JP2019116657A - Thick walled large diameter electroseamed steel pipe excellent in fatigue strength, and manufacturing method therefor - Google Patents

Thick walled large diameter electroseamed steel pipe excellent in fatigue strength, and manufacturing method therefor Download PDF

Info

Publication number
JP2019116657A
JP2019116657A JP2017250538A JP2017250538A JP2019116657A JP 2019116657 A JP2019116657 A JP 2019116657A JP 2017250538 A JP2017250538 A JP 2017250538A JP 2017250538 A JP2017250538 A JP 2017250538A JP 2019116657 A JP2019116657 A JP 2019116657A
Authority
JP
Japan
Prior art keywords
steel pipe
less
strength
mpa
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017250538A
Other languages
Japanese (ja)
Other versions
JP6773020B2 (en
Inventor
貞末 照輝
Teruki Sadasue
照輝 貞末
恒久 半田
Tsunehisa Handa
恒久 半田
池田 倫正
Tomomasa Ikeda
倫正 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017250538A priority Critical patent/JP6773020B2/en
Publication of JP2019116657A publication Critical patent/JP2019116657A/en
Application granted granted Critical
Publication of JP6773020B2 publication Critical patent/JP6773020B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an electroseamed steel pipe having thick wall of 11.9 mm or more and pipe outer diameter of 219.1 mm or more and excellent in fatigue strength.SOLUTION: There is provided an electroseamed steel pipe having static yield strength of 245 MPa or more, static tensile strength of 415 MPa or more, and repeated yield strength calculated from a repeated stress strain curve obtained by conducting repeated stress load of stress ratio:0.1 of 245 MPa or more, by using a hot rolled steel band containing, by mass%, C:0.001 to 0.50%, Si:0.001 to 2.0%, Mn:0.001 to 3.0%, P:0.05% or less, S:0.05% or less, Al:0.010 to 0.060%, and the balance Fe with inevitable impurities, having a structure with a mixed phase consisting of a ferrite phase and pearlite as a main phase, and a second phase of 30 area% or less (including 0%) of the main phase as a raw material, conducting cold processing to make a cylindrical open tube, butting wide direction terminals each other, pressing, electroseaming weldment, low temperature tempering at 150 to 350°C.SELECTED DRAWING: None

Description

本発明は、油井管、ラインパイプ用として好適な厚肉大径電縫鋼管に係り、とくに繰返し荷重を受ける使途に好適な、疲労強度に優れた厚肉大径電縫鋼管およびその製造方法に関する。   The present invention relates to a thick-walled large diameter ERW steel pipe suitable for oil well pipes and line pipes, and more particularly to a thick-walled large-diameter ERW steel pipe excellent in fatigue strength and suitable for use under cyclic load .

電縫鋼管は、継目無鋼管(シームレス鋼管)やUOE鋼管に比較して、安価であるという大きなメリットを有している。しかも、近年、電縫鋼管は、その製造技術や素材特性の向上により、性能が著しく向上し、油井管、ラインパイプ等向け素材として適用されるようになっている。油井管、ラインパイプ等向けとしては、まず、所定の強度を有し、さらに低温靭性、溶接性等に優れた電縫鋼管であることが、要求される。   ERW steel pipe has a great advantage of being inexpensive compared to seamless steel pipe (seamless steel pipe) and UOE steel pipe. Moreover, in recent years, electric resistance welded steel pipe has remarkably improved performance due to the improvement of its manufacturing technology and material properties, and has been applied as a material for oil well pipes, line pipes and the like. First, for oil well pipes, line pipes, etc., it is required to be an electric resistance welded steel pipe having predetermined strength and further excellent in low temperature toughness, weldability and the like.

例えば、特許文献1には、「低温靭性、溶接性に優れた高強度電縫管用熱延鋼帯」が記載されている。特許文献1に記載された技術は、質量%で、C:0.005〜0.04%、Si:0.05〜0.3%、Mn:0.5〜2.0%、Al:0.001〜0.1%、Nb:0.001〜0.1%、V:0.001〜0.1%、Ti:0.001〜0.1%、P:0.03%以下、S:0.005%以下、N:0.006%以下を含み、かつCu:0.5%以下、Ni:0.5%以下、Mo:0.5%以下のうちから選んだ一種又は二種以上を含有する組成で、Pcmが0.17以下を満足し、かつ全組織中、主相であるベイニティックフェライトの占める割合が95vol%以上である高強度電縫管用熱延鋼帯である。特許文献1に記載された技術によれば、降伏強さ:560MPa以上の高強度で、試験温度:−10℃でのCTOD値が0.25mm以上となる母材および溶接部靭性を有し、ラインパイプ用鋼管や、油井管等向け素材として好適な電縫鋼管用熱延鋼帯となるとしている。   For example, Patent Document 1 describes “a high-strength hot-rolled steel strip for a high-resistance welded tube with excellent low-temperature toughness and weldability”. The technology described in Patent Document 1 is mass%, C: 0.005 to 0.04%, Si: 0.05 to 0.3%, Mn: 0.5 to 2.0%, Al: 0.001 to 0.1%, Nb: 0.001 to 0.1%, V : 0.001 to 0.1%, Ti: 0.001 to 0.1%, P: 0.03% or less, S: 0.005% or less, N: 0.006% or less and Cu: 0.5% or less, Ni: 0.5% or less, Mo: 0.5% A high-strength electrode having a composition containing one or more selected from the following, in which Pcm satisfies 0.17 or less, and the proportion of bainitic ferrite which is the main phase in the entire structure is 95 vol% or more: It is a hot-rolled steel strip for sewing tube. According to the technology described in Patent Document 1, it has high strength of 560 MPa or more, a base material and a weld zone toughness such that the CTOD value at test temperature: -10 ° C is 0.25 mm or more, It is said to be a hot-rolled steel band for ERW steel pipe suitable as a material for steel pipe for pipe and oil well pipe.

また、特許文献2には、「低温での衝撃エネルギー吸収特性と耐HAZ軟化特性に優れた高降伏比熱延鋼板」が記載されている。特許文献2に記載された技術は、質量%で、C:0.04〜0.09%、Si:0.4%以下、Mn:1.2〜2.0%、P:0.1%以下、S:0.02%以下、Al:1.0%以下、Nb:0.02〜0.09%、Ti:0.02〜0.07%、N:0.005%以下、を含有し、Mn+8Ti+12Nb:2.0〜2.6であり、残部がFeおよび不可避的不純物からなる成分組成を有し、パーライトの面積分率が5%以下、マルテンサイトおよび残留オーステナイトの合計面積分率が0.5%以下を含有し、残部がフェライトおよびベイナイトの1種または2種である金属組織からなり、フェライトおよびベイナイトの平均結晶粒径が10μm以下であり、TiおよびNbを含有する非整合析出した合金炭窒化物の平均粒子径が20nm以下であり、降伏比が0.85以上、最大引張強度が600MPa以上であり、−40℃におけるシャルピー衝撃エネルギー吸収が70J/cm2以上で、耐HAZ軟化特性に優れた高降伏比熱延鋼板である。 Further, Patent Document 2 describes "a high yield specific heat rolled steel sheet excellent in impact energy absorption characteristics at low temperature and HAZ resistance against softening". The technology described in Patent Document 2 is mass%, C: 0.04 to 0.09%, Si: 0.4% or less, Mn: 1.2 to 2.0%, P: 0.1% or less, S: 0.02% or less, Al: 1.0% The following contains Nb: 0.02 to 0.09%, Ti: 0.02 to 0.07%, N: 0.005% or less, Mn + 8 Ti + 12 Nb: 2.0 to 2.6, and the balance is a component composition consisting of Fe and unavoidable impurities, pearlite Area fraction of 5% or less, the total area fraction of martensite and retained austenite is 0.5% or less, and the balance is composed of one or two types of ferrite and bainite, and the average of ferrite and bainite The grain size is 10 μm or less, and the average particle diameter of the nonconformingly precipitated alloy carbonitride containing Ti and Nb is 20 nm or less, the yield ratio is 0.85 or more, the maximum tensile strength is 600 MPa or more, −40 in ℃ Charpy impact energy absorption in the 70 J / cm 2 or more, anti HA Excellent softening properties is a high yield specific heat-rolled steel sheet.

また、特許文献3には、「電縫溶接部の耐HIC性および低温靱性に優れた電縫鋼管」が記載されている。特許文献3に記載された技術は、質量%で、C:0.03〜0.59%、Si:0.10〜0.50%、Mn:0.40〜2.10%、Al:0.01〜0.35%を含有し、Si、MnをMn/Siが6.0〜9.0の範囲になるように調整して含み、残部Feおよび不可避的不純物からなる組成を有し、引張強さTS:434MPa以上の強度を有する電縫鋼管であり、電縫溶接部に存在する円相当径8μm以上の介在物に含まれるSi、Mn、Al、Ca、Crの合計量が、地鉄を含む幅2mmの電縫溶接部全量に対する質量%で、16ppm以下であり、該電縫溶接部が優れた耐HIC特性と優れた低温靭性とを兼備する電縫鋼管である。   Further, Patent Document 3 describes “the electric resistance welded steel pipe excellent in HIC resistance and low temperature toughness of the electric resistance welded portion”. The technique described in Patent Document 3 contains, by mass%, C: 0.03 to 0.59%, Si: 0.10 to 0.50%, Mn: 0.40 to 2.10%, Al: 0.01 to 0.35%, and Si and Mn are Mn. ERW steel pipe with composition adjusted to have a range of 6.0 to 9.0 / Si and containing Fe and unavoidable impurities, and having a strength of tensile strength TS: 434 MPa or more, The total amount of Si, Mn, Al, Ca, and Cr contained in inclusions with a circle-equivalent diameter of 8 μm or more present in parts is 16 ppm or less by mass% with respect to the total amount of 2 mm wide ERW welded joints containing ground iron The electric-resistance-welded steel pipe is characterized in that the electric-resistance-welded portion has both excellent HIC resistance and excellent low temperature toughness.

また、特許文献4には、「溶接部品質の優れた電縫鋼管」が記載されている。特許文献4に記載された技術は、電縫鋼管の母材を構成する鋼板の成分組成が、質量%で、C:0.03〜0.15%、Si:0.1〜0.3%、Mn:0.5〜2.0%、Al:0.01〜0.06%、Ti:0.011〜0.023%、Ca:0.001〜0.005%、Ce及びLaの1種または2種の合計:0.001〜0.005%、P:0.03%以下、S:0.0015%以下、O:0.002%以下、N:0.005%以下を含有し、さらにNb:0.1%以下、V:0.1%以下、Mo:0.2%以下、及びB:0.002%以下の1種または2種以上を含有し、残部が鉄及び不可避的不純物であり、Ca、O、S、Ce、La、及びAlの含有量が、式
XCASO={Ca/O+Ca/S+0.285(Ce+La)/O+0.285(Ce+La)/S}×{Al/Ca}>78
を満し、電縫鋼管の溶接部における酸化物系介在物が、Ce及びLaの1種または2種を含有し、上記酸化物系介在物の長径/短径が2.5以下である、溶接部品質の優れた電縫鋼管である。特許文献4に記載された技術によれば、電縫溶接部の靭性低下が回避でき、油井管およびラインパイプに適した耐SSC性と低温靭性とを兼備した電縫鋼管を得ることができるとしている。
In addition, Patent Document 4 describes “the electric resistance welded steel pipe having an excellent weld quality”. In the technology described in Patent Document 4, the component composition of the steel plate constituting the base material of the ERW steel pipe is, in mass%, C: 0.03 to 0.15%, Si: 0.1 to 0.3%, Mn: 0.5 to 2.0%, Al: 0.01 to 0.06%, Ti: 0.011 to 0.023%, Ca: 0.001 to 0.005%, and one or two of Ce and La in total: 0.001 to 0.005%, P: 0.03% or less, S: 0.0015% or less, O: 0.002% or less, N: 0.005% or less, Nb: 0.1% or less, V: 0.1% or less, Mo: 0.2% or less, and B: 0.002% or less , The balance is iron and unavoidable impurities, and the contents of Ca, O, S, Ce, La and Al are represented by the formula
XCASO = {Ca / O + Ca / S + 0.285 (Ce + La) /O+0.285 (Ce + La) / S} × {Al / Ca}> 78
Welds, wherein the oxide inclusions in the welds of the ERW steel pipe contain one or two of Ce and La, and the major axis / short diameter of the oxide inclusions is 2.5 or less It is a high quality ERW steel pipe. According to the technique described in Patent Document 4, it is possible to avoid the reduction in toughness of the electric resistance welded portion and to obtain an electric resistance welded steel pipe having both SSC resistance and low temperature toughness suitable for oil well pipes and line pipes. There is.

また、特許文献5には、「低降伏比高強度電縫鋼管」が記載されている。特許文献5に記載された技術は、質量%で、C:0.05〜0.25%、Mn:0.2〜2.0%、Mo:0.05〜2.0%、V:0.1%超〜1.0%、Ti:0.002〜0.05%を含有し、Si:0.5%以下、Al:0.10%以下、P:0.025%以下、S:0.010%以下、N:0.01%以下に制限し、残部がFeおよび不可避的不純物からなり、次(式1)
Ceq=C+Mn/6+Ni/15+(Mo+V)/5 ……(式1)
によって求められるCeqが0.45以上であり、金属組織が焼戻しマルテンサイトからなる低降伏比高強度電縫鋼管である。特許文献5に記載された電縫鋼管は、造管後、焼入れ焼戻し処理を施されて、降伏強さ:800MPa以上の高強度と、90%以下の低降伏比と、を有し、低温靭性に優れた電縫鋼管である。特許文献5に記載された技術では、高い焼入れ性を有し、厚肉管でもマルテンサイト組織とすることができ、高強度、高靭性で、降伏比も低く、大径かつ厚肉の電縫鋼管とすることができるとしている。
In addition, Patent Document 5 describes “low yield ratio high strength electric resistance welded steel pipe”. The technology described in Patent Document 5 is, by mass%, C: 0.05 to 0.25%, Mn: 0.2 to 2.0%, Mo: 0.05 to 2.0%, V: more than 0.1% to 1.0%, Ti: 0.002 to 0.05% Contained, Si: 0.5% or less, Al: 0.10% or less, P: 0.025% or less, S: 0.010% or less, N: 0.01% or less, the balance being Fe and unavoidable impurities, and 1)
Ceq = C + Mn / 6 + Ni / 15 + (Mo + V) / 5 (Equation 1)
The Ceq obtained by the above is 0.45 or more, and the steel structure is a low yield ratio high strength electric resistance welded steel pipe composed of tempered martensite. The ERW steel pipe described in Patent Document 5 is subjected to quenching and tempering after pipe formation, and has a high strength of 800 MPa or more and a low yield ratio of 90% or less, and has low temperature toughness. It is an excellent ERW steel pipe. According to the technique described in Patent Document 5, it is possible to form martensitic structure even in a thick-walled tube having high hardenability, high strength and high toughness, low yield ratio, large diameter and thick electric resistance It can be a steel pipe.

