JP6690788B1 - ERW steel pipe, its manufacturing method, and steel pipe pile - Google Patents

ERW steel pipe, its manufacturing method, and steel pipe pile Download PDF

Info

Publication number
JP6690788B1
JP6690788B1 JP2019548355A JP2019548355A JP6690788B1 JP 6690788 B1 JP6690788 B1 JP 6690788B1 JP 2019548355 A JP2019548355 A JP 2019548355A JP 2019548355 A JP2019548355 A JP 2019548355A JP 6690788 B1 JP6690788 B1 JP 6690788B1
Authority
JP
Japan
Prior art keywords
steel pipe
less
electric resistance
resistance welded
bainite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019548355A
Other languages
Japanese (ja)
Other versions
JPWO2020202334A1 (en
Inventor
井手 信介
信介 井手
昌士 松本
昌士 松本
晃英 松本
晃英 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Application granted granted Critical
Publication of JP6690788B1 publication Critical patent/JP6690788B1/en
Publication of JPWO2020202334A1 publication Critical patent/JPWO2020202334A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B17/00Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
    • B21B17/14Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling without mandrel, e.g. stretch-reducing mills
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

母材部と管軸方向に溶接部を有する電縫鋼管であって、母材部の成分組成は、特定の成分組成を有し、母材部の板厚をtとしたとき、電縫鋼管の外表面から板厚tの1/4t深さ位置における鋼組織は、ベイナイトが面積率で60%以上であり、ベイナイトの平均有効粒径が平均円相当径で20.0μm以下、かつベイナイトの平均アスペクト比が0.1〜0.8であり、管軸方向の引張強さが590MPa以上、0.2%耐力が450MPa以上、降伏比が80〜90%であり、母材部における管軸方向を試験片長手方向とした−30℃におけるシャルピー吸収エネルギーが70J以上であり、母材部における鋼管外表面の管軸方向における残留応力が250MPa以下である電縫鋼管及びその製造方法、並びに鋼管杭。An electric resistance welded steel pipe having a base material portion and a welded portion in the axial direction of the pipe, wherein the component composition of the base material portion has a specific component composition and the plate thickness of the base material portion is t. In the steel structure at a position 1 / 4t deeper than the plate thickness t from the outer surface of the bainite, the area ratio of bainite is 60% or more, the average effective grain size of bainite is 20.0 μm or less in the average circle equivalent diameter, and The average aspect ratio is 0.1 to 0.8, the tensile strength in the tube axis direction is 590 MPa or more, the 0.2% proof stress is 450 MPa or more, and the yield ratio is 80 to 90%. Electric-resistance welded steel pipe having a Charpy absorbed energy of 70 J or more at −30 ° C. and a residual stress of 250 MPa or less in the axial direction of the outer surface of the steel pipe in the base material portion and a manufacturing method thereof, and a steel pipe Pile.

Description

本発明は、構造物の基礎として用いられる鋼管杭に好適な電縫鋼管およびその製造方法、並びに鋼管杭に関する。特に、本発明は、熱延鋼板(熱延鋼帯)を素材とし、素材を冷間でロール成形し造管して得られる電縫鋼管の高強度化、高靱性化、降伏比の最適化、および耐座屈性能の向上に関するものである。  The present invention relates to an electric resistance welded steel pipe suitable for a steel pipe pile used as a foundation of a structure, a method for manufacturing the same, and a steel pipe pile. In particular, the present invention uses a hot-rolled steel sheet (hot-rolled steel strip) as a raw material, and improves the strength, toughness, and optimization of the yield ratio of an electric resistance welded steel pipe obtained by cold-roll forming the raw material into a pipe. , And the improvement of buckling resistance.

近年、大規模地震への対応として、構造物の基礎として用いられる鋼管杭に対しても、高強度化と変形エネルギー吸収能の向上が強く要望されるようになってきた。一般的に、鋼管の変形エネルギー吸収能を向上させるためには、高い引張強さと低い降伏比を有する鋼材とすることが有効である。しかし、鋼管杭は、杭打ちの際に鋼管の変形を抑えるという観点から管軸方向の降伏比を過度に低くすることが難しい。さらに、特に寒冷地で使用される鋼管杭には、高い低温靱性も必要となる。また、地震などによる変形に耐えるために高い耐座屈性能も必要となる。  In recent years, in response to large-scale earthquakes, there has been a strong demand for steel pipe piles used as the foundation of structures to have higher strength and improved deformation energy absorption capacity. Generally, in order to improve the deformation energy absorption capacity of a steel pipe, it is effective to use a steel material having high tensile strength and a low yield ratio. However, it is difficult for the steel pipe pile to excessively reduce the yield ratio in the pipe axial direction from the viewpoint of suppressing the deformation of the steel pipe during pile driving. Furthermore, high low temperature toughness is also required for steel pipe piles used especially in cold regions. In addition, high buckling resistance is required to withstand deformation such as an earthquake.

特許文献1には、耐局部座屈性に優れた耐震性溶接鋼管の製造方法が記載されている。特許文献1では、重量%で、C:0.03〜0.15%、Mn:1.0〜2.0%を含有し、Cu:0.05〜0.50%、Ni:0.05〜0.50%、Cr:0.05〜0.50%、Mo:0.05〜0.50%、Nb:0.005〜0.10%、V:0.005〜0.10%、Ti:0.005〜0.080%の内1種以上を含有し、Pcmが0.10〜0.25となる組成の鋼を熱間圧延し、圧延終了後600℃以下まで5℃/s以上の冷却速度で冷却して得られた鋼板を、冷間成形して鋼管とする。これにより、管軸方向の引張試験における加工硬化指数が0.10以上となる変形性能に優れる鋼管を得ることができ、鋼管に横から作用する外力による局部座屈の発生や、それに起因する脆性的なき裂や破断の発生を防止できるとしている。  Patent Document 1 describes a method for manufacturing an earthquake-resistant welded steel pipe having excellent local buckling resistance. In patent document 1, C: 0.03-0.15% and Mn: 1.0-2.0% are contained by weight%, Cu: 0.05-0.50%, Ni: 0.05. .About.0.50%, Cr: 0.05 to 0.50%, Mo: 0.05 to 0.50%, Nb: 0.005 to 0.10%, V: 0.005 to 0.10%, Ti: Steel containing at least one of 0.005 to 0.080% and having a composition of Pcm of 0.10 to 0.25 is hot-rolled, and after the rolling is finished, the temperature is 5 ° C / s up to 600 ° C or less. The steel sheet obtained by cooling at the above cooling rate is cold-formed into a steel pipe. As a result, it is possible to obtain a steel pipe having a work hardening index of 0.10 or more in a tensile test in the pipe axis direction and excellent in deformability, and the occurrence of local buckling due to an external force acting on the steel pipe laterally and brittleness caused by the occurrence of the local buckling. It is said that it can prevent the occurrence of specific cracks and fractures.

特許文献2には、重量%で、C:0.02〜0.20%、Si:0.02〜0.50%、Mn:0.50〜2.00%を含み、さらにCu:0.10〜1.5%、Ni:0.10〜0.50%、Nb:0.005〜0.10%およびV:0.005〜0.10%からなる群から選ばれた1種または2種以上を含み、Ceq:0.38〜0.45である鋼片に、900℃以上の温度域における1パス当たりの圧下率が4%以下となるように熱間圧延を行って熱延鋼板とし、該熱延鋼板に、Ac1点以上Ac3点以下の二相温度域に再加熱して該二相温度域から焼入れし、さらに焼戻しを行ってから、製管加工を行う、鋼管の製造方法が記載されている。これにより得られる鋼管は、0.2%耐力:440MPa以上、引張強度:590〜700MPa、降伏比:80%以下の低降伏比高張力鋼管であり、建造物、橋梁、タンク等の鋼構造物用として好適であるとしている。  Patent Document 2 contains C: 0.02 to 0.20%, Si: 0.02 to 0.50%, Mn: 0.50 to 2.00% by weight, and further Cu: 0. 1 or 2 selected from the group consisting of 10 to 1.5%, Ni: 0.10 to 0.50%, Nb: 0.005 to 0.10% and V: 0.005 to 0.10%. Hot-rolled steel sheet containing at least seeds and having a Ceq of 0.38 to 0.45 is hot-rolled such that the rolling reduction per pass in a temperature range of 900 ° C. or higher is 4% or less. And a method for manufacturing a steel pipe, wherein the hot rolled steel sheet is reheated to a two-phase temperature range of Ac1 point to Ac3 point and quenched from the two-phase temperature range, further tempered, and then pipe-formed. Is listed. The steel pipe thus obtained is a high-strength steel pipe having a low yield ratio of 0.2% proof stress: 440 MPa or more, a tensile strength: 590 to 700 MPa, and a yield ratio: 80% or less, and a steel structure such as a building, a bridge or a tank. It is said that it is suitable for use.

特許文献3には、質量%で、C:0.10〜0.18%、Si:0.1〜0.5%、Mn:1〜2%を含む組成の鋼管を製造するにあたり、Ac3点以上に加熱したのち急冷する工程と、Ac1点〜Ac3点の二相温度域に加熱したのち空冷する工程と、冷間で管状に成形する工程と、500〜600℃に再加熱する工程とを順次施して、低降伏比の建築構造用高張力鋼管とする製造方法が記載されている。これにより、高価な合金元素を使用せずに、引張強度:590MPa以上の建築構造用鋼管を製造することができるとしている。  In Patent Document 3, in producing a steel pipe having a composition including C: 0.10 to 0.18%, Si: 0.1 to 0.5%, and Mn: 1 to 2% by mass%, Ac3 point is set. The steps of heating and quenching after the above steps, the steps of heating in the two-phase temperature region of Ac1 point to Ac3 point and then air cooling, the step of cold forming into a tubular shape, and the step of reheating to 500 to 600 ° C. A method for producing a high-strength steel pipe for a building structure having a low yield ratio by sequentially performing it is described. As a result, it is said that a steel pipe for building structure having a tensile strength of 590 MPa or more can be manufactured without using an expensive alloy element.

特許文献4には、質量%で、C:0.11〜0.20%、Si:0.05〜0.50%、Mn:1.00〜2.00%、P:0.030%以下、S:0.010%以下、Al:0.01〜0.08%を含み、加えてフェライト相を主相とし、主相以外の第二相が、面積率で8〜30%のパーライトおよび/または擬似パーライトであり、該主相と第二相を含む平均の粒径が4.0〜10μmである組織を有し、管周方向および管軸方向で0.2%耐力YS:450MPa以上、引張強さTS:590MPa以上で、かつ降伏比:90%以下である鋼管杭向け低降伏比高強度電縫鋼管が記載されている。  In Patent Document 4, C: 0.11 to 0.20%, Si: 0.05 to 0.50%, Mn: 1.00 to 2.00%, and P: 0.030% or less in mass%. , S: 0.010% or less, Al: 0.01 to 0.08%, and a ferrite phase as a main phase, and the second phase other than the main phase contains pearlite having an area ratio of 8 to 30% and And / or pseudo pearlite, having a structure in which the average grain size including the main phase and the second phase is 4.0 to 10 μm, and 0.2% proof stress YS: 450 MPa or more in the pipe circumferential direction and the pipe axial direction. , Tensile strength TS: 590 MPa or more and yield ratio: 90% or less, a low yield ratio high strength electric resistance welded steel pipe for steel pipe piles is described.

特開平11−6032号公報Japanese Patent Laid-Open No. 11-6032 特許第2687841号公報Japanese Patent No. 2687841 特開2004−300461号公報JP, 2004-300461, A 特許第6123734号公報Japanese Patent No. 6123734

しかしながら、特許文献1に記載された技術で製造された鋼管は、管軸方向の降伏比が過度に低下する。このため、得られた鋼管を鋼管杭として適用した場合には、杭打ちの際に、打ち込みにより座屈等の問題を生じる恐れがある。  However, in the steel pipe manufactured by the technique described in Patent Document 1, the yield ratio in the pipe axial direction is excessively reduced. Therefore, when the obtained steel pipe is applied as a steel pipe pile, there is a risk that buckling or the like may occur due to driving during pile driving.

特許文献2に記載された技術では、焼き戻しのための熱処理工程を必要とする。また、特許文献3に記載された技術では、大型の管用熱処理装置を必要とするうえ、製管したのちに熱処理工程を必要とする。これらの熱処理を必要とする技術では、降伏比が低くなり過ぎるという問題がある。さらに、工程が複雑となり生産性が低下する問題もある。また、生産コストが増大して、安価に提供することが困難となる。  The technique described in Patent Document 2 requires a heat treatment step for tempering. In addition, the technique described in Patent Document 3 requires a large-sized heat treatment apparatus for pipes, and also needs a heat treatment step after pipe making. The techniques requiring these heat treatments have a problem that the yield ratio becomes too low. Further, there is a problem that the process becomes complicated and the productivity is lowered. In addition, the production cost increases, and it becomes difficult to provide it at low cost.

