WO2020202334A1 - Electric resistance welded steel pipe and method for manufacturing same, and steel pipe pile - Google Patents

Electric resistance welded steel pipe and method for manufacturing same, and steel pipe pile Download PDF

Info

Publication number
WO2020202334A1
WO2020202334A1 PCT/JP2019/014232 JP2019014232W WO2020202334A1 WO 2020202334 A1 WO2020202334 A1 WO 2020202334A1 JP 2019014232 W JP2019014232 W JP 2019014232W WO 2020202334 A1 WO2020202334 A1 WO 2020202334A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
less
steel
bainite
hot
Prior art date
Application number
PCT/JP2019/014232
Other languages
French (fr)
Japanese (ja)
Inventor
井手 信介
昌士 松本
晃英 松本
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201980094635.3A priority Critical patent/CN113614268B/en
Priority to KR1020217031054A priority patent/KR102551615B1/en
Priority to JP2019548355A priority patent/JP6690788B1/en
Priority to PCT/JP2019/014232 priority patent/WO2020202334A1/en
Priority to TW109108314A priority patent/TWI762881B/en
Publication of WO2020202334A1 publication Critical patent/WO2020202334A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B17/00Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
    • B21B17/14Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling without mandrel, e.g. stretch-reducing mills
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

An electric resistance welded steel pipe having a base material part and also having a welded part in the tube axis direction, wherein the base material part has a specified component composition, a steel structure at a position corresponding to the depth 1/4t from the outer surface of the electric resistance welded steel pipe contains bainite at an area ratio of 70% or more wherein t represents the thickness of the base material part, the average effective grain diameter of the bainite is 10.0 μm or less in terms of average equivalent circle diameter, the average aspect ratio of the bainite is 0.1 to 0.8, the tensile strength in the tube axis direction is 590 MPa or more, the 0.2% proof stress is 450 MPa or more, the yield ratio is 85 to 95%, the Charpy absorbed energy at -30ºC as determined employing the tube axis direction in the base material part as the length direction of a test specimen is 70 J or more, and the residual stress of the outer surface of the steel pipe in the base material part as observed in the tube axis direction is 250 MPa or less; a method for manufacturing the electric resistance welded steel pipe; and a steel pipe pile.

Description

電縫鋼管およびその製造方法、並びに鋼管杭Electric pipe and its manufacturing method, and steel pipe pile
 本発明は、構造物の基礎として用いられる鋼管杭に好適な電縫鋼管およびその製造方法、並びに鋼管杭に関する。特に、本発明は、熱延鋼板(熱延鋼帯)を素材とし、素材を冷間でロール成形し造管して得られる電縫鋼管の高強度化、高靱性化、降伏比の最適化、および耐座屈性能の向上に関するものである。 The present invention relates to an electrosewn steel pipe suitable for a steel pipe pile used as a foundation of a structure, a method for manufacturing the same, and a steel pipe pile. In particular, the present invention uses a hot-rolled steel sheet (hot-rolled steel strip) as a material, and cold-rolls the material to form a pipe, resulting in high strength, high toughness, and optimization of the yield ratio. , And the improvement of buckling resistance performance.
 近年、大規模地震への対応として、構造物の基礎として用いられる鋼管杭に対しても、高強度化と変形エネルギー吸収能の向上が強く要望されるようになってきた。一般的に、鋼管の変形エネルギー吸収能を向上させるためには、高い引張強さと低い降伏比を有する鋼材とすることが有効である。しかし、鋼管杭は、杭打ちの際に鋼管の変形を抑えるという観点から管軸方向の降伏比を過度に低くすることが難しい。さらに、特に寒冷地で使用される鋼管杭には、高い低温靱性も必要となる。また、地震などによる変形に耐えるために高い耐座屈性能も必要となる。 In recent years, as a response to large-scale earthquakes, there has been a strong demand for higher strength and improved deformation energy absorption capacity for steel pipe piles used as the foundation of structures. In general, in order to improve the deformation energy absorption capacity of a steel pipe, it is effective to use a steel material having a high tensile strength and a low yield ratio. However, it is difficult for steel pipe piles to have an excessively low yield ratio in the pipe axis direction from the viewpoint of suppressing deformation of the steel pipe during pile driving. Furthermore, high temperature toughness is also required for steel pipe piles used especially in cold regions. In addition, high buckling resistance is also required to withstand deformation due to earthquakes and the like.
 特許文献1には、耐局部座屈性に優れた耐震性溶接鋼管の製造方法が記載されている。特許文献1では、重量%で、C:0.03~0.15%、Mn:1.0~2.0%を含有し、Cu:0.05~0.50%、Ni:0.05~0.50%、Cr:0.05~0.50%、Mo:0.05~0.50%、Nb:0.005~0.10%、V:0.005~0.10%、Ti:0.005~0.080%の内1種以上を含有し、Pcmが0.10~0.25となる組成の鋼を熱間圧延し、圧延終了後600℃以下まで5℃/s以上の冷却速度で冷却して得られた鋼板を、冷間成形して鋼管とする。これにより、管軸方向の引張試験における加工硬化指数が0.10以上となる変形性能に優れる鋼管を得ることができ、鋼管に横から作用する外力による局部座屈の発生や、それに起因する脆性的なき裂や破断の発生を防止できるとしている。 Patent Document 1 describes a method for manufacturing an earthquake-resistant welded steel pipe having excellent local buckling resistance. In Patent Document 1, C: 0.03 to 0.15%, Mn: 1.0 to 2.0%, Cu: 0.05 to 0.50%, Ni: 0.05 in weight%. ~ 0.50%, Cr: 0.05 ~ 0.50%, Mo: 0.05 ~ 0.50%, Nb: 0.005 ~ 0.10%, V: 0.005 ~ 0.10%, Ti: Steel containing at least one of 0.005 to 0.080% and having a Pcm of 0.10 to 0.25 is hot-rolled, and after the rolling is completed, the temperature is 5 ° C./s to 600 ° C. or lower. The steel sheet obtained by cooling at the above cooling rate is cold-formed to obtain a steel pipe. As a result, it is possible to obtain a steel pipe having excellent work hardening index of 0.10 or more in the tensile test in the pipe axial direction, and the occurrence of local buckling due to the external force acting on the steel pipe from the side and the brittleness caused by the occurrence. It is said that it can prevent the occurrence of specific cracks and breaks.
 特許文献2には、重量%で、C:0.02~0.20%、Si:0.02~0.50%、Mn:0.50~2.00%を含み、さらにCu:0.10~1.5%、Ni:0.10~0.50%、Nb:0.005~0.10%およびV:0.005~0.10%からなる群から選ばれた1種または2種以上を含み、Ceq:0.38~0.45である鋼片に、900℃以上の温度域における1パス当たりの圧下率が4%以下となるように熱間圧延を行って熱延鋼板とし、該熱延鋼板に、Ac1点以上Ac3点以下の二相温度域に再加熱して該二相温度域から焼入れし、さらに焼戻しを行ってから、製管加工を行う、鋼管の製造方法が記載されている。これにより得られる鋼管は、0.2%耐力:440MPa以上、引張強度:590~700MPa、降伏比:80%以下の低降伏比高張力鋼管であり、建造物、橋梁、タンク等の鋼構造物用として好適であるとしている。 Patent Document 2 contains C: 0.02 to 0.20%, Si: 0.02 to 0.50%, Mn: 0.50 to 2.00% by weight, and Cu: 0. 1 or 2 selected from the group consisting of 10 to 1.5%, Ni: 0.10 to 0.50%, Nb: 0.005 to 0.10% and V: 0.005 to 0.10%. A hot-rolled steel sheet is hot-rolled so that the reduction rate per pass in a temperature range of 900 ° C. or higher is 4% or less on a steel piece containing seeds or more and having a Ceq: 0.38 to 0.45. A method for producing a steel pipe, in which the hot-rolled steel sheet is reheated to a two-phase temperature range of 1 point or more and 3 points or less of Ac, quenched from the two-phase temperature range, tempered, and then pipe-made. Is described. The steel pipe obtained thereby is a low-yield ratio high-strength steel pipe having a 0.2% proof stress: 440 MPa or more, a tensile strength: 590 to 700 MPa, and a yield ratio: 80% or less, and is a steel structure such as a building, a bridge, or a tank. It is said that it is suitable for use.
 特許文献3には、質量%で、C:0.10~0.18%、Si:0.1~0.5%、Mn:1~2%を含む組成の鋼管を製造するにあたり、Ac3点以上に加熱したのち急冷する工程と、Ac1点~Ac3点の二相温度域に加熱したのち空冷する工程と、冷間で管状に成形する工程と、500~600℃に再加熱する工程とを順次施して、低降伏比の建築構造用高張力鋼管とする製造方法が記載されている。これにより、高価な合金元素を使用せずに、引張強度:590MPa以上の建築構造用鋼管を製造することができるとしている。 Patent Document 3 describes Ac 3 points in producing a steel pipe having a composition containing C: 0.10 to 0.18%, Si: 0.1 to 0.5%, and Mn: 1 to 2% in mass%. A step of heating and then quenching, a step of heating to a two-phase temperature range of Ac1 to Ac3 and then air-cooling, a step of forming into a tubular shape in a cold state, and a step of reheating to 500 to 600 ° C. A manufacturing method is described in which the pipes are sequentially applied to obtain a high-tensile steel pipe for a building structure having a low yield ratio. As a result, it is possible to manufacture steel pipes for building structures with a tensile strength of 590 MPa or more without using expensive alloying elements.
 特許文献4には、質量%で、C:0.11~0.20%、Si:0.05~0.50%、Mn:1.00~2.00%、P:0.030%以下、S:0.010%以下、Al:0.01~0.08%を含み、加えてフェライト相を主相とし、主相以外の第二相が、面積率で8~30%のパーライトおよび/または擬似パーライトであり、該主相と第二相を含む平均の粒径が4.0~10μmである組織を有し、管周方向および管軸方向で0.2%耐力YS:450MPa以上、引張強さTS:590MPa以上で、かつ降伏比:90%以下である鋼管杭向け低降伏比高強度電縫鋼管が記載されている。 Patent Document 4 describes in terms of mass%, C: 0.11 to 0.20%, Si: 0.05 to 0.50%, Mn: 1.00 to 2.00%, P: 0.030% or less. , S: 0.010% or less, Al: 0.01 to 0.08%, and in addition, the ferrite phase is the main phase, and the second phase other than the main phase is pearlite with an area ratio of 8 to 30%. / Or pseudo-pearlite, having a structure having an average particle size of 4.0 to 10 μm including the main phase and the second phase, and 0.2% proof stress YS: 450 MPa or more in the pipe circumferential direction and the pipe axial direction. , A low yield strength high-strength pearlite steel pipe for steel pipe piles having a tensile strength TS: 590 MPa or more and a yield ratio: 90% or less is described.
特開平11-6032号公報JP-A-11-6032 特許第2687841号公報Japanese Patent No. 2678441 特開2004-300461号公報Japanese Unexamined Patent Publication No. 2004-300461 特許第6123734号公報Japanese Patent No. 6123734
 しかしながら、特許文献1に記載された技術で製造された鋼管は、管軸方向の降伏比が過度に低下する。このため、得られた鋼管を鋼管杭として適用した場合には、杭打ちの際に、打ち込みにより座屈等の問題を生じる恐れがある。 However, the yield ratio in the pipe axial direction of the steel pipe manufactured by the technique described in Patent Document 1 is excessively lowered. Therefore, when the obtained steel pipe is applied as a steel pipe pile, there is a risk that problems such as buckling may occur due to the driving during pile driving.
 特許文献2に記載された技術では、焼き戻しのための熱処理工程を必要とする。また、特許文献3に記載された技術では、大型の管用熱処理装置を必要とするうえ、製管したのちに熱処理工程を必要とする。これらの熱処理を必要とする技術では、降伏比が低くなり過ぎるという問題がある。さらに、工程が複雑となり生産性が低下する問題もある。また、生産コストが増大して、安価に提供することが困難となる。 The technique described in Patent Document 2 requires a heat treatment step for tempering. Further, the technique described in Patent Document 3 requires a large-scale heat treatment apparatus for pipes, and also requires a heat treatment step after making the pipe. Techniques that require these heat treatments have the problem that the yield ratio is too low. Further, there is a problem that the process becomes complicated and the productivity is lowered. In addition, the production cost increases, and it becomes difficult to provide the product at low cost.