また、特許文献6には、「高強度中空スタビライザー用電縫鋼管」が記載されている。特許文献6に記載された技術は、質量%で、C:0.20〜0.38%、Si:0.10〜0.50%、Mn:0.30〜2.00%、Al:0.01〜0.10%、W:0.01〜1.50%、B:0.0005〜0.0050%を含みさらにTi、Nを、Ti:0.001〜0.04%、N:0.0010〜0.0100%の範囲で、かつ(1)式
N/14<Ti/47.9 ……(1)
を満足するように含有し、残部Feおよび不可避的不純物からなる組成を有し、焼入れ処理後あるいは焼入れ焼戻処理後の強度−靭性バランスに優れる高強度中空スタビライザー用電縫鋼管であり、上記組成に加えてさらに、Cr、Moのうちから選ばれた1種または2種、Nb、Vのうちから選ばれた1種または2種、Cu、Niのうちから選ばれた1種または2種を含有してもよいとしている。特許文献6に記載された技術によれば、焼入れ焼戻し後の、肉厚方向の平均硬さが400HV以上の高強度で、シャルピー衝撃試験の破面遷移温度vTrsが−110℃以下の高靭性を有し、さらに機械的特性のばらつきが少ない自動車用スタビライザーを製造できるとしている。
Further, Patent Document 6 describes “Regulated Steel Pipe for High-Strength Hollow Stabilizer”. The technology described in Patent Document 6 is mass%, C: 0.20 to 0.38%, Si: 0.10 to 0.50%, Mn: 0.30 to 2.00%, Al: 0.01 to 0.10%, W: 0.01 to 1.50%, B : 0.0005 to 0.0050%, Ti, N, Ti: 0.001 to 0.04%, N: 0.0010 to 0.0100%, and the formula (1)
N / 14 <Ti / 47.9 (1)
And a composition comprising the balance of Fe and unavoidable impurities, which is excellent in strength-toughness balance after quenching treatment or after quenching and tempering treatment. In addition to the above, one or two selected from Cr and Mo, one or two selected from Nb and V, one or two selected from Cu and Ni It may be contained. According to the technique described in Patent Document 6, high toughness with high average strength in the thickness direction of 400 HV or more after quenching and tempering, and high toughness with a fracture surface transition temperature vTrs of -110 ° C. or less in Charpy impact test It is said that it is possible to manufacture an automotive stabilizer with less variation in mechanical characteristics.

また、特許文献7には、「低温衝撃特性に優れた自動車用高強度電縫鋼管」が記載されている。特許文献7に記載された技術は、質量%で、C:0.2〜0.4%、Si:0.05〜0.5%、Mn:0.5〜2.5%、P:0.025%以下、S:0.01%以下、Al:0.15%以下、Cu:2%以下、Cr:2%以下、Ti:0.2%以下、B:0.005%以下を含み、残部が鉄および不可避的不純物からなる組成を有し、引張強さが1750N/mm2以上、0.1%耐力が1320N/mm2以上、−40℃におけるシャルピー衝撃値が50J/cm2以上である鋼板により構成される自動車用高強度電縫鋼管である。特許文献7に記載された技術によれば、所定の化学成分を有する電縫鋼管を高周波焼入れし、ミクロ組織をマルテンサイト単相としたのち、低温焼戻し処理を施すことにより、上記した高強度を有し、さらに高荷重域まで局部座屈が起こらず、衝撃吸収特性に優れた高強度電縫鋼管が得られるとしている。 Further, Patent Document 7 describes “high-strength electric-resistance welded steel pipe for automobile excellent in low-temperature impact characteristics”. The technique described in Patent Document 7 is, by mass%, C: 0.2 to 0.4%, Si: 0.05 to 0.5%, Mn: 0.5 to 2.5%, P: 0.025% or less, S: 0.01% or less, Al: 0.15 %, Cu: 2% or less, Cr: 2% or less, Ti: 0.2% or less, B: 0.005% or less, the balance being composed of iron and unavoidable impurities, and having a tensile strength of 1750 N / mm 2 or more, 0.1% proof stress of 1320N / mm 2 or more, a high strength electric resistance welded steel pipe for automotive constituted by steel sheet is Charpy impact value 50 J / cm 2 or more at -40 ° C.. According to the technique described in Patent Document 7, after induction hardening of the electric resistance steel pipe having a predetermined chemical component to make the microstructure into a martensite single phase, the above-described high strength can be obtained by low temperature tempering treatment. Furthermore, local buckling does not occur up to the high load area, and it is possible to obtain a high strength electric resistance welded steel pipe excellent in shock absorption characteristics.

また、特許文献8には、「高強度電縫鋼管」が記載されている。特許文献8に記載された技術は、質量%で、C:0.05〜0.20%、Si:0.5〜2.0%、Mn:1.0〜3.0%、P:0.1%以下、S:0.01%以下、Al:0.01〜0.1%、N:0.005%以下を含み、残部Feおよび不可避的不純物からなる組成と、フェライト相とマルテンサイト相からなる二相組織で、マルテンサイト相が体積率で20〜60%である組織とを有し、引張強さが1180MPa以上、管軸方向の伸びが10%以上、降伏比が90%未満である優れた加工性と、塗装焼付け処理後の強度増加量が100MPa以上で、かつ降伏比が90%以上となる衝撃吸収特性とを有し、電縫溶接部の内面ビード高さが-0.1〜0.1mmである高強度電縫鋼管である。特許文献8に記載された技術により製造された高強度電縫鋼管は、自動車衝撃吸収用部材、自動車骨格部材等に有効に適用できるとしている。   Further, Patent Document 8 describes “high-strength ERW steel pipe”. The technique described in Patent Document 8 is mass%, C: 0.05 to 0.20%, Si: 0.5 to 2.0%, Mn: 1.0 to 3.0%, P: 0.1% or less, S: 0.01% or less, Al: 0.01 A structure containing ~ 0.1%, N: 0.005% or less, a composition consisting of the balance Fe and unavoidable impurities, and a two-phase structure consisting of a ferrite phase and a martensite phase, wherein the martensite phase is 20 to 60% by volume Excellent processability with a tensile strength of 1180 MPa or more, an elongation in the axial direction of 10% or more, and a yield ratio of less than 90%, and a strength increase after paint baking of 100 MPa or more, and It is a high strength ERW steel pipe which has an impact absorption characteristic such that the yield ratio is 90% or more, and the inner surface bead height of the ERW weld is -0.1 to 0.1 mm. The high strength ERW steel pipe manufactured by the technique described in Patent Document 8 is effectively applicable to a member for shock absorption of a car, a car frame member and the like.

また、特許文献9には、「疲労特性に優れた電縫鋼管」が記載されている。特許文献9に記載された技術は、質量%で、C:0.35〜0.55%、Si:0.01〜1.0%、Mn:1.0〜3.0%、P:0.02%以下、S:0.01%以下、Al:0.005%以下、N:0.0050%以下、Cr:0.1〜0.5%以下含有し、残部Feおよび不可避的不純部物からなる組成を有し、パーライト、フェライトおよびベイナイトからなり、パーライトの面積率が85%以上、フェライトおよびベイナイトの面積率の合計を15%以下、旧オーステナイト粒径が25μm以下である電縫鋼管である。特許文献9に記載された技術では、主たる組織をパーライトとすることにより、疲労き裂がジグザグに伝播することで疲労き裂伝播抵抗が高くなり、疲労強度が向上するとしている。   In addition, Patent Document 9 describes “a ERW steel pipe excellent in fatigue characteristics”. The technique described in Patent Document 9 is, by mass%, C: 0.35 to 0.55%, Si: 0.01 to 1.0%, Mn: 1.0 to 3.0%, P: 0.02% or less, S: 0.01% or less, Al: 0.005 % Or less, N: 0.0050% or less, Cr: 0.1 to 0.5% or less, the composition comprising the balance Fe and unavoidable impurities, and composed of pearlite, ferrite and bainite, the area ratio of pearlite is 85% or more And the total area ratio of ferrite and bainite is 15% or less, and the grain size of prior austenite is 25 μm or less. In the technique described in Patent Document 9, when the main structure is pearlite, the fatigue crack propagation resistance increases by the zigzag propagation of the fatigue crack, and the fatigue strength is improved.

特許第4341396号公報Patent No. 4341396 特許第5354130号公報Patent No. 5354130 gazette 特許第5516680号公報Patent No. 5516680 gazette 特許第5765497号公報Patent No. 5765497 gazette 特開2010−1566号公報JP, 2010-1566, A 特開2006−206999号公報JP, 2006-206999, A 特開2008−261049号公報JP 2008-261049 A 特開2012−229457号公報JP 2012-229457 A 特許第5892267号公報Patent No. 58922267

海底油田・ガス田から石油・天然ガス等を採取する際に用いられる油井管やラインパイプでは、繰り返し荷重により疲労を受ける場合があり、特に例えば、海洋掘削リグにおけるライザーパイプにおけるように、潮流による管軸方向の応力変動による疲労破壊が懸念されるなど、油井管、ラインパイプ等の使途に適用される電縫鋼管では、優れた耐疲労特性を有することが要望されている。   Oil well pipes and line pipes used when extracting oil and natural gas from submarine oil fields and gas fields may be subject to fatigue due to repeated loading, particularly, for example, as in riser pipes in offshore drilling rigs, There is a concern about fatigue failure due to stress fluctuation in the axial direction of the pipe, and it is demanded that ERW steel pipe applied to applications such as oil well pipes and line pipes have excellent fatigue resistance.

しかしながら、特許文献1、特許文献2、特許文献3、特許文献4に記載された各技術では、耐疲労特性についてまでの言及はなく、疲労強度に優れた電縫鋼管であるかどうかについては、不明のままである。   However, in each of the techniques described in Patent Document 1, Patent Document 2, Patent Document 3 and Patent Document 4, there is no mention of fatigue resistance, and it is as to whether or not it is an ERW steel pipe excellent in fatigue strength. It remains unknown.

また、特許文献5に記載された技術では、高い焼入れ性を有し、厚肉管でもマルテンサイト組織とすることができ、高強度、高靭性で、降伏比も低く、大径かつ厚肉の電縫鋼管とすることができるとしているが、しかし、特許文献5には、耐疲労特性についてまでの言及はない。また、特許文献6に記載された技術で製造される電縫鋼管は、自動車用スタビライザー向けであり、たかだか肉厚5mm程度で、外径:25.4mmφ程度の小径電縫鋼管であり、しかも、特許文献6には、強度、靭性についての記載があるだけで、耐疲労特性についてまでの言及はない。また、特許文献7に記載された技術で製造される電縫鋼管は、マルテンサイト単相組織で、引張強さが1750N/mm2以上で、0.1%耐力が1320N/mm2以上となる高強度を有しているが、自動車向けであり、肉厚:2mm程度、外径:31.8mmφと、薄肉小径電縫鋼管が例示されているにすぎず、しかも、特許文献7には、強度、靭性についての記載があるだけで、耐疲労特性についての言及はない。 The technique described in Patent Document 5 has high hardenability, can form a martensitic structure even in a thick-walled tube, has high strength and high toughness, has a low yield ratio, and has a large diameter and a thick wall. Although it can be made an ERW steel pipe, in Patent Document 5, there is no mention of fatigue resistance. In addition, ERW steel pipes manufactured by the technology described in Patent Document 6 are for automobile stabilizers, are small diameter ERW pipes with an outer diameter of about 25.4 mm and a wall thickness of about 5 mm, and are also patented. Document 6 only describes strength and toughness but does not mention fatigue resistance. In addition, the ERW steel pipe manufactured by the technology described in Patent Document 7 has a martensitic single-phase structure, high strength with a tensile strength of 1750 N / mm 2 or more and a 0.1% proof stress of 1320 N / mm 2 or more. However, the thin-walled small-diameter electric-resistance welded steel pipe is only illustrated as having a thickness of about 2 mm and an outer diameter of 31.8 mm, and Patent Document 7 shows strength and toughness. There is no mention of fatigue resistance.

また、特許文献8に記載された技術で製造された電縫鋼管は、マルテンサイト相が体積率で20〜60%となるフェライト相とマルテンサイト相からなる二相組織で、引張強さが1180MPa以上を有する高強度電縫鋼管であるが、主として自動車部材用のため、外径がたかだか48.6mmφ、肉厚が1.8mm程度の薄肉小径電縫鋼管が例示されているにすぎない。特許文献8には、耐疲労特性についての記載もない。また、特許文献9に記載された技術では、主たる組織をパーライトとすることにより、疲労強度を向上させている。しかし、特許文献9に記載された技術では、自動車の中空ドライブシャフト用を目的としているため、たかだか、外径89mm、肉厚4.7mm程度の薄肉小径電縫鋼管についての記載があるだけで、特許文献9には、厚肉大径の電縫鋼管についてまでの記載はない。   In addition, the ERW steel pipe manufactured by the technology described in Patent Document 8 has a two-phase structure consisting of a ferrite phase and a martensite phase in which the martensite phase is 20 to 60% in volume ratio, and has a tensile strength of 1180 MPa Although the high strength ERW steel pipe having the above is mainly used for automobile members, a thin small diameter ERW pipe having an outer diameter of at most 48.6 mm and a wall thickness of about 1.8 mm is only exemplified. Patent Document 8 does not describe fatigue resistance. In the technique described in Patent Document 9, fatigue strength is improved by making the main structure pearlite. However, since the technique described in Patent Document 9 is intended for hollow drive shafts of automobiles, the patent only describes a thin-diameter small diameter ERW steel pipe having an outer diameter of 89 mm and a wall thickness of about 4.7 mm. The document 9 does not describe the thick and large diameter ERW steel pipe.