特許文献4に記載された技術では、熱間圧延後に、仕上圧延終了温度から10〜100sで550〜700℃の温度域まで冷却して、フェライトとパーライトを主体とした組織を得ており、所望の組織を得られていない。また、非常に長い冷却帯を有する設備が必要となり、安価な鋼管杭向け高強度高靱性電縫鋼管を提供することが困難となる。  In the technique described in Patent Document 4, after the hot rolling, it is cooled from the finish rolling end temperature to a temperature range of 550 to 700 ° C. in 10 to 100 s to obtain a structure mainly composed of ferrite and pearlite. Organization has not been obtained. Further, equipment having an extremely long cooling zone is required, and it becomes difficult to provide an inexpensive high strength and high toughness electric resistance welded steel pipe for steel pipe piles.

本発明は、上記した課題に鑑みてなされたものであり、最適な降伏比および高い耐座屈性能を有し、さらに高強度および高靱性を備えた電縫鋼管およびその製造方法、並びに鋼管杭を提供することを目的とする。  The present invention has been made in view of the above problems, has an optimal yield ratio and high buckling resistance, and further has high strength and high toughness, an electric resistance welded steel pipe and a method for manufacturing the same, and a steel pipe pile. The purpose is to provide.

なお、本発明では、主に板厚が16mm以上の熱延鋼板を素材として用いた場合に、上記課題を達成できる電縫鋼管およびその製造方法、並びに鋼管杭を提供するものでもある。  The present invention also provides an electric resistance welded steel pipe, a method for manufacturing the same, and a steel pipe pile, which can achieve the above-mentioned problems when a hot-rolled steel plate having a plate thickness of 16 mm or more is mainly used as a material.

ここでいう「高強度」とは、電縫鋼管の母材部における管軸方向において、0.2%耐力(YS):450MPa以上、引張強さ(TS):590MPa以上である場合をいう。ここでいう「高靱性」とは、電縫鋼管の母材部における管軸方向を試験片長手方向とした、−30℃におけるシャルピー吸収エネルギーが70J以上である場合をいい、電縫鋼管の管周方向および管軸方向のいずれにおいても、上記した高靱性を満足するものとする。ここでいう「最適な降伏比」とは、上記した引張強さに対する0.2%耐力の比(YR)が80〜90%をいう。ここでいう「高い耐座屈性能」とは、電縫鋼管の母材部における鋼管外表面の管軸方向における残留応力が250MPa以下で、かつ降伏比が90%以下である場合をいう。  The term "high strength" as used herein means a case where 0.2% proof stress (YS): 450 MPa or more and tensile strength (TS): 590 MPa or more in the pipe axis direction in the base material portion of the electric resistance welded steel pipe. The term "high toughness" as used herein means a case where the Charpy absorbed energy at -30 ° C is 70 J or more, with the pipe axis direction in the base material portion of the electric resistance welded steel pipe being the longitudinal direction of the test piece, and the pipe of the electric resistance welded steel pipe. The above-mentioned high toughness is satisfied in both the circumferential direction and the pipe axis direction. The term "optimal yield ratio" as used herein means that the ratio of 0.2% proof stress to tensile strength (YR) is 80 to 90%. The "high buckling resistance" as used herein means a case where the residual stress in the pipe axial direction of the outer surface of the steel pipe in the base material portion of the electric resistance welded steel pipe is 250 MPa or less and the yield ratio is 90% or less.

本発明者らは、上記した目的を達成するために、降伏比、0.2%耐力、引張強さ、およびシャルピー衝撃特性に及ぼす各種合金元素および製造条件の影響について、鋭意検討した。また、得られた鋼管(電縫鋼管)の耐座屈性能についても、鋭意検討した。その結果、降伏比を比較的低く維持しつつ、高強度と高靱性が両立でき、高い耐座屈性能を有する適正な成分組成、鋼組織および製造条件があることを知見した。  In order to achieve the above-mentioned object, the inventors diligently studied the influence of various alloying elements and manufacturing conditions on the yield ratio, 0.2% proof stress, tensile strength, and Charpy impact property. In addition, the buckling resistance of the obtained steel pipe (electric resistance welded steel pipe) was also earnestly studied. As a result, they have found that while maintaining a relatively low yield ratio, high strength and high toughness can both be achieved, and there is an appropriate component composition, steel structure and manufacturing conditions that have high buckling resistance.

すなわち、特定の成分組成、熱間圧延条件に限定して製造した熱延鋼板に、冷間ロール成形による冷間ロール成形工程において溶接後に特定の条件で縮径圧延を施す。これにより、電縫鋼管の母材部の鋼管外表面から板厚tの1/4t深さ位置における鋼組織を、ベイナイトが面積率で60%以上、さらに、ベイナイトの平均有効粒径が平均円相当径で20.0μm以下、かつベイナイトの平均アスペクト比が0.1〜0.8とする。その結果、0.2%耐力は450MPa以上と比較的低く、引張強さは590MPa以上と高く、かつ降伏比は80〜90%であり、−30℃におけるシャルピー吸収エネルギーは70J以上であり、母材部における鋼管外表面の管軸方向の残留応力が250MPa以下である低降伏比、高強度、高靱性および、高い耐座屈性能を備えた電縫鋼管が得られることを見出した。  That is, the hot-rolled steel sheet manufactured by limiting the specific component composition and the hot rolling condition is subjected to the diameter-reducing rolling under the specific condition after welding in the cold roll forming step by the cold roll forming. As a result, bainite has an area ratio of 60% or more, and the average effective grain size of bainite is an average circle of the steel structure at a position 1/4 t deep from the steel pipe outer surface of the base material part of the electric resistance welded steel pipe. The equivalent diameter is 20.0 μm or less, and the average aspect ratio of bainite is 0.1 to 0.8. As a result, the 0.2% proof stress is relatively low at 450 MPa or higher, the tensile strength is high at 590 MPa or higher, the yield ratio is 80 to 90%, and the Charpy absorbed energy at -30 ° C is 70 J or higher. It has been found that an electric resistance welded steel pipe having a low yield ratio, a high yield strength, a high toughness, and a high buckling resistance, in which the residual stress of the outer surface of the steel pipe in the pipe portion in the pipe axial direction is 250 MPa or less, can be obtained.

本発明は、かかる知見に基づき、さらに検討を加えて完成されたものであり、本発明の要旨は次のとおりである。
[1] 母材部と鋼軸方向に溶接部を有する電縫鋼管であって、
前記母材部の成分組成は、質量%で、
C:0.12〜0.20%、
Si:0.60%以下、
Mn:0.50〜1.70%、
P:0.030%以下、
S:0.015%以下、
Al:0.010〜0.060%、
Nb:0.010〜0.080%、
Ti:0.010〜0.050%、
N:0.006%以下
を含有し、残部がFeおよび不可避的不純物からなり、
前記母材部の板厚をtとしたとき、前記電縫鋼管の外表面から板厚tの1/4t深さ位置における鋼組織は、
ベイナイトが面積率で60%以上であり、
前記ベイナイトの平均有効粒径が平均円相当径で20.0μm以下、かつ前記ベイナイトの平均アスペクト比が0.1〜0.8であり、
管軸方向の引張強さが590MPa以上、0.2%耐力が450MPa以上、降伏比が80〜90%であり、
前記母材部における管軸方向を試験片長手方向とした−30℃におけるシャルピー吸収エネルギーが70J以上であり、
前記母材部における鋼管外表面の管軸方向における残留応力が250MPa以下である電縫鋼管。
[2] 前記成分組成に加えてさらに、質量%で、B:0.008%以下を含有する[1]に記載の電縫鋼管。
[3] 前記成分組成に加えてさらに、質量%で、
Cr:0.01〜1.0%、
V:0.010〜0.060%、
Mo:0.01〜1.0%、
Cu:0.01〜0.50%、
Ni:0.01〜1.0%、
Ca:0.0005〜0.010%
のうちから選ばれた1種または2種以上を含有する[1]または[2]に記載の電縫鋼管。
[4] 鋼素材に、熱間圧延工程、冷却工程をこの順に施して熱延鋼板とし、さらに、該熱延鋼板に冷間ロール成形工程を施して電縫鋼管とする電縫鋼管の製造方法であって、
前記鋼素材は、[1]〜[3]のいずれか1つに記載の成分組成を有し、
前記熱間圧延工程は、前記鋼素材を加熱温度:1100〜1280℃に加熱した後、粗圧延終了温度:850〜1150℃、仕上圧延終了温度:750〜850℃、かつ、粗圧延と仕上圧延における930℃以下での合計圧下率:65%以上とする粗圧延および仕上圧延を施して熱延板とする工程であり、
前記冷却工程は、前記熱延板を、板厚中心温度で冷却開始から冷却停止までの平均冷却速度:5〜25℃/s、冷却停止温度:450〜650℃で冷却する工程であり、
前記冷間ロール成形工程は、前記熱延鋼板にロール成形加工を施した鋼管素材を溶接し、溶接後の鋼管外面の周長に対して縮径率:0.2〜0.5%の縮径圧延を行う電縫鋼管の製造方法。
[5] [1]〜[3]のいずれか1つに記載の成分組成を有し、板厚をtとしたとき、外表面から板厚tの1/4t深さ位置における鋼組織は、ベイナイトが面積率で60%以上であり、前記ベイナイトの平均有効粒径が平均円相当径で20.0μm以下、かつ前記ベイナイトの平均アスペクト比が0.1〜0.8である熱延鋼板に冷間ロール成形工程を施して電縫鋼管とする電縫鋼管の製造方法であって、
前記冷間ロール成形工程は、前記熱延鋼板にロール成形加工を施した鋼管素材を溶接し、溶接後の鋼管外面の周長に対して縮径率:0.2〜0.5%の縮径圧延を行う電縫鋼管の製造方法。
[6] [1]〜[3]のいずれか1つに記載の電縫鋼管を用いた鋼管杭。
The present invention has been completed by further studies based on such findings, and the gist of the present invention is as follows.
[1] An electric resistance welded steel pipe having a base material portion and a welded portion in the steel axial direction,
The component composition of the base material part is mass%,
C: 0.12 to 0.20%,
Si: 0.60% or less,
Mn: 0.50 to 1.70%,
P: 0.030% or less,
S: 0.015% or less,
Al: 0.010 to 0.060%,
Nb: 0.010 to 0.080%,
Ti: 0.010 to 0.050%,
N: 0.006% or less is contained, and the balance is Fe and inevitable impurities,
Assuming that the plate thickness of the base material portion is t, the steel structure at a depth position of ¼t from the outer surface of the electric resistance welded steel pipe is
Bainite has an area ratio of 60% or more,
The average effective particle size of the bainite is 20.0 μm or less in average circle equivalent diameter, and the average aspect ratio of the bainite is 0.1 to 0.8;
The tensile strength in the tube axis direction is 590 MPa or more, the 0.2% proof stress is 450 MPa or more, and the yield ratio is 80 to 90%.
Charpy absorbed energy at −30 ° C. in which the pipe axis direction in the base material portion is the longitudinal direction of the test piece is 70 J or more,
An electric resistance welded steel pipe having a residual stress of 250 MPa or less in the pipe axial direction on the outer surface of the steel pipe in the base material portion.
[2] The electric resistance welded steel pipe according to [1], which further contains B: 0.008% or less by mass% in addition to the component composition.
[3] In addition to the above component composition, further in mass%,
Cr: 0.01 to 1.0%,
V: 0.010 to 0.060%,
Mo: 0.01 to 1.0%,
Cu: 0.01 to 0.50%,
Ni: 0.01 to 1.0%,
Ca: 0.0005 to 0.010%
The electric resistance welded steel pipe according to [1] or [2], which contains one or more selected from the above.
[4] A method for producing an electric resistance welded steel pipe, in which a steel material is subjected to a hot rolling step and a cooling step in this order to obtain a hot rolled steel sheet, and the hot rolled steel sheet is subjected to a cold roll forming step to obtain an electric resistance welded steel tube. And
The steel material has a composition according to any one of [1] to [3],
In the hot rolling step, after heating the steel material to a heating temperature of 1100 to 1280 ° C., rough rolling end temperature: 850 to 1150 ° C., finish rolling end temperature: 750 to 850 ° C., and rough rolling and finish rolling. Total rolling reduction at 930 ° C. or less in the above: 65% or more rough rolling and finish rolling to give a hot rolled sheet,
The cooling step is a step of cooling the hot-rolled sheet at an average cooling rate from the start of cooling to a stop of cooling at a sheet thickness center temperature: 5 to 25 ° C./s, a cooling stop temperature: 450 to 650 ° C.,
In the cold roll forming step, a steel pipe material that has been subjected to roll forming processing is welded to the hot rolled steel plate, and a diameter reduction ratio of 0.2 to 0.5% is reduced with respect to the circumferential length of the outer surface of the steel pipe after welding. A method for manufacturing an electric resistance welded steel pipe that is diameter rolled.
[5] The steel structure having the component composition according to any one of [1] to [3] and assuming the plate thickness to be t, the steel structure at a depth position of ¼t from the outer surface is t A hot rolled steel sheet having an area ratio of bainite of 60% or more, an average effective particle diameter of bainite of 20.0 μm or less in an average circle equivalent diameter, and an average aspect ratio of bainite of 0.1 to 0.8. A method of manufacturing an electric resistance welded steel pipe, which comprises a cold roll forming step to obtain an electric resistance welded steel pipe,
In the cold roll forming step, a steel pipe material that has been subjected to roll forming processing is welded to the hot rolled steel plate, and a diameter reduction ratio of 0.2 to 0.5% is reduced with respect to the circumferential length of the outer surface of the steel pipe after welding. A method for manufacturing an electric resistance welded steel pipe that is diameter rolled.
[6] A steel pipe pile using the electric resistance welded steel pipe according to any one of [1] to [3].