 特許文献4に記載された技術では、熱間圧延後に、仕上圧延終了温度から10~100sで550~700℃の温度域まで冷却して、フェライトとパーライトを主体とした組織を得ており、所望の組織を得られていない。また、非常に長い冷却帯を有する設備が必要となり、安価な鋼管杭向け高強度高靱性電縫鋼管を提供することが困難となる。 In the technique described in Patent Document 4, after hot rolling, the structure is cooled from the finish rolling end temperature to a temperature range of 550 to 700 ° C. in 10 to 100 s to obtain a structure mainly composed of ferrite and pearlite, which is desired. No organization has been obtained. In addition, equipment having a very long cooling zone is required, and it becomes difficult to provide inexpensive high-strength and high-toughness electric resistance welded steel pipes for steel pipe piles.
 本発明は、上記した課題に鑑みてなされたものであり、最適な降伏比および高い耐座屈性能を有し、さらに高強度および高靱性を備えた電縫鋼管およびその製造方法、並びに鋼管杭を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and is an electrosewn steel pipe having an optimum yield ratio and high buckling resistance, and further having high strength and high toughness, a method for manufacturing the same, and a steel pipe pile. The purpose is to provide.
 なお、本発明では、主に板厚が16mm以上の熱延鋼板を素材として用いた場合に、上記課題を達成できる電縫鋼管およびその製造方法、並びに鋼管杭を提供するものでもある。 The present invention also provides an electrosewn steel pipe, a method for manufacturing the same, and a steel pipe pile that can achieve the above problems when a hot-rolled steel sheet having a plate thickness of 16 mm or more is mainly used as a material.
 ここでいう「高強度」とは、電縫鋼管の母材部における管軸方向において、0.2%耐力(YS):450MPa以上、引張強さ(TS):590MPa以上である場合をいう。ここでいう「高靱性」とは、電縫鋼管の母材部における管軸方向を試験片長手方向とした、-30℃におけるシャルピー吸収エネルギーが70J以上である場合をいい、電縫鋼管の管周方向および管軸方向のいずれにおいても、上記した高靱性を満足するものとする。ここでいう「最適な降伏比」とは、上記した引張強さに対する0.2%耐力の比(YR)が80~90%をいう。ここでいう「高い耐座屈性能」とは、電縫鋼管の母材部における鋼管外表面の管軸方向における残留応力が250MPa以下で、かつ降伏比が90%以下である場合をいう。 The term "high strength" as used herein means a case where 0.2% proof stress (YS): 450 MPa or more and tensile strength (TS): 590 MPa or more in the pipe axial direction in the base material portion of the electrosewn steel pipe. The term "high toughness" as used herein means a case where the Charpy absorption energy at −30 ° C. is 70 J or more, with the pipe axis direction in the base material portion of the electric resistance pipe as the longitudinal direction of the test piece, and the pipe of the electric resistance steel pipe. The above-mentioned high toughness shall be satisfied in both the circumferential direction and the pipe axis direction. The "optimal yield ratio" as used herein means that the ratio (YR) of 0.2% proof stress to the above-mentioned tensile strength is 80 to 90%. The term "high buckling resistance" as used herein means a case where the residual stress of the outer surface of the steel pipe in the base metal portion of the electric resistance pipe in the pipe axial direction is 250 MPa or less and the yield ratio is 90% or less.
 本発明者らは、上記した目的を達成するために、降伏比、0.2%耐力、引張強さ、およびシャルピー衝撃特性に及ぼす各種合金元素および製造条件の影響について、鋭意検討した。また、得られた鋼管(電縫鋼管)の耐座屈性能についても、鋭意検討した。その結果、降伏比を比較的低く維持しつつ、高強度と高靱性が両立でき、高い耐座屈性能を有する適正な成分組成、鋼組織および製造条件があることを知見した。 In order to achieve the above object, the present inventors have diligently studied the effects of various alloying elements and manufacturing conditions on the yield ratio, 0.2% proof stress, tensile strength, and Charpy impact characteristics. In addition, the buckling resistance performance of the obtained steel pipe (electric pipe) was also diligently examined. As a result, it was found that while maintaining a relatively low yield ratio, both high strength and high toughness can be achieved, and there are appropriate composition, steel structure and manufacturing conditions having high buckling resistance.
 すなわち、特定の成分組成、熱間圧延条件に限定して製造した熱延鋼板に、冷間ロール成形による冷間ロール成形工程において溶接後に特定の条件で縮径圧延を施す。これにより、電縫鋼管の母材部の鋼管外表面から板厚tの1/4t深さ位置における鋼組織を、ベイナイトが面積率で60%以上、さらに、ベイナイトの平均有効粒径が平均円相当径で20.0μm以下、かつベイナイトの平均アスペクト比が0.1~0.8とする。その結果、0.2%耐力は450MPa以上と比較的低く、引張強さは590MPa以上と高く、かつ降伏比は80~90%であり、-30℃におけるシャルピー吸収エネルギーは70J以上であり、母材部における鋼管外表面の管軸方向の残留応力が250MPa以下である低降伏比、高強度、高靱性および、高い耐座屈性能を備えた電縫鋼管が得られることを見出した。 That is, the hot-rolled steel sheet manufactured with a specific composition and hot rolling conditions is subjected to diameter reduction rolling under specific conditions after welding in the cold roll forming process by cold roll forming. As a result, bainite has an area ratio of 60% or more, and the average effective particle size of bainite is an average circle in the steel structure at a depth of 1/4 t of the plate thickness t from the outer surface of the steel pipe base material of the electrosewn steel pipe. The equivalent diameter is 20.0 μm or less, and the average aspect ratio of bainite is 0.1 to 0.8. As a result, the 0.2% proof stress is relatively low at 450 MPa or more, the tensile strength is high at 590 MPa or more, the yield ratio is 80 to 90%, the charpy absorption energy at −30 ° C. is 70 J or more, and the mother. It has been found that an electrosewn steel pipe having a low yield ratio, high strength, high toughness, and high buckling resistance performance in which the residual stress of the outer surface of the steel pipe in the material portion in the pipe axis direction is 250 MPa or less can be obtained.
 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものであり、本発明の要旨は次のとおりである。
[1] 母材部と鋼軸方向に溶接部を有する電縫鋼管であって、
 前記母材部の成分組成は、質量%で、
C:0.12~0.20%、
Si:0.60%以下、
Mn:0.50~1.70%、
P:0.030%以下、
S:0.015%以下、
Al:0.010~0.060%、
Nb:0.010~0.080%、
Ti:0.010~0.050%、
N:0.006%以下
を含有し、残部がFeおよび不可避的不純物からなり、
 前記母材部の板厚をtとしたとき、前記電縫鋼管の外表面から板厚tの1/4t深さ位置における鋼組織は、
ベイナイトが面積率で60%以上であり、
前記ベイナイトの平均有効粒径が平均円相当径で20.0μm以下、かつ前記ベイナイトの平均アスペクト比が0.1~0.8であり、
 管軸方向の引張強さが590MPa以上、0.2%耐力が450MPa以上、降伏比が80~90%であり、
 前記母材部における管軸方向を試験片長手方向とした-30℃におけるシャルピー吸収エネルギーが70J以上であり、
 前記母材部における鋼管外表面の管軸方向における残留応力が250MPa以下である電縫鋼管。
[2] 前記成分組成に加えてさらに、質量%で、B:0.008%以下を含有する[1]に記載の電縫鋼管。
[3] 前記成分組成に加えてさらに、質量%で、
Cr:0.01~1.0%、
V:0.010~0.060%、
Mo:0.01~1.0%、
Cu:0.01~0.50%、
Ni:0.01~1.0%、
Ca:0.0005~0.010%
のうちから選ばれた1種または2種以上を含有する[1]または[2]に記載の電縫鋼管。
[4] 鋼素材に、熱間圧延工程、冷却工程をこの順に施して熱延鋼板とし、さらに、該熱延鋼板に冷間ロール成形工程を施して電縫鋼管とする電縫鋼管の製造方法であって、
 前記鋼素材は、[1]~[3]のいずれか1つに記載の成分組成を有し、
 前記熱間圧延工程は、前記鋼素材を加熱温度:1100~1280℃に加熱した後、粗圧延終了温度:850~1150℃、仕上圧延終了温度:750~850℃、かつ、粗圧延と仕上圧延における930℃以下での合計圧下率:65%以上とする粗圧延および仕上圧延を施して熱延板とする工程であり、
 前記冷却工程は、前記熱延板を、板厚中心温度で冷却開始から冷却停止までの平均冷却速度:5~25℃/s、冷却停止温度:450~650℃で冷却する工程であり、
 前記冷間ロール成形工程は、前記熱延鋼板にロール成形加工を施した鋼管素材を溶接し、溶接後の鋼管外面の周長に対して縮径率:0.2~0.5%の縮径圧延を行う電縫鋼管の製造方法。
[5] [1]~[3]のいずれか1つに記載の成分組成を有し、板厚をtとしたとき、外表面から板厚tの1/4t深さ位置における鋼組織は、ベイナイトが面積率で60%以上であり、前記ベイナイトの平均有効粒径が平均円相当径で20.0μm以下、かつ前記ベイナイトの平均アスペクト比が0.1~0.8である熱延鋼板に冷間ロール成形工程を施して電縫鋼管とする電縫鋼管の製造方法であって、
 前記冷間ロール成形工程は、前記熱延鋼板にロール成形加工を施した鋼管素材を溶接し、溶接後の鋼管外面の周長に対して縮径率:0.2~0.5%の縮径圧延を行う電縫鋼管の製造方法。
[6] [1]~[3]のいずれか1つに記載の電縫鋼管を用いた鋼管杭。
The present invention has been completed by further studying based on such findings, and the gist of the present invention is as follows.
[1] An electric resistance pipe having a base metal portion and a welded portion in the steel axis direction.
The component composition of the base material portion is mass%.
C: 0.12 to 0.20%,
Si: 0.60% or less,
Mn: 0.50 to 1.70%,
P: 0.030% or less,
S: 0.015% or less,
Al: 0.010 to 0.060%,
Nb: 0.010 to 0.080%,
Ti: 0.010 to 0.050%,
N: Contains 0.006% or less, the balance consists of Fe and unavoidable impurities,
When the plate thickness of the base metal portion is t, the steel structure at a depth of 1/4 t of the plate thickness t from the outer surface of the electrosewn steel pipe is
Bainite has an area ratio of 60% or more,
The average effective particle size of the bainite is 20.0 μm or less in the diameter equivalent to the average circle, and the average aspect ratio of the bainite is 0.1 to 0.8.
The tensile strength in the tube axis direction is 590 MPa or more, the 0.2% proof stress is 450 MPa or more, and the yield ratio is 80 to 90%.
The Charpy absorption energy at −30 ° C. with the tube axis direction in the base metal portion as the longitudinal direction of the test piece is 70 J or more.
An electrosewn steel pipe having a residual stress of 250 MPa or less in the pipe axial direction on the outer surface of the steel pipe in the base material portion.
[2] The electric resistance welded steel pipe according to [1], which further contains B: 0.008% or less in mass% in addition to the component composition.
[3] In addition to the above component composition, in mass%,
Cr: 0.01-1.0%,
V: 0.010 to 0.060%,
Mo: 0.01-1.0%,
Cu: 0.01-0.50%,
Ni: 0.01-1.0%,
Ca: 0.0005-0.010%
The electric resistance pipe according to [1] or [2], which contains one or more selected from the above.
[4] A method for manufacturing an electric resistance-sewn steel pipe in which a hot-rolling process and a cooling process are applied to a steel material in this order to obtain a hot-rolled steel sheet, and the hot-rolled steel sheet is further subjected to a cold roll forming process to obtain an electric-sewn steel pipe. And
The steel material has the component composition according to any one of [1] to [3].