本発明は、かかる従来技術の問題に鑑み、油井管、ラインパイプ用として、とくに繰り返し荷重を受ける用途向けとして好適な、厚肉大径で、疲労強度に優れた電縫鋼管を提供することを目的とする。なお、ここでいう「疲労強度に優れた」とは、応力比:0.1での繰返し応力負荷試験(疲労試験)を実施して求めた繰返し応力歪曲線から求めた繰返し降伏強さが、245MPa以上である場合をいうものとする。   SUMMARY OF THE INVENTION In view of the problems of the prior art, the present invention is to provide a large diameter, large diameter, resistance welded steel pipe excellent in fatigue strength suitable for oil well pipes and line pipes, especially for applications subjected to repeated loads. To aim. Here, “excellent in fatigue strength” means that the cyclic yield strength determined from the cyclic stress-strain curve obtained by performing the cyclic stress load test (fatigue test) at a stress ratio of 0.1 is 245 MPa or more It shall be said that

なお、ここでいう「厚肉大径」電縫鋼管とは、肉厚(板厚):11.9mm以上好ましくは25.4mm以下、管外径:219.1mm以上である電縫鋼管をいうものとする。   The term "thick thick large diameter" ERW steel pipe refers to ERW steel pipe with a wall thickness (plate thickness) of 11.9 mm or more, preferably 25.4 mm or less, and a pipe outer diameter of 219.1 mm or more. .

また、本発明が目的とする厚肉大径電縫鋼管は、上記した範囲の肉厚、管径を有し、かつ管軸方向で、静的降伏強さYS:245MPa以上好ましくは525MPa以下で、静的引張強さTS:415MPa以上好ましくは760MPa以下の強度と、JIS Z 2242に規定されるシャルピー衝撃試験で、試験温度:0℃における吸収エネルギーが27J以上である靭性と、を有する鋼管とする。   In addition, the thick-diameter large-diameter ERW steel pipe targeted by the present invention has the thickness and the pipe diameter in the above-mentioned range, and the static yield strength YS is 245 MPa or more, preferably 525 MPa or less in the pipe axial direction. Static tensile strength TS: a steel pipe having a strength of 415 MPa or more, preferably 760 MPa or less, and a toughness having an absorbed energy at a test temperature of 0 ° C. of 27 J or more in a Charpy impact test specified in JIS Z 2242 Do.

本発明者らは、上記した目的を達成するために、電縫鋼管の疲労強度に及ぼす各種要因について、鋭意検討した。その結果、まず、応力比:0.1での繰返し応力負荷試験(疲労試験)を実施して繰返し応力歪曲線を求め、その繰返し応力歪曲線から求めた繰返し降伏強さが、通常、鋼材の疲労強度として用いられる、JIS Z 2273 に規定される200万回疲労強度σmaxと、非常によい相関を示すことを新規に見出した。   MEANS TO SOLVE THE PROBLEM The present inventors earnestly examined about the various factor which exerts on the fatigue strength of a resistance welded steel pipe, in order to achieve the above-mentioned objective. As a result, first, a cyclic stress load test (fatigue test) at a stress ratio of 0.1 is carried out to obtain a cyclic stress distortion line, and the cyclic yield strength obtained from the cyclic stress distortion line is usually the fatigue strength of the steel It has been newly found that it exhibits a very good correlation with the 2 million-fold fatigue strength σmax specified in JIS Z 2273, which is used as

まず、本発明者らが行った実験結果について説明する。
種々の組成を有し、フェライト+パーライト、ベイナイトおよびそれらを混合した各種組織を有する熱延鋼板(鋼帯)(板厚:11.9〜25.4mm)を素材として、該素材に、冷間加工を施し、略円筒状のオープン管としたのち、該オープン管の幅方向端部同士を突き合わせて、押圧し、大電流の高周波抵抗溶接により電縫溶接して、外径:219.1〜508mmφの各種厚肉大径の電縫鋼管とした。
First, experimental results performed by the present inventors will be described.
The material is cold-worked using heat-rolled steel plates (steel strips) (plate thickness: 11.9 to 25.4 mm) having various compositions and having ferrite + pearlite, bainite and various structures obtained by mixing them. After making the open tube into a substantially cylindrical shape, the width direction end portions of the open tube are butted and pressed, and electric resistance welding is performed by high frequency high frequency resistance welding, and various thicknesses of outer diameter: 219.1 to 508 mmφ It was a large diameter ERW pipe.

得られた電縫鋼管から、図3に示す断面で、電縫部(シーム部)から時計周りに90°の位置の板厚中央位置で、試験片の長手方向が管軸方向となるように、図5に示す疲労試験片を採取した。そして、中央部に塑性歪ゲージを貼付した疲労試験片に、図6に示す、応力比:0.1の正弦波の応力を負荷し、試験片に発生する歪を測定する、繰返し応力負荷試験(疲労試験)を実施した。なお、ここでいう応力比は、図6に示すように、σmin/σmaxである。なお、負荷する応力を、応力比:0.1の正弦波の応力としたのは、油井管やラインパイプに負荷される繰り返し荷重は、平均応力がプラス側にある場合が多いという理由からである。   From the obtained ERW steel pipe, in the cross section shown in FIG. 3, at the center position of the plate thickness at a position of 90 ° clockwise from the electric seam portion (seam portion), the longitudinal direction of the test piece becomes the tube axis direction The fatigue test pieces shown in FIG. 5 were collected. Then, a stress of a sine wave having a stress ratio of 0.1 shown in FIG. 6 is applied to a fatigue test piece having a plastic strain gauge attached to the central part, and a stress generated in the test piece is measured. The test was carried out. The stress ratio referred to here is σ min / σ max as shown in FIG. The stress to be applied is a sinusoidal stress of stress ratio: 0.1 because the average load is often on the plus side of the repeated load applied to the oil well pipe or line pipe.

図2に示す繰返し応力負荷試験では、応力比:0.1の正弦波の応力を負荷し、応力負荷に伴い試験片に発生する歪を測定し、応力と歪との関係を求める。同一条件(同じ応力負荷)で複数サイクル(10サイクル)行い、応力と歪との関係の頂点を求めたのち、応力比:0.1を一定としたままで、応力レベルを漸増(263〜418MPa)し、同様に、複数サイクル(10サイクル)応力負荷して、応力と歪との関係の頂点を求める。このような応力レベルの漸増を繰り返して、それぞれ頂点をもとめ、得られた各頂点を結び、繰返し応力と歪との関係曲線を得る。その概要を図2に示す。図2では、各サイクルでの頂点を黒丸(●)で示す。黒丸を結んで得られた曲線を、繰返し応力歪曲線と称する。図2に示す繰返し応力歪曲線は、ラウンドハウス型曲線である。   In the cyclic stress test shown in FIG. 2, a stress of a sine wave with a stress ratio of 0.1 is applied, and the strain generated in the test piece with the stress load is measured to determine the relationship between the stress and the strain. After multiple cycles (10 cycles) under the same conditions (same stress loading) to find the apex of the relationship between stress and strain, the stress level is gradually increased (263 to 418 MPa) while keeping the stress ratio: 0.1 constant. Similarly, stress is applied for a plurality of cycles (10 cycles) to determine the apex of the relationship between stress and strain. Repeating such a gradual increase in stress level, each vertex is obtained, and each obtained vertex is connected to obtain a relationship curve between cyclic stress and strain. The outline is shown in FIG. In FIG. 2, the vertices in each cycle are indicated by black circles (●). The curve obtained by connecting the black circles is called a cyclic stress distortion line. The cyclic stress distortion curve shown in FIG. 2 is a round house curve.

このようにして得られた繰返し応力歪曲線から、繰返し降伏強さを求めた。繰返し応力歪曲線が降伏点型曲線を呈する場合には、繰返し降伏強さは上降伏点とし、繰返し応力歪曲線がラウンドハウス型曲線を呈する場合には、繰返し降伏強さはオフセット0.5%耐力σ0.5とした。 The cyclic yield strength was determined from the cyclic stress distortion line obtained in this manner. When the cyclic stress distortion line exhibits a yield point type curve, the cyclic yield strength is the upper yield point, and when the cyclic stress distortion line exhibits a round house type curve, the cyclic yield strength is an offset 0.5% proof stress σ It was 0.5 .

さらに、得られた電縫鋼管について同様に、電縫部(シーム部)から時計周りに90°の位置の板厚中央部で、試験片の長手方向が管軸方向となるように、図5に示す疲労試験片を採取し、JIS Z 2273 の規定に準拠して、応力比:0.1の繰返し応力負荷の条件で、負荷応力を変化させて、疲労試験を実施し、破断までの繰返し負荷回数を求め、S−N曲線として、疲労強度σmax(2×106回)を得た。 Furthermore, in the case of the obtained ERW steel pipe, in the same manner as shown in FIG. 5 so that the longitudinal direction of the test piece is in the direction of the tube axis at the center of thickness with a position 90 ° clockwise from the seamed portion. The fatigue test pieces shown are collected, and the load stress is changed under the condition of a cyclic stress load of 0.1, in accordance with JIS Z 2273, and the fatigue test is carried out, and the number of cyclic loads until failure is The fatigue strength σmax (2 × 10 6 times) was obtained as an SN curve.

得られた疲労強度σmax(2×106回)と繰返し降伏強さとの関係を図1に示す。
図1から、繰返し降伏強さは、電縫鋼管の疲労強度σmax(2×106回)と、鋼管組織に影響されることなく、非常によい相関関係を有していることを、新規に知見した。
The relationship between the obtained fatigue strength σmax (2 × 10 6 times) and the cyclic yield strength is shown in FIG.
From FIG. 1, it is newly shown that the cyclic yield strength has a very good correlation with the fatigue strength σ max (2 × 10 6 times) of ERW steel pipe without being affected by the steel pipe structure. I found out.

このようなことから、本発明者らは、上記した「繰返し降伏強さ」により、当該電縫鋼管の耐疲労特性を評価することが、多数の試験片を用いることなく、簡便に、当該電縫鋼管の疲労強度を精度高く推定できることに想到した。   From these facts, the present inventors have evaluated the fatigue resistance characteristics of the ERW steel pipe by the above-mentioned “repeating yield strength” simply and conveniently without using a large number of test pieces. We thought that we could estimate the fatigue strength of a welded steel pipe with high accuracy.

さらに、本発明者らは、疲労強度の評価手段として上記した繰返し降伏強さを用いて、各種電縫鋼管の疲労強度を推定し、造管ままの電縫鋼管に、焼戻温度:150〜350℃の低温焼戻処理を施すと、管軸方向の疲労強度が著しく向上することを見出した。   Furthermore, the present inventors estimate the fatigue strength of various electric resistance welded steel pipes using the above-described cyclic yield strength as an evaluation means of fatigue strength, and tempering temperature: 150 to the as-formed electric resistance welded steel pipes. It has been found that the low temperature tempering treatment at 350 ° C. significantly improves the fatigue strength in the axial direction of the tube.

