焼物を回収した。   The weights of the input materials were all the same, and the roasting conditions were all the same. Specifically, the roasting temperature was 900 ° C., the roasting time was 4.0 hours, and nitrogen was used as the fluidizing gas. After the predetermined roasting, the furnace was cooled and the roasted material in the furnace was recovered.

<評価>
それぞれの処理において、フィルターでの試料の回収率(飛散率)、および焙焼後の銅精鉱中の砒素含有量が上記実験2と同じ方法で評価された。表5に、測定結果を示す。
<Evaluation>
In each treatment, the recovery rate (scattering rate) of the sample on the filter and the arsenic content in the copper concentrate after roasting were evaluated in the same manner as in Experiment 2 above. Table 5 shows the measurement results.

表5に示すように、第2実施形態の拡大部のある構造の流動焙焼炉10を用いた実施例16〜24では2つの項目でバランスよく良好な結果が得られた。すなわち、全ての試料において砒素は0.1重量%未満に低減され、精鉱中の砒素と硫黄の含有量が大きく減少した。このように精鉱中の砒素、硫黄が減少したため、鉱石中の銅含有量は10%以上増加した。   As shown in Table 5, in Examples 16 to 24 using the fluidized-bed roasting furnace 10 having the structure with the enlarged portion of the second embodiment, good results were obtained in a well-balanced manner in two items. That is, arsenic was reduced to less than 0.1% by weight in all samples, and the content of arsenic and sulfur in the concentrate was greatly reduced. Thus, the copper content in the ore increased by 10% or more because arsenic and sulfur in the concentrate decreased.

一方、比較例は好ましくない結果となった。すなわち、直筒で焙焼された比較例20は、砒素品位が0.2重量%あり、フィルターでの回収量は12%以上であった。拡大角度θが3度よりも小さい比較例14、16、18では、フィルターでの回収率(飛散率)が0.5%以上と実施例と比較して高い値となった。このように、本発明の第2実施形態の流動焙焼炉10によって、より効率的に焙焼できることが分かった。   On the other hand, the comparative example resulted in an undesirable result. That is, in Comparative Example 20 roasted with a straight cylinder, the arsenic grade was 0.2% by weight, and the recovery amount with the filter was 12% or more. In Comparative Examples 14, 16 and 18 in which the expansion angle θ is smaller than 3 degrees, the recovery rate (scattering rate) with the filter is 0.5% or more, which is a high value as compared with the example. As described above, it was found that roasting can be performed more efficiently by the fluidized roasting furnace 10 of the second embodiment of the present invention.

10 流動焙焼炉
11 筒状炉心部
17 拡大部
20 ノッカー(振動装置)
θ 拡大角度
10 flow roasting furnace 11 cylindrical core portion 17 enlarged portion 20 knocker (oscillator)
θ expansion angle

Claims (2)

下側から上側へ向けて流れるガスを用いて被焙焼物が焙焼される筒状炉心部が設けられ、
該筒状炉心部は、下側の断面積よりも上側の断面積が大きい拡大部を有し、
該拡大部の内面は、下面よりも上面が大きい円錐台の形状であり、
該拡大部が存する高さ方向の領域において前記被焙焼物が焙焼される流動層が形成され、
前記円錐台の軸心を含む断面での前記円錐台の側部を含んでいる直線と、前記円錐台の軸心と、が交差する角度である拡大角度が3度以上40度以下である、
ことを特徴とする流動焙焼炉。
A cylindrical core portion is provided in which a to-be-fired roasted product is roasted using gas flowing from the lower side to the upper side,
The cylindrical core portion has an enlarged portion having a larger cross-sectional area above the lower cross-sectional area,
The inner surface of the enlarged portion is in the shape of a truncated cone whose upper surface is larger than the lower surface,
A fluidized bed is formed in which the to-be-baked product is roasted in a region in the height direction where the enlarged portion exists,
The enlargement angle which is an angle at which the straight line including the side of the truncated cone in a cross section including the axial center of the truncated cone intersects the axis of the truncated cone is 3 degrees or more and 40 degrees or less.
A fluid roasting furnace characterized by
前記拡大部には、内部の堆積物を剥離する振動装置が設けられている、
ことを特徴とする請求項1記載の流動焙焼炉。
The enlarged portion is provided with a vibration device that peels off the deposits inside.
The fluidized-bed roasting furnace according to claim 1, characterized in that
JP2018002344A 2018-01-11 2018-01-11 Fluid roasting furnace Active JP6939582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018002344A JP6939582B2 (en) 2018-01-11 2018-01-11 Fluid roasting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018002344A JP6939582B2 (en) 2018-01-11 2018-01-11 Fluid roasting furnace