本発明によれば、鋼管杭として好適に用いられる、最適な降伏比および高い耐座屈性能を有し、さらに高強度および高靱性を備えた電縫鋼管およびその製造方法、並びに鋼管杭を提供することができる。本発明の電縫鋼管は容易に製造でき、産業上格段の効果を奏する。  According to the present invention, there is provided an electric resistance welded steel pipe suitably used as a steel pipe pile, having an optimum yield ratio and a high buckling resistance, and having high strength and high toughness, a method for producing the same, and a steel pipe pile. can do. The electric resistance welded steel pipe of the present invention can be easily manufactured and has a remarkable industrial effect.

以下、本発明について詳細に説明する。  Hereinafter, the present invention will be described in detail.

まず、本発明の電縫鋼管の成分組成の限定理由について説明する。以下、特に断りがない限り、成分組成における「質量%」は単に「%」で記す。  First, the reasons for limiting the component composition of the electric resistance welded steel pipe of the present invention will be described. Hereinafter, "mass%" in the component composition is simply described as "%" unless otherwise specified.

本発明の電縫鋼管は、母材部と溶接部を有し、母材部はC:0.12〜0.20%、Si:0.6%以下、Mn:0.50〜1.70%、P:0.030%以下、S:0.015%以下、Al:0.010〜0.060%、Nb:0.010〜0.080%、Ti:0.010〜0.050%、N:0.006%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する。  The electric resistance welded steel pipe of the present invention has a base material portion and a welded portion, and the base material portion has C: 0.12 to 0.20%, Si: 0.6% or less, and Mn: 0.50 to 1.70. %, P: 0.030% or less, S: 0.015% or less, Al: 0.010 to 0.060%, Nb: 0.010 to 0.080%, Ti: 0.010 to 0.050% , N: 0.006% or less, with the balance being Fe and inevitable impurities.

なお、本発明の電縫鋼管は、管軸方向に溶接部を有する。後述する「熱延鋼板」には、熱延鋼板、熱延鋼帯を含むものとする。  The electric resistance welded steel pipe of the present invention has a welded portion in the pipe axis direction. The “hot rolled steel sheet” described later includes hot rolled steel sheet and hot rolled steel strip.

C:0.12〜0.20%
Cは、固溶強化により鋼管(電縫鋼管)の強度を増加させるとともに、ベイナイトなどの鋼組織の生成に関与する元素である。また、Cは、降伏比の適正化に有効な元素である。比較的板厚の大きい鋼管(例えば、板厚が16mm以上の鋼管)は、外径と内径の差が大きいため、鋼管を製造する際の加工度が大きく、降伏比が上昇しやすい。このため、Cを多く含有する必要がある。したがって、上記した効果を得るためには、0.12%以上のCの含有を必要とする。一方、0.20%を超えるCの含有は、マルテンサイトが生成しやすくなり、本発明で目的とする鋼組織が得られない。その結果、本発明で目的とする高靱性を確保することができなくなる。よって、Cは0.12〜0.20%とする。Cは、好ましくは0.13%以上とし、より好ましくは0.14%以上とする。Cは、好ましくは0.19%以下とし、より好ましくは0.18%以下とする。
C: 0.12 to 0.20%
C is an element that increases the strength of a steel pipe (electric resistance welded steel pipe) by solid solution strengthening and is involved in the formation of a steel structure such as bainite. C is an element effective in optimizing the yield ratio. Since a steel pipe having a relatively large plate thickness (for example, a steel pipe having a plate thickness of 16 mm or more) has a large difference between the outer diameter and the inner diameter, the workability in manufacturing the steel pipe is large and the yield ratio is likely to increase. Therefore, it is necessary to contain a large amount of C. Therefore, in order to obtain the above effects, it is necessary to contain 0.12% or more of C. On the other hand, when the content of C exceeds 0.20%, martensite is likely to be formed, and the steel structure targeted by the present invention cannot be obtained. As a result, it becomes impossible to secure the high toughness targeted by the present invention. Therefore, C is 0.12 to 0.20%. C is preferably 0.13% or more, and more preferably 0.14% or more. C is preferably 0.19% or less, more preferably 0.18% or less.

Si:0.60%以下
Siは、脱酸剤として作用するとともに、鋼管の強度を増加させることができる元素である。しかし、Siを過剰に含有すると靱性が低下する。このようなことから、Siは0.60%以下とする。Siは、好ましくは0.50%以下とし、より好ましくは0.45%以下とする。なお、Siの下限は特に規定しないが、電縫溶接性の観点より、0.01%以上とすることが好ましい。より好ましくは0.02%以上とする。
Si: 0.60% or less Si is an element that acts as a deoxidizer and can increase the strength of the steel pipe. However, if Si is contained excessively, the toughness decreases. Therefore, Si is set to 0.60% or less. Si is preferably 0.50% or less, more preferably 0.45% or less. The lower limit of Si is not particularly specified, but is preferably 0.01% or more from the viewpoint of electric resistance weldability. More preferably, it is 0.02% or more.

Mn:0.50〜1.70%
Mnは、固溶強化を介して鋼管の強度を増加させる元素である。このような効果を得て、本発明で目的とする高強度を確保するためには、0.50%以上のMnの含有を必要とする。一方、1.70%を超えてMnを含有すると、鋼組織が微細化し、降伏強度が高くなり、本発明で目的とする降伏比を確保できなくなる。このため、Mnは0.50〜1.70%とする。Mnは、好ましくは0.55%以上とし、より好ましくは0.60%以上とする。Mnは、好ましくは1.65%以下とし、より好ましくは1.60%以下とする。
Mn: 0.50 to 1.70%
Mn is an element that increases the strength of the steel pipe through solid solution strengthening. In order to obtain such an effect and ensure the high strength targeted by the present invention, it is necessary to contain 0.50% or more of Mn. On the other hand, if the Mn content exceeds 1.70%, the steel structure becomes finer and the yield strength becomes higher, so that the yield ratio targeted by the present invention cannot be secured. Therefore, Mn is set to 0.50 to 1.70%. Mn is preferably 0.55% or more, more preferably 0.60% or more. Mn is preferably 1.65% or less, more preferably 1.60% or less.

P:0.030%以下
Pは、結晶粒界に偏析して靭性を低下させる元素であり、不純物としてできるだけ低減することが望ましいが、本発明では、0.030%までは許容できる。このようなことから、Pは0.030%以下とする。Pは、好ましくは0.025%以下とし、より好ましくは0.020%以下とする。しかし、Pの過度の低減は、精錬コストの高騰を招くため、Pは0.002%以上とすることが好ましい。より好ましくは0.003%以上とする。
P: 0.030% or less P is an element that segregates at the crystal grain boundaries and reduces toughness, and it is desirable to reduce it as an impurity as much as possible, but in the present invention, up to 0.030% is acceptable. Therefore, P is 0.030% or less. P is preferably 0.025% or less, more preferably 0.020% or less. However, excessive reduction of P causes an increase in refining cost, so P is preferably 0.002% or more. More preferably, it is 0.003% or more.

S:0.015%以下
Sは、鋼管の素材である熱延鋼板を製造する際、鋼中でMnSとして存在し、熱間圧延工程で薄く延伸されることにより、鋼管の延性および靭性に悪影響を及ぼす。このため、本発明ではSを不純物としてできるだけ低減することが望ましいが、Sの含有は0.015%までは許容できる。このため、Sは0.015%以下とする。Sは、好ましくは0.010%以下とし、より好ましくは0.008%以下とする。しかし、Sの過度の低減は、精錬コストの高騰を招くため、Sは0.0002%以上とすることが好ましい。より好ましくは0.001%以上とする。
S: 0.015% or less S is present as MnS in steel when producing a hot-rolled steel sheet that is a raw material of a steel pipe, and is thinly drawn in the hot rolling step, which adversely affects the ductility and toughness of the steel pipe. Exert. Therefore, in the present invention, it is desirable to reduce S as an impurity as much as possible, but the content of S can be allowed up to 0.015%. Therefore, S is set to 0.015% or less. S is preferably 0.010% or less, more preferably 0.008% or less. However, excessive reduction of S causes a rise in refining cost, so S is preferably 0.0002% or more. More preferably, it is 0.001% or more.

Al:0.010〜0.060%
Alは、脱酸剤として作用するとともに、Nと結合してAlNを形成し、結晶粒の微細化に寄与する。このような効果を得るためには、0.010%以上のAlを含有する必要がある。一方、0.060%を超える多量のAlの含有は、鋼材(鋼管の素材である熱延鋼板)の清浄度を低下させ、鋼管の延性および靭性を低下させる。このため、Alは0.010〜0.060%とする。Alは、好ましくは0.015%以上とし、より好ましくは0.020%以上とする。Alは、好ましくは0.055%以下とし、より好ましくは0.050%以下とする。
Al: 0.010 to 0.060%
Al acts as a deoxidizing agent, combines with N to form AlN, and contributes to refinement of crystal grains. In order to obtain such an effect, it is necessary to contain 0.010% or more of Al. On the other hand, the inclusion of a large amount of Al exceeding 0.060% reduces the cleanliness of the steel material (hot rolled steel sheet that is the raw material of the steel pipe), and reduces the ductility and toughness of the steel pipe. Therefore, Al is set to 0.010 to 0.060%. Al is preferably 0.015% or more, more preferably 0.020% or more. The Al content is preferably 0.055% or less, and more preferably 0.050% or less.

Nb:0.010〜0.080%
Nbは、炭素や窒素と結合して微細な析出物を形成し、析出強化によって鋼管の強度を増加させる。このような効果を得るためには、Nbを0.010%以上含有する必要がある。一方、0.080%を超えてNbを含有すると、鋼管の素材である熱延鋼板を製造する際、熱間圧延工程における加熱で固溶させることが難しくなる。その結果、粗大な析出物として残留し、靱性が低下する。このため、Nbは0.010〜0.080%とする。Nbは、好ましくは0.015%以上とし、より好ましくは0.020%以上とする。Nbは、好ましくは0.075%以下とし、より好ましくは0.070%以下とする。
Nb: 0.010 to 0.080%
Nb combines with carbon and nitrogen to form fine precipitates, and increases the strength of the steel pipe by precipitation strengthening. In order to obtain such an effect, it is necessary to contain Nb in an amount of 0.010% or more. On the other hand, when Nb is contained in excess of 0.080%, it becomes difficult to form a solid solution by heating in the hot rolling step when manufacturing a hot rolled steel sheet which is a raw material of a steel pipe. As a result, coarse precipitates remain and the toughness decreases. Therefore, Nb is set to 0.010 to 0.080%. Nb is preferably 0.015% or more, more preferably 0.020% or more. Nb is preferably 0.075% or less, more preferably 0.070% or less.

Ti:0.010〜0.050%
Tiは、炭素や窒素と結合して微細な析出物を形成し、析出強化によって鋼管の強度を増加させる。このような効果を得るためには、Tiを0.010%以上含有する必要がある。一方、0.050%を超えてTiを含有すると、析出物が粗大化し、靱性が低下する。このため、Tiは0.010〜0.050%とする。Tiは、好ましくは0.012%以上とし、より好ましくは0.015%以上とする。Tiは、好ましくは0.045%以下とし、より好ましくは0.040%以下とする。
Ti: 0.010 to 0.050%
Ti combines with carbon and nitrogen to form fine precipitates, and increases the strength of the steel pipe by precipitation strengthening. To obtain such an effect, it is necessary to contain Ti in an amount of 0.010% or more. On the other hand, if the Ti content exceeds 0.050%, the precipitates become coarse and the toughness decreases. Therefore, Ti is set to 0.010 to 0.050%. Ti is preferably 0.012% or more, more preferably 0.015% or more. The Ti content is preferably 0.045% or less, more preferably 0.040% or less.

N:0.006%以下
Nは、微量であれば鋼管の強度を増加させる効果を有するが、多量に含有すると高温で粗大な析出物を形成し、靱性を低下させる。このため、Nは0.006%以下とする。Nの過度な低減は、精錬コストの高騰を招くため、好ましくは0.001%以上とし、より好ましくは0.002%以上とする。Nは、好ましくは0.005%以下とし、より好ましくは0.004%以下とする。
N: 0.006% or less N has the effect of increasing the strength of the steel pipe if it is in a trace amount, but if it is contained in a large amount, it forms coarse precipitates at high temperatures and reduces toughness. Therefore, N is 0.006% or less. Excessive reduction of N causes an increase in refining cost, so the content is preferably 0.001% or more, and more preferably 0.002% or more. N is preferably 0.005% or less, more preferably 0.004% or less.