本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1)質量%で、C:0.001〜0.50%、Si:0.001〜2.0%、Mn:0.001〜3.0%、P:0.05%以下、S:0.05%以下、Al:0.010〜0.060%を含み、残部Fe及び不可避的不純物からなる組成と、
フェライトとパーライトとからなる混合相を主相とし、該主相と面積率で30%以下(0%を含む)の第二相とからなる組織と、を有し、さらに前記組織中には粒径500nm未満の微細炭化物が分散してなり、JIS Z 2241の規定に準拠した引張試験で得られた、肉厚中央位置で管軸方向の静的降伏強さが245MPa以上、静的引張強さが415MPa以上で、かつ、応力比:0.1の繰返し応力負荷を施して得られた繰返し応力歪曲線から求めた繰返し降伏強さが245MPa以上である、ことを特徴とする疲労強度に優れた厚肉大径電縫鋼管。
(2)(1)において、前記組成に加えてさらに、質量%で、Cu:0.001〜5.0%、Ni:0.001〜5.0%、Cr:0.001〜5.0%、Mo:0.001〜5.0%、Nb:0.0001〜0.5%、V:0.0001〜0.5%、Ti:0.0001〜0.5%、B:0.00001〜0.1%、Ca:0.00001〜0.1%、REM:0.00001〜0.1%のうちから選ばれた1種または2種以上を含有することを特徴とする厚肉大径電縫鋼管。
(3)熱延鋼帯を素材として、該素材の幅方向に冷間曲げ加工を施して、略円筒状のオープン管としたのち、該オープン管の幅方向端部同士を突き合わせ、押圧し、電縫溶接して、電縫鋼管とするに当り、前記熱延鋼帯を、質量%で、C:0.001〜0.50%、Si:0.001〜2.0%、Mn:0.001〜3.0%、P:0.05%以下、S:0.05%以下、Al:0.010〜0.060%を含み、残部Fe及び不可避的不純物からなる組成と、フェライトとパーライトとからなる混合相を主相とし、該主相と面積率で30%以下(0%を含む)の第二相とからなる組織と、を有する鋼帯とし、前記電縫鋼管にさらに、焼戻温度:150〜350℃の低温焼戻処理を施し、JIS Z 2241の規定に準拠した引張試験で得られた、肉厚中央位置で管軸方向の静的降伏強さが245MPa以上、静的引張強さが415MPa以上で、かつ、応力比:0.1の繰返し応力負荷を施して得られた繰返し応力歪曲線から求めた繰返し降伏強さが245MPa以上である電縫鋼管とすることを特徴とする疲労強度に優れた厚肉大径電縫鋼管の製造方法。
(4)(3)において、前記組成に加えてさらに、質量%で、Cu:0.001〜5.0%、Ni:0.001〜5.0%、Cr:0.001〜5.0%、Mo:0.001〜5.0%、Nb:0.0001〜0.5%、V:0.0001〜0.5%、Ti:0.0001〜0.5%、B:0.00001〜0.1%、Ca:0.00001〜0.1%、REM:0.00001〜0.1%のうちから選ばれた1種または2種以上を含有する組成であることを特徴とする厚肉大径電縫鋼管の製造方法。
(5)厚肉大径電縫鋼管の疲労強度推定方法であって、前記厚肉大径電縫鋼管から管軸方向が試験片長手方向となるように疲労試験片を採取し、該疲労試験片に一定の応力比となるように繰返し応力を複数サイクル負荷し、同時に発生する歪を求め、該複数サイクルにおける応力と歪との関係の頂点を求める第一の工程と、ついで前記一定の応力比のもとで、負荷する繰返し応力を漸増し、該漸増した繰返し応力を複数サイクル負荷し、同時に発生する歪を求め、該複数サイクルにおける応力と歪との関係の頂点を求める第二の工程と、を、負荷する繰返し応力を漸増させながら複数回行ったのち、得られた複数の前記応力と歪との関係の頂点を繋ぎ合わせて繰返し応力歪曲線を作成し、得られた前記繰返し応力歪曲線から繰返し降伏強さを算出し、該算出した繰返し降伏強さを、前記厚肉大径電縫鋼管の疲労強度とすることを特徴とする厚肉大径電縫鋼管の疲労強度推定方法。
The present invention has been completed based on such findings, with further studies. That is, the gist of the present invention is as follows.
(1) In mass%, C: 0.001 to 0.50%, Si: 0.001 to 2.0%, Mn: 0.001 to 3.0%, P: 0.05% or less, S: 0.05% or less, Al: 0.010 to 0.060%, the balance A composition comprising Fe and unavoidable impurities,
A mixed phase consisting of ferrite and pearlite as a main phase, and a structure consisting of the main phase and a second phase of 30% or less (including 0%) by area ratio, and particles in the structure Fine carbides with a diameter of less than 500 nm are dispersed, and the static yield strength in the axial direction of the tube is 245 MPa or more at the thickness center position, obtained by the tensile test according to JIS Z 2241. Static tensile strength Of at least 415 MPa and a cyclic yield strength of at least 245 MPa determined from a cyclic stress-strain curve obtained by applying a cyclic stress load of stress ratio: 0.1. Large diameter ERW pipe.
(2) In (1), in addition to the above composition, Cu: 0.001 to 5.0%, Ni: 0.001 to 5.0%, Cr: 0.001 to 5.0%, Mo: 0.001 to 5.0%, Nb: 0.0001 by mass%. ~ 0.5%, V: 0.0001 to 0.5%, Ti: 0.0001 to 0.5%, B: 0.00001 to 0.1%, Ca: 0.00001 to 0.1%, REM: 0.00001 to 0.1% One or two or more selected from A thick large-diameter ERW steel pipe characterized by containing
(3) Using a hot-rolled steel strip as a material, cold bending is performed in the width direction of the material to form a substantially cylindrical open pipe, and then the width direction end portions of the open pipe are butted and pressed, In the case of the electric resistance welded steel pipe to make an electric resistance welded steel pipe, the above-mentioned hot-rolled steel band in mass%, C: 0.001 to 0.50%, Si: 0.001 to 2.0%, Mn: 0.001 to 3.0%, P: 0.05% Hereinafter, S: 0.05% or less, Al: 0.010 to 0.060%, the composition consisting of the balance Fe and unavoidable impurities, and the mixed phase consisting of ferrite and pearlite as a main phase, and the area ratio to the main phase is 30% A steel strip having a structure consisting of the second phase (including 0%) below, the ERW steel pipe is further subjected to low-temperature tempering at a tempering temperature of 150 to 350 ° C., and JIS Z 2241 Static yield strength of at least 245 MPa in axial direction at thick center position, static tensile strength of at least 415 MPa, and stress ratio of 0.1 obtained at tensile test according to the regulations The electric resistance welded steel pipe has a cyclic yield strength of 245 MPa or more determined from the cyclic stress distortion line obtained by applying a cyclic stress load of a large thickness large diameter electric resistance welded steel pipe characterized by excellent fatigue strength Method.
(4) In (3), in addition to the above composition, Cu: 0.001 to 5.0%, Ni: 0.001 to 5.0%, Cr: 0.001 to 5.0%, Mo: 0.001 to 5.0%, Nb: 0.0001 by mass%. ~ 0.5%, V: 0.0001 to 0.5%, Ti: 0.0001 to 0.5%, B: 0.00001 to 0.1%, Ca: 0.00001 to 0.1%, REM: 0.00001 to 0.1% One or two or more selected from A method of manufacturing a thick-walled large diameter ERW steel pipe characterized in that the composition contains
(5) A method of estimating the fatigue strength of a thick-walled large diameter ERW steel pipe, wherein a fatigue test piece is sampled from the thick-walled large diameter ERW steel pipe such that the axial direction of the tube is in the longitudinal direction of the test piece; A cyclic stress is applied to the piece for a plurality of cycles so as to obtain a constant stress ratio, and a strain which is generated at the same time is determined to obtain a vertex of a relation between stress and strain in the plurality of cycles. Under the ratio, the cyclic stress to be applied is gradually increased, and the incremental cyclic stress is applied to a plurality of cycles, the strain generated simultaneously is determined, and the vertex of the stress-strain relationship in the plurality of cycles is determined And a plurality of times while gradually increasing the cyclic stress to be applied, and then connecting the apexes of the plurality of obtained relationships between the stress and the strain to create a cyclic stress distortion line, and the obtained cyclic stress Repeat yield strength from distortion line Out, repeating yield strength of the calculated, the fatigue strength estimation method of a thick large radial electric sewing steel pipe, characterized in that the fatigue strength of the thick large radial electric sewing steel.

本発明によれば、特殊な工程を必要とせずに、また多量の合金元素を含有することなく、油井管、ラインパイプ等の使途に好適な、疲労強度に優れた厚肉大径電縫鋼管を製造でき、産業上格段の効果を奏する。本発明になる電縫鋼管は、高い疲労強度を有することから、油井管、ラインパイプ等の構造物の疲労破壊に対する安全裕度を拡大できるという効果もある。   According to the present invention, a thick, large-diameter electric resistance welded steel pipe excellent in fatigue strength, which is suitable for use in oil well pipes, line pipes, etc., without requiring special processes and without containing a large amount of alloy elements. Can be manufactured and the industrial effects are outstanding. Since the ERW steel pipe according to the present invention has high fatigue strength, there is also an effect that the safety margin for fatigue failure of structures such as oil well pipes and line pipes can be expanded.

疲労強度σmax(2×106回)と繰返し降伏強さとの関係を示すグラフである。It is a graph which shows the relationship between fatigue strength (sigma) max (2 * 10 < 6 > times) and repeating yield strength. 繰返し応力歪曲線の一例を示すグラフである。It is a graph which shows an example of a repeated stress distortion line. 鋼管からの試験片採取位置の概略を示す説明図である。It is an explanatory view showing an outline of a test piece collection position from a steel pipe. 実施例で使用した引張試験片の寸法形状を示す説明図である。It is explanatory drawing which shows the dimensional shape of the tension test piece used in the Example. 実施例で使用した疲労試験片の概略形態を示す説明図である。It is explanatory drawing which shows the general | schematic form of the fatigue test piece used in the Example. 実施例で使用した負荷応力サイクルの一例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of the load stress cycle used in the Example.

本発明電縫鋼管は、疲労強度に優れた厚肉大径電縫鋼管である。
本発明電縫鋼管は、質量%で、C:0.001〜0.50%、Si:0.001〜2.0%、Mn:0.001〜3.0%、P:0.05%以下、S:0.05%以下、Al:0.010〜0.060%を含み、残部Fe及び不可避的不純物からなる組成(基本組成)を有する。
まず、本発明電縫鋼管の組成限定理由について、説明する。以下、組成における質量%は、単に%で記す。
The electric resistance welded steel pipe of the present invention is a thick-walled large diameter electric resistance welded steel pipe excellent in fatigue strength.
The electric resistance welded steel pipe of the present invention is, by mass%, C: 0.001 to 0.50%, Si: 0.001 to 2.0%, Mn: 0.001 to 3.0%, P: 0.05% or less, S: 0.05% or less, Al: 0.010 to 0.060% And a composition (basic composition) consisting of the balance Fe and unavoidable impurities.
First, the composition limitation reason of the electric resistance welded steel pipe of the present invention will be described. Hereinafter, mass% in the composition is simply expressed as%.

C:0.001〜0.50%
Cは、電縫鋼管の強度増加に寄与する元素であり、所望の強度を確保するために、0.001%以上の含有を必要とする。一方、0.50%を超える含有は、延性、靭性や、溶接性を劣化させる。このため、Cは0.001〜0.50%の範囲に限定した。なお、好ましくは0.01〜0.30%である。
C: 0.001 to 0.50%
C is an element that contributes to the increase in the strength of the ERW steel pipe, and needs to be contained at 0.001% or more in order to secure a desired strength. On the other hand, the content exceeding 0.50% deteriorates ductility, toughness and weldability. For this reason, C was limited to the range of 0.001 to 0.50%. In addition, Preferably it is 0.01 to 0.30%.

Si:0.001〜2.0%
Siは、脱酸剤として作用するとともに、固溶して電縫鋼管の強度増加に寄与する元素であり、所望の強度を確保するためには、0.001%以上の含有を必要とする。一方、2.0%を超えて多量に含有すると、溶接性、靭性を劣化させる。このため、Siは0.001〜2.0%の範囲に限定した。なお、好ましくは0.01〜1.0%である。
Si: 0.001 to 2.0%
Si is an element which acts as a deoxidizing agent and is in solid solution to contribute to the increase in strength of the ERW steel pipe, and in order to secure a desired strength, it needs to be contained 0.001% or more. On the other hand, if the content is more than 2.0%, the weldability and the toughness are deteriorated. For this reason, Si was limited to the range of 0.001 to 2.0%. In addition, Preferably it is 0.01 to 1.0%.

Mn:0.001〜3.0%
Mnは、焼入れ性増加を介して、電縫鋼管の強度増加および靭性向上に寄与する元素であり、所望の強度、靭性を確保するために、0.001%以上の含有を必要とする。一方、3.0%を超える多量の含有は、溶接性、靭性の低下を招く。このため、Mnは0.001〜3.0%の範囲に限定した。なお、好ましくは0.01〜2.5%の範囲である。
Mn: 0.001 to 3.0%
Mn is an element that contributes to the increase in strength and toughness of the ERW steel pipe through the increase in hardenability, and requires a content of 0.001% or more in order to secure desired strength and toughness. On the other hand, a large content exceeding 3.0% causes a decrease in weldability and toughness. For this reason, Mn was limited to the range of 0.001 to 3.0%. In addition, Preferably it is 0.01 to 2.5% of range.

P:0.05%以下
Pは、電縫鋼管の靭性を劣化させる元素であり、できるだけ低減することが望ましいが、0.05%以下であれば、許容できる。このため、Pは0.05%以下に限定した。なお、好ましくは0.03%以下である。
P: 0.05% or less
P is an element that degrades the toughness of the electric resistance welded steel pipe, and it is desirable to reduce as much as possible, but 0.05% or less is acceptable. For this reason, P was limited to 0.05% or less. In addition, Preferably it is 0.03% or less.

S:0.05%以下
Sは、鋼中では主として硫化物系介在物として存在し、多量の含有は鋼管の延性、靭性を低下させる元素であり、極力低減することが望ましいが、0.05%以下であれば許容できる。このようなことから、Sは0.05%以下に限定した。なお、好ましくは0.01%以下である。
S: 0.05% or less
S is mainly present as sulfide-based inclusions in steel, and a large amount of S is an element that reduces the ductility and toughness of the steel pipe, and it is desirable to reduce as much as possible, but 0.05% or less is acceptable. From such a thing, S was limited to 0.05% or less. In addition, Preferably it is 0.01% or less.

Al:0.010〜0.060%
Alは、脱酸剤として作用するとともに、窒化物AlNを形成して、結晶粒の微細化に寄与する元素である。このような効果を得るためには、Alは0.010%以上含有する必要があるが、0.060%を超えて多量に含有すると、延性、靭性の低下を招く。このため、Alは0.010〜0.060%に限定した。なお、好ましくは0.030〜0.060%である。
Al: 0.010 to 0.060%
Al acts as a deoxidizing agent and is an element that forms nitride AlN and contributes to the refinement of crystal grains. In order to obtain such an effect, Al needs to be contained in 0.010% or more. However, if Al is contained in a large amount exceeding 0.060%, the ductility and the toughness decrease. For this reason, Al was limited to 0.010 to 0.060%. In addition, Preferably it is 0.030 to 0.060%.

上記した成分が基本の成分であるが、本発明電縫鋼管では、この基本の組成に加えてさらに、強度、靭性や溶接性等の調整、耐候性の付与などを目的として、選択元素として、Cu:0.001〜5.0%、Ni:0.001〜5.0%、Cr:0.001〜5.0%、Mo:0.001〜5.0%、Nb:0.0001〜0.5%、V:0.0001〜0.5%、Ti:0.0001〜0.5%、B:0.00001〜0.1%、Ca:0.00001〜0.1%、REM:0.00001〜0.1%のうちから選ばれた1種または2種以上を含有しても良い。   The above-mentioned components are the basic components, but in the case of the ERW steel pipe of the present invention, in addition to the basic composition, for the purpose of adjusting the strength, toughness, weldability, etc., imparting weather resistance, etc. Cu: 0.001 to 5.0%, Ni: 0.001 to 5.0%, Cr: 0.001 to 5.0%, Mo: 0.001 to 5.0%, Nb: 0.0001 to 0.5%, V: 0.0001 to 0.5%, Ti: 0.0001 to 0.5%, B It may contain one or more selected from 0.00001 to 0.1%, Ca: 0.00001 to 0.1%, and REM: 0.00001 to 0.1%.