In the hot rolling step, after heating the steel material to a heating temperature of 1100 to 1280 ° C., rough rolling end temperature: 850 to 1150 ° C., finish rolling end temperature: 750 to 850 ° C., and rough rolling and finish rolling. Total rolling reduction at 930 ° C. or lower: 65% or more in rough rolling and finish rolling to obtain a hot-rolled plate.
The cooling step is a step of cooling the hot-rolled plate at a plate thickness center temperature at an average cooling rate of 5 to 25 ° C./s from the start of cooling to the stop of cooling and a cooling stop temperature of 450 to 650 ° C.
In the cold roll forming step, a steel pipe material that has been roll-formed is welded to the hot-rolled steel sheet, and the diameter reduction ratio is 0.2 to 0.5% with respect to the peripheral length of the outer surface of the steel pipe after welding. A method for manufacturing an electrosewn steel pipe for diameter rolling.
[5] When the composition has the component composition according to any one of [1] to [3] and the plate thickness is t, the steel structure at a depth of 1/4 t from the outer surface to the plate thickness t is For hot-rolled steel sheets in which bainite has an area ratio of 60% or more, the average effective particle size of the bainite is 20.0 μm or less in the equivalent circle diameter, and the average aspect ratio of the bainite is 0.1 to 0.8. This is a method for manufacturing a bainite steel pipe that is subjected to a cold roll forming process to form a bainite steel pipe.
In the cold roll forming step, a steel pipe material that has been roll-formed is welded to the hot-rolled steel sheet, and the diameter reduction ratio is 0.2 to 0.5% with respect to the peripheral length of the outer surface of the steel pipe after welding. A method for manufacturing an electrosewn steel pipe for diameter rolling.
[6] A steel pipe pile using the electrosewn steel pipe according to any one of [1] to [3].
 本発明によれば、鋼管杭として好適に用いられる、最適な降伏比および高い耐座屈性能を有し、さらに高強度および高靱性を備えた電縫鋼管およびその製造方法、並びに鋼管杭を提供することができる。本発明の電縫鋼管は容易に製造でき、産業上格段の効果を奏する。 According to the present invention, an electrosewn steel pipe having an optimum yield ratio and high buckling resistance, and further having high strength and high toughness, which is suitably used as a steel pipe pile, a method for manufacturing the same, and a steel pipe pile are provided. can do. The electrosewn steel pipe of the present invention can be easily manufactured, and has a remarkable effect in industry.
 以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
 まず、本発明の電縫鋼管の成分組成の限定理由について説明する。以下、特に断りがない限り、成分組成における「質量%」は単に「%」で記す。 First, the reason for limiting the component composition of the electrosewn steel pipe of the present invention will be described. Hereinafter, unless otherwise specified, "mass%" in the component composition is simply described as "%".
 本発明の電縫鋼管は、母材部と溶接部を有し、母材部はC:0.12~0.20%、Si:0.6%以下、Mn:0.50~1.70%、P:0.030%以下、S:0.015%以下、Al:0.010~0.060%、Nb:0.010~0.080%、Ti:0.010~0.050%、N:0.006%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する。 The electrosewn steel pipe of the present invention has a base material portion and a welded portion, and the base metal portion has C: 0.12 to 0.20%, Si: 0.6% or less, Mn: 0.50 to 1.70. %, P: 0.030% or less, S: 0.015% or less, Al: 0.010 to 0.060%, Nb: 0.010 to 0.080%, Ti: 0.010 to 0.050% , N: 0.006% or less, and has a component composition in which the balance is composed of Fe and unavoidable impurities.
 なお、本発明の電縫鋼管は、管軸方向に溶接部を有する。後述する「熱延鋼板」には、熱延鋼板、熱延鋼帯を含むものとする。 The electrosewn steel pipe of the present invention has a welded portion in the pipe axial direction. The "hot-rolled steel sheet" described later includes hot-rolled steel sheets and hot-rolled steel strips.
 C:0.12~0.20%
 Cは、固溶強化により鋼管(電縫鋼管)の強度を増加させるとともに、ベイナイトなどの鋼組織の生成に関与する元素である。また、Cは、降伏比の適正化に有効な元素である。比較的板厚の大きい鋼管(例えば、板厚が16mm以上の鋼管)は、外径と内径の差が大きいため、鋼管を製造する際の加工度が大きく、降伏比が上昇しやすい。このため、Cを多く含有する必要がある。したがって、上記した効果を得るためには、0.12%以上のCの含有を必要とする。一方、0.20%を超えるCの含有は、マルテンサイトが生成しやすくなり、本発明で目的とする鋼組織が得られない。その結果、本発明で目的とする高靱性を確保することができなくなる。よって、Cは0.12~0.20%とする。Cは、好ましくは0.13%以上とし、より好ましくは0.14%以上とする。Cは、好ましくは0.19%以下とし、より好ましくは0.18%以下とする。
C: 0.12 to 0.20%
C is an element that increases the strength of steel pipes (electrically sewn steel pipes) by solid solution strengthening and is involved in the formation of steel structures such as bainite. Further, C is an element effective for optimizing the yield ratio. A steel pipe having a relatively large plate thickness (for example, a steel pipe having a plate thickness of 16 mm or more) has a large difference between the outer diameter and the inner diameter, so that the degree of processing when manufacturing the steel pipe is large and the yield ratio tends to increase. Therefore, it is necessary to contain a large amount of C. Therefore, in order to obtain the above-mentioned effect, the content of C of 0.12% or more is required. On the other hand, if the content of C exceeds 0.20%, martensite is likely to be formed, and the steel structure desired in the present invention cannot be obtained. As a result, the high toughness intended by the present invention cannot be ensured. Therefore, C is set to 0.12 to 0.20%. C is preferably 0.13% or more, and more preferably 0.14% or more. C is preferably 0.19% or less, and more preferably 0.18% or less.
 Si:0.60%以下
 Siは、脱酸剤として作用するとともに、鋼管の強度を増加させることができる元素である。しかし、Siを過剰に含有すると靱性が低下する。このようなことから、Siは0.60%以下とする。Siは、好ましくは0.50%以下とし、より好ましくは0.45%以下とする。なお、Siの下限は特に規定しないが、電縫溶接性の観点より、0.01%以上とすることが好ましい。より好ましくは0.02%以上とする。
Si: 0.60% or less Si is an element that can act as an antacid and increase the strength of steel pipes. However, if Si is contained in excess, the toughness decreases. For this reason, Si is set to 0.60% or less. Si is preferably 0.50% or less, and more preferably 0.45% or less. Although the lower limit of Si is not particularly specified, it is preferably 0.01% or more from the viewpoint of electric sewing weldability. More preferably, it is 0.02% or more.
 Mn:0.50~1.70%
 Mnは、固溶強化を介して鋼管の強度を増加させる元素である。このような効果を得て、本発明で目的とする高強度を確保するためには、0.50%以上のMnの含有を必要とする。一方、1.70%を超えてMnを含有すると、鋼組織が微細化し、降伏強度が高くなり、本発明で目的とする降伏比を確保できなくなる。このため、Mnは0.50~1.70%とする。Mnは、好ましくは0.55%以上とし、より好ましくは0.60%以上とする。Mnは、好ましくは1.65%以下とし、より好ましくは1.60%以下とする。
Mn: 0.50 to 1.70%
Mn is an element that increases the strength of steel pipes through solid solution strengthening. In order to obtain such an effect and secure the high strength desired in the present invention, the content of Mn of 0.50% or more is required. On the other hand, if Mn is contained in excess of 1.70%, the steel structure becomes finer and the yield strength becomes high, so that the yield ratio desired in the present invention cannot be secured. Therefore, Mn is set to 0.50 to 1.70%. Mn is preferably 0.55% or more, and more preferably 0.60% or more. Mn is preferably 1.65% or less, and more preferably 1.60% or less.
 P:0.030%以下
 Pは、結晶粒界に偏析して靭性を低下させる元素であり、不純物としてできるだけ低減することが望ましいが、本発明では、0.030%までは許容できる。このようなことから、Pは0.030%以下とする。Pは、好ましくは0.025%以下とし、より好ましくは0.020%以下とする。しかし、Pの過度の低減は、精錬コストの高騰を招くため、Pは0.002%以上とすることが好ましい。より好ましくは0.003%以上とする。
P: 0.030% or less P is an element that segregates at grain boundaries and lowers toughness, and it is desirable to reduce it as an impurity as much as possible, but in the present invention, up to 0.030% is acceptable. For this reason, P is set to 0.030% or less. P is preferably 0.025% or less, and more preferably 0.020% or less. However, since excessive reduction of P causes an increase in refining cost, P is preferably 0.002% or more. More preferably, it is 0.003% or more.
 S:0.015%以下
 Sは、鋼管の素材である熱延鋼板を製造する際、鋼中でMnSとして存在し、熱間圧延工程で薄く延伸されることにより、鋼管の延性および靭性に悪影響を及ぼす。このため、本発明ではSを不純物としてできるだけ低減することが望ましいが、Sの含有は0.015%までは許容できる。このため、Sは0.015%以下とする。Sは、好ましくは0.010%以下とし、より好ましくは0.008%以下とする。しかし、Sの過度の低減は、精錬コストの高騰を招くため、Sは0.0002%以上とすることが好ましい。より好ましくは0.001%以上とする。
S: 0.015% or less S exists as MnS in steel when manufacturing a hot-rolled steel sheet, which is a material for steel pipes, and is thinly stretched in a hot rolling process, which adversely affects the ductility and toughness of steel pipes. To exert. Therefore, in the present invention, it is desirable to reduce S as an impurity as much as possible, but the content of S can be up to 0.015%. Therefore, S is set to 0.015% or less. S is preferably 0.010% or less, and more preferably 0.008% or less. However, since excessive reduction of S causes an increase in refining cost, it is preferable that S is 0.0002% or more. More preferably, it is 0.001% or more.
 Al:0.010~0.060%
 Alは、脱酸剤として作用するとともに、Nと結合してAlNを形成し、結晶粒の微細化に寄与する。このような効果を得るためには、0.010%以上のAlを含有する必要がある。一方、0.060%を超える多量のAlの含有は、鋼材(鋼管の素材である熱延鋼板)の清浄度を低下させ、鋼管の延性および靭性を低下させる。このため、Alは0.010~0.060%とする。Alは、好ましくは0.015%以上とし、より好ましくは0.020%以上とする。Alは、好ましくは0.055%以下とし、より好ましくは0.050%以下とする。
Al: 0.010 to 0.060%
Al acts as an antacid and combines with N to form AlN, which contributes to the refinement of crystal grains. In order to obtain such an effect, it is necessary to contain 0.010% or more of Al. On the other hand, the content of a large amount of Al exceeding 0.060% lowers the cleanliness of the steel material (hot-rolled steel sheet which is the material of the steel pipe), and lowers the ductility and toughness of the steel pipe. Therefore, Al is set to 0.010 to 0.060%. Al is preferably 0.015% or more, and more preferably 0.020% or more. Al is preferably 0.055% or less, and more preferably 0.050% or less.
 Nb:0.010~0.080%
 Nbは、炭素や窒素と結合して微細な析出物を形成し、析出強化によって鋼管の強度を増加させる。このような効果を得るためには、Nbを0.010%以上含有する必要がある。一方、0.080%を超えてNbを含有すると、鋼管の素材である熱延鋼板を製造する際、熱間圧延工程における加熱で固溶させることが難しくなる。その結果、粗大な析出物として残留し、靱性が低下する。このため、Nbは0.010~0.080%とする。Nbは、好ましくは0.015%以上とし、より好ましくは0.020%以上とする。Nbは、好ましくは0.075%以下とし、より好ましくは0.070%以下とする。
Nb: 0.010 to 0.080%
Nb combines with carbon and nitrogen to form fine precipitates, and the strength of the steel pipe is increased by strengthening the precipitation. In order to obtain such an effect, it is necessary to contain 0.010% or more of Nb. On the other hand, if Nb is contained in an amount of more than 0.080%, it becomes difficult to dissolve the hot-rolled steel sheet, which is a material of the steel pipe, by heating in the hot rolling step. As a result, it remains as a coarse precipitate and the toughness is lowered. Therefore, Nb is set to 0.010 to 0.080%. Nb is preferably 0.015% or more, and more preferably 0.020% or more. Nb is preferably 0.075% or less, and more preferably 0.070% or less.