残部は、Feおよび不可避的不純物である。なお、本発明の効果を損なわない範囲においては、不可避的不純物として、O:0.0050%以下の含有を許容できる。  The balance is Fe and inevitable impurities. In addition, as long as the effect of the present invention is not impaired, the content of O: 0.0050% or less can be allowed as an unavoidable impurity.

上記した成分が本発明における電縫鋼管の基本の成分組成である。上記した必須元素で本発明で目的とする特性は得られるが、この基本の成分組成に加えて、必要に応じてさらに、下記の元素を含有することができる。  The above-mentioned components are the basic component compositions of the electric resistance welded steel pipe in the present invention. Although the above-mentioned essential elements can provide the characteristics desired in the present invention, in addition to the basic component composition, the following elements can be further contained, if necessary.

B:0.008%以下
Bは、フェライト変態開始温度を低下させることで鋼組織の微細化に寄与する元素であり、必要に応じて含有することができる。しかし、Bの含有量が0.008%を超えると、結晶粒界に偏析しやすくなり、靱性が低下する恐れがある。したがって、Bを含有する場合には、Bを0.008%以下とすることが好ましい。より好ましくは0.006%以下とする。なお、Bは、好ましくは0.0003%以上とする。
B: 0.008% or less B is an element that contributes to the refinement of the steel structure by lowering the ferrite transformation start temperature, and can be contained if necessary. However, if the content of B exceeds 0.008%, segregation tends to occur at the grain boundaries, and the toughness may decrease. Therefore, when B is contained, B is preferably 0.008% or less. It is more preferably 0.006% or less. In addition, B is preferably 0.0003% or more.

Cr:0.01〜1.0%、V:0.010〜0.060%、Mo:0.01〜1.0%、Cu:0.01〜0.50%、Ni:0.01〜1.0%、Ca:0.0005〜0.010%のうちから選ばれた1種または2種以上
Cr:0.01〜1.0%
Crは、焼入れ性を高めることで、鋼管の強度を上昇させる元素であり、必要に応じて含有することができる。このような効果を得るためには、Crを0.01%以上含有することが好ましい。一方、1.0%を超えてCrを含有すると、靱性や溶接性を低下させる恐れがあるため、1.0%以下とすることが好ましい。したがって、Crを含有する場合には、Crを0.01〜1.0%とすることが好ましい。Crは、より好ましくは0.02%以上とし、より一層好ましくは0.03%以上とする。Crは、より好ましくは0.8%以下とし、より一層好ましくは0.6%以下とする。
Cr: 0.01-1.0%, V: 0.010-0.060%, Mo: 0.01-1.0%, Cu: 0.01-0.50%, Ni: 0.01- 1.0%, one or more selected from Ca: 0.0005 to 0.010% Cr: 0.01 to 1.0%
Cr is an element that increases the strength of the steel pipe by increasing the hardenability, and can be contained if necessary. In order to obtain such effects, it is preferable to contain Cr in an amount of 0.01% or more. On the other hand, if Cr is contained in excess of 1.0%, the toughness and weldability may be deteriorated, so the content is preferably 1.0% or less. Therefore, when Cr is contained, Cr is preferably 0.01 to 1.0%. Cr is more preferably 0.02% or more, still more preferably 0.03% or more. Cr is more preferably 0.8% or less, and even more preferably 0.6% or less.

V:0.010〜0.060%
Vは、炭素や窒素と結合して微細な析出物を形成し、析出強化によって鋼管の強度を増加させる元素であり、必要に応じて含有することができる。このような効果を得るためには、Vを0.010%以上含有する必要がある。一方、0.060%を超えてVを含有すると、析出物が粗大化し、上記した効果が飽和しやすくなす。このため、Vは0.010〜0.060%とする。Vは、好ましくは0.012%以上とし、より好ましくは0.015%以上とする。Vは、好ましくは0.055%以下とし、より好ましくは0.050%以下とする。
V: 0.010 to 0.060%
V is an element that combines with carbon or nitrogen to form fine precipitates and increases the strength of the steel pipe by precipitation strengthening, and can be contained as necessary. In order to obtain such an effect, it is necessary to contain V by 0.010% or more. On the other hand, if V is contained in excess of 0.060%, the precipitates become coarse and the above-mentioned effect is easily saturated. Therefore, V is set to 0.010 to 0.060%. V is preferably 0.012% or more, more preferably 0.015% or more. V is preferably 0.055% or less, and more preferably 0.050% or less.

Mo:0.01〜1.0%
Moは、焼入れ性を高めることで、鋼管の強度を上昇させる元素であり、必要に応じて含有することができる。このような効果を得るためには、Moを0.01%以上含有することが好ましい。一方、1.0%を超えてMoを含有すると、靱性を低下させるおそれがあるため、1.0%以下とすることが好ましい。したがって、Moを含有する場合には、Moを0.01〜1.0%とすることが好ましい。Moは、より好ましくは0.02%以上とし、より一層好ましくは0.03%以上とする。Moは、より好ましくは0.8%以下とし、より一層好ましくは0.6%以下とする。
Mo: 0.01-1.0%
Mo is an element that increases the strength of the steel pipe by increasing the hardenability, and can be contained if necessary. In order to obtain such effects, it is preferable to contain Mo in an amount of 0.01% or more. On the other hand, if Mo is contained in excess of 1.0%, the toughness may be reduced, so 1.0% or less is preferable. Therefore, when Mo is contained, it is preferable to set Mo to 0.01 to 1.0%. Mo is more preferably 0.02% or more, still more preferably 0.03% or more. Mo is more preferably 0.8% or less, and even more preferably 0.6% or less.

Cu:0.01〜0.50%
Cuは、固溶強化により鋼管の強度を上昇させる元素であり、必要に応じて含有することができる。このような効果を得るためには、Cuを0.01%以上含有することが好ましい。一方、0.50%を超えてCuを含有すると、靱性を低下させるおそれがあるため、0.50%以下とすることが好ましい。したがって、Cuを含有する場合には、Cuを0.01〜0.50%とすることが好ましい。Cuは、より好ましくは0.02%以上とし、より一層好ましくは0.03%以上とする。Cuは、より好ましくは0.45%以下とし、より一層好ましくは0.40%以下とする。
Cu: 0.01 to 0.50%
Cu is an element that increases the strength of the steel pipe by solid solution strengthening, and can be contained if necessary. In order to obtain such an effect, it is preferable to contain Cu in an amount of 0.01% or more. On the other hand, if Cu is contained in excess of 0.50%, the toughness may be reduced, so 0.50% or less is preferable. Therefore, when Cu is contained, the content of Cu is preferably 0.01 to 0.50%. Cu is more preferably 0.02% or more, still more preferably 0.03% or more. Cu is more preferably 0.45% or less, and even more preferably 0.40% or less.

Ni:0.01〜1.0%
Niは、固溶強化により鋼管の強度を上昇させる元素であり、必要に応じて含有することができる。このような効果を得るためには、Niを0.01%以上含有することが好ましい。一方、1.0%を超えてNiを含有すると、靱性を低下させるおそれがあるため、1.0%以下とすることが好ましい。したがって、Niを含有する場合には、Niを0.01〜1.0%とすることが好ましい。Niは、より好ましくは0.02%以上とし、より一層好ましくは0.03%以上とする。Niは、より好ましくは0.8%以下とし、より一層好ましくは0.6%以下とする。
Ni: 0.01-1.0%
Ni is an element that increases the strength of the steel pipe by solid solution strengthening, and can be contained if necessary. In order to obtain such effects, it is preferable to contain Ni in an amount of 0.01% or more. On the other hand, if Ni is contained in excess of 1.0%, the toughness may be reduced, so the content is preferably 1.0% or less. Therefore, when Ni is contained, the Ni content is preferably 0.01 to 1.0%. The Ni content is more preferably 0.02% or more, still more preferably 0.03% or more. The Ni content is more preferably 0.8% or less, and even more preferably 0.6% or less.

Ca:0.0005〜0.010%
Caは、鋼管の素材である熱延鋼板を製造する際、熱間圧延工程で薄く延伸されるMnS等の硫化物を、球状化することで鋼の靱性向上に寄与する元素であり、必要に応じて含有することができる。このような効果を得るため、Caを含有する場合には、0.0005%以上含有することが好ましい。しかし、Caの含有量が0.010%を超えると、鋼中にCa酸化物クラスターが形成され、靱性が悪化する恐れがある。したがって、Caを含有する場合には、Caを0.0005%〜0.010%とすることが好ましい。Caは、より好ましくは0.0010%以上とし、より一層好ましくは0.0015%以上とする。Caは、より好ましくは0.005%以下とし、より一層好ましくは0.004%以下とする。
Ca: 0.0005 to 0.010%
Ca is an element that contributes to the improvement of the toughness of steel by spheroidizing sulfides such as MnS that are thinly drawn in the hot rolling step when producing a hot rolled steel sheet that is a material for steel pipes, and is necessary. Can be included accordingly. In order to obtain such an effect, when Ca is contained, it is preferably contained in 0.0005% or more. However, if the Ca content exceeds 0.010%, Ca oxide clusters are formed in the steel, and the toughness may deteriorate. Therefore, when Ca is contained, it is preferable that the content of Ca be 0.0005% to 0.010%. Ca is more preferably 0.0010% or more, and further preferably 0.0015% or more. Ca is more preferably 0.005% or less, and even more preferably 0.004% or less.

次に、本発明の電縫鋼管の鋼組織を限定した理由について説明する。  Next, the reason for limiting the steel structure of the electric resistance welded steel pipe of the present invention will be described.

本発明の電縫鋼管における、母材部の板厚をtとしたとき、電縫鋼管の外表面から板厚tの1/4t深さ位置における鋼組織は、ベイナイトが面積率で60%以上であり、ベイナイトの平均有効粒径が平均円相当径で20.0μm以下、かつベイナイトの平均アスペクト比で0.1〜0.8である鋼組織を有する。  In the electric resistance welded steel pipe of the present invention, when the plate thickness of the base material portion is t, the steel structure at a depth position of 1/4 t of the plate thickness t from the outer surface of the electric resistance welded steel pipe has bainite at an area ratio of 60% or more. That is, the steel has a steel structure in which the average effective grain size of bainite is 20.0 μm or less in average circle equivalent diameter, and the average aspect ratio of bainite is 0.1 to 0.8.

ここで、板厚tの1/4t深さ位置とは、鋼組織を制御する上で重要となる、鋼管の素材である熱延鋼板を製造する際の熱間圧延工程における冷却速度が最も大きくなる最表層と最も小さくなる1/2t深さ位置の中間となる位置である。なお、本発明では、熱間圧延における板幅Wの1/4W位置の圧延方向に平行な断面を鋼組織の評価面としている。本発明では、熱間圧延後に熱処理等は行わないため、熱延鋼板の組織と鋼管(母材部)の組織は同じになる。  Here, the 1 / 4t depth position of the plate thickness t means that the cooling rate in the hot rolling step when manufacturing a hot rolled steel sheet, which is a raw material of a steel pipe, is the most important in controlling the steel structure. It is a position intermediate between the outermost surface layer and the 1 / 2t depth position that is the smallest. In the present invention, a cross section parallel to the rolling direction at the 1/4 W position of the strip width W in hot rolling is used as the evaluation surface of the steel structure. In the present invention, since heat treatment or the like is not performed after hot rolling, the structure of the hot rolled steel plate and the structure of the steel pipe (base material portion) are the same.

ベイナイトの面積率:60%以上
本発明において高強度と高靱性を両立するために、ベイナイトを面積率で60%以上含有することが重要である。ベイナイトが60%未満であると、本発明で目的とする強度が得にくくなる。したがって、鋼管の外表面から板厚tの1/4t深さ位置における鋼組織は、ベイナイトを面積率で60%以上とする。好ましくは65%以上である。なお、ベイナイトの面積率が過剰であると降伏比が高くなり過ぎるために、ベイナイトは面積率で98%以下とすることが好ましい。より好ましくは95%以下とする。
Area ratio of bainite: 60% or more In the present invention, in order to achieve both high strength and high toughness, it is important to contain bainite in an area ratio of 60% or more. When the bainite content is less than 60%, it becomes difficult to obtain the strength intended in the present invention. Therefore, the steel structure at the 1 / 4t depth position of the plate thickness t from the outer surface of the steel pipe has bainite in an area ratio of 60% or more. It is preferably at least 65%. If the area ratio of bainite is excessive, the yield ratio becomes too high. Therefore, the area ratio of bainite is preferably 98% or less. It is more preferably 95% or less.