Cu、Ni、Cr、Mo、Nb、V、Ti、Bはいずれも、電縫鋼管の強度増加に寄与する元素であり、必要に応じて選択して1種または2種以上を含有できる。
Cu:0.001〜5.0%
Cuは、固溶してあるいは析出して、電縫鋼管の強度増加に寄与するとともに、耐候性をも向上させる元素であり、これらの効果を得るためには、0.001%以上の含有を必要とする。一方、5.0%を超える多量の含有は、溶接性、靱性の低下を招くとともに、熱間圧延時の疵発生を招く。このようなことから、含有する場合は、Cuは0.001〜5.0%の範囲に限定することが好ましい。なお、より好ましくは、0.01〜2.5%である。
Cu, Ni, Cr, Mo, Nb, V, Ti, and B are all elements contributing to the increase in the strength of the ERW steel pipe, and can be selected to contain one or more kinds as needed.
Cu: 0.001 to 5.0%
Cu is an element that forms a solid solution or precipitates and contributes to the increase in the strength of the ERW steel pipe and also improves the weather resistance. In order to obtain these effects, the content of 0.001% or more is required. Do. On the other hand, a large content exceeding 5.0% causes deterioration of weldability and toughness, and also causes the generation of wrinkles during hot rolling. From such a thing, when it contains, it is preferable to limit Cu to 0.001 to 5.0% of range. More preferably, it is 0.01 to 2.5%.

Ni:0.001〜5.0%
Niは、電縫鋼管の強度増加に寄与するとともに、とくに低温靭性の向上、耐候性の付与、Cu起因の熱間脆性の改善に有効に寄与する元素である。このような効果を得るためには、0.001%以上の含有を必要とする。一方、5.0%を超える多量の含有は、溶接性を低下させるうえ、製造コストの高騰を招く。このため、含有する場合には、Niは0.001〜5.0%の範囲に限定することが好ましい。なお、より好ましくは0.01〜5.0%である。
Ni: 0.001 to 5.0%
Ni is an element that contributes to the increase in the strength of the ERW steel pipe and, in particular, effectively contributes to the improvement of the low temperature toughness, the imparting of weather resistance, and the improvement of the hot embrittlement caused by Cu. In order to acquire such an effect, 0.001% or more needs to be contained. On the other hand, a large content exceeding 5.0% lowers the weldability and causes a rise in manufacturing cost. For this reason, when it contains, it is preferable to limit Ni to 0.001 to 5.0% of range. More preferably, it is 0.01 to 5.0%.

Cr:0.001〜5.0%
Crは、電縫鋼管の強度増加、耐候性の付与に有効に寄与する元素であり、このような効果を得るためには、0.001%以上の含有を必要とする。一方、5.0%を超える多量の含有は、溶接性および靭性の低下を招く。このため、含有する場合には、Crは0.001〜5.0%の範囲に限定することが好ましい。なお、より好ましくは0.01〜2.5%である。
Cr: 0.001 to 5.0%
Cr is an element effectively contributing to the increase in strength and weatherability of the ERW steel pipe, and in order to obtain such an effect, the content of 0.001% or more is required. On the other hand, a large content exceeding 5.0% causes a decrease in weldability and toughness. For this reason, when it contains, it is preferable to limit Cr to 0.001 to 5.0% of range. More preferably, it is 0.01 to 2.5%.

Mo:0.001〜5.0%
Moは、電縫鋼管の強度増加に有効に寄与する元素であり、このような効果を得るためには、0.001%以上の含有を必要とする。一方、5.0%を超える多量の含有は、溶接性および靭性の低下を招く。このため、含有する場合には、Moは0.001〜5.0%の範囲に限定することが好ましい。なお、より好ましくは、0.01〜2.5%である。
Mo: 0.001 to 5.0%
Mo is an element effectively contributing to the increase in the strength of the ERW steel pipe, and in order to obtain such an effect, the content of 0.001% or more is required. On the other hand, a large content exceeding 5.0% causes a decrease in weldability and toughness. For this reason, when it contains, it is preferable to limit Mo to 0.001 to 5.0% of range. More preferably, it is 0.01 to 2.5%.

Nb:0.0001〜0.5%
Nbは、固溶しあるいは炭化物、窒化物等として析出して、電縫鋼管の強度増加に寄与するとともに、オーステナイト粒の再結晶を抑制し、熱間圧延を介して結晶粒の細粒化を図る作用を有する元素である。このような効果を得るためには、0.0001%以上の含有を必要とする。一方、0.5%を超える多量の含有は、靭性の低下を招く。このため、含有する場合には、Nbは0.0001〜0.5%の範囲に限定することが好ましい。なお、より好ましくは、0.001〜0.25%である。
Nb: 0.0001 to 0.5%
Nb forms a solid solution or precipitates as carbides, nitrides, etc. and contributes to the increase in strength of the ERW steel pipe, suppresses recrystallization of austenite grains, and refines grains through hot rolling. It is an element having an effect of In order to obtain such an effect, the content needs to be 0.0001% or more. On the other hand, a large content exceeding 0.5% causes a decrease in toughness. For this reason, when it contains, it is preferable to limit Nb to the range of 0.0001 to 0.5%. More preferably, it is 0.001 to 0.25%.

V:0.0001〜0.5%
Vは、Nbと同様に、炭化物等として析出して、電縫鋼管の強度増加に有効に寄与する元素である。このような効果を得るためには、0.0001%以上の含有を必要とする。一方、0.5%を超える多量の含有は、溶接性および靭性の低下を招く。このため、含有する場合には、Vは0.0001〜0.5%の範囲に限定することが好ましい。なお、より好ましくは、0.001〜0.25%である。
V: 0.0001 to 0.5%
V, like Nb, is an element that precipitates as a carbide or the like and contributes effectively to the increase in the strength of the ERW steel pipe. In order to obtain such an effect, the content needs to be 0.0001% or more. On the other hand, a large content exceeding 0.5% causes a decrease in weldability and toughness. For this reason, when it contains, it is preferable to limit V to the range of 0.0001 to 0.5%. More preferably, it is 0.001 to 0.25%.

Ti:0.0001〜0.5%
Tiは、炭化物、窒化物等の析出物を介して電縫鋼管の強度増加に寄与するとともに、溶接部靭性の向上に寄与する元素である。このような効果を得るためには、0.0001%以上の含有を必要とする。一方、0.5%を超える多量の含有は、製造コストの上昇を招く傾向にある。このため、含有する場合には、Tiは0.0001〜0.5%の範囲に限定することが好ましい。なお、より好ましくは0.001〜0.25%である。
Ti: 0.0001 to 0.5%
Ti is an element that contributes to the increase in the strength of the ERW steel pipe via precipitates such as carbides and nitrides, and contributes to the improvement of the weld zone toughness. In order to obtain such an effect, the content needs to be 0.0001% or more. On the other hand, a large content exceeding 0.5% tends to cause an increase in manufacturing cost. For this reason, when it contains, it is preferable to limit Ti in the range of 0.0001 to 0.5%. More preferably, it is 0.001 to 0.25%.

B:0.00001〜0.1%
Bは、焼入れ性向上を介して電縫鋼管の強度増加に寄与する元素である。このような効果を得るためには、0.00001%以上の含有を必要とする。一方、0.1%を超える多量の含有は、溶接性の低下を招く。このため、含有する場合には、Bは0.00001〜0.1%の範囲に限定することが好ましい。なお、より好ましくは、0.0001〜0.05%である。
B: 0.00001 to 0.1%
B is an element that contributes to the increase in the strength of the ERW steel pipe through the improvement of the hardenability. In order to obtain such an effect, the content needs to be 0.00001% or more. On the other hand, a large content exceeding 0.1% causes a decrease in weldability. For this reason, when it contains, it is preferable to limit B to 0.00001-0.1% of range. More preferably, it is 0.0001 to 0.05%.

また、Ca、REMはいずれも、介在物の形態制御を介して、電縫鋼管の延性向上、靱性向上に寄与する元素であり、必要に応じて選択して1種または2種を含有できる。
Ca:0.00001〜0.1%
Caは、介在物の形態制御を介して、電縫鋼管の延性向上、靱性向上に寄与する元素である。このような効果を得るためには、0.00001%以上の含有を必要とする。一方、0.1%を超える多量の含有は、靱性の低下を招く。このため、含有する場合は、Caは0.00001〜0.1%の範囲に限定することが好ましい。なお、より好ましくは0.0001〜0.05%である。
Further, Ca and REM are elements contributing to the improvement of ductility and the improvement of toughness of the ERW steel pipe through the control of the form of inclusions, and can be selected to contain one or two kinds as needed.
Ca: 0.00001 to 0.1%
Ca is an element which contributes to the improvement of ductility and the improvement of toughness of the ERW steel pipe through the control of the form of inclusions. In order to obtain such an effect, the content needs to be 0.00001% or more. On the other hand, a large content exceeding 0.1% causes a decrease in toughness. For this reason, when it contains, it is preferable to limit Ca to the range of 0.00001-0.1%. More preferably, it is 0.0001 to 0.05%.

REM:0.00001〜0.1%
REMは、Caと同様に、介在物の形態制御を介して、電縫鋼管の延性向上、靱性向上に寄与する元素である。このような効果を得るためには、0.00001%以上の含有を必要とする。一方、0.1%を超える多量の含有は、靱性の低下を招く。このため、含有する場合は、REMは0.00001〜0.1%の範囲に限定することが好ましい。なお、より好ましくは0.0001〜0.05%である。
REM: 0.00001 to 0.1%
Like Ca, REM is an element that contributes to the improvement of ductility and the improvement of toughness of the ERW steel pipe through the control of the form of inclusions. In order to obtain such an effect, the content needs to be 0.00001% or more. On the other hand, a large content exceeding 0.1% causes a decrease in toughness. For this reason, when it contains, it is preferable to limit REM to the range of 0.00001-0.1%. More preferably, it is 0.0001 to 0.05%.

上記した成分以外の残部は、Feおよび不可避的不純物である。なお、不可避的不純物としては、N:0.006%以下、O:0.006%以下が許容できる。   The balance other than the above components is Fe and unavoidable impurities. As unavoidable impurities, N: 0.006% or less and O: 0.006% or less are acceptable.

本発明電縫鋼管は、上記した組成を有し、さらにフェライトとパーライトとからなる混合相を主相とし、該主相と、面積率で30%以下(0%を含む)の第二相とからなる組織を有する。なお、この組織は、電縫鋼管の管軸方向に垂直な断面でシーム部から時計回りに90°の位置で、板厚中央位置で観察するものとする。   The electric resistance welded steel pipe according to the present invention has the composition described above, and further has a mixed phase of ferrite and pearlite as a main phase, and the main phase and a second phase of 30% or less (including 0%) in area ratio. Have an organization consisting of In addition, this structure shall be observed at a plate thickness central position at a position 90 ° clockwise from the seam in a cross section perpendicular to the axial direction of the ERW steel pipe.

主相:フェライトとパーライト
本発明電縫鋼管の主相は、フェライトとパーライトとが混合した混合相とする。ここでいう「主相」とは、組織全体に対する面積率で、70%以上を占める相をいう。主相が、70%未満では、静的降伏強さが525MPaを超える。なお、フェライトとパーライトの比率は、主としてC含有量に依存し、C量が少ない場合にはフェライトの比率が高くなり、C含有量が増加するにしたがいパーライトの比率が増加することは、言うまでもない。本発明の組成範囲では、フェライトは面積率で50〜99%、パーライトは1〜20%との範囲となる。
Main Phase: Ferrite and Pearlite The main phase of the ERW steel pipe according to the present invention is a mixed phase of ferrite and pearlite. The term "main phase" as used herein refers to a phase that occupies 70% or more of the area ratio to the entire tissue. When the main phase is less than 70%, the static yield strength exceeds 525 MPa. It is needless to say that the ratio of ferrite to pearlite mainly depends on the C content, and when the amount of C is small, the ratio of ferrite increases, and the ratio of pearlite increases as the C content increases. . In the composition range of the present invention, the area ratio of ferrite is 50 to 99%, and that of pearlite is 1 to 20%.

そして、本発明電縫鋼管では、面積率で30%以下(0%を含む)の第二相を含んでもよい。第二相としては、ベイナイト、マルテンサイトが例示できる。第二相が、面積率で30%を超えて多量に含有される場合には、静的降伏強さが525MPaを超える。また、本発明電縫鋼管の上記した組織では、微細な炭化物(析出物)が分散した状態を呈する。析出した炭化物(析出物)は、粒径500nm未満(10〜400nm程度)の大きさを有している。このような微細な炭化物(析出物)が分散した状態となることにより、疲労強度、静的降伏強さが向上する。このような微細な炭化物(析出物)の存在が認められない場合には、顕著な疲労強度の増加や、静的降伏強さの増加は望めない。なお、このような微細な炭化物(析出物)が分散した状態は、熱延鋼帯を素材として、素材の幅方向に冷間加工し、略円筒状のオープン管に造管した際に導入された転位上に、低温焼戻処理により、炭化物等の析出物が析出したことによるものである。   And in the electric resistance welded steel pipe of the present invention, the second phase of 30% or less (including 0%) in area ratio may be included. Examples of the second phase include bainite and martensite. When the second phase is contained in a large amount of more than 30% in area ratio, the static yield strength is more than 525 MPa. Further, in the above-described structure of the ERW steel pipe of the present invention, a state in which fine carbides (precipitates) are dispersed is exhibited. The precipitated carbide (precipitate) has a particle size of less than 500 nm (about 10 to 400 nm). When such fine carbides (precipitates) are dispersed, fatigue strength and static yield strength are improved. If the presence of such fine carbides (precipitates) is not recognized, a remarkable increase in fatigue strength and an increase in static yield strength can not be expected. The state in which such fine carbides (precipitates) are dispersed is introduced when cold rolling is performed in the width direction of the material using the hot-rolled steel strip as a material and the tube is formed into a substantially cylindrical open pipe. It is due to precipitation of precipitates such as carbides by low temperature tempering treatment on the dislocations.