 Ti:0.010~0.050%
 Tiは、炭素や窒素と結合して微細な析出物を形成し、析出強化によって鋼管の強度を増加させる。このような効果を得るためには、Tiを0.010%以上含有する必要がある。一方、0.050%を超えてTiを含有すると、析出物が粗大化し、靱性が低下する。このため、Tiは0.010~0.050%とする。Tiは、好ましくは0.012%以上とし、より好ましくは0.015%以上とする。Tiは、好ましくは0.045%以下とし、より好ましくは0.040%以下とする。
Ti: 0.010 to 0.050%
Ti combines with carbon and nitrogen to form fine precipitates, which increase the strength of the steel pipe by strengthening the precipitates. In order to obtain such an effect, it is necessary to contain 0.010% or more of Ti. On the other hand, if Ti is contained in excess of 0.050%, the precipitate becomes coarse and the toughness decreases. Therefore, Ti is set to 0.010 to 0.050%. Ti is preferably 0.012% or more, more preferably 0.015% or more. Ti is preferably 0.045% or less, and more preferably 0.040% or less.
 N:0.006%以下
 Nは、微量であれば鋼管の強度を増加させる効果を有するが、多量に含有すると高温で粗大な析出物を形成し、靱性を低下させる。このため、Nは0.006%以下とする。Nの過度な低減は、精錬コストの高騰を招くため、好ましくは0.001%以上とし、より好ましくは0.002%以上とする。Nは、好ましくは0.005%以下とし、より好ましくは0.004%以下とする。
N: 0.006% or less N has the effect of increasing the strength of the steel pipe if it is in a small amount, but if it is contained in a large amount, coarse precipitates are formed at high temperature and the toughness is lowered. Therefore, N is set to 0.006% or less. Excessive reduction of N causes an increase in refining cost, so it is preferably 0.001% or more, more preferably 0.002% or more. N is preferably 0.005% or less, and more preferably 0.004% or less.
 残部は、Feおよび不可避的不純物である。なお、本発明の効果を損なわない範囲においては、不可避的不純物として、O:0.0050%以下の含有を許容できる。 The rest is Fe and unavoidable impurities. As long as the effect of the present invention is not impaired, the content of O: 0.0050% or less can be allowed as an unavoidable impurity.
 上記した成分が本発明における電縫鋼管の基本の成分組成である。上記した必須元素で本発明で目的とする特性は得られるが、この基本の成分組成に加えて、必要に応じてさらに、下記の元素を含有することができる。 The above-mentioned components are the basic component composition of the electrosewn steel pipe in the present invention. Although the above-mentioned essential elements can obtain the properties desired in the present invention, the following elements can be further contained, if necessary, in addition to this basic composition.
 B:0.008%以下
 Bは、フェライト変態開始温度を低下させることで鋼組織の微細化に寄与する元素であり、必要に応じて含有することができる。しかし、Bの含有量が0.008%を超えると、結晶粒界に偏析しやすくなり、靱性が低下する恐れがある。したがって、Bを含有する場合には、Bを0.008%以下とすることが好ましい。より好ましくは0.006%以下とする。なお、Bは、好ましくは0.0003%以上とする。
B: 0.008% or less B is an element that contributes to the miniaturization of the steel structure by lowering the ferrite transformation start temperature, and can be contained as necessary. However, if the B content exceeds 0.008%, segregation is likely to occur at the grain boundaries, and the toughness may decrease. Therefore, when B is contained, it is preferable that B is 0.008% or less. More preferably, it is 0.006% or less. B is preferably 0.0003% or more.
 Cr:0.01~1.0%、V:0.010~0.060%、Mo:0.01~1.0%、Cu:0.01~0.50%、Ni:0.01~1.0%、Ca:0.0005~0.010%のうちから選ばれた1種または2種以上
 Cr:0.01~1.0%
 Crは、焼入れ性を高めることで、鋼管の強度を上昇させる元素であり、必要に応じて含有することができる。このような効果を得るためには、Crを0.01%以上含有することが好ましい。一方、1.0%を超えてCrを含有すると、靱性や溶接性を低下させる恐れがあるため、1.0%以下とすることが好ましい。したがって、Crを含有する場合には、Crを0.01~1.0%とすることが好ましい。Crは、より好ましくは0.02%以上とし、より一層好ましくは0.03%以上とする。Crは、より好ましくは0.8%以下とし、より一層好ましくは0.6%以下とする。
Cr: 0.01 to 1.0%, V: 0.010 to 0.060%, Mo: 0.01 to 1.0%, Cu: 0.01 to 0.50%, Ni: 0.01 to One or more selected from 1.0%, Ca: 0.0005 to 0.010% Cr: 0.01 to 1.0%
Cr is an element that increases the strength of steel pipes by enhancing hardenability, and can be contained as needed. In order to obtain such an effect, it is preferable to contain Cr in an amount of 0.01% or more. On the other hand, if Cr is contained in excess of 1.0%, the toughness and weldability may be lowered, so the content is preferably 1.0% or less. Therefore, when Cr is contained, it is preferable that Cr is 0.01 to 1.0%. Cr is more preferably 0.02% or more, and even more preferably 0.03% or more. Cr is more preferably 0.8% or less, and even more preferably 0.6% or less.
 V:0.010~0.060%
 Vは、炭素や窒素と結合して微細な析出物を形成し、析出強化によって鋼管の強度を増加させる元素であり、必要に応じて含有することができる。このような効果を得るためには、Vを0.010%以上含有する必要がある。一方、0.060%を超えてVを含有すると、析出物が粗大化し、上記した効果が飽和しやすくなす。このため、Vは0.010~0.060%とする。Vは、好ましくは0.012%以上とし、より好ましくは0.015%以上とする。Vは、好ましくは0.055%以下とし、より好ましくは0.050%以下とする。
V: 0.010 to 0.060%
V is an element that combines with carbon and nitrogen to form fine precipitates and increases the strength of the steel pipe by strengthening the precipitation, and can be contained as needed. In order to obtain such an effect, it is necessary to contain 0.010% or more of V. On the other hand, if V is contained in excess of 0.060%, the precipitate becomes coarse and the above-mentioned effect tends to be saturated. Therefore, V is set to 0.010 to 0.060%. V is preferably 0.012% or more, and more preferably 0.015% or more. V is preferably 0.055% or less, and more preferably 0.050% or less.
 Mo:0.01~1.0%
 Moは、焼入れ性を高めることで、鋼管の強度を上昇させる元素であり、必要に応じて含有することができる。このような効果を得るためには、Moを0.01%以上含有することが好ましい。一方、1.0%を超えてMoを含有すると、靱性を低下させるおそれがあるため、1.0%以下とすることが好ましい。したがって、Moを含有する場合には、Moを0.01~1.0%とすることが好ましい。Moは、より好ましくは0.02%以上とし、より一層好ましくは0.03%以上とする。Moは、より好ましくは0.8%以下とし、より一層好ましくは0.6%以下とする。
Mo: 0.01-1.0%
Mo is an element that increases the strength of steel pipes by enhancing hardenability, and can be contained as needed. In order to obtain such an effect, it is preferable to contain Mo in 0.01% or more. On the other hand, if Mo is contained in excess of 1.0%, the toughness may be lowered, so the content is preferably 1.0% or less. Therefore, when Mo is contained, it is preferable that Mo is 0.01 to 1.0%. Mo is more preferably 0.02% or more, and even more preferably 0.03% or more. Mo is more preferably 0.8% or less, and even more preferably 0.6% or less.
 Cu:0.01~0.50%
 Cuは、固溶強化により鋼管の強度を上昇させる元素であり、必要に応じて含有することができる。このような効果を得るためには、Cuを0.01%以上含有することが好ましい。一方、0.50%を超えてCuを含有すると、靱性を低下させるおそれがあるため、0.50%以下とすることが好ましい。したがって、Cuを含有する場合には、Cuを0.01~0.50%とすることが好ましい。Cuは、より好ましくは0.02%以上とし、より一層好ましくは0.03%以上とする。Cuは、より好ましくは0.45%以下とし、より一層好ましくは0.40%以下とする。
Cu: 0.01-0.50%
Cu is an element that increases the strength of steel pipes by solid solution strengthening, and can be contained as needed. In order to obtain such an effect, it is preferable to contain 0.01% or more of Cu. On the other hand, if Cu is contained in excess of 0.50%, the toughness may be lowered, so the content is preferably 0.50% or less. Therefore, when Cu is contained, it is preferable that Cu is 0.01 to 0.50%. Cu is more preferably 0.02% or more, and even more preferably 0.03% or more. Cu is more preferably 0.45% or less, and even more preferably 0.40% or less.
 Ni:0.01~1.0%
 Niは、固溶強化により鋼管の強度を上昇させる元素であり、必要に応じて含有することができる。このような効果を得るためには、Niを0.01%以上含有することが好ましい。一方、1.0%を超えてNiを含有すると、靱性を低下させるおそれがあるため、1.0%以下とすることが好ましい。したがって、Niを含有する場合には、Niを0.01~1.0%とすることが好ましい。Niは、より好ましくは0.02%以上とし、より一層好ましくは0.03%以上とする。Niは、より好ましくは0.8%以下とし、より一層好ましくは0.6%以下とする。
Ni: 0.01-1.0%
Ni is an element that increases the strength of steel pipes by solid solution strengthening, and can be contained as needed. In order to obtain such an effect, it is preferable to contain 0.01% or more of Ni. On the other hand, if Ni is contained in excess of 1.0%, the toughness may be lowered, so the content is preferably 1.0% or less. Therefore, when Ni is contained, it is preferable that Ni is 0.01 to 1.0%. Ni is more preferably 0.02% or more, and even more preferably 0.03% or more. Ni is more preferably 0.8% or less, and even more preferably 0.6% or less.
 Ca:0.0005~0.010%
 Caは、鋼管の素材である熱延鋼板を製造する際、熱間圧延工程で薄く延伸されるMnS等の硫化物を、球状化することで鋼の靱性向上に寄与する元素であり、必要に応じて含有することができる。このような効果を得るため、Caを含有する場合には、0.0005%以上含有することが好ましい。しかし、Caの含有量が0.010%を超えると、鋼中にCa酸化物クラスターが形成され、靱性が悪化する恐れがある。したがって、Caを含有する場合には、Caを0.0005%~0.010%とすることが好ましい。Caは、より好ましくは0.0010%以上とし、より一層好ましくは0.0015%以上とする。Caは、より好ましくは0.005%以下とし、より一層好ましくは0.004%以下とする。
Ca: 0.0005-0.010%
Ca is an element that contributes to improving the toughness of steel by spheroidizing sulfides such as MnS that are thinly stretched in the hot rolling process when manufacturing hot-rolled steel sheets that are the material of steel pipes. It can be contained accordingly. In order to obtain such an effect, when Ca is contained, it is preferably contained in an amount of 0.0005% or more. However, if the Ca content exceeds 0.010%, Ca oxide clusters may be formed in the steel and the toughness may deteriorate. Therefore, when Ca is contained, it is preferable that Ca is 0.0005% to 0.010%. Ca is more preferably 0.0010% or more, and even more preferably 0.0015% or more. Ca is more preferably 0.005% or less, and even more preferably 0.004% or less.
 次に、本発明の電縫鋼管の鋼組織を限定した理由について説明する。 Next, the reason for limiting the steel structure of the electrosewn steel pipe of the present invention will be described.
 本発明の電縫鋼管における、母材部の板厚をtとしたとき、電縫鋼管の外表面から板厚tの1/4t深さ位置における鋼組織は、ベイナイトが面積率で60%以上であり、ベイナイトの平均有効粒径が平均円相当径で20.0μm以下、かつベイナイトの平均アスペクト比で0.1~0.8である鋼組織を有する。 When the plate thickness of the base metal portion of the electrosewn steel pipe of the present invention is t, bainite has an area ratio of 60% or more in the steel structure at a depth of 1/4 t of the plate thickness t from the outer surface of the electrosewn steel pipe. It has a steel structure in which the average effective particle size of bainite is 20.0 μm or less in the equivalent circle diameter and the average aspect ratio of bainite is 0.1 to 0.8.