ベイナイト以外の組織(残部組織)は、フェライト、パーライト、マルテンサイト、オーステナイトなどが考えられる。これらの組織の面積率の合計が、鋼組織全体に対して40%以上になると、強度や靱性の不足、降伏比の上昇や過度な低下を招く。よって40%未満とすることが好ましい。より好ましくは35%未満とする。本発明で目的とする降伏比を得ることを考慮すると、残部組織の面積率の合計の下限は、2%超えが好ましく、5%超えがより好ましい。  As the structure (residual structure) other than bainite, ferrite, pearlite, martensite, austenite, etc. can be considered. If the total area ratio of these structures is 40% or more with respect to the entire steel structure, the strength and toughness are insufficient, and the yield ratio is increased or excessively decreased. Therefore, it is preferably less than 40%. It is more preferably less than 35%. In consideration of obtaining the yield ratio targeted in the present invention, the lower limit of the total area ratio of the remaining structure is preferably more than 2%, more preferably more than 5%.

なお、本発明では、上記した各組織の面積率の測定は、後述する実施例に記載の方法で行うことができる。  In the present invention, the area ratio of each tissue described above can be measured by the method described in Examples below.

ベイナイトの平均有効粒径:平均円相当径で20.0μm以下
本発明において高強度と高靱性を両立するために、ベイナイトの平均有効粒径の平均円相当径を20.0μm以下とすることが重要である。ベイナイトの平均有効粒径が、平均円相当径で20.0μmを超えると、本発明で目的とする靱性が得られなくなる。また、本発明で目的とする強度が得られなくなる。好ましくは15.0μm以下とする。なお、ベイナイトが微細になり過ぎると降伏比が高くなり過ぎるために、ベイナイトの平均有効粒径の平均円相当径を1.0μm以上とすることが好ましく、2.0μm以上とすることがより好ましい。
Average effective particle size of bainite: average circle equivalent diameter of 20.0 μm or less In the present invention, in order to achieve both high strength and high toughness, the average effective equivalent particle diameter of bainite may be 20.0 μm or less. is important. When the average effective particle size of bainite exceeds 20.0 μm in average equivalent circle diameter, the toughness targeted by the present invention cannot be obtained. In addition, the desired strength cannot be obtained in the present invention. It is preferably 15.0 μm or less. If the bainite becomes too fine, the yield ratio becomes too high. Therefore, it is preferable that the average equivalent circle diameter of the average effective particle diameter of bainite is 1.0 μm or more, and more preferably 2.0 μm or more. .

ここでは、隣接する結晶の方位差を求め、隣り合う結晶の方位差(結晶方位差)が15°以上の境界で囲まれた領域を結晶粒としたとき、その結晶粒と面積が等しい円の直径をベイナイトの有効粒径とした。得られた有効粒径から粒径の算術平均を求めて、平均円相当径(平均有効粒径)とした。なお、本発明では、結晶方位差、有効粒径、および平均円相当径は、後述する実施例に記載の方法で測定することができる。  Here, when the difference in orientation between adjacent crystals is obtained and the region surrounded by the boundary where the difference in orientation between adjacent crystals (crystal orientation difference) is 15 ° or more is defined as a crystal grain, the area of the circle is equal to that of the crystal grain. The diameter was defined as the effective particle size of bainite. The arithmetic mean of the particle diameters was calculated from the obtained effective particle diameters to obtain the average equivalent circle diameter (average effective particle diameter). In the present invention, the crystal orientation difference, the effective grain size, and the average equivalent circle diameter can be measured by the methods described in Examples described later.

ベイナイトの平均アスペクト比:0.1〜0.8
本発明において管軸方向の降伏比を80〜90%に制御するためには、ベイナイトの平均アスペクト比を0.1〜0.8とすることが必要となる。ここでは、上述のベイナイトの結晶粒において、(板厚方向の長さの平均)/(管軸方向の長さの平均)を算出し、ベイナイトの平均アスペクト比とした。ベイナイトの平均アスペクト比が0.8を超えると、管軸方向の塑性変形能が低下し、降伏比が90%を超えやすくなる。一方、ベイナイトの平均アスペクト比が0.1未満では、管軸方向の強度が低下し、本発明で目的とする強度が得られなくなる。
Bainite average aspect ratio: 0.1-0.8
In the present invention, in order to control the yield ratio in the tube axis direction to 80 to 90%, it is necessary to set the average aspect ratio of bainite to 0.1 to 0.8. Here, in the above-mentioned bainite crystal grains, (average length in the plate thickness direction) / (average length in the tube axis direction) was calculated and used as the average aspect ratio of bainite. When the average aspect ratio of bainite exceeds 0.8, the plastic deformability in the pipe axis direction decreases, and the yield ratio easily exceeds 90%. On the other hand, when the average aspect ratio of bainite is less than 0.1, the strength in the tube axis direction decreases, and the strength intended by the present invention cannot be obtained.

なお、本発明では、ベイナイトの結晶粒における板厚方向の長さの平均、圧延方向の長さの平均は、後述する実施例に記載の方法で測定することができる。  In the present invention, the average length in the plate thickness direction and the average length in the rolling direction of the bainite crystal grains can be measured by the method described in Examples below.

次に、本発明の一実施形態における電縫鋼管の製造方法について説明する。  Next, a method for manufacturing an electric resistance welded steel pipe according to an embodiment of the present invention will be described.

本発明の電縫鋼管は、例えば、上記した成分組成を有する鋼素材に、熱間圧延工程、冷却工程および巻取工程をこの順に施して熱延鋼板とし、さらに、該熱延鋼板に冷間ロール成形工程を施して電縫鋼管とする。  The electric resistance welded steel pipe of the present invention is, for example, a hot rolled steel sheet obtained by subjecting a steel material having the above-described composition to a hot rolling step, a cooling step and a winding step in this order, and further, cold rolling the hot rolled steel sheet. Roll-formed process is applied to make ERW steel pipe.

なお、以下の製造方法の説明において、温度に関する「℃」表示は、特に断らない限り、鋼素材や鋼板(熱延鋼板)の表面温度とする。これらの表面温度は、放射温度計等で測定することができる。また、鋼板板厚中心の温度は、鋼板断面内の温度分布を伝熱解析により計算し、その結果を鋼板の表面温度によって補正することで求めることができる。また、「熱延鋼板」には、熱延鋼板、熱延鋼帯を含むものとする。  In the following description of the manufacturing method, “° C.” regarding temperature is the surface temperature of a steel material or a steel plate (hot rolled steel plate) unless otherwise specified. These surface temperatures can be measured with a radiation thermometer or the like. The temperature at the center of the steel plate thickness can be obtained by calculating the temperature distribution in the steel plate cross section by heat transfer analysis and correcting the result according to the surface temperature of the steel plate. The "hot rolled steel sheet" includes hot rolled steel sheet and hot rolled steel strip.

本発明において、鋼素材(鋼スラブ)の溶製方法は、特に限定する必要はない。上記した成分組成を有する溶鋼を、転炉、電気炉、真空溶解炉等の常用の溶製方法で溶製し、連続鋳造法等の常用の鋳造方法でスラブ等の鋳片とすることが、品質、生産性等の観点から好ましい。なお、連続鋳造法に代えて、造塊−分塊圧延法を適用しても何ら問題はない。溶鋼にはさらに、取鍋精錬等の二次精錬を施してもよい。  In the present invention, the method for melting the steel material (steel slab) is not particularly limited. Molten steel having the above-described component composition, a converter, an electric furnace, a melting process by a conventional melting method such as a vacuum melting furnace, and a slab or the like slab by a conventional casting method such as a continuous casting method, It is preferable from the viewpoint of quality and productivity. It should be noted that there is no problem even if the ingot-bulk rolling method is applied instead of the continuous casting method. The molten steel may be further subjected to secondary refining such as ladle refining.

次いで、得られた鋼素材(鋼スラブ)に熱間圧延工程を施す。熱間圧延工程では、鋼素材を加熱温度:1100〜1280℃に加熱した後、粗圧延終了温度:850〜1150℃とする粗圧延を施し、仕上圧延終了温度:750〜850℃とする仕上圧延を施し、かつ粗圧延および仕上圧延における930℃以下での合計圧下率:65%以上である熱間圧延を施して熱延板とする工程である。  Then, the obtained steel material (steel slab) is subjected to a hot rolling step. In the hot rolling process, after heating the steel material to a heating temperature of 1100 to 1280 ° C., rough rolling to a rough rolling end temperature of 850 to 1150 ° C. is performed, and a finish rolling to a finish rolling end temperature of 750 to 850 ° C. And a hot rolling at which the total rolling reduction at 930 ° C. or less in rough rolling and finish rolling: 65% or more is performed to obtain a hot rolled sheet.

加熱温度:1100〜1280℃
加熱温度が1100℃未満の場合は、鋳造時に生成した鋼素材中に存在する粗大な炭化物を固溶することができない。その結果、含有する炭化物形成元素の効果を十分に得ることができない。一方、加熱温度が1280℃を超えて高温となると、結晶粒が著しく粗大化し、鋼管の素材である熱延鋼板の組織が粗大化し、本発明で目的とする特性を確保することが困難となる。このため、鋼素材の加熱温度は1100〜1280℃とする必要がある。好ましくは1120〜1230℃とする。なお、この温度は、加熱炉の炉内設定温度とする。
Heating temperature: 1100-1280 ° C
If the heating temperature is lower than 1100 ° C, coarse carbides existing in the steel material produced during casting cannot be dissolved. As a result, the effect of the contained carbide forming element cannot be sufficiently obtained. On the other hand, when the heating temperature is higher than 1280 ° C. and becomes high temperature, the crystal grains are remarkably coarsened and the structure of the hot-rolled steel sheet, which is a raw material of the steel tube, is coarsened, and it becomes difficult to secure the target characteristics of the present invention. . Therefore, the heating temperature of the steel material needs to be 1100 to 1280 ° C. It is preferably 1120 to 1230 ° C. Note that this temperature is the temperature set in the furnace of the heating furnace.

粗圧延終了温度:850〜1150℃
粗圧延終了温度が850℃未満の場合、熱間圧延中の組織の回復が起こらず圧延方向に過度に伸長した結晶粒が生成しやすくなる。その結果、ベイナイトの平均アスペクト比が0.1未満となりやすい。一方、粗圧延終了温度が1150℃を超えると、オーステナイト未再結晶温度域での圧下量が不足し、微細なオーステナイト粒が得られず、その結果、本発明で目的とするベイナイトの平均有効粒径を確保することが困難となる。このため、粗圧延終了温度は850〜1150℃とする。好ましくは860〜1000℃とする。
Rough rolling end temperature: 850 to 1150 ° C
When the rough rolling end temperature is lower than 850 ° C., the recovery of the structure during hot rolling does not occur and crystal grains excessively elongated in the rolling direction are likely to be generated. As a result, the average aspect ratio of bainite tends to be less than 0.1. On the other hand, when the rough rolling finish temperature exceeds 1150 ° C., the amount of reduction in the austenite unrecrystallized temperature range is insufficient, and fine austenite grains cannot be obtained. As a result, the average effective grain size of bainite aimed at by the present invention is obtained. It becomes difficult to secure the diameter. Therefore, the rough rolling end temperature is set to 850 to 1150 ° C. The temperature is preferably 860 to 1000 ° C.

仕上圧延終了温度:750〜850℃
仕上圧延終了温度が750℃未満の場合、熱間圧延中の組織の回復が起こらず圧延方向に過度に伸長した結晶粒が生成しやすくなる。その結果、ベイナイトの平均アスペクト比が0.1未満となりやすい。一方、仕上圧延終了温度が850℃を超えると、オーステナイト未再結晶温度域での圧下量が不足し、微細なオーステナイト粒が得られず、その結果、本発明で目的とするベイナイトの平均有効粒径を確保することが困難となる。このため、仕上圧延終了温度は750〜850℃とする。好ましくは770〜830℃とする。
Finish rolling finish temperature: 750-850 ° C
When the finish rolling end temperature is lower than 750 ° C., the recovery of the structure during hot rolling does not occur and crystal grains excessively elongated in the rolling direction are likely to be generated. As a result, the average aspect ratio of bainite tends to be less than 0.1. On the other hand, when the finish rolling finish temperature exceeds 850 ° C., the amount of reduction in the austenite unrecrystallized temperature region is insufficient, and fine austenite grains cannot be obtained, and as a result, the average effective grain size of bainite intended in the present invention is obtained. It becomes difficult to secure the diameter. Therefore, the finish rolling end temperature is set to 750 to 850 ° C. The temperature is preferably 770 to 830 ° C.