Publications (2)

Publication Number Publication Date
JP2019120472A true JP2019120472A (en) 2019-07-22
JP6939582B2 JP6939582B2 (en) 2021-09-22

Family

ID=67307085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018002344A Active JP6939582B2 (en) 2018-01-11 2018-01-11 Fluid roasting furnace

Country Status (1)

Country Link
JP (1) JP6939582B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114438311A (en) * 2022-01-25 2022-05-06 东北大学 Fluidized roasting method for efficiently treating micro-fine iron ore based on acoustic wave action

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728982A (en) * 1980-07-29 1982-02-16 Nittetsu Mining Co Ltd Continuous air stream baking furnace for granular solid
JPS5749783A (en) * 1980-09-10 1982-03-23 Nittetsu Mining Co Ltd Continuous air flow baking furnace for granular solid
JPH0860215A (en) * 1994-08-17 1996-03-05 Kawasaki Heavy Ind Ltd Fluidized bed furnace and smelting reduction apparatus using it
JPH11504989A (en) * 1996-12-28 1999-05-11 ポハング アイロン アンド スティール シーオー.,エルティーディー. Fluidized bed reduction system for reducing fine iron ore

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728982A (en) * 1980-07-29 1982-02-16 Nittetsu Mining Co Ltd Continuous air stream baking furnace for granular solid
JPS5749783A (en) * 1980-09-10 1982-03-23 Nittetsu Mining Co Ltd Continuous air flow baking furnace for granular solid
JPH0860215A (en) * 1994-08-17 1996-03-05 Kawasaki Heavy Ind Ltd Fluidized bed furnace and smelting reduction apparatus using it
JPH11504989A (en) * 1996-12-28 1999-05-11 ポハング アイロン アンド スティール シーオー.,エルティーディー. Fluidized bed reduction system for reducing fine iron ore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114438311A (en) * 2022-01-25 2022-05-06 东北大学 Fluidized roasting method for efficiently treating micro-fine iron ore based on acoustic wave action

Also Published As

Publication number Publication date
JP6939582B2 (en) 2021-09-22

Similar Documents

Publication Publication Date Title
US2621034A (en) Apparatus for expanding minerals
CN110480024A (en) A method of CuCrZr spherical powder is prepared based on VIGA technique
JP6939519B2 (en) Fluid roasting furnace
JP2019120472A (en) Fluidization roasting furnace
WO2017188344A1 (en) Oxide ore smelting method
JP6561925B2 (en) Nickel oxide manufacturing method, fluid roasting furnace
JP7127036B2 (en) Method for producing cathode material and reactor suitable for carrying out said method
JP2018012624A (en) Method for producing nickel oxide and fluidization calcinating furnace
JP7044995B2 (en) Fluid roasting furnace
JP5910831B2 (en) Method for producing granulated raw material for sintering
JP6939498B2 (en) Fluid roasting furnace
JP2008088513A (en) METHOD FOR MANUFACTURING Ti PARTICLE OR Ti-ALLOY PARTICLE, AND METHOD AND EQUIPMENT FOR MANUFACTURING METAL Ti OR Ti ALLOY
JP7102965B2 (en) Fluid roasting furnace
JP2019152382A (en) Fluidization roasting furnace
JP2011506901A (en) Method and apparatus for coarse separation of solid particles from gas containing solids
WO2006019047A1 (en) Method and apparatus for producing regenerated foundry sand
JP2019152383A (en) Fluidization roasting furnace
CA1231928A (en) Process and device for rounding off granular particles of solid material
JP6561924B2 (en) Method for producing nickel oxide
JP2019152385A (en) Fluidization roasting furnace
JP6634974B2 (en) Method for producing nickel oxide
JP2017226592A (en) Method for producing nickel oxide and fluidization roasting furnace
JP2009132970A (en) Method for granulating metal particle, and method for separating metal particle in molten salt
JP2019152384A (en) Fluidization roasting furnace
JP6844334B2 (en) Nickel oxide ore smelting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210816

R150 Certificate of patent or registration of utility model

Ref document number: 6939582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150