 ここで、板厚tの1/4t深さ位置とは、鋼組織を制御する上で重要となる、鋼管の素材である熱延鋼板を製造する際の熱間圧延工程における冷却速度が最も大きくなる最表層と最も小さくなる1/2t深さ位置の中間となる位置である。なお、本発明では、熱間圧延における板幅Wの1/4W位置の圧延方向に平行な断面を鋼組織の評価面としている。本発明では、熱間圧延後に熱処理等は行わないため、熱延鋼板の組織と鋼管(母材部)の組織は同じになる。 Here, the 1 / 4t depth position of the plate thickness t has the highest cooling rate in the hot rolling process when manufacturing a hot-rolled steel sheet, which is a material for steel pipes, which is important for controlling the steel structure. It is a position between the outermost layer and the smallest 1 / 2t depth position. In the present invention, the cross section parallel to the rolling direction at the 1/4 W position of the plate width W in hot rolling is used as the evaluation surface of the steel structure. In the present invention, since heat treatment or the like is not performed after hot rolling, the structure of the hot-rolled steel sheet and the structure of the steel pipe (base metal portion) are the same.
 ベイナイトの面積率:60%以上
 本発明において高強度と高靱性を両立するために、ベイナイトを面積率で60%以上含有することが重要である。ベイナイトが60%未満であると、本発明で目的とする強度が得にくくなる。したがって、鋼管の外表面から板厚tの1/4t深さ位置における鋼組織は、ベイナイトを面積率で60%以上とする。好ましくは65%以上である。なお、ベイナイトの面積率が過剰であると降伏比が高くなり過ぎるために、ベイナイトは面積率で98%以下とすることが好ましい。より好ましくは95%以下とする。
Area ratio of bainite: 60% or more In order to achieve both high strength and high toughness in the present invention, it is important to contain bainite in an area ratio of 60% or more. If bainite is less than 60%, it becomes difficult to obtain the strength desired in the present invention. Therefore, in the steel structure at a depth of 1/4 t of the plate thickness t from the outer surface of the steel pipe, bainite is set to 60% or more in area ratio. It is preferably 65% or more. If the area ratio of bainite is excessive, the yield ratio becomes too high. Therefore, the area ratio of bainite is preferably 98% or less. More preferably, it is 95% or less.
 ベイナイト以外の組織(残部組織)は、フェライト、パーライト、マルテンサイト、オーステナイトなどが考えられる。これらの組織の面積率の合計が、鋼組織全体に対して40%以上になると、強度や靱性の不足、降伏比の上昇や過度な低下を招く。よって40%未満とすることが好ましい。より好ましくは35%未満とする。本発明で目的とする降伏比を得ることを考慮すると、残部組織の面積率の合計の下限は、2%超えが好ましく、5%超えがより好ましい。 The structure other than bainite (remaining structure) may be ferrite, pearlite, martensite, austenite, etc. When the total area ratio of these structures is 40% or more of the total steel structure, the strength and toughness are insufficient, and the yield ratio is increased or excessively decreased. Therefore, it is preferably less than 40%. More preferably, it is less than 35%. Considering that the desired yield ratio can be obtained in the present invention, the lower limit of the total area ratio of the residual structure is preferably more than 2%, more preferably more than 5%.
 なお、本発明では、上記した各組織の面積率の測定は、後述する実施例に記載の方法で行うことができる。 In the present invention, the area ratio of each tissue described above can be measured by the method described in Examples described later.
 ベイナイトの平均有効粒径:平均円相当径で20.0μm以下
 本発明において高強度と高靱性を両立するために、ベイナイトの平均有効粒径の平均円相当径を20.0μm以下とすることが重要である。ベイナイトの平均有効粒径が、平均円相当径で20.0μmを超えると、本発明で目的とする靱性が得られなくなる。また、本発明で目的とする強度が得られなくなる。好ましくは15.0μm以下とする。なお、ベイナイトが微細になり過ぎると降伏比が高くなり過ぎるために、ベイナイトの平均有効粒径の平均円相当径を1.0μm以上とすることが好ましく、2.0μm以上とすることがより好ましい。
Average effective particle size of bainite: 20.0 μm or less in average effective particle diameter In order to achieve both high strength and high toughness in the present invention, the average effective particle size of bainite may be 20.0 μm or less. is important. If the average effective particle size of bainite exceeds 20.0 μm in the diameter equivalent to an average circle, the toughness intended by the present invention cannot be obtained. In addition, the strength desired in the present invention cannot be obtained. It is preferably 15.0 μm or less. If the bainite becomes too fine, the yield ratio becomes too high. Therefore, the average effective particle size of bainite is preferably 1.0 μm or more, and more preferably 2.0 μm or more. ..
 ここでは、隣接する結晶の方位差を求め、隣り合う結晶の方位差(結晶方位差)が15°以上の境界で囲まれた領域を結晶粒としたとき、その結晶粒と面積が等しい円の直径をベイナイトの有効粒径とした。得られた有効粒径から粒径の算術平均を求めて、平均円相当径(平均有効粒径)とした。なお、本発明では、結晶方位差、有効粒径、および平均円相当径は、後述する実施例に記載の方法で測定することができる。 Here, the orientation difference between adjacent crystals is obtained, and when the region surrounded by the boundary where the orientation difference (crystal orientation difference) between adjacent crystals is 15 ° or more is defined as a crystal grain, the area of the circle is equal to that of the crystal grain. The diameter was defined as the effective particle size of bainite. The arithmetic mean of the particle size was obtained from the obtained effective particle size and used as the average circle equivalent diameter (average effective particle size). In the present invention, the crystal orientation difference, the effective particle size, and the average circle equivalent diameter can be measured by the methods described in Examples described later.
 ベイナイトの平均アスペクト比:0.1~0.8
 本発明において管軸方向の降伏比を80~90%に制御するためには、ベイナイトの平均アスペクト比を0.1~0.8とすることが必要となる。ここでは、上述のベイナイトの結晶粒において、(板厚方向の長さの平均)/(管軸方向の長さの平均)を算出し、ベイナイトの平均アスペクト比とした。ベイナイトの平均アスペクト比が0.8を超えると、管軸方向の塑性変形能が低下し、降伏比が90%を超えやすくなる。一方、ベイナイトの平均アスペクト比が0.1未満では、管軸方向の強度が低下し、本発明で目的とする強度が得られなくなる。
Bainite average aspect ratio: 0.1-0.8
In the present invention, in order to control the yield ratio in the tube axis direction to 80 to 90%, it is necessary to set the average aspect ratio of bainite to 0.1 to 0.8. Here, in the above-mentioned bainite crystal grains, (average length in the plate thickness direction) / (average length in the tube axis direction) was calculated and used as the average aspect ratio of bainite. When the average aspect ratio of bainite exceeds 0.8, the plastic deformability in the tube axis direction decreases, and the yield ratio tends to exceed 90%. On the other hand, if the average aspect ratio of bainite is less than 0.1, the strength in the tube axis direction decreases, and the strength desired in the present invention cannot be obtained.
 なお、本発明では、ベイナイトの結晶粒における板厚方向の長さの平均、圧延方向の長さの平均は、後述する実施例に記載の方法で測定することができる。 In the present invention, the average length in the plate thickness direction and the average length in the rolling direction of bainite crystal grains can be measured by the methods described in Examples described later.
 次に、本発明の一実施形態における電縫鋼管の製造方法について説明する。 Next, a method for manufacturing an electric resistance welded steel pipe according to an embodiment of the present invention will be described.
 本発明の電縫鋼管は、例えば、上記した成分組成を有する鋼素材に、熱間圧延工程、冷却工程および巻取工程をこの順に施して熱延鋼板とし、さらに、該熱延鋼板に冷間ロール成形工程を施して電縫鋼管とする。 In the electric resistance welded steel pipe of the present invention, for example, a steel material having the above-mentioned composition is subjected to a hot rolling step, a cooling step and a winding step in this order to obtain a hot rolled steel sheet, and further, the hot rolled steel sheet is cold. A roll forming process is performed to obtain an electrosewn steel pipe.
 なお、以下の製造方法の説明において、温度に関する「℃」表示は、特に断らない限り、鋼素材や鋼板(熱延鋼板)の表面温度とする。これらの表面温度は、放射温度計等で測定することができる。また、鋼板板厚中心の温度は、鋼板断面内の温度分布を伝熱解析により計算し、その結果を鋼板の表面温度によって補正することで求めることができる。また、「熱延鋼板」には、熱延鋼板、熱延鋼帯を含むものとする。 In the following description of the manufacturing method, the "° C" indication regarding temperature shall be the surface temperature of the steel material or steel plate (hot-rolled steel plate) unless otherwise specified. These surface temperatures can be measured with a radiation thermometer or the like. Further, the temperature at the center of the thickness of the steel sheet can be obtained by calculating the temperature distribution in the cross section of the steel sheet by heat transfer analysis and correcting the result by the surface temperature of the steel sheet. Further, the "hot-rolled steel sheet" shall include a hot-rolled steel sheet and a hot-rolled steel strip.
 本発明において、鋼素材(鋼スラブ)の溶製方法は、特に限定する必要はない。上記した成分組成を有する溶鋼を、転炉、電気炉、真空溶解炉等の常用の溶製方法で溶製し、連続鋳造法等の常用の鋳造方法でスラブ等の鋳片とすることが、品質、生産性等の観点から好ましい。なお、連続鋳造法に代えて、造塊-分塊圧延法を適用しても何ら問題はない。溶鋼にはさらに、取鍋精錬等の二次精錬を施してもよい。 In the present invention, the method for melting the steel material (steel slab) does not need to be particularly limited. Molten steel having the above-mentioned composition can be melted by a common melting method such as a converter, an electric furnace, or a vacuum melting furnace, and made into a slab or the like by a common casting method such as a continuous casting method. It is preferable from the viewpoint of quality, productivity and the like. There is no problem even if the ingot-block rolling method is applied instead of the continuous casting method. The molten steel may be further subjected to secondary refining such as ladle refining.
 次いで、得られた鋼素材(鋼スラブ)に熱間圧延工程を施す。熱間圧延工程では、鋼素材を加熱温度:1100~1280℃に加熱した後、粗圧延終了温度:850~1150℃とする粗圧延を施し、仕上圧延終了温度:750~850℃とする仕上圧延を施し、かつ粗圧延および仕上圧延における930℃以下での合計圧下率:65%以上である熱間圧延を施して熱延板とする工程である。 Next, the obtained steel material (steel slab) is subjected to a hot rolling process. In the hot rolling step, the steel material is heated to a heating temperature of 1100 to 1280 ° C., then rough rolled to a rough rolling end temperature of 850 to 1150 ° C., and a finish rolling end temperature of 750 to 850 ° C. This is a step of hot rolling to obtain a hot-rolled plate, which has a total reduction ratio of 65% or more at 930 ° C. or lower in rough rolling and finish rolling.
 加熱温度:1100~1280℃
 加熱温度が1100℃未満の場合は、鋳造時に生成した鋼素材中に存在する粗大な炭化物を固溶することができない。その結果、含有する炭化物形成元素の効果を十分に得ることができない。一方、加熱温度が1280℃を超えて高温となると、結晶粒が著しく粗大化し、鋼管の素材である熱延鋼板の組織が粗大化し、本発明で目的とする特性を確保することが困難となる。このため、鋼素材の加熱温度は1100~1280℃とする必要がある。好ましくは1120~1230℃とする。なお、この温度は、加熱炉の炉内設定温度とする。
Heating temperature: 1100-1280 ° C
If the heating temperature is less than 1100 ° C., the coarse carbides present in the steel material produced during casting cannot be solid-solved. As a result, the effect of the contained carbide-forming element cannot be sufficiently obtained. On the other hand, when the heating temperature exceeds 1280 ° C. and becomes high, the crystal grains become remarkably coarse, and the structure of the hot-rolled steel sheet, which is the material of the steel pipe, becomes coarse, and it becomes difficult to secure the characteristics intended by the present invention. .. Therefore, the heating temperature of the steel material needs to be 1100 to 1280 ° C. The temperature is preferably 1120 to 1230 ° C. This temperature is the set temperature inside the heating furnace.