粗圧延と仕上圧延における930℃以下での合計圧下率:65%以上
本発明では、熱間圧延工程においてオーステナイトを微細化することで、続く冷却工程、巻取工程で生成するベイナイトおよび残部組織を微細化し、本発明で目的とする強度および靱性を有する電縫鋼管の素材として適した熱延鋼板を得られる。熱間圧延工程においてオーステナイトを微細化するためには、オーステナイト未再結晶温度域での圧下率を高くし、十分な加工ひずみを導入する必要がある。この効果を得るため、本発明では、930℃以下仕上圧延終了温度までの温度域における合計圧下率を65%以上とする。ここで、合計圧下率とは、930℃以下仕上圧延終了温度までの温度域における各圧延パスの圧下率の合計をさす。
Total rolling reduction at 930 ° C. or less in rough rolling and finish rolling: 65% or more In the present invention, by refining austenite in the hot rolling step, bainite and the balance structure produced in the subsequent cooling step and winding step are formed. It is possible to obtain a hot-rolled steel sheet which is miniaturized and which has strength and toughness targeted in the present invention and which is suitable as a material for an electric resistance welded steel pipe. In order to refine the austenite in the hot rolling step, it is necessary to increase the rolling reduction in the austenite non-recrystallization temperature range and to introduce a sufficient processing strain. In order to obtain this effect, in the present invention, the total reduction ratio in the temperature range of 930 ° C. or lower to the finish rolling end temperature is set to 65% or more. Here, the total reduction rate refers to the total reduction rate of each rolling pass in the temperature range up to 930 ° C. or lower until the finish rolling end temperature.

930℃以下仕上圧延終了温度までの温度域における合計圧下率が65%未満の場合、熱間圧延工程において十分な加工ひずみを導入することができないため、本発明で目的とするベイナイトの平均有効粒径を有する鋼組織が得られない。930℃以下仕上圧延終了温度までの温度域における合計圧下率は、より好ましくは70%以上である。特に上限は規定しないが、80%を超えると圧下率の上昇に対する靱性向上の効果が小さくなり、設備負荷が増大するのみとなる。このため、930℃以下仕上圧延終了温度までの温度域における合計圧下率は80%以下が好ましい。より好ましくは75%以下である。  If the total reduction ratio in the temperature range up to the finish rolling finish temperature of 930 ° C. or lower is less than 65%, sufficient working strain cannot be introduced in the hot rolling process, and therefore the average effective grain size of bainite that is the object of the present invention. A steel structure having a diameter cannot be obtained. The total reduction ratio in the temperature range up to 930 ° C or lower until the finish rolling end temperature is more preferably 70% or more. The upper limit is not particularly specified, but if it exceeds 80%, the effect of improving the toughness with respect to the increase in the rolling reduction becomes small, and only the equipment load increases. Therefore, the total reduction ratio in the temperature range up to 930 ° C. or lower until the finish rolling end temperature is preferably 80% or less. It is more preferably 75% or less.

本発明において930℃以下としたのは、930℃超えでは熱間圧延工程においてオーステナイトが再結晶し、圧延により導入された転位が消失してしまい、微細化したオーステナイトが得られないためである。  In the present invention, the reason why the temperature is 930 ° C. or lower is that if the temperature exceeds 930 ° C., austenite is recrystallized in the hot rolling step, dislocations introduced by rolling disappear, and fine austenite cannot be obtained.

なお、本発明では、鋼素材を熱間圧延するに際し、上記した粗圧延および仕上圧延の両方において930℃以下仕上圧延終了温度までの合計圧下率を65%以上とする熱間圧延としても良いし、仕上圧延のみで930℃以下仕上圧延終了温度までの合計圧下率を65%以上とする熱間圧延としても良い。後者において、仕上圧延のみで930℃以下仕上圧延終了温度までの合計圧下率を65%以上とすることができない場合には、粗圧延の途中でスラブを冷却して温度を930℃以下とした後、粗圧延と仕上圧延の両方における930℃以下仕上圧延終了温度までの合計圧下率を65%以上としてもよい。  In the present invention, when the steel material is hot-rolled, it may be hot-rolled in which both the rough rolling and the finish rolling described above have a total reduction ratio of 65% or more up to the finish rolling end temperature of 930 ° C. or less. Alternatively, the hot rolling may be performed by finishing rolling only to a total reduction ratio of 65% or more up to a finishing rolling finishing temperature of 930 ° C. or less. In the latter case, if the total rolling reduction up to the finish rolling end temperature of 930 ° C. or less cannot be set to 65% or more only by finish rolling, the slab is cooled during the rough rolling to a temperature of 930 ° C. or less. The total reduction ratio up to the finish rolling end temperature of 930 ° C. or less in both rough rolling and finish rolling may be 65% or more.

次いで、熱間圧延工程後の熱延板に冷却工程を施す。冷却工程では、熱延板を、板厚中心温度で冷却開始から冷却停止までの平均冷却速度:5〜25℃/s、冷却停止温度:450〜650℃で冷却する工程である。  Then, the hot rolled sheet after the hot rolling step is subjected to a cooling step. In the cooling step, the hot-rolled sheet is cooled at the center temperature of the sheet thickness at an average cooling rate from the start of cooling to a stop of cooling: 5 to 25 ° C / s and a cooling stop temperature: 450 to 650 ° C.

冷却開始から冷却停止までの平均冷却速度:5〜25℃/s
熱延板の板厚中心温度で、冷却開始から後述する冷却停止温度までの温度域における平均冷却速度が5℃/s未満では、フェライトの生成により、ベイナイトの面積率が低下し、本発明で目的とする強度を得られない。一方で、平均冷却速度が25℃/sを超えると、ベイナイトの平均アスペクト比が0.8を超える。その結果、降伏比が90%を超えやすくなる。平均冷却速度は、好ましくは10℃/s以上とし、好ましくは20℃/s以下とする。
Average cooling rate from start of cooling to stop of cooling: 5 to 25 ° C / s
At the plate thickness center temperature of the hot rolled sheet, if the average cooling rate in the temperature range from the start of cooling to the cooling stop temperature described below is less than 5 ° C./s, the area ratio of bainite decreases due to the formation of ferrite, and in the present invention, The desired strength cannot be obtained. On the other hand, when the average cooling rate exceeds 25 ° C / s, the average aspect ratio of bainite exceeds 0.8. As a result, the yield ratio tends to exceed 90%. The average cooling rate is preferably 10 ° C./s or more, and preferably 20 ° C./s or less.

なお、本発明において、平均冷却速度は、特に断らない限り、((冷却前の熱延板の板厚中心温度−冷却後の熱延板の板厚中心温度)/冷却時間)で求められる値(冷却速度)の平均とする。冷却方法は、例えばノズルから水を噴射等する水冷や、冷却ガスの噴射による冷却等が挙げられる。本発明では、熱延板の両面が同条件で冷却されるように、熱延板の両面に冷却操作(処理)を施すことが好ましい。  In the present invention, unless otherwise specified, the average cooling rate is a value obtained by ((center temperature of hot-rolled sheet before cooling-center temperature of hot-rolled sheet after cooling) / cooling time) The average of (cooling rate). Examples of the cooling method include water cooling in which water is sprayed from a nozzle, cooling by spraying cooling gas, and the like. In the present invention, it is preferable to perform a cooling operation (treatment) on both sides of the hot rolled sheet so that both sides of the hot rolled sheet are cooled under the same conditions.

冷却停止温度:450〜650℃
熱延板の板厚中心温度で、冷却停止温度が450℃未満では、ベイナイトの平均アスペクト比が0.8を超え、その結果、降伏比が90%を超えやすくなる。一方で、冷却停止温度が650℃を超えると、ベイナイト変態開始温度を上回るためベイナイトの面積率を60%以上とすることができない。冷却停止温度は、好ましくは480℃以上とし、好ましくは620℃以下とする。
Cooling stop temperature: 450-650 ° C
When the cooling stop temperature is less than 450 ° C. at the plate thickness center temperature of the hot-rolled sheet, the average aspect ratio of bainite exceeds 0.8, and as a result, the yield ratio easily exceeds 90%. On the other hand, when the cooling stop temperature exceeds 650 ° C, the bainite transformation start temperature is exceeded, and therefore the bainite area ratio cannot be set to 60% or more. The cooling stop temperature is preferably 480 ° C. or higher, and preferably 620 ° C. or lower.

次いで、冷却工程後の熱延鋼板を巻取り、その後放冷する巻取工程を施す。  Then, the hot-rolled steel sheet after the cooling step is wound, and then a winding step of allowing to cool is performed.

巻取工程では、鋼管の素材である熱延鋼板の鋼板組織の観点より、巻取温度:450〜650℃で巻取ることが好ましい。巻取温度が450℃未満では、ベイナイトの平均アスペクト比が0.8を超え、その結果、降伏比が90%を超える場合がある。一方、巻取温度が650℃超えでは、ベイナイト変態開始温度を上回るためベイナイトの面積率を60%以上とすることができない場合がある。巻取温度は、より好ましくは480〜620℃である。  In the winding step, it is preferable to wind at a winding temperature of 450 to 650 ° C. from the viewpoint of the steel sheet structure of the hot rolled steel sheet that is the material of the steel pipe. If the winding temperature is lower than 450 ° C, the average aspect ratio of bainite exceeds 0.8, and as a result, the yield ratio may exceed 90%. On the other hand, if the coiling temperature exceeds 650 ° C., the bainite transformation start temperature may be exceeded and the bainite area ratio may not be 60% or more. The coiling temperature is more preferably 480 to 620 ° C.

次いで、巻取工程後の熱延鋼板に冷間ロール成形工程を施す。冷間ロール成形工程では、熱延鋼板を冷間でロール成形加工することにより円筒状のオープン管に成形し、鋼管素材の両端(すなわち、オープン管の突合せ部分)を電縫溶接し、溶接後の丸型鋼管の鋼管外面の周長に対して0.2〜0.5%の縮径率で縮径圧延を行う。  Then, the hot rolled steel sheet after the winding step is subjected to a cold roll forming step. In the cold roll forming process, the hot-rolled steel sheet is cold rolled to form a cylindrical open pipe, and both ends of the steel pipe material (that is, the abutting parts of the open pipe) are electric resistance welded and after welding. Diameter reduction rolling is performed at a diameter reduction rate of 0.2 to 0.5% with respect to the peripheral length of the outer surface of the round steel pipe.

縮径圧延での縮径率:0.2〜0.5%
縮径圧延での縮径率が0.2%未満の場合、上記した本発明の鋼管の鋼素材では塑性変形による残留応力の低減が不十分となる。その結果、鋼管外表面における管軸方向の残留応力が250MPaを超える。また、加工度不足により降伏比が80%未満となる。一方、縮径圧延での縮径率が0.5%を超えると、加工硬化により、降伏比が90%を超える。その結果、所望の塑性変形能、すなわち耐座屈性能を得られなくなる。また、上記の残留応力が250MPaを超えても、耐座屈性能が低下する。
Diameter reduction ratio in diameter reduction rolling: 0.2 to 0.5%
When the diameter reduction ratio in the diameter reduction rolling is less than 0.2%, the reduction of the residual stress due to plastic deformation becomes insufficient in the above-described steel material of the steel pipe of the present invention. As a result, the residual stress in the pipe axial direction on the outer surface of the steel pipe exceeds 250 MPa. Further, the yield ratio becomes less than 80% due to insufficient workability. On the other hand, if the diameter reduction ratio in the diameter reduction rolling exceeds 0.5%, the yield ratio exceeds 90% due to work hardening. As a result, desired plastic deformability, that is, buckling resistance cannot be obtained. Further, even if the above-mentioned residual stress exceeds 250 MPa, the buckling resistance is deteriorated.

以上により、本発明の電縫鋼管が製造される。本発明によれば、管長手方向の引張強さが590MPa以上、0.2%耐力が450MPa以上、降伏比が80〜90%であり、−30℃におけるシャルピー吸収エネルギーが70J以上であり、鋼管外表面の管軸方向の残留応力が250MPa以下である電縫鋼管が得られる。これにより、高強度、高靱性、最適な降伏比および耐座屈性能に優れた電縫鋼管を容易に製造することができる。この電縫鋼管は、特に構造物の基礎として用いられる鋼管杭に好適に用いることができるため、産業上格段の効果を奏する。  As described above, the electric resistance welded steel pipe of the present invention is manufactured. According to the present invention, the tensile strength in the longitudinal direction of the pipe is 590 MPa or more, the 0.2% proof stress is 450 MPa or more, the yield ratio is 80 to 90%, the Charpy absorbed energy at -30 ° C is 70 J or more, and the steel pipe is An electric resistance welded steel pipe having a residual stress of 250 MPa or less on the outer surface in the pipe axis direction can be obtained. This makes it possible to easily manufacture an electric resistance welded steel pipe having high strength, high toughness, an optimum yield ratio and excellent buckling resistance. Since this electric resistance welded steel pipe can be suitably used particularly for a steel pipe pile used as a foundation of a structure, it has a remarkable industrial effect.

次に、本発明の鋼管杭について説明する。  Next, the steel pipe pile of the present invention will be described.