上記した組成および組織を有する本発明電縫鋼管は、静的降伏強さ:245MPa以上好ましくは525MPa以下、静的引張強さ:415MPa以上好ましくは760MPa以下の静的引張特性を有し、さらに、繰返し降伏強さ:245MPa以上である優れた疲労強度を有する厚肉大径電縫鋼管である。なお、引張特性は、管軸方向に垂直な断面でシーム部から時計回りに90°の位置で、肉厚中央で試験片長手方向が管軸方向となるように、JIS Z 2241の規定に準拠して試験片を採取し、引張試験を行って得られた値を用いるものとする。   The ERW steel pipe of the present invention having the above composition and structure has static tensile properties: static yield strength: 245 MPa or more, preferably 525 MPa or less, static tensile strength: 415 MPa or more, preferably 760 MPa, Cyclic yield strength: A thick, large diameter ERW steel pipe having excellent fatigue strength of 245 MPa or more. The tensile properties conform to the provisions of JIS Z 2241 so that the longitudinal direction of the test piece is in the direction of the tube axis at the center of the thickness at a position 90 ° clockwise from the seam in a cross section perpendicular to the tube axis direction. Then, test specimens are taken, and tensile tests are performed to use the values obtained.

また、本発明では、「疲労強度」を評価するための指標として、繰返し降伏強さを用いる。「繰返し降伏強さ」は、繰返し応力負荷試験を行って得られる繰返し応力歪曲線から、算出する。繰返し応力歪曲線は、次に示す手順で求めるものとする。   Further, in the present invention, the cyclic yield strength is used as an index for evaluating the "fatigue strength". The "repetitive yield strength" is calculated from a cyclic stress distortion line obtained by conducting a cyclic stress load test. The cyclic stress distortion line is to be determined by the following procedure.

まず、厚肉大径電縫鋼管の所定の位置(例えば、管軸方向に垂直な断面でシーム部から時計回りに90°の位置)から所定形状の疲労試験片(例えば、図5)を採取する。採取した疲労試験片の中央部に塑性歪ゲージを貼付する。そして、該疲労試験片に、応力比(=σmin/σmax):0.1の正弦波の応力を負荷し、試験片に発生する歪を測定する繰返し応力負荷試験(疲労試験)を実施する。   First, a fatigue test piece (for example, FIG. 5) having a predetermined shape is collected from a predetermined position (for example, a position perpendicular to the axial direction of the pipe 90 ° clockwise from the seam portion) Do. A plastic strain gauge is attached to the center of the collected fatigue test piece. Then, a stress of sine wave stress ratio (= σmin / σmax): 0.1 is applied to the fatigue test piece, and a cyclic stress load test (fatigue test) is performed to measure a strain generated in the test piece.

繰返し応力負荷試験では、繰返し応力を、一定の応力比となるように、負荷する。油井管やラインパイプに負荷される繰り返し荷重は、平均応力がプラス側にある場合が多いため、本発明では、応力比:0.1の正弦波の応力を負荷することとした。   In a cyclic stress test, cyclic stress is applied so as to have a constant stress ratio. The cyclic load applied to the oil well pipe and the line pipe often has an average stress on the positive side, so in the present invention, it is decided to apply a sinusoidal stress of stress ratio: 0.1.

応力比:0.1(一定)の繰返し応力を1サイクル以上(例えば10サイクル)負荷し、同時に発生する歪を求め、該サイクルにおける繰返し応力と歪との関係の頂点を求める。ついで、繰返し応力を漸次増加し、応力比:0.1(一定)の条件のもとで、増加した繰返し応力を10サイクル負荷し、同時に発生する歪を求め、該サイクルにおける応力と歪との関係の頂点を求める。このような繰返し応力と歪との関係の頂点を求める工程を、所定の複数回、繰返し行い、得られた複数の繰返し応力と歪との関係の頂点を繋ぎ合せて、繰返し応力歪曲線とする。   Stress ratio: A cyclic stress of 0.1 (constant) is applied for one or more cycles (for example, 10 cycles), a strain generated simultaneously is determined, and a vertex of a relationship between the cyclic stress and strain in the cycle is determined. Next, the cyclic stress is gradually increased, and under the condition of a stress ratio: 0.1 (constant), 10 cycles of the cyclic stress which is increased are applied, and simultaneously generated strain is determined, and the relation between stress and strain in the cycle is obtained. Find the vertices. The step of determining the apex of the relationship between the cyclic stress and the strain is repeated a predetermined number of times, and the apexes of the relationship between the plurality of cyclic stresses and the strain thus obtained are joined together to form a cyclic stress distortion line. .

ついで、得られた繰返し応力歪曲線から繰返し降伏強さを求める。
得られた「繰返し応力歪曲線」が降伏点型曲線を呈する場合には、「繰返し降伏強さ」は上降伏点とし、「繰返し応力歪曲線」がラウンドハウス型曲線を呈する場合には、「繰返し降伏強さ」はオフセット0.5%耐力σ0.5とする。
Subsequently, the cyclic yield strength is determined from the cyclic stress distortion line obtained.
When the obtained "repeated stress distortion curve" exhibits a yield point type curve, "repetitive yield strength" is taken as the upper yield point, and when "repetitive stress distortion line" exhibits a round house curve, " The “repeating yield strength” is an offset 0.5% proof stress σ 0.5 .

図1に示すように、繰返し降伏強さと疲労強度σmax(2×106回)とは、非常によい相関関係を示している。本発明では、ラインパイプの健全性確保の観点から、繰返し降伏強さが245MPa以上あれば、疲労強度に優れた厚肉大径電縫鋼管であると言える。 As shown in FIG. 1, the cyclic yield strength and the fatigue strength σmax (2 × 10 6 times) show a very good correlation. In the present invention, from the viewpoint of securing the soundness of the line pipe, if the cyclic yield strength is 245 MPa or more, it can be said that it is a thick large diameter ERW steel pipe excellent in fatigue strength.

次に、本発明電縫鋼管の好ましい製造方法について説明する。
まず、上記した組成の溶鋼を、転炉等の、常用の溶製方法で溶製し、連続鋳造法等の常用の鋳造方法で鋳片とする。ついで、鋳片を、加熱炉に装入し、好ましくは加熱温度:1100〜1300℃に加熱する。加熱温度が1100℃未満では、加熱温度が低すぎて、熱間圧延荷重が高くなりすぎる。一方、1300℃を超えて高温となると、結晶粒が粗大化し、所望の微細な結晶粒を得ることができにくくなる。このため、鋳片の加熱温度は1100〜1300℃の範囲に限定することが好ましい。なお、鋳片の温度が高く所定量以上の熱量を保持している場合には、加熱することなく、熱間圧延を施すことが好ましい。なお、鋳片の加熱方法はこれに限定されないことは言うまでもない。鋳片を一旦冷却したのち、あるいは鋳片に熱間圧延を施して鋼片としたのち、該鋼片を再加熱する方法でもよいことは言うまでもない。
Next, a preferred method of producing the ERW steel pipe of the present invention will be described.
First, molten steel of the above-described composition is melted by a commonly used melting method such as a converter and made into a slab by a commonly used casting method such as a continuous casting method. Next, the slab is charged into a heating furnace and preferably heated to a heating temperature of 1100 to 1300 ° C. When the heating temperature is less than 1100 ° C., the heating temperature is too low, and the hot rolling load becomes too high. On the other hand, when the temperature becomes higher than 1300 ° C., the crystal grains become coarse and it becomes difficult to obtain desired fine crystal grains. For this reason, it is preferable to limit the heating temperature of a cast to the range of 1100-1300 degreeC. In addition, when the temperature of a slab is high and hold | maintains the calorie | heat amount more than predetermined amount, it is preferable to hot-roll, without heating. Needless to say, the method of heating the slab is not limited to this. It goes without saying that after the slab is cooled once or hot-rolled to form a slab, the slab may be reheated.

ついで、加熱された鋳片(または鋼片)に、熱間圧延を施し、所定板厚の熱延鋼帯とし、コイル状に巻き取ることが好ましい。熱間圧延は、圧延仕上温度:Ar3変態点以上、巻取温度:500℃以上とすることが好ましい。圧延仕上温度がAr3変態点未満では、フェライト+オーステナイト域での加工となり、加工フェライト粒が残存し、靱性が著しく低下する。なお、Ar3変態点は、次式
Ar3(℃)=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo
ここで、C、Mn、Cu、Cr、Ni、Mo:各元素の含有量(質量%)
で表わされる関係式を用いて、算出することができる。また、巻取温度が500℃未満となると、組織にベイナイトやマルテンサイトが混入しやすくなり、所望の熱延鋼帯組織を得ることができない。なお、仕上圧延終了から巻取りまでの冷却は、700℃以下までの放冷、あるいは冷却速度:50℃/s以下の緩冷とすることが好ましい。仕上圧延終了から巻取りまでの冷却速度が速すぎると、所望の熱延鋼帯組織を得ることができない。
Subsequently, it is preferable to hot-roll the heated slab (or steel slab) to form a hot-rolled steel strip having a predetermined thickness and to wind it into a coil. Hot rolling is preferably performed at a rolling finish temperature: Ar3 transformation point or higher, and a winding temperature: 500 ° C. or higher. If the rolling finish temperature is less than the Ar3 transformation point, processing is performed in the ferrite + austenite region, processed ferrite grains remain, and the toughness is significantly reduced. The Ar3 transformation point is
Ar3 (° C.) = 910-310 C-80 Mn-20 Cu-15 Cr-55 Ni-80 Mo
Here, C, Mn, Cu, Cr, Ni, Mo: Content of each element (mass%)
It can calculate using the relational expression represented by. When the coiling temperature is less than 500 ° C., bainite and martensite are easily mixed into the structure, and a desired hot-rolled steel strip structure can not be obtained. In addition, it is preferable that cooling from the finish rolling to the winding is performed by leaving to cool to 700 ° C. or less, or slowly cooling at a cooling rate of 50 ° C./s or less. If the cooling rate from the finish rolling to the winding is too fast, the desired hot rolled steel strip structure can not be obtained.

なお、ここでいう「所望の熱延鋼帯組織」とは、フェライトとパーライトとからなる混合相を主相とし、該主相と、面積率で30%以下(0%を含む)の第二相とからなる組織をいう。   The “desired hot-rolled steel strip structure” referred to here is a mixed phase consisting of ferrite and pearlite as the main phase, and the main phase and the area ratio of 30% or less (including 0%) of the second An organization consisting of phases.

ついで、熱延鋼帯を素材とし、ロール等で幅方向に曲げ加工(冷間)を施し、略円筒状のオープン管に成形したのち、該オープン管の幅方向端部同士を突き合わせ、押圧し、電気抵抗溶接等で電縫溶接して、所定外径の電縫鋼管とする。なお、このような造管方法によれば、成形時に管軸方向に歪が導入される。このように歪が導入された電縫鋼管に低温焼戻処理(150〜350℃)を施すと、導入された歪と低温焼戻処理の組合せにより、転位上に微細な(大きさ(直径):500nm未満)炭化物が析出し、組織中に分散する。そして、この成形時に導入された歪に起因した時効硬化により、管軸方向の疲労強度が著しく向上する。   Next, a hot-rolled steel strip is used as a material, and bending processing (cold) is applied in the width direction with a roll or the like to form a substantially cylindrical open pipe, and then the width direction end portions of the open pipe are butted and pressed. , Electric resistance welding or the like is performed to form an electric resistance welded steel pipe of a predetermined outer diameter. In addition, according to such a pipe-making method, distortion is introduce | transduced to a pipe-axis direction at the time of shaping | molding. When low temperature tempering treatment (150 to 350 ° C) is applied to the ERW steel pipe into which strain has been introduced in this way, the combination of the introduced strain and low temperature tempering treatment makes the size (diameter (diameter) on the dislocation fine : Less than 500 nm) carbides precipitate and disperse in the structure. And, the fatigue strength in the axial direction of the tube is remarkably improved by the age hardening caused by the strain introduced at the time of molding.

焼戻温度が、150℃未満では、微細な炭化物の析出が不十分であり、一方、350℃を超えて高温となると、析出した炭化物が粗大となり、所望の歪時効硬化が確保できなくなり、所望の疲労強度の向上が達成できなくなる。また、静的降伏強さも低下する。なお、低温焼戻処理の保持時間は1s以上とすることが好ましい。なお、電縫鋼管の低温焼戻処理は、常用の大型炉や誘導加熱設備などを用いて行うか、あるいは、海底敷設時のコーティング熱処理などで代用してもよい。   When the tempering temperature is less than 150 ° C., precipitation of fine carbides is insufficient. On the other hand, when the temperature becomes higher than 350 ° C., the precipitated carbides become coarse, and desired strain age hardening can not be ensured, Improvement in fatigue strength can not be achieved. Also, the static yield strength is reduced. The holding time of the low temperature tempering treatment is preferably 1 s or more. The low-temperature tempering treatment of the ERW steel pipe may be performed using a large-scale furnace or induction heating equipment for ordinary use, or may be substituted by a coating heat treatment at the time of laying on the seabed or the like.

以下、実施例に基づき、さらに本発明について説明する。   Hereinafter, the present invention will be further described based on examples.

表1に示す組成の溶鋼を、常用の電気炉で溶製し、連続鋳造法で鋳片(肉厚:250mm)とした。ついで、これら鋳片を、表2に示す加熱温度の加熱炉に装入し、表2に示す条件で熱間圧延を施し、ついで、表2に示す条件で冷却を施して、表2に示す板厚の各種熱延鋼帯を得た。   The molten steel having the composition shown in Table 1 was melted in a conventional electric furnace, and was made into a slab (thickness: 250 mm) by a continuous casting method. Next, these slabs are loaded into a heating furnace at a heating temperature shown in Table 2, subjected to hot rolling under the conditions shown in Table 2, and then cooled under the conditions shown in Table 2, and shown in Table 2 Various hot-rolled steel strips of sheet thickness were obtained.