 粗圧延終了温度:850~1150℃
 粗圧延終了温度が850℃未満の場合、熱間圧延中の組織の回復が起こらず圧延方向に過度に伸長した結晶粒が生成しやすくなる。その結果、ベイナイトの平均アスペクト比が0.1未満となりやすい。一方、粗圧延終了温度が1150℃を超えると、オーステナイト未再結晶温度域での圧下量が不足し、微細なオーステナイト粒が得られず、その結果、本発明で目的とするベイナイトの平均有効粒径を確保することが困難となる。このため、粗圧延終了温度は850~1150℃とする。好ましくは860~1000℃とする。
Rough rolling end temperature: 850 to 1150 ° C
When the rough rolling end temperature is less than 850 ° C., the structure during hot rolling does not recover and crystal grains that are excessively elongated in the rolling direction are likely to be generated. As a result, the average aspect ratio of bainite tends to be less than 0.1. On the other hand, when the rough rolling end temperature exceeds 1150 ° C., the amount of reduction in the austenite unrecrystallized temperature range is insufficient, and fine austenite grains cannot be obtained. As a result, the average effective grain of bainite, which is the object of the present invention, is obtained. It becomes difficult to secure the diameter. Therefore, the rough rolling end temperature is set to 850 to 1150 ° C. The temperature is preferably 860 to 1000 ° C.
 仕上圧延終了温度:750~850℃
 仕上圧延終了温度が750℃未満の場合、熱間圧延中の組織の回復が起こらず圧延方向に過度に伸長した結晶粒が生成しやすくなる。その結果、ベイナイトの平均アスペクト比が0.1未満となりやすい。一方、仕上圧延終了温度が850℃を超えると、オーステナイト未再結晶温度域での圧下量が不足し、微細なオーステナイト粒が得られず、その結果、本発明で目的とするベイナイトの平均有効粒径を確保することが困難となる。このため、仕上圧延終了温度は750~850℃とする。好ましくは770~830℃とする。
Finish rolling end temperature: 750 to 850 ° C
When the finish rolling end temperature is less than 750 ° C., the structure during hot rolling does not recover and crystal grains that are excessively elongated in the rolling direction are likely to be generated. As a result, the average aspect ratio of bainite tends to be less than 0.1. On the other hand, when the finish rolling end temperature exceeds 850 ° C., the amount of rolling in the austenite unrecrystallized temperature range is insufficient, and fine austenite grains cannot be obtained. As a result, the average effective grain of bainite, which is the object of the present invention, is obtained. It becomes difficult to secure the diameter. Therefore, the finish rolling end temperature is set to 750 to 850 ° C. The temperature is preferably 770 to 830 ° C.
 粗圧延と仕上圧延における930℃以下での合計圧下率:65%以上
 本発明では、熱間圧延工程においてオーステナイトを微細化することで、続く冷却工程、巻取工程で生成するベイナイトおよび残部組織を微細化し、本発明で目的とする強度および靱性を有する電縫鋼管の素材として適した熱延鋼板を得られる。熱間圧延工程においてオーステナイトを微細化するためには、オーステナイト未再結晶温度域での圧下率を高くし、十分な加工ひずみを導入する必要がある。この効果を得るため、本発明では、930℃以下仕上圧延終了温度までの温度域における合計圧下率を65%以上とする。ここで、合計圧下率とは、930℃以下仕上圧延終了温度までの温度域における各圧延パスの圧下率の合計をさす。
Total rolling reduction at 930 ° C or lower in rough rolling and finish rolling: 65% or more In the present invention, by refining austenite in the hot rolling process, bainite and the residual structure generated in the subsequent cooling process and winding process are produced. It is possible to obtain a hot-rolled steel sheet that is miniaturized and has the strength and toughness desired in the present invention and is suitable as a material for bainite pipes. In order to miniaturize austenite in the hot rolling process, it is necessary to increase the rolling reduction in the austenite unrecrystallized temperature range and introduce sufficient processing strain. In order to obtain this effect, in the present invention, the total reduction rate in the temperature range up to the finish rolling end temperature of 930 ° C. or lower is set to 65% or more. Here, the total rolling reduction rate refers to the total rolling reduction rate of each rolling path in the temperature range up to the finish rolling end temperature of 930 ° C. or lower.
 930℃以下仕上圧延終了温度までの温度域における合計圧下率が65%未満の場合、熱間圧延工程において十分な加工ひずみを導入することができないため、本発明で目的とするベイナイトの平均有効粒径を有する鋼組織が得られない。930℃以下仕上圧延終了温度までの温度域における合計圧下率は、より好ましくは70%以上である。特に上限は規定しないが、80%を超えると圧下率の上昇に対する靱性向上の効果が小さくなり、設備負荷が増大するのみとなる。このため、930℃以下仕上圧延終了温度までの温度域における合計圧下率は80%以下が好ましい。より好ましくは75%以下である。 When the total reduction rate in the temperature range up to the finish rolling end temperature of 930 ° C. or lower is less than 65%, sufficient machining strain cannot be introduced in the hot rolling process, and therefore, the average effective grain size of bainite, which is the object of the present invention. A steel structure with a diameter cannot be obtained. The total reduction rate in the temperature range up to the finish rolling end temperature of 930 ° C. or lower is more preferably 70% or more. The upper limit is not specified, but if it exceeds 80%, the effect of improving the toughness on the increase in the reduction rate becomes small, and the equipment load only increases. Therefore, the total reduction rate in the temperature range up to the finish rolling end temperature of 930 ° C. or lower is preferably 80% or less. More preferably, it is 75% or less.
 本発明において930℃以下としたのは、930℃超えでは熱間圧延工程においてオーステナイトが再結晶し、圧延により導入された転位が消失してしまい、微細化したオーステナイトが得られないためである。 The reason why the temperature was set to 930 ° C. or lower in the present invention is that above 930 ° C., austenite recrystallizes in the hot rolling process, dislocations introduced by rolling disappear, and finely divided austenite cannot be obtained.
 なお、本発明では、鋼素材を熱間圧延するに際し、上記した粗圧延および仕上圧延の両方において930℃以下仕上圧延終了温度までの合計圧下率を65%以上とする熱間圧延としても良いし、仕上圧延のみで930℃以下仕上圧延終了温度までの合計圧下率を65%以上とする熱間圧延としても良い。後者において、仕上圧延のみで930℃以下仕上圧延終了温度までの合計圧下率を65%以上とすることができない場合には、粗圧延の途中でスラブを冷却して温度を930℃以下とした後、粗圧延と仕上圧延の両方における930℃以下仕上圧延終了温度までの合計圧下率を65%以上としてもよい。 In the present invention, when hot rolling a steel material, hot rolling may be performed in which the total rolling reduction ratio up to the finish rolling end temperature of 930 ° C. or lower is 65% or more in both the rough rolling and the finish rolling described above. Hot rolling may be performed in which the total rolling reduction up to the finish rolling end temperature of 930 ° C. or lower is 65% or more only by finish rolling. In the latter case, if the total rolling reduction to the finish rolling end temperature cannot be 65% or more only by finish rolling, the slab is cooled during rough rolling to bring the temperature to 930 ° C or less. The total reduction rate up to the finish rolling end temperature of 930 ° C. or lower in both rough rolling and finish rolling may be 65% or more.
 次いで、熱間圧延工程後の熱延板に冷却工程を施す。冷却工程では、熱延板を、板厚中心温度で冷却開始から冷却停止までの平均冷却速度:5~25℃/s、冷却停止温度:450~650℃で冷却する工程である。 Next, a cooling process is performed on the hot-rolled plate after the hot rolling process. The cooling step is a step of cooling the hot-rolled plate at the center temperature of the plate thickness at an average cooling rate of 5 to 25 ° C./s from the start of cooling to the stop of cooling and a cooling stop temperature of 450 to 650 ° C.
 冷却開始から冷却停止までの平均冷却速度:5~25℃/s
 熱延板の板厚中心温度で、冷却開始から後述する冷却停止温度までの温度域における平均冷却速度が5℃/s未満では、フェライトの生成により、ベイナイトの面積率が低下し、本発明で目的とする強度を得られない。一方で、平均冷却速度が25℃/sを超えると、ベイナイトの平均アスペクト比が0.8を超える。その結果、降伏比が90%を超えやすくなる。平均冷却速度は、好ましくは10℃/s以上とし、好ましくは20℃/s以下とする。
Average cooling rate from the start of cooling to the stop of cooling: 5 to 25 ° C / s
At the center temperature of the thickness of the hot-rolled plate, when the average cooling rate in the temperature range from the start of cooling to the cooling stop temperature described later is less than 5 ° C./s, the area ratio of bainite decreases due to the formation of ferrite, and in the present invention. The desired strength cannot be obtained. On the other hand, when the average cooling rate exceeds 25 ° C./s, the average aspect ratio of bainite exceeds 0.8. As a result, the yield ratio tends to exceed 90%. The average cooling rate is preferably 10 ° C./s or higher, and preferably 20 ° C./s or lower.
 なお、本発明において、平均冷却速度は、特に断らない限り、((冷却前の熱延板の板厚中心温度-冷却後の熱延板の板厚中心温度)/冷却時間)で求められる値(冷却速度)の平均とする。冷却方法は、例えばノズルから水を噴射等する水冷や、冷却ガスの噴射による冷却等が挙げられる。本発明では、熱延板の両面が同条件で冷却されるように、熱延板の両面に冷却操作(処理)を施すことが好ましい。 In the present invention, the average cooling rate is a value obtained by ((center temperature of the thickness of the hot-rolled plate before cooling-center temperature of the thickness of the hot-rolled plate after cooling) / cooling time) unless otherwise specified. It is the average of (cooling rate). Examples of the cooling method include water cooling by injecting water from a nozzle, cooling by injecting cooling gas, and the like. In the present invention, it is preferable to perform a cooling operation (treatment) on both sides of the hot-rolled plate so that both sides of the hot-rolled plate are cooled under the same conditions.
 冷却停止温度:450~650℃
 熱延板の板厚中心温度で、冷却停止温度が450℃未満では、ベイナイトの平均アスペクト比が0.8を超え、その結果、降伏比が90%を超えやすくなる。一方で、冷却停止温度が650℃を超えると、ベイナイト変態開始温度を上回るためベイナイトの面積率を60%以上とすることができない。冷却停止温度は、好ましくは480℃以上とし、好ましくは620℃以下とする。
Cooling stop temperature: 450-650 ° C
At the center temperature of the thickness of the hot-rolled plate, when the cooling stop temperature is less than 450 ° C., the average aspect ratio of bainite exceeds 0.8, and as a result, the yield ratio tends to exceed 90%. On the other hand, when the cooling stop temperature exceeds 650 ° C., the bainite transformation start temperature is exceeded, so that the area ratio of bainite cannot be 60% or more. The cooling stop temperature is preferably 480 ° C. or higher, and preferably 620 ° C. or lower.
 次いで、冷却工程後の熱延鋼板を巻取り、その後放冷する巻取工程を施す。 Next, a winding process is performed in which the hot-rolled steel sheet after the cooling process is wound and then allowed to cool.
 巻取工程では、鋼管の素材である熱延鋼板の鋼板組織の観点より、巻取温度:450~650℃で巻取ることが好ましい。巻取温度が450℃未満では、ベイナイトの平均アスペクト比が0.8を超え、その結果、降伏比が90%を超える場合がある。一方、巻取温度が650℃超えでは、ベイナイト変態開始温度を上回るためベイナイトの面積率を60%以上とすることができない場合がある。巻取温度は、より好ましくは480~620℃である。 In the winding process, it is preferable to wind at a winding temperature of 450 to 650 ° C. from the viewpoint of the steel plate structure of the hot-rolled steel sheet which is the material of the steel pipe. If the take-up temperature is less than 450 ° C., the average aspect ratio of bainite may exceed 0.8, resulting in a yield ratio of more than 90%. On the other hand, if the winding temperature exceeds 650 ° C., the bainite transformation start temperature is exceeded, so that the area ratio of bainite may not be 60% or more. The take-up temperature is more preferably 480 to 620 ° C.