本発明の鋼管杭は、板厚が16mm以上で、外径300mm以上700mm以下であり、上記した成分組成および鋼組織を有する電縫鋼管からなる。電縫鋼管の成分組成および鋼組織を上述のように規定することにより、管長手方向の引張強度が590MPa以上、0.2%耐力が450MPa以上、降伏比が80〜90%であり、−30℃におけるシャルピー吸収エネルギーが70J以上であり、鋼管外表面の管軸方向の残留応力が250MPa以下である鋼管杭が得られる。本発明の鋼管杭は、地中に打ち込まれ、必要な場合には打ち込み途中で鋼管杭同士を溶接あるいはねじ継手などの接続手段により接続して長尺の杭へと現場で施工されることとなる。本発明の鋼管杭によれば、上記特性を有するため、杭打ち込みに対して座屈等の問題を生じる恐れを低減できる。  The steel pipe pile of the present invention has a plate thickness of 16 mm or more, an outer diameter of 300 mm or more and 700 mm or less, and is made of an electric resistance welded steel pipe having the above-described composition and steel structure. By defining the component composition and the steel structure of the electric resistance welded steel pipe as described above, the tensile strength in the pipe longitudinal direction is 590 MPa or more, the 0.2% proof stress is 450 MPa or more, and the yield ratio is 80 to 90%. A steel pipe pile having a Charpy absorbed energy at 70 ° C. or higher and a residual stress of 250 MPa or less on the outer surface of the steel pipe in the pipe axis direction can be obtained. The steel pipe pile of the present invention is driven into the ground, and if necessary, the steel pipe piles may be welded or connected by connecting means such as a screw joint during the driving to be constructed on-site into a long pile. Become. According to the steel pipe pile of the present invention, since it has the above characteristics, it is possible to reduce the risk of causing problems such as buckling when driving the pile.

以下、実施例に基づいてさらに本発明を詳細に説明する。なお、本発明は以下の実施例に限定されない。  Hereinafter, the present invention will be described in more detail based on examples. The present invention is not limited to the examples below.

表1に示す成分組成を有する溶鋼を転炉で溶製し、連続鋳造法でスラブ(鋼素材:肉厚250mm)とした。得られたスラブを表2−1、表2−2に示す製造条件で熱間圧延工程、冷却工程、巻取工程、および冷間ロール成形工程を施して、表2−1、表2−2に示す外径および板厚の電縫鋼管を製造した。また、冷間ロール成形工程では、オープン管の突合せ部分を電縫溶接した。  Molten steel having the chemical composition shown in Table 1 was melted in a converter and made into a slab (steel material: wall thickness 250 mm) by a continuous casting method. The obtained slab is subjected to a hot rolling step, a cooling step, a winding step, and a cold roll forming step under the manufacturing conditions shown in Tables 2-1 and 2-2, and then the tables 2-1 and 2-2. ERW steel pipes having outer diameters and plate thicknesses shown in were produced. Also, in the cold roll forming process, the butt portion of the open pipe was electric resistance welded.

得られた電縫鋼管から試験片を採取して、以下に示す方法で、組織観察、引張試験、シャルピー衝撃試験、残留応力の測定、部材圧縮試験を実施した。  Test pieces were taken from the obtained electric resistance welded steel pipe, and the structure observation, tensile test, Charpy impact test, residual stress measurement, and member compression test were carried out by the following methods.

〔組織観察〕
組織観察用の試験片は、電縫溶接部を0°としたとき円周方向90°位置の管軸方向断面が観察面となるように採取し、研磨した後、ナイタール腐食して作製した。組織観察は、光学顕微鏡(倍率:1000倍)または走査型電子顕微鏡(SEM、倍率:1000倍)を用いて、電縫鋼管の外表面から板厚tの1/4t深さ位置における組織を観察し、撮像した。得られた光学顕微鏡像およびSEM像から、ベイナイトの面積率を求めた。ベイナイトの面積率は、5視野以上で観察を行い、各視野で得られた値の平均値として算出した。
[Tissue observation]
The test piece for observing the structure was prepared so that the cross section in the tube axis direction at the position of 90 ° in the circumferential direction was the observation surface when the electric resistance welded portion was 0 °, and was polished and then subjected to nital corrosion. The structure is observed with an optical microscope (magnification: 1000 times) or a scanning electron microscope (SEM, magnification: 1000 times) from the outer surface of the electric resistance welded steel pipe to observe the structure at a depth position of 1/4 t of the plate thickness t. Then, the image was taken. The area ratio of bainite was determined from the obtained optical microscope image and SEM image. The area ratio of bainite was calculated by observing in 5 or more visual fields and averaging the values obtained in each visual field.

また、ベイナイトの平均有効粒径(平均円相当径)は、SEM/EBSD法を用いて測定した。有効粒径は、隣接する結晶粒の間の方位差を求め、方位差が15°以上の境界で囲まれた領域を有効結晶粒としたとき、その有効結晶粒と面積が等しい円の直径をベイナイトの有効粒径とした。得られた有効粒径の算術平均を求めて、平均円相当径とした。測定領域は500μm×500μm、測定ステップサイズは0.5μmとした。なお、結晶粒径解析においては、有効粒径が2.0μm以下のものは測定ノイズとして解析対象から除外した。  Moreover, the average effective particle diameter (average equivalent circle diameter) of bainite was measured using the SEM / EBSD method. The effective grain size is obtained by determining the orientation difference between adjacent crystal grains, and assuming that the region surrounded by the boundary where the orientation difference is 15 ° or more is the effective grain, the diameter of a circle having the same area as that of the effective grain is calculated. The effective particle size of bainite was used. The arithmetic mean of the obtained effective particle diameters was calculated and made the average equivalent circle diameter. The measurement area was 500 μm × 500 μm, and the measurement step size was 0.5 μm. In the crystal grain size analysis, those having an effective grain size of 2.0 μm or less were excluded from the analysis target as measurement noise.

また、ベイナイトの平均アスペクト比は、上記の方法で測定した各有効結晶粒の板厚方向の長さ、管軸方向の長さを測定し、それぞれの平均を算出することにより求めた。板厚方向の長さ、管軸方向の長さは、各有効結晶粒における板厚方向、管軸方向それぞれの最大長さとした。  Further, the average aspect ratio of bainite was obtained by measuring the length in the plate thickness direction and the length in the tube axis direction of each effective crystal grain measured by the above method, and calculating the respective averages. The length in the plate thickness direction and the length in the pipe axis direction were the maximum lengths in the plate thickness direction and the pipe axis direction in each effective crystal grain.

〔引張試験〕
引張試験は、得られた電縫鋼管の電縫溶接部を0°としたとき円周方向90°位置において、引張方向が管軸方向と平行になるように、JIS5号の引張試験片を採取した。JIS Z 2241の規定に準拠して引張試験を実施した。0.2%耐力(降伏強度YS)、引張強さTSを測定し、(0.2%耐力)/(引張強さ)で定義される降伏比を算出した。
[Tensile test]
In the tensile test, when the electric resistance welded portion of the obtained electric resistance welded steel pipe was set at 0 °, a JIS 5 tensile test piece was sampled at a position of 90 ° in the circumferential direction so that the tensile direction was parallel to the pipe axis direction. did. A tensile test was carried out in accordance with JIS Z 2241. The 0.2% proof stress (yield strength YS) and the tensile strength TS were measured, and the yield ratio defined by (0.2% proof stress) / (tensile strength) was calculated.

〔シャルピー衝撃試験〕
シャルピー衝撃試験は、得られた電縫鋼管の電縫溶接部を0°としたとき円周方向90°位置において、板厚t/2位置から、試験片長手方向が管軸方向と平行となるように、Vノッチ試験片を採取した。JIS Z 2242の規定に準拠して、試験温度:−30℃でシャルピー衝撃試験を実施し、吸収エネルギー(J)を求めた。なお、試験片の本数は各3本とし、その平均値を算出して吸収エネルギー(J)を求めた。
[Charpy impact test]
In the Charpy impact test, when the electric resistance welded portion of the obtained electric resistance welded steel pipe is set at 0 °, the longitudinal direction of the test piece becomes parallel to the pipe axis direction from the plate thickness t / 2 position at the position of 90 ° in the circumferential direction. As described above, a V-notch test piece was taken. According to JIS Z 2242, a Charpy impact test was conducted at a test temperature of −30 ° C. to obtain absorbed energy (J). The number of test pieces was 3, and the average value was calculated to obtain the absorbed energy (J).

〔残留応力の測定〕
残留応力は、パルステック製 μ-X360を用いてX線回折 cosα法により測定した。残留応力の測定位置は、得られた電縫鋼管の管長手中央の外面とし、電縫溶接部を0°としたとき、90°位置、180°位置、270°位置の3か所とした。得られた3か所の測定値の平均値を残留応力とした。なお、応力測定方向は管軸方向とした。
[Measurement of residual stress]
The residual stress was measured by the X-ray diffraction cos α method using μ-X360 manufactured by Pulstec. The residual stress was measured at three positions: 90 ° position, 180 ° position, and 270 ° position when the electric resistance welded portion was set at 0 ° on the outer surface of the obtained electric resistance welded steel pipe. The average value of the measured values at the three obtained points was taken as the residual stress. The stress measurement direction was the tube axis direction.

〔部材圧縮試験〕
本発明では、鋼管杭としての性能評価のために、部材圧縮試験を行い、座屈強度比σcr
/ σy(なお、σcrは座屈応力度、σyは材料降伏強度である。)を求めた。座屈強度比が低減係数R = 0.8+2.5×t / r(なお、tは板厚、rは半径である。)より大きければ鋼管杭の性能として重要な座屈強度が十分であると判断できる。
[Member compression test]
In the present invention, in order to evaluate the performance as a steel pipe pile, a member compression test is performed, and the buckling strength ratio σcr
/ σy (where σcr is the buckling stress and σy is the material yield strength). If the buckling strength ratio is greater than the reduction coefficient R = 0.8 + 2.5 × t / r (where t is the plate thickness and r is the radius), then the buckling strength, which is important for the performance of the steel pipe pile, is sufficient. I can judge.

得られた結果をそれぞれ表3−1、表3−2に示す。  The obtained results are shown in Table 3-1 and Table 3-2, respectively.

Figure 0006690788
Figure 0006690788

Figure 0006690788
Figure 0006690788

Figure 0006690788
Figure 0006690788

Figure 0006690788
Figure 0006690788

Figure 0006690788
Figure 0006690788

表1〜表3−2に示す通り、本発明の範囲内にある電縫鋼管は何れも管軸方向の引張強さが590MPa以上、0.2%耐力が450MPa以上、降伏比が80〜90%であり、−30℃におけるシャルピー吸収エネルギーが70J以上であり、管外面の管軸方向の残留応力が250MPa以下であった。また、これらの特性を有する電縫鋼管は、鋼管杭の性能として重要な座屈強度も十分であることが分かった。  As shown in Tables 1 to 3-2, all the electric resistance welded steel pipes within the scope of the present invention have a tensile strength in the axial direction of 590 MPa or more, a 0.2% proof stress of 450 MPa or more, and a yield ratio of 80 to 90. %, The Charpy absorbed energy at −30 ° C. was 70 J or more, and the residual stress in the tube axial direction on the outer surface of the tube was 250 MPa or less. It was also found that the electric resistance welded steel pipe having these characteristics has sufficient buckling strength, which is important for the performance of the steel pipe pile.

一方、成分組成、鋼組織および製造条件において本発明の範囲外にある鋼管は、管長手方向の引張強度、0.2%耐力、降伏比、−30℃におけるシャルピー吸収エネルギー、管外表面の管軸方向の残留応力のうち、何れか1つ以上で本発明で目的とする値を得られなかった。  On the other hand, the steel pipes whose composition, steel structure and manufacturing conditions are out of the scope of the present invention include tensile strength in the longitudinal direction of the pipe, 0.2% proof stress, yield ratio, Charpy absorbed energy at -30 ° C, pipes on the outer surface of the pipe. Among the residual stresses in the axial direction, the value targeted by the present invention could not be obtained with any one or more.

以上のことから、電縫鋼管の成分組成、鋼組織、および製造条件を本発明の範囲内とすることで、鋼管杭向けとして好適な、最適な降伏比および高い耐座屈性能を有し、さらに高強度および高靱性を両立した電縫鋼管を提供することができる。  From the above, the composition of the electric resistance welded steel pipe, steel structure, and by making the manufacturing conditions within the scope of the present invention, suitable for steel pipe piles, having an optimum yield ratio and high buckling resistance, Furthermore, an electric resistance welded steel pipe having both high strength and high toughness can be provided.