得られた熱延鋼帯を素材とし、該素材の幅方向に曲げ加工を施し、略円筒状のオープン管に造管したのち、該オープン管の端部同士を突き合わせ、押圧して、突合せ部に高周波大電流を負荷し電縫溶接して、表3に示す寸法の電縫鋼管とした。   The obtained hot-rolled steel strip is used as a raw material, and bending is performed in the width direction of the raw material to form an approximately cylindrical open pipe, and then the ends of the open pipe are butted and pressed to form a butt joint The high frequency large current was loaded and electric resistance welding was performed to obtain electric resistance welded steel pipe of the dimensions shown in Table 3.

ついで、得られた電縫鋼管に、表3に示す焼戻温度で、焼戻処理(低温焼戻処理)を施した。なお、一部の電縫鋼管では焼戻処理を行わなかった。   Next, the obtained ERW steel pipe was subjected to tempering treatment (low temperature tempering treatment) at the tempering temperature shown in Table 3. Note that tempering was not performed on some ERW steel pipes.

焼戻処理済みの電縫鋼管から試験片を採取し、組織観察、引張試験、衝撃試験、疲労試験を実施した。試験方法は、次のとおりとした。
(1)組織観察
焼戻処理済みの電縫鋼管から、図3に示す90°の位置から、肉厚1/2位置が組織観察面となるように、試験片を採取し、研磨、腐蝕(ナイタール液腐蝕)して組織を現出し、光学顕微鏡(倍率:400倍)または透過型電子顕微鏡(倍率:30000倍)を用いて、組織を観察し、撮像して、組織の同定および各相の面積率の測定、微細炭化物(粒径:500nm未満)の有無の観察を行った。
(2)引張試験
焼戻処理済みの電縫鋼管から、図3に示す90°の位置で肉厚1/2位置から、試験片長手方向が管軸方向となるように、 図4に示す引張試験片(平行部:6mmφ×30mm)を採取した。採取した引張試験片を用いて、JIS Z 2241の規定に準拠して、引張試験を実施し、静的降伏強さ、静的引張強さを求めた。なお、応力―歪曲線が、降伏点型を呈する場合には上降伏点を、ラウンドハウス型を呈する場合には歪が0.5%であるときのオフセット耐力σ0.5を、静的降伏強さとした。
(3)衝撃試験
焼戻処理済みの電縫鋼管から、図3に示す90°の位置で肉厚1/2位置から、試験片長手方向が管軸方向となるように、2mmVノッチシャルピー衝撃試験片3本を採取した。JIS Z 2242の規定に準拠して、採取した衝撃試験片3本について、試験温度:0℃で、シャルピー衝撃試験を実施し、それぞれの吸収エネルギーを求め、3本の平均値を算出した。
(4)疲労試験
焼戻処理済みの電縫鋼管から、図3に示す、90°の位置で肉厚1/2位置から、試験片の長手方向が管軸方向となるように、図5に示す疲労試験片を採取した。そして、採取した疲労試験片の中央部に塑性歪ゲージを貼付し、試験片に、図6に示す、応力比:0.1の正弦波の繰返し応力を複数サイクル(ここでは10サイクル)負荷し、同時に試験片に発生する歪を測定する繰返し応力負荷試験(疲労試験)を実施し、得られた応力と歪との関係の頂点を求めた。このような繰返し応力負荷試験を、負荷応力を増加させて、繰返し応力を複数サイクル(10サイクル)負荷し、応力と歪との関係の頂点を求めた。得られた各頂点を結び、応力と歪との関係曲線(繰返し応力歪曲線)を得た。そして、得られた繰返し応力歪曲線から、繰返し降伏強さを求めた。なお、繰返し応力歪曲線が、降伏点型曲線を呈する場合には、繰返し降伏強さは上降伏点とし、繰返し応力歪曲線がラウンドハウス型曲線を呈する場合には、繰返し降伏強さは歪0.5%のときのオフセット耐力σ0.5とした。
Specimens were taken from the tempered ERW steel pipe and subjected to structure observation, tensile test, impact test and fatigue test. The test method was as follows.
(1) Observation of structure From the 90 ° position shown in Fig. 3, test pieces are taken from the tempered electric resistance steel pipe after tempering treatment so that the thickness 1/2 position becomes the structure observation surface, and it is polished and corroded ( Nital liquid corrosion) to reveal the tissue, and observe and image the tissue using a light microscope (magnification: 400 ×) or a transmission electron microscope (magnification: 30,000 ×) to identify the tissue and identify each phase The area ratio was measured, and the presence or absence of fine carbides (particle size: less than 500 nm) was observed.
(2) Tensile test From the tempered ERW steel pipe, the tensile strength shown in FIG. 4 so that the longitudinal direction of the test piece is in the direction of the pipe axis from the thickness 1/2 position at the position of 90 ° shown in FIG. A test piece (parallel part: 6 mmφ × 30 mm) was collected. The tensile test was carried out using the collected tensile test pieces in accordance with the provisions of JIS Z 2241, and the static yield strength and static tensile strength were determined. The upper yield point was taken as the static yield strength when the stress-strain curve had a yield point type, and the offset resistance σ 0.5 when the strain was 0.5% when the stress had a round house type.
(3) Impact test 2 mm V-notched Charpy impact test so that the longitudinal direction of the test piece is in the direction of the tube axis from the thickness 1/2 position at the 90 ° position shown in FIG. Three pieces were collected. A Charpy impact test was carried out at a test temperature of 0 ° C. for three of the collected impact test pieces in accordance with JIS Z 2242, and the absorbed energy of each was determined to calculate the average value of the three.
(4) Fatigue test As shown in FIG. 3, from the 1/2 thickness position at the position of 90 ° shown in FIG. The fatigue test pieces shown were collected. Then, apply a plastic strain gauge to the central part of the collected fatigue test piece, apply multiple cycles (here 10 cycles) of sine wave cyclic stress with a stress ratio of 0.1 to the test piece, as shown in Figure 6, simultaneously The cyclic stress load test (fatigue test) which measures the distortion which generate | occur | produces in a test piece was implemented, and the peak of the relationship of the obtained stress and distortion was calculated | required. In such cyclic stress load test, load stress was increased, cyclic stress was applied for a plurality of cycles (10 cycles), and the peak of the relationship between stress and strain was determined. The obtained apexes were connected to obtain a relationship curve between stress and strain (repeated stress distortion line). And, from the cyclic stress distortion line obtained, the cyclic yield strength was determined. When the cyclic stress distortion line exhibits a yield point type curve, the cyclic yield strength is the upper yield point, and when the cyclic stress distortion line exhibits a round house type curve, the cyclic yield strength is strain 0.5. The offset resistance σ 0.5 at % was used.

また、焼戻処理済みの電縫鋼管から同様に、図3に示す90°の位置で肉厚1/2位置から、試験片の長手方向が管軸方向となるように、図5に示す疲労試験片を採取した。そして、JIS Z 2273 の規定に準拠して、応力比:0.1の繰返し応力負荷の条件で、負荷応力(σmax)を変化して疲労試験を実施し、破断までの繰返し負荷回数を求め、S-N曲線として、疲労強度σmax(2×106回)を得た。 Also, from the tempered 1/2 point thickness position at the position of 90 ° shown in FIG. 3, the fatigue shown in FIG. 5 so that the longitudinal direction of the test piece becomes the tube axis direction from the tempered ERW steel pipe similarly Test pieces were collected. Then, in accordance with the provisions of JIS Z 2273, under the condition of cyclic stress load of stress ratio: 0.1, the load stress (σmax) is changed to carry out a fatigue test, and the number of cyclic loads until breakage is determined, SN curve The fatigue strength σmax (2 × 10 6 times) was obtained as

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 2019116657
Figure 2019116657

Figure 2019116657
Figure 2019116657

Figure 2019116657
Figure 2019116657

本発明例はいずれも、静的降伏強さが245MPa以上、525MPa以下の範囲にあり、静的引張強さも415MPa以上を示し、さらに吸収エネルギーvE0が27J以上と靭性に優れ、さらに繰返し降伏強さが245MPa以上と、疲労強度に優れた電縫鋼管となっている。なお、繰返し降伏強さは、疲労強度σmax(2×106回)に略等しい値となっており、繰返し降伏強さが、簡便に、当該電縫鋼管の疲労強度を精度高く推定できることがわかる。 In each of the examples of the present invention, the static yield strength is in the range of 245 MPa or more and 525 MPa or less, the static tensile strength is also 415 MPa or more, and the absorbed energy vE0 is 27 J or more. It has become a ERW steel pipe excellent in fatigue strength with a pressure of 245 MPa or more. The cyclic yield strength has a value substantially equal to the fatigue strength σmax (2 × 10 6 times), and it can be seen that the cyclic yield strength can estimate the fatigue strength of the ERW steel pipe easily with high accuracy. .

一方、本発明範囲を外れる比較例は、繰返し降伏強さが245MPa未満で疲労強度が低下しているか、静的引張特性が本発明範囲を外れているか、靭性が低下しているか、しており、所望の各特性をすべて満足できていない。   On the other hand, in Comparative Examples outside the scope of the present invention, the cyclic yield strength is less than 245 MPa, the fatigue strength is reduced, the static tensile properties are out of the scope of the present invention, or the toughness is reduced. And each desired characteristic is not satisfied.

比較例である電縫鋼管No.S13は、C、Si、Mnの含有量が本発明範囲の下限を下回り、組織がフェライト単相となり、静的降伏強さ、繰返し降伏強さがともに245MPa未満、静的引張強さも415MPa未満となり、所望の引張特性、疲労強度を満足できていない。   In the case of ERW steel pipe No. S13, which is a comparative example, the C, Si and Mn contents are below the lower limit of the range of the present invention, and the structure becomes ferrite single phase, and both static yield strength and cyclic yield strength are less than 245MPa The static tensile strength is also less than 415 MPa, and the desired tensile properties and fatigue strength can not be satisfied.

また、電縫鋼管No.S14は、C、Si、Mnの含有量が本発明範囲の上限を超え、組織がベイナイト単相となり、静的降伏強さが本発明の好適範囲の上限525MPaを超え、またシャルピー吸収エネルギーvE0が27Jを下回り、靭性が低下している。また、電縫鋼管No.S15は、P、Sの含有量が本発明範囲の上限を超え、そのため、シャルピー吸収エネルギーvE0が27Jを下回り、靭性が低下している。また、電縫鋼管No.S16は、Cu、Niの含有量が本発明範囲の上限を超え、そのため、組織がベイナイト単相となり、静的降伏強さが本発明の好適範囲の上限525MPaを超え、またシャルピー吸収エネルギーvE0が27Jを下回り、靭性が低下している。また、電縫鋼管No.S17は、Cr、Mo、Nb、Vの含有量が本発明範囲の上限を超え、そのため、組織がベイナイト単相となり、静的降伏強さが本発明の好適範囲の上限525MPaを超え、またシャルピー吸収エネルギーvE0が27Jを下回り、靭性が低下している。また、電縫鋼管No.S18は、Ti、B、Ca、REMの含有量が本発明範囲の上限を超え、そのため、ベイナイト単相組織となり、静的降伏強度が本発明の好適範囲の上限525MPaを超え、またシャルピー吸収エネルギーvE0が27Jを下回り、靭性が低下している。また、電縫鋼管No.S19は、低温焼戻処理を実施しておらず、そのため、静的降伏強さ、繰返し降伏強さがともに245MPaを下回り、所望の引張特性、疲労強度を確保できていない。また、電縫鋼管No.S20は、低温焼戻温度が本発明範囲を高く外れており、そのため、静的引張強さが415MPaを下回り、所望の引張特性を確保できていない。 In addition, electric resistance welded steel pipe No. S14 has C, Si and Mn contents exceeding the upper limit of the range of the present invention, and the structure becomes bainite single phase, and the static yield strength exceeds the upper limit of 525 MPa of the preferred range of the present invention Also, the Charpy absorbed energy vE 0 is less than 27 J, and the toughness is lowered. Furthermore, electric resistance welded steel pipe No.S15 is, P, exceeds the upper limit content of the invention ranges of S, therefore, Charpy absorbed energy vE 0 is below 27 J, toughness is lowered. In the case of ERW steel pipe No. S16, the contents of Cu and Ni exceed the upper limit of the range of the present invention, so the structure becomes bainite single phase and the static yield strength exceeds the upper limit of 525 MPa of the preferred range of the present invention Also, the Charpy absorbed energy vE 0 is less than 27 J, and the toughness is lowered. In the case of ERW steel pipe No. S17, the contents of Cr, Mo, Nb and V exceed the upper limit of the range of the present invention, so the structure becomes bainite single phase and the static yield strength is within the preferred range of the present invention. exceeds the upper limit 525MPa, also Charpy absorbed energy vE 0 is below 27 J, toughness is lowered. In the case of ERW steel pipe No. S18, the Ti, B, Ca, and REM contents exceed the upper limit of the range of the present invention, and therefore, a bainite single phase structure is formed, and the static yield strength is the upper limit of 525 MPa of the preferred range of the present invention And the Charpy absorbed energy vE 0 is less than 27 J, and the toughness is reduced. In addition, ERW steel pipe No. S19 is not subjected to low-temperature tempering treatment, so both static yield strength and cyclic yield strength are less than 245 MPa, and the desired tensile properties and fatigue strength can be ensured. Absent. In the case of ERW steel pipe No. S20, the low temperature tempering temperature is out of the range of the present invention so high that the static tensile strength is less than 415 MPa and the desired tensile properties can not be secured.