 次いで、巻取工程後の熱延鋼板に冷間ロール成形工程を施す。冷間ロール成形工程では、熱延鋼板を冷間でロール成形加工することにより円筒状のオープン管に成形し、鋼管素材の両端(すなわち、オープン管の突合せ部分)を電縫溶接し、溶接後の丸型鋼管の鋼管外面の周長に対して0.2~0.5%の縮径率で縮径圧延を行う。 Next, a cold roll forming process is performed on the hot-rolled steel sheet after the winding process. In the cold roll forming process, a hot-rolled steel sheet is cold-rolled to form a cylindrical open pipe, and both ends of the steel pipe material (that is, the butt portion of the open pipe) are welded and welded. The diameter of the round steel pipe is reduced by 0.2 to 0.5% with respect to the peripheral length of the outer surface of the steel pipe.
 縮径圧延での縮径率:0.2~0.5%
 縮径圧延での縮径率が0.2%未満の場合、上記した本発明の鋼管の鋼素材では塑性変形による残留応力の低減が不十分となる。その結果、鋼管外表面における管軸方向の残留応力が250MPaを超える。また、加工度不足により降伏比が80%未満となる。一方、縮径圧延での縮径率が0.5%を超えると、加工硬化により、降伏比が90%を超える。その結果、所望の塑性変形能、すなわち耐座屈性能を得られなくなる。また、上記の残留応力が250MPaを超えても、耐座屈性能が低下する。
Diameter reduction ratio in reduced diameter rolling: 0.2 to 0.5%
When the diameter reduction ratio in the reduced diameter rolling is less than 0.2%, the steel material of the steel pipe of the present invention described above is insufficient in reducing the residual stress due to plastic deformation. As a result, the residual stress in the pipe axial direction on the outer surface of the steel pipe exceeds 250 MPa. In addition, the yield ratio is less than 80% due to insufficient processing. On the other hand, when the diameter reduction ratio in diameter reduction rolling exceeds 0.5%, the yield ratio exceeds 90% due to work hardening. As a result, the desired plastic deformability, that is, the buckling resistance performance cannot be obtained. Further, even if the residual stress exceeds 250 MPa, the buckling resistance performance deteriorates.
 以上により、本発明の電縫鋼管が製造される。本発明によれば、管長手方向の引張強さが590MPa以上、0.2%耐力が450MPa以上、降伏比が80~90%であり、-30℃におけるシャルピー吸収エネルギーが70J以上であり、鋼管外表面の管軸方向の残留応力が250MPa以下である電縫鋼管が得られる。これにより、高強度、高靱性、最適な降伏比および耐座屈性能に優れた電縫鋼管を容易に製造することができる。この電縫鋼管は、特に構造物の基礎として用いられる鋼管杭に好適に用いることができるため、産業上格段の効果を奏する。 From the above, the electric resistance welded steel pipe of the present invention is manufactured. According to the present invention, the tensile strength in the longitudinal direction of the pipe is 590 MPa or more, the 0.2% proof stress is 450 MPa or more, the yield ratio is 80 to 90%, the Charpy absorption energy at −30 ° C. is 70 J or more, and the steel pipe. An electro-sewn steel pipe having a residual stress on the outer surface in the pipe axis direction of 250 MPa or less can be obtained. As a result, it is possible to easily manufacture an electrosewn steel pipe having excellent strength, high toughness, optimum yield ratio and buckling resistance. Since this electric pipe is particularly suitable for steel pipe piles used as the foundation of a structure, it is extremely effective in industry.
 次に、本発明の鋼管杭について説明する。 Next, the steel pipe pile of the present invention will be described.
 本発明の鋼管杭は、板厚が16mm以上で、外径300mm以上700mm以下であり、上記した成分組成および鋼組織を有する電縫鋼管からなる。電縫鋼管の成分組成および鋼組織を上述のように規定することにより、管長手方向の引張強度が590MPa以上、0.2%耐力が450MPa以上、降伏比が80~90%であり、-30℃におけるシャルピー吸収エネルギーが70J以上であり、鋼管外表面の管軸方向の残留応力が250MPa以下である鋼管杭が得られる。本発明の鋼管杭は、地中に打ち込まれ、必要な場合には打ち込み途中で鋼管杭同士を溶接あるいはねじ継手などの接続手段により接続して長尺の杭へと現場で施工されることとなる。本発明の鋼管杭によれば、上記特性を有するため、杭打ち込みに対して座屈等の問題を生じる恐れを低減できる。 The steel pipe pile of the present invention is made of an electrosewn steel pipe having a plate thickness of 16 mm or more, an outer diameter of 300 mm or more and 700 mm or less, and having the above-mentioned composition and steel structure. By defining the composition and steel structure of the electrosewn steel pipe as described above, the tensile strength in the longitudinal direction of the pipe is 590 MPa or more, the 0.2% proof stress is 450 MPa or more, the yield ratio is 80 to 90%, and -30. A steel pipe pile having a charpy absorption energy at ° C. of 70 J or more and a residual stress of the outer surface of the steel pipe in the pipe axial direction of 250 MPa or less can be obtained. The steel pipe pile of the present invention is driven into the ground, and if necessary, the steel pipe piles are connected to each other by welding or a connecting means such as a screw joint during the driving to be constructed on-site to a long pile. Become. According to the steel pipe pile of the present invention, since it has the above characteristics, it is possible to reduce the possibility of causing problems such as buckling with respect to pile driving.
 以下、実施例に基づいてさらに本発明を詳細に説明する。なお、本発明は以下の実施例に限定されない。 Hereinafter, the present invention will be described in more detail based on Examples. The present invention is not limited to the following examples.
 表1に示す成分組成を有する溶鋼を転炉で溶製し、連続鋳造法でスラブ(鋼素材:肉厚250mm)とした。得られたスラブを表2-1、表2-2に示す製造条件で熱間圧延工程、冷却工程、巻取工程、および冷間ロール成形工程を施して、表2-1、表2-2に示す外径および板厚の電縫鋼管を製造した。また、冷間ロール成形工程では、オープン管の突合せ部分を電縫溶接した。 Molten steel having the composition shown in Table 1 was melted in a converter and made into a slab (steel material: wall thickness 250 mm) by a continuous casting method. The obtained slab was subjected to a hot rolling step, a cooling step, a winding step, and a cold roll forming step under the manufacturing conditions shown in Tables 2-1 and 2-2, and then subjected to a hot rolling step, a cooling step, and a cold roll forming step. An electro-sewn steel pipe having an outer diameter and a plate thickness shown in the above was manufactured. Further, in the cold roll forming step, the butt portion of the open pipe was welded by electric stitching.
 得られた電縫鋼管から試験片を採取して、以下に示す方法で、組織観察、引張試験、シャルピー衝撃試験、残留応力の測定、部材圧縮試験を実施した。 A test piece was collected from the obtained electric resistance welded steel pipe, and a microstructure observation, a tensile test, a Charpy impact test, a residual stress measurement, and a member compression test were carried out by the methods shown below.
 〔組織観察〕
 組織観察用の試験片は、電縫溶接部を0°としたとき円周方向90°位置の管軸方向断面が観察面となるように採取し、研磨した後、ナイタール腐食して作製した。組織観察は、光学顕微鏡(倍率:1000倍)または走査型電子顕微鏡(SEM、倍率:1000倍)を用いて、電縫鋼管の外表面から板厚tの1/4t深さ位置における組織を観察し、撮像した。得られた光学顕微鏡像およびSEM像から、ベイナイトの面積率を求めた。ベイナイトの面積率は、5視野以上で観察を行い、各視野で得られた値の平均値として算出した。
[Tissue observation]
The test piece for observing the structure was prepared by collecting the test piece so that the cross section in the pipe axis direction at the position of 90 ° in the circumferential direction becomes the observation surface when the electric stitch welded portion was set to 0 °, polishing it, and then corroding it with nital. For microstructure observation, use an optical microscope (magnification: 1000 times) or a scanning electron microscope (SEM, magnification: 1000 times) to observe the structure at a depth of 1/4 t of the plate thickness t from the outer surface of the electrosewn steel tube. And imaged. The area ratio of bainite was determined from the obtained optical microscope image and SEM image. The area ratio of bainite was calculated as the average value of the values obtained in each field of view by observing in 5 or more fields of view.
 また、ベイナイトの平均有効粒径(平均円相当径)は、SEM/EBSD法を用いて測定した。有効粒径は、隣接する結晶粒の間の方位差を求め、方位差が15°以上の境界で囲まれた領域を有効結晶粒としたとき、その有効結晶粒と面積が等しい円の直径をベイナイトの有効粒径とした。得られた有効粒径の算術平均を求めて、平均円相当径とした。測定領域は500μm×500μm、測定ステップサイズは0.5μmとした。なお、結晶粒径解析においては、有効粒径が2.0μm以下のものは測定ノイズとして解析対象から除外した。 The average effective particle size of bainite (diameter equivalent to an average circle) was measured using the SEM / EBSD method. For the effective particle size, determine the orientation difference between adjacent crystal grains, and when the region surrounded by the boundary with the orientation difference of 15 ° or more is defined as the effective crystal grain, the diameter of a circle having the same area as the effective crystal grain is used. The effective particle size of bainite was used. The arithmetic mean of the obtained effective particle size was calculated and used as the average circle equivalent diameter. The measurement area was 500 μm × 500 μm, and the measurement step size was 0.5 μm. In the crystal particle size analysis, those having an effective particle size of 2.0 μm or less were excluded from the analysis as measurement noise.
 また、ベイナイトの平均アスペクト比は、上記の方法で測定した各有効結晶粒の板厚方向の長さ、管軸方向の長さを測定し、それぞれの平均を算出することにより求めた。板厚方向の長さ、管軸方向の長さは、各有効結晶粒における板厚方向、管軸方向それぞれの最大長さとした。 The average aspect ratio of bainite was obtained by measuring the length of each effective crystal grain measured by the above method in the plate thickness direction and the length in the tube axis direction, and calculating the average of each. The length in the plate thickness direction and the length in the tube axis direction were set to the maximum lengths in the plate thickness direction and the tube axis direction for each effective crystal grain.
 〔引張試験〕
 引張試験は、得られた電縫鋼管の電縫溶接部を0°としたとき円周方向90°位置において、引張方向が管軸方向と平行になるように、JIS5号の引張試験片を採取した。JIS Z 2241の規定に準拠して引張試験を実施した。0.2%耐力(降伏強度YS)、引張強さTSを測定し、(0.2%耐力)/(引張強さ)で定義される降伏比を算出した。
[Tensile test]
In the tensile test, a tensile test piece of JIS No. 5 was collected so that the tensile direction was parallel to the pipe axis direction at a position of 90 ° in the circumferential direction when the electric resistance welded portion of the obtained electric resistance pipe was 0 °. did. Tensile tests were carried out in accordance with JIS Z 2241. 0.2% proof stress (yield strength YS) and tensile strength TS were measured, and the yield ratio defined by (0.2% proof stress) / (tensile strength) was calculated.
 〔シャルピー衝撃試験〕
 シャルピー衝撃試験は、得られた電縫鋼管の電縫溶接部を0°としたとき円周方向90°位置において、板厚t/2位置から、試験片長手方向が管軸方向と平行となるように、Vノッチ試験片を採取した。JIS Z 2242の規定に準拠して、試験温度:-30℃でシャルピー衝撃試験を実施し、吸収エネルギー(J)を求めた。なお、試験片の本数は各3本とし、その平均値を算出して吸収エネルギー(J)を求めた。
[Charpy impact test]
In the Charpy impact test, the longitudinal direction of the test piece is parallel to the pipe axis direction from the plate thickness t / 2 position at the position of 90 ° in the circumferential direction when the power stitch welded portion of the obtained power-sewn steel pipe is 0 °. As described above, a V-notch test piece was collected. The Charpy impact test was carried out at a test temperature of −30 ° C. in accordance with JIS Z 2242 to determine the absorbed energy (J). The number of test pieces was 3 each, and the average value was calculated to obtain the absorbed energy (J).