Claims (6)

母材部と管軸方向に溶接部を有する電縫鋼管であって、
母材部の成分組成は、質量%で、
C:0.12〜0.20%、
Si:0.60%以下、
Mn:0.50〜1.70%、
P:0.030%以下、
S:0.015%以下、
Al:0.010〜0.060%、
Nb:0.010〜0.080%、
Ti:0.010〜0.050%、
N:0.006%以下
を含有し、残部がFeおよび不可避的不純物からなり、
前記母材部の板厚をtとしたとき、前記電縫鋼管の外表面から板厚tの1/4t深さ位置における鋼組織は、
ベイナイトが面積率で60%以上であり、
前記ベイナイトの平均有効粒径が平均円相当径で20.0μm以下、かつ前記ベイナイトの平均アスペクト比が0.1〜0.8であり、
管軸方向の引張強さが590MPa以上、0.2%耐力が450MPa以上、降伏比が80〜90%であり、
前記母材部における管軸方向を試験片長手方向とした−30℃におけるシャルピー吸収エネルギーが70J以上であり、
前記母材部における鋼管外表面の管軸方向における残留応力が250MPa以下である電縫鋼管。
An electric resistance welded steel pipe having a base material portion and a welded portion in the pipe axial direction,
The component composition of the base material part is mass%,
C: 0.12 to 0.20%,
Si: 0.60% or less,
Mn: 0.50 to 1.70%,
P: 0.030% or less,
S: 0.015% or less,
Al: 0.010 to 0.060%,
Nb: 0.010 to 0.080%,
Ti: 0.010 to 0.050%,
N: 0.006% or less is contained, and the balance is Fe and inevitable impurities,
Assuming that the plate thickness of the base material portion is t, the steel structure at a depth position of ¼t from the outer surface of the electric resistance welded steel pipe is
Bainite has an area ratio of 60% or more,
The average effective particle size of the bainite is 20.0 μm or less in average circle equivalent diameter, and the average aspect ratio of the bainite is 0.1 to 0.8;
The tensile strength in the tube axis direction is 590 MPa or more, the 0.2% proof stress is 450 MPa or more, and the yield ratio is 80 to 90%.
Charpy absorbed energy at −30 ° C. in which the pipe axis direction in the base material portion is the longitudinal direction of the test piece is 70 J or more,
An electric resistance welded steel pipe having a residual stress of 250 MPa or less in the pipe axial direction on the outer surface of the steel pipe in the base material portion.
前記成分組成に加えてさらに、質量%で、B:0.008%以下を含有することを特徴とする請求項1に記載の電縫鋼管。   The electric resistance welded steel pipe according to claim 1, further comprising B: 0.008% or less by mass% in addition to the component composition. 前記成分組成に加えてさらに、質量%で、
Cr:0.01〜1.0%、
V:0.010〜0.060%、
Mo:0.01〜1.0%、
Cu:0.01〜0.50%、
Ni:0.01〜1.0%、
Ca:0.0005〜0.010%
のうちから選ばれた1種または2種以上を含有する請求項1または2に記載の電縫鋼管。
In addition to the above component composition, further in mass%,
Cr: 0.01 to 1.0%,
V: 0.010 to 0.060%,
Mo: 0.01 to 1.0%,
Cu: 0.01 to 0.50%,
Ni: 0.01 to 1.0%,
Ca: 0.0005 to 0.010%
The electric resistance welded steel pipe according to claim 1 or 2, containing one or more selected from the above.
鋼素材に、熱間圧延工程、冷却工程をこの順に施して熱延鋼板とし、さらに、該熱延鋼板に冷間ロール成形工程を施して、請求項1〜3のいずれか1項に記載の電縫鋼管とする電縫鋼管の製造方法であって、
前記鋼素材は、請求項1〜3のいずれか1項に記載の成分組成を有し、
前記熱間圧延工程は、前記鋼素材を加熱温度:1100〜1280℃に加熱した後、粗圧延終了温度:850〜1150℃、仕上圧延終了温度:750〜850℃、かつ、粗圧延と仕上圧延における930℃以下での合計圧下率:65%以上とする粗圧延および仕上圧延を施して熱延板とする工程であり、
前記冷却工程は、前記熱延板を、板厚中心温度で、冷却開始から冷却停止までの平均冷却速度:5〜25℃/s、冷却停止温度:450〜650℃で冷却する工程であり、
前記冷間ロール成形工程は、前記熱延鋼板にロール成形加工を施した鋼管素材を溶接し、溶接後の鋼管外面の周長に対して縮径率:0.2〜0.5%の縮径圧延を行う電縫鋼管の製造方法。
The hot rolling process and the cooling process are performed on the steel material in this order to obtain a hot rolled steel sheet, and the hot rolled steel sheet is subjected to a cold roll forming step to obtain a hot rolled steel sheet . A method of manufacturing an electric resistance welded steel pipe, which is an electric resistance welded steel pipe,
The steel material has a composition according to any one of claims 1 to 3,
In the hot rolling step, after heating the steel material to a heating temperature of 1100 to 1280 ° C., finish rolling temperature: 850 to 1150 ° C., finish rolling finish temperature: 750 to 850 ° C., and rough rolling and finish rolling. Total rolling reduction at 930 ° C. or lower: 65% or higher rough rolling and finish rolling to obtain a hot rolled sheet,
The cooling step is a step of cooling the hot-rolled sheet at a plate thickness center temperature at an average cooling rate from cooling start to cooling stop: 5 to 25 ° C / s, cooling stop temperature: 450 to 650 ° C.
In the cold roll forming step, the hot rolled steel sheet is subjected to roll forming by welding a steel pipe material, and a diameter reduction ratio of 0.2 to 0.5% is reduced with respect to the circumferential length of the outer surface of the steel pipe after welding. A method for manufacturing an electric resistance welded steel pipe that is diameter rolled.
請求項1〜3のいずれか1項に記載の成分組成を有し、板厚をtとしたとき、外表面から板厚tの1/4t深さ位置における鋼組織は、ベイナイトが面積率で60%以上であり、前記ベイナイトの平均有効粒径が平均円相当径で20.0μm以下、かつ前記ベイナイトの平均アスペクト比が0.1〜0.8である熱延鋼板に冷間ロール成形工程を施して電縫鋼管とする電縫鋼管の製造方法であって、
前記冷間ロール成形工程は、前記熱延鋼板にロール成形加工を施した鋼管素材を溶接し、溶接後の鋼管外面の周長に対して縮径率:0.2〜0.5%の縮径圧延を行う電縫鋼管の製造方法。
It has the composition of any one of claims 1 to 3, and when the plate thickness is t, the steel structure at a 1 / 4t depth position of the plate thickness t from the outer surface is bainite in area ratio. Cold roll forming step for a hot-rolled steel sheet having an average effective particle size of 60% or more, an average equivalent particle diameter of the bainite of 20.0 μm or less, and an average aspect ratio of the bainite of 0.1 to 0.8. A method of manufacturing an electric resistance welded steel pipe, which comprises:
In the cold roll forming step, the hot rolled steel sheet is subjected to roll forming by welding a steel pipe material, and a diameter reduction ratio of 0.2 to 0.5% is reduced with respect to the circumferential length of the outer surface of the steel pipe after welding. A method for manufacturing an electric resistance welded steel pipe that is diameter rolled.
請求項1〜3のいずれか1項に記載の電縫鋼管を用いた鋼管杭。   A steel pipe pile using the electric resistance welded steel pipe according to claim 1.
JP2019548355A 2019-03-29 2019-03-29 ERW steel pipe, its manufacturing method, and steel pipe pile Active JP6690788B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/014232 WO2020202334A1 (en) 2019-03-29 2019-03-29 Electric resistance welded steel pipe and method for manufacturing same, and steel pipe pile

Publications (2)

Publication Number Publication Date
JP6690788B1 true JP6690788B1 (en) 2020-04-28
JPWO2020202334A1 JPWO2020202334A1 (en) 2021-04-30

Family

ID=70413796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019548355A Active JP6690788B1 (en) 2019-03-29 2019-03-29 ERW steel pipe, its manufacturing method, and steel pipe pile

Country Status (5)

Country Link
JP (1) JP6690788B1 (en)
KR (1) KR102551615B1 (en)
CN (1) CN113614268B (en)
TW (1) TWI762881B (en)
WO (1) WO2020202334A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021085036A1 (en) * 2019-10-31 2021-05-06 Jfeスチール株式会社 Electric resistance welded steel pipe and method for producing same, and line pipe and building structure
WO2022075027A1 (en) * 2020-10-05 2022-04-14 Jfeスチール株式会社 Electric resistance welded steel pipe and method for manufacturing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI768987B (en) * 2021-06-28 2022-06-21 中國鋼鐵股份有限公司 Steel with low temperature toughness and method for producing the same
WO2024029070A1 (en) 2022-08-05 2024-02-08 Jfeシビル株式会社 Artificial ground structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103623A1 (en) * 2014-12-25 2016-06-30 Jfeスチール株式会社 High-strength thick-walled electric resistance welded steel pipe for conductor casing for deep well, production method therefor, and high-strength thick-walled conductor casing for deep well
WO2017130875A1 (en) * 2016-01-27 2017-08-03 Jfeスチール株式会社 High-strength hot-rolled steel sheet for electric resistance welded steel pipe, and method for manufacturing same
WO2017221690A1 (en) * 2016-06-22 2017-12-28 Jfeスチール株式会社 Hot-rolled steel sheet for thick high strength line pipes, welded steel pipe for thick high strength line pipes, and manfuacturing method therefor
WO2018139095A1 (en) * 2017-01-25 2018-08-02 Jfeスチール株式会社 Hot-rolled steel sheet for coiled tubing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123734U (en) 1984-07-18 1986-02-12 富士電機株式会社 Power transistor base drive current supply circuit
JP2687841B2 (en) 1993-06-01 1997-12-08 住友金属工業株式会社 Low yield ratio high strength steel pipe manufacturing method
JPH116032A (en) 1997-06-18 1999-01-12 Nkk Corp Earthquake-proof welded steel tube excellent in local buckling resistance, and its production
JP4300049B2 (en) 2003-03-28 2009-07-22 株式会社神戸製鋼所 Manufacturing method of high-strength steel pipe for building structure with low yield ratio
JP2017048459A (en) * 2015-09-03 2017-03-09 株式会社神戸製鋼所 Steel wire for machine structure component
JP6319539B1 (en) * 2017-09-19 2018-05-09 新日鐵住金株式会社 Steel pipe and steel plate
CN107815597A (en) * 2017-11-17 2018-03-20 武汉钢铁有限公司 A kind of high-intensity rim steel and production method with good flanging forming

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103623A1 (en) * 2014-12-25 2016-06-30 Jfeスチール株式会社 High-strength thick-walled electric resistance welded steel pipe for conductor casing for deep well, production method therefor, and high-strength thick-walled conductor casing for deep well
WO2017130875A1 (en) * 2016-01-27 2017-08-03 Jfeスチール株式会社 High-strength hot-rolled steel sheet for electric resistance welded steel pipe, and method for manufacturing same
WO2017221690A1 (en) * 2016-06-22 2017-12-28 Jfeスチール株式会社 Hot-rolled steel sheet for thick high strength line pipes, welded steel pipe for thick high strength line pipes, and manfuacturing method therefor
WO2018139095A1 (en) * 2017-01-25 2018-08-02 Jfeスチール株式会社 Hot-rolled steel sheet for coiled tubing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021085036A1 (en) * 2019-10-31 2021-05-06 Jfeスチール株式会社 Electric resistance welded steel pipe and method for producing same, and line pipe and building structure
JPWO2021085036A1 (en) * 2019-10-31 2021-05-06
JP6947333B2 (en) * 2019-10-31 2021-10-13 Jfeスチール株式会社 Electric resistance steel pipe and its manufacturing method, line pipe and building structure
WO2022075027A1 (en) * 2020-10-05 2022-04-14 Jfeスチール株式会社 Electric resistance welded steel pipe and method for manufacturing same
JP7081727B1 (en) * 2020-10-05 2022-06-07 Jfeスチール株式会社 Electric pipe and its manufacturing method

Also Published As

Publication number Publication date
TWI762881B (en) 2022-05-01
KR20210132698A (en) 2021-11-04
WO2020202334A1 (en) 2020-10-08
TW202039884A (en) 2020-11-01
JPWO2020202334A1 (en) 2021-04-30
KR102551615B1 (en) 2023-07-05
CN113614268A (en) 2021-11-05
CN113614268B (en) 2022-12-02

Similar Documents

Publication Publication Date Title
JP5499733B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
US9580782B2 (en) Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and manufacturing method thereof
JP6690788B1 (en) ERW steel pipe, its manufacturing method, and steel pipe pile
JP5630026B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP6693606B1 (en) Square steel pipe, manufacturing method thereof, and building structure
KR20120062006A (en) Steel plate having low yield ratio, high strength and high uniform elongation and method for producing same
KR102498956B1 (en) Hot-rolled steel sheet and its manufacturing method
JP2010196165A (en) Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and process for producing the same
JP5768603B2 (en) High-strength welded steel pipe with high uniform elongation characteristics and excellent low-temperature toughness at welds, and method for producing the same
JP6690787B1 (en) ERW steel pipe, its manufacturing method, and steel pipe pile
JP2019116658A (en) Electroseamed steel pipe excellent in fatigue strength, and manufacturing method therefor
JP2010037567A (en) Thick, high-tension hot-rolled steel sheet excellent in low-temperature toughness, and producing method therefor
JP2010196156A (en) Thick, high tensile-strength hot-rolled steel sheet having excellent low temperature toughness and manufacturing method therefor
JP5521484B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP6123734B2 (en) Low yield ratio high strength electric resistance welded steel pipe for steel pipe pile and method for manufacturing the same
CN113646455B (en) Steel material for line pipe and method for producing same, and line pipe and method for producing same
CN117980519A (en) Square steel pipe and method for producing same, hot-rolled steel plate and method for producing same, and building structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190913

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190913

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200323

R150 Certificate of patent or registration of utility model

Ref document number: 6690788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250