Claims (4)

質量%で、
C :0.001〜0.50%、 Si:0.001〜2.0%、
Mn:0.001〜3.0%、 P :0.05%以下、
S :0.05%以下、 Al:0.010〜0.060%
を含み、残部Fe及び不可避的不純物からなる組成と、
フェライトとパーライトとからなる混合相を主相とし、該主相と面積率で30%以下(0%を含む)の第二相とからなる組織と、を有し、さらに前記組織中には粒径500nm未満の微細炭化物が分散してなり、
JIS Z 2241の規定に準拠した引張試験で得られた、肉厚中央位置で管軸方向の静的降伏強さが245MPa以上、静的引張強さが415MPa以上で、かつ、
応力比:0.1の繰返し応力負荷を施して得られた繰返し応力歪曲線から求めた繰返し降伏強さが245MPa以上である
ことを特徴とする疲労強度に優れた厚肉大径電縫鋼管。
In mass%,
C: 0.001 to 0.50%, Si: 0.001 to 2.0%,
Mn: 0.001 to 3.0%, P: 0.05% or less,
S: 0.05% or less, Al: 0.010 to 0.060%
A composition comprising the balance Fe and the inevitable impurities,
A mixed phase consisting of ferrite and pearlite as a main phase, and a structure consisting of the main phase and a second phase of 30% or less (including 0%) by area ratio, and particles in the structure Fine carbides less than 500 nm in diameter are dispersed,
The static yield strength in the axial direction of the tube is 245 MPa or more, and the static tensile strength is 415 MPa or more at the thickness center position, obtained by the tensile test in accordance with JIS Z 2241.
Stress ratio: A thick, large diameter ERW steel pipe excellent in fatigue strength characterized by having a cyclic yield strength of at least 245 MPa obtained from a cyclic stress-strain line obtained by applying a cyclic stress load of 0.1.
前記組成に加えてさらに、質量%で、Cu:0.001〜5.0%、Ni:0.001〜5.0%、Cr:0.001〜5.0%、Mo:0.001〜5.0%、Nb:0.0001〜0.5%、V:0.0001〜0.5%、Ti:0.0001〜0.5%、B:0.00001〜0.1%、Ca:0.00001〜0.1%、REM:0.00001〜0.1%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1に記載の厚肉大径電縫鋼管。   In addition to the above composition, further, by mass%, Cu: 0.001 to 5.0%, Ni: 0.001 to 5.0%, Cr: 0.001 to 5.0%, Mo: 0.001 to 5.0%, Nb: 0.0001 to 0.5%, V: 0.0001 to 0.5%. 0.5%, Ti: 0.0001 to 0.5%, B: 0.00001 to 0.1%, Ca: 0.00001 to 0.1%, REM: 0.00001 to 0.1% One or more selected from the group consisting of The thick-walled large diameter electric resistance welded steel pipe according to claim 1. 熱延鋼帯を、素材として、該素材の幅方向に冷間曲げ加工を施し、略円筒状のオープン管としたのち、該オープン管の幅方向端部同士を突き合わせ、押圧し、電縫溶接して、電縫鋼管とするに当り、
前記熱延鋼帯を、質量%で、
C :0.001〜0.50%、 Si:0.001〜2.0%、
Mn:0.001〜3.0%、 P :0.05%以下、
S :0.05%以下、 Al:0.010〜0.060%
を含み、残部Fe及び不可避的不純物からなる組成と、フェライトとパーライトとからなる混合相を主相とし、該主相と面積率で30%以下(0%を含む)の第二相とからなる組織と、を有する鋼帯とし、
前記電縫鋼管に、焼戻温度:150〜350℃の低温焼戻処理を施し、
JIS Z 2241の規定に準拠した引張試験で得られた、肉厚中央位置で管軸方向の静的降伏強さが245MPa以上、静的引張強さが415MPa以上で、かつ、応力比:0.1の繰返し応力負荷を施して得られた繰返し応力歪曲線から求めた繰返し降伏強さが245MPa以上である電縫鋼管とすること
を特徴とする疲労強度に優れた厚肉大径電縫鋼管の製造方法。
A hot-rolled steel strip is cold-bent in the width direction of the material to make a substantially cylindrical open pipe, and then the width direction end portions of the open pipe are butted and pressed, and electric resistance welding is performed. In making the ERW steel pipe,
The hot-rolled steel strip in mass%,
C: 0.001 to 0.50%, Si: 0.001 to 2.0%,
Mn: 0.001 to 3.0%, P: 0.05% or less,
S: 0.05% or less, Al: 0.010 to 0.060%
And a composition consisting of the balance Fe and unavoidable impurities, and a mixed phase consisting of ferrite and pearlite as a main phase, and consisting of the main phase and a second phase of 30% or less (including 0%) in area ratio A steel strip having a structure,
The ERW steel pipe is subjected to a low temperature tempering treatment at a tempering temperature of 150 to 350 ° C.
Static yield strength of at least 245 MPa in the axial direction at a thickness center position, static tensile strength of at least 415 MPa, and stress ratio of 0.1, obtained by a tensile test in accordance with JIS Z 2241. A resistance welded steel pipe having a cyclic yield strength of at least 245 MPa determined from a cyclic stress-strain curve obtained by applying a cyclic stress load. .
前記組成に加えてさらに、質量%で、Cu:0.001〜5.0%、Ni:0.001〜5.0%、Cr:0.001〜5.0%、Mo:0.001〜5.0%、Nb:0.0001〜0.5%、V:0.0001〜0.5%、Ti:0.0001〜0.5%、B:0.00001〜0.1%、Ca:0.00001〜0.1%、REM:0.00001〜0.1%のうちから選ばれた1種または2種以上を含有する組成であることを特徴とする請求項3に記載の厚肉大径電縫鋼管の製造方法。   In addition to the above composition, further, by mass%, Cu: 0.001 to 5.0%, Ni: 0.001 to 5.0%, Cr: 0.001 to 5.0%, Mo: 0.001 to 5.0%, Nb: 0.0001 to 0.5%, V: 0.0001 to 0.5%. 0.5% Ti: 0.0001 to 0.5% B: 0.00001 to 0.1% Ca: 0.00001 to 0.1% REM: 0.00001 to 0.1% It is a composition containing one or more selected from The manufacturing method of the thick-walled large diameter electric resistance welded steel pipe according to claim 3 characterized by the above-mentioned.
JP2017250538A 2017-12-27 2017-12-27 Thick-walled large-diameter electric resistance pipe with excellent fatigue strength and its manufacturing method Active JP6773020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017250538A JP6773020B2 (en) 2017-12-27 2017-12-27 Thick-walled large-diameter electric resistance pipe with excellent fatigue strength and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017250538A JP6773020B2 (en) 2017-12-27 2017-12-27 Thick-walled large-diameter electric resistance pipe with excellent fatigue strength and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019116657A true JP2019116657A (en) 2019-07-18
JP6773020B2 JP6773020B2 (en) 2020-10-21

Family

ID=67305182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017250538A Active JP6773020B2 (en) 2017-12-27 2017-12-27 Thick-walled large-diameter electric resistance pipe with excellent fatigue strength and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6773020B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111553035A (en) * 2020-04-30 2020-08-18 日照钢铁控股集团有限公司 Method for designing blanking opening degree of hot-base galvanized square tube pipe
CN113846267A (en) * 2021-09-24 2021-12-28 新余钢铁股份有限公司 30CrMnB hot-rolled alloy structural steel plate and production method thereof
KR20220026893A (en) * 2020-08-26 2022-03-07 주식회사 포스코 Hot-rolled steel plate having excellent impact toughness of welded zone and method for manufacturing thereof
CN114737120A (en) * 2022-04-02 2022-07-12 鞍钢股份有限公司 Steel for large-diameter tube bundle outer bearing tube and preparation method thereof
CN114921718A (en) * 2022-04-12 2022-08-19 首钢京唐钢铁联合有限责任公司 Container steel for multi-mode sheet billet continuous casting and rolling production line and preparation method thereof
CN115110010A (en) * 2022-05-31 2022-09-27 天津钢管制造有限公司 Seamless steel tube for 140Ksi steel grade trenchless drill rod and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225722A (en) * 1988-03-05 1989-09-08 Sumitomo Metal Ind Ltd Production of resistance welded steel pipe for high strength oil well use
JP2007262467A (en) * 2006-03-28 2007-10-11 Sumitomo Metal Ind Ltd Hot rolled steel sheet for hydroforming, its production method and electric resistance welded tube for hydroforming
JP2015224374A (en) * 2014-05-29 2015-12-14 Jfeスチール株式会社 Low yield ratio high strength electric resistance welded steel pipe for steel pipe pile and production method thereof
WO2016063513A1 (en) * 2014-10-23 2016-04-28 Jfeスチール株式会社 High-strength welded steel pipe for airbag inflator, and method for manufacturing same
CN106480375A (en) * 2015-08-31 2017-03-08 鞍钢股份有限公司 A kind of high-strength electric resistance welded sleeve pipe and its manufacture method
WO2017110254A1 (en) * 2015-12-21 2017-06-29 新日鐵住金株式会社 As-rolled type k55 electric-resistance-welded oil well pipe, and hot-rolled steel plate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225722A (en) * 1988-03-05 1989-09-08 Sumitomo Metal Ind Ltd Production of resistance welded steel pipe for high strength oil well use
JP2007262467A (en) * 2006-03-28 2007-10-11 Sumitomo Metal Ind Ltd Hot rolled steel sheet for hydroforming, its production method and electric resistance welded tube for hydroforming
JP2015224374A (en) * 2014-05-29 2015-12-14 Jfeスチール株式会社 Low yield ratio high strength electric resistance welded steel pipe for steel pipe pile and production method thereof
WO2016063513A1 (en) * 2014-10-23 2016-04-28 Jfeスチール株式会社 High-strength welded steel pipe for airbag inflator, and method for manufacturing same
CN106480375A (en) * 2015-08-31 2017-03-08 鞍钢股份有限公司 A kind of high-strength electric resistance welded sleeve pipe and its manufacture method
WO2017110254A1 (en) * 2015-12-21 2017-06-29 新日鐵住金株式会社 As-rolled type k55 electric-resistance-welded oil well pipe, and hot-rolled steel plate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111553035A (en) * 2020-04-30 2020-08-18 日照钢铁控股集团有限公司 Method for designing blanking opening degree of hot-base galvanized square tube pipe
CN111553035B (en) * 2020-04-30 2023-08-08 日照钢铁控股集团有限公司 Design method for blanking opening degree of hot-base galvanized square pipe manufacturing
KR20220026893A (en) * 2020-08-26 2022-03-07 주식회사 포스코 Hot-rolled steel plate having excellent impact toughness of welded zone and method for manufacturing thereof
KR102443927B1 (en) 2020-08-26 2022-09-19 주식회사 포스코 Hot-rolled steel plate having excellent impact toughness of welded zone and method for manufacturing thereof
CN113846267A (en) * 2021-09-24 2021-12-28 新余钢铁股份有限公司 30CrMnB hot-rolled alloy structural steel plate and production method thereof
CN113846267B (en) * 2021-09-24 2023-03-10 新余钢铁股份有限公司 30CrMnB hot-rolled alloy structural steel plate and production method thereof
CN114737120A (en) * 2022-04-02 2022-07-12 鞍钢股份有限公司 Steel for large-diameter tube bundle outer bearing tube and preparation method thereof
CN114737120B (en) * 2022-04-02 2022-11-18 鞍钢股份有限公司 Steel for large-diameter tube bundle outer bearing tube and preparation method thereof
CN114921718A (en) * 2022-04-12 2022-08-19 首钢京唐钢铁联合有限责任公司 Container steel for multi-mode sheet billet continuous casting and rolling production line and preparation method thereof
CN115110010A (en) * 2022-05-31 2022-09-27 天津钢管制造有限公司 Seamless steel tube for 140Ksi steel grade trenchless drill rod and preparation method thereof

Also Published As

Publication number Publication date
JP6773020B2 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
US9580782B2 (en) Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and manufacturing method thereof
KR101511615B1 (en) Method for manufacturing welded steel pipe for linepipe having high compressive strength and high fracture toughness
US8765269B2 (en) High strength steel pipe for low-temperature usage having excellent buckling resistance and toughness of welded heat affected zone and method for producing the same
JP6773020B2 (en) Thick-walled large-diameter electric resistance pipe with excellent fatigue strength and its manufacturing method
JP5499733B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP6760254B2 (en) Electric resistance sewn steel pipe with excellent fatigue strength and its manufacturing method
CA2980424C (en) Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
US20080286504A1 (en) Steel Plate or Steel Pipe with Small Occurrence of Bauschinger Effect and Methods of Production of Same
RU2677554C1 (en) Steel plates for construction pipes or tubes, steel plates for construction pipes or tubes manufacturing method, and construction pipes or tubes
WO2015151469A1 (en) Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
JP5391656B2 (en) High tensile welded steel pipe for automobile parts and manufacturing method thereof
JP6773021B2 (en) Thick-walled large-diameter electric resistance pipe with excellent fatigue strength and its manufacturing method
JP6048615B2 (en) Steel material for high deformability line pipe excellent in strain aging resistance and HIC resistance, manufacturing method thereof, and welded steel pipe
JP6690788B1 (en) ERW steel pipe, its manufacturing method, and steel pipe pile
WO2012141220A1 (en) High-strength steel plate and high-strength steel pipe having excellent deformability and low-temperature toughness, and manufacturing methods therefor
WO2018008194A1 (en) Electroseamed steel pipe for line pipe
JP2015190026A (en) Thick high strength electroseamed steel pipe for linepipe and manufacturing method therefor
JP6128042B2 (en) Low yield ratio high strength spiral steel pipe pile and manufacturing method thereof
WO2016157235A1 (en) High-strength steel, production method therefor, steel pipe, and production method therefor
JP6690787B1 (en) ERW steel pipe, its manufacturing method, and steel pipe pile
JP2012241270A (en) High strength sour-resistant linepipe superior in collapse resistance and method for producing the same
JP4276480B2 (en) Manufacturing method of high strength steel pipe for pipelines with excellent deformation performance
JP5573003B2 (en) High tensile welded steel pipe for automobile parts
JP2012167329A (en) Steel pipe for line pipe with excellent collapse resisting performance
JP4336294B2 (en) Manufacturing method of high strength steel pipe for pipelines with excellent deformation characteristics after aging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R150 Certificate of patent or registration of utility model

Ref document number: 6773020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250