 〔残留応力の測定〕
 残留応力は、パルステック製 μ-X360を用いてX線回折 cosα法により測定した。残留応力の測定位置は、得られた電縫鋼管の管長手中央の外面とし、電縫溶接部を0°としたとき、90°位置、180°位置、270°位置の3か所とした。得られた3か所の測定値の平均値を残留応力とした。なお、応力測定方向は管軸方向とした。
[Measurement of residual stress]
The residual stress was measured by the X-ray diffraction cosα method using μ-X360 manufactured by Pulstec. The residual stress was measured at three positions, 90 °, 180 °, and 270 °, when the electric resistance welded portion was 0 °, with the outer surface of the obtained electric resistance pipe at the center of the length of the pipe. The average value of the obtained three measured values was taken as the residual stress. The stress measurement direction was the pipe axis direction.
 〔部材圧縮試験〕
 本発明では、鋼管杭としての性能評価のために、部材圧縮試験を行い、座屈強度比σcr / σy(なお、σcrは座屈応力度、σyは材料降伏強度である。)を求めた。座屈強度比が低減係数R = 0.8+2.5×t / r(なお、tは板厚、rは半径である。)より大きければ鋼管杭の性能として重要な座屈強度が十分であると判断できる。
[Member compression test]
In the present invention, in order to evaluate the performance of the steel pipe pile, a member compression test was performed to determine the buckling strength ratio σcr / σy (where σcr is the buckling stress and σy is the material yield strength). If the buckling strength ratio is larger than the reduction coefficient R = 0.8 + 2.5 × t / r (t is the plate thickness and r is the radius), the buckling strength, which is important for the performance of steel pipe piles, is sufficient. I can judge.
 得られた結果をそれぞれ表3-1、表3-2に示す。 The obtained results are shown in Table 3-1 and Table 3-2, respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1~表3-2に示す通り、本発明の範囲内にある電縫鋼管は何れも管軸方向の引張強さが590MPa以上、0.2%耐力が450MPa以上、降伏比が80~90%であり、-30℃におけるシャルピー吸収エネルギーが70J以上であり、管外面の管軸方向の残留応力が250MPa以下であった。また、これらの特性を有する電縫鋼管は、鋼管杭の性能として重要な座屈強度も十分であることが分かった。 As shown in Tables 1 to 3-2, all the electrosewn steel pipes within the range of the present invention have a tensile strength of 590 MPa or more in the pipe axial direction, a 0.2% proof stress of 450 MPa or more, and a yield ratio of 80 to 90. The Charpy absorption energy at −30 ° C. was 70 J or more, and the residual stress on the outer surface of the pipe in the pipe axial direction was 250 MPa or less. It was also found that the electric resistance sewn steel pipe having these characteristics has sufficient buckling strength, which is important for the performance of the steel pipe pile.
 一方、成分組成、鋼組織および製造条件において本発明の範囲外にある鋼管は、管長手方向の引張強度、0.2%耐力、降伏比、-30℃におけるシャルピー吸収エネルギー、管外表面の管軸方向の残留応力のうち、何れか1つ以上で本発明で目的とする値を得られなかった。 On the other hand, steel pipes that are outside the scope of the present invention in terms of composition, steel structure and manufacturing conditions include tensile strength in the longitudinal direction of the pipe, 0.2% proof stress, yield ratio, Charpy absorption energy at -30 ° C, and pipe on the outer surface of the pipe. Of the residual stresses in the axial direction, any one or more of them did not obtain the value desired in the present invention.
 以上のことから、電縫鋼管の成分組成、鋼組織、および製造条件を本発明の範囲内とすることで、鋼管杭向けとして好適な、最適な降伏比および高い耐座屈性能を有し、さらに高強度および高靱性を両立した電縫鋼管を提供することができる。 Based on the above, by setting the composition, steel structure, and manufacturing conditions of the electrosewn steel pipe within the scope of the present invention, it has an optimum yield ratio and high buckling resistance suitable for steel pipe piles. Further, it is possible to provide an electrosewn steel pipe having both high strength and high toughness.

Claims (6)

  1.  母材部と管軸方向に溶接部を有する電縫鋼管であって、
     母材部の成分組成は、質量%で、
    C:0.12~0.20%、
    Si:0.60%以下、
    Mn:0.50~1.70%、
    P:0.030%以下、
    S:0.015%以下、
    Al:0.010~0.060%、
    Nb:0.010~0.080%、
    Ti:0.010~0.050%、
    N:0.006%以下
    を含有し、残部がFeおよび不可避的不純物からなり、
     前記母材部の板厚をtとしたとき、前記電縫鋼管の外表面から板厚tの1/4t深さ位置における鋼組織は、
    ベイナイトが面積率で60%以上であり、
    前記ベイナイトの平均有効粒径が平均円相当径で20.0μm以下、かつ前記ベイナイトの平均アスペクト比が0.1~0.8であり、
     管軸方向の引張強さが590MPa以上、0.2%耐力が450MPa以上、降伏比が80~90%であり、
     前記母材部における管軸方向を試験片長手方向とした-30℃におけるシャルピー吸収エネルギーが70J以上であり、
     前記母材部における鋼管外表面の管軸方向における残留応力が250MPa以下である電縫鋼管。
    An electrosewn steel pipe having a base metal part and a welded part in the pipe axis direction.
    The composition of the base material is mass%,
    C: 0.12 to 0.20%,
    Si: 0.60% or less,
    Mn: 0.50 to 1.70%,
    P: 0.030% or less,
    S: 0.015% or less,
    Al: 0.010 to 0.060%,
    Nb: 0.010 to 0.080%,
    Ti: 0.010 to 0.050%,
    N: Contains 0.006% or less, the balance consists of Fe and unavoidable impurities,
    When the plate thickness of the base metal portion is t, the steel structure at a depth of 1/4 t of the plate thickness t from the outer surface of the electrosewn steel pipe is
    Bainite has an area ratio of 60% or more,
    The average effective particle size of the bainite is 20.0 μm or less in the diameter equivalent to the average circle, and the average aspect ratio of the bainite is 0.1 to 0.8.
    The tensile strength in the tube axis direction is 590 MPa or more, the 0.2% proof stress is 450 MPa or more, and the yield ratio is 80 to 90%.
    The Charpy absorption energy at −30 ° C. with the tube axis direction in the base metal portion as the longitudinal direction of the test piece is 70 J or more.
    An electrosewn steel pipe having a residual stress of 250 MPa or less in the pipe axial direction on the outer surface of the steel pipe in the base material portion.
  2.  前記成分組成に加えてさらに、質量%で、B:0.008%以下を含有することを特徴とする請求項1に記載の電縫鋼管。 The electric resistance steel pipe according to claim 1, further containing B: 0.008% or less in mass% in addition to the component composition.
  3.  前記成分組成に加えてさらに、質量%で、
    Cr:0.01~1.0%、
    V:0.010~0.060%、
    Mo:0.01~1.0%、
    Cu:0.01~0.50%、
    Ni:0.01~1.0%、
    Ca:0.0005~0.010%
    のうちから選ばれた1種または2種以上を含有する請求項1または2に記載の電縫鋼管。
    In addition to the above component composition, in% by mass,
    Cr: 0.01-1.0%,
    V: 0.010 to 0.060%,
    Mo: 0.01-1.0%,
    Cu: 0.01-0.50%,
    Ni: 0.01-1.0%,
    Ca: 0.0005-0.010%
    The electric resistance welded steel pipe according to claim 1 or 2, which contains one or more selected from the above.
  4.  鋼素材に、熱間圧延工程、冷却工程をこの順に施して熱延鋼板とし、さらに、該熱延鋼板に冷間ロール成形工程を施して電縫鋼管とする電縫鋼管の製造方法であって、
     前記鋼素材は、請求項1~3のいずれか1項に記載の成分組成を有し、
     前記熱間圧延工程は、前記鋼素材を加熱温度:1100~1280℃に加熱した後、粗圧延終了温度:850~1150℃、仕上圧延終了温度:750~850℃、かつ、粗圧延と仕上圧延における930℃以下での合計圧下率:65%以上とする粗圧延および仕上圧延を施して熱延板とする工程であり、
     前記冷却工程は、前記熱延板を、板厚中心温度で、冷却開始から冷却停止までの平均冷却速度:5~25℃/s、冷却停止温度:450~650℃で冷却する工程であり、
     前記冷間ロール成形工程は、前記熱延鋼板にロール成形加工を施した鋼管素材を溶接し、溶接後の鋼管外面の周長に対して縮径率:0.2~0.5%の縮径圧延を行う電縫鋼管の製造方法。
    This is a method for manufacturing a hot-rolled steel pipe in which a hot-rolling process and a cooling process are applied to a steel material in this order to obtain a hot-rolled steel sheet, and further, a cold roll forming process is applied to the hot-rolled steel sheet to obtain an electric-sewn steel pipe. ,
    The steel material has the component composition according to any one of claims 1 to 3.
    In the hot rolling step, after heating the steel material to a heating temperature of 1100 to 1280 ° C., rough rolling end temperature: 850 to 1150 ° C., finish rolling end temperature: 750 to 850 ° C., and rough rolling and finish rolling. Total rolling reduction at 930 ° C. or lower: 65% or more in rough rolling and finish rolling to obtain a hot-rolled plate.
    The cooling step is a step of cooling the hot-rolled plate at a plate thickness center temperature at an average cooling rate of 5 to 25 ° C./s from the start of cooling to the stop of cooling and a cooling stop temperature of 450 to 650 ° C.
    In the cold roll forming step, a steel pipe material that has been roll-formed is welded to the hot-rolled steel sheet, and the diameter reduction ratio is 0.2 to 0.5% with respect to the peripheral length of the outer surface of the steel pipe after welding. A method for manufacturing an electrosewn steel pipe for diameter rolling.
  5.  請求項1~3のいずれか1項に記載の成分組成を有し、板厚をtとしたとき、外表面から板厚tの1/4t深さ位置における鋼組織は、ベイナイトが面積率で60%以上であり、前記ベイナイトの平均有効粒径が平均円相当径で20.0μm以下、かつ前記ベイナイトの平均アスペクト比が0.1~0.8である熱延鋼板に冷間ロール成形工程を施して電縫鋼管とする電縫鋼管の製造方法であって、
     前記冷間ロール成形工程は、前記熱延鋼板にロール成形加工を施した鋼管素材を溶接し、溶接後の鋼管外面の周長に対して縮径率:0.2~0.5%の縮径圧延を行う電縫鋼管の製造方法。
    When the composition has the component composition according to any one of claims 1 to 3 and the plate thickness is t, bainite is the area ratio of the steel structure at the depth position of 1/4 t of the plate thickness t from the outer surface. A cold roll forming step on a hot-rolled steel sheet having 60% or more, an average effective particle size of the bainite of 20.0 μm or less in an average circle equivalent diameter, and an average aspect ratio of the bainite of 0.1 to 0.8. This is a method for manufacturing bainite steel pipes that are made into bainite steel pipes.
    In the cold roll forming step, a steel pipe material that has been roll-formed is welded to the hot-rolled steel sheet, and the diameter reduction ratio is 0.2 to 0.5% with respect to the peripheral length of the outer surface of the steel pipe after welding. A method for manufacturing an electrosewn steel pipe for diameter rolling.
  6.  請求項1~3のいずれか1項に記載の電縫鋼管を用いた鋼管杭。 A steel pipe pile using the electric pipe sewn steel pipe according to any one of claims 1 to 3.
PCT/JP2019/014232 2019-03-29 2019-03-29 Electric resistance welded steel pipe and method for manufacturing same, and steel pipe pile WO2020202334A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980094635.3A CN113614268B (en) 2019-03-29 2019-03-29 Electric resistance welded steel pipe, method for producing same, and steel pipe pile
KR1020217031054A KR102551615B1 (en) 2019-03-29 2019-03-29 Electric resistance steel pipe, manufacturing method thereof, and steel pipe pile
JP2019548355A JP6690788B1 (en) 2019-03-29 2019-03-29 ERW steel pipe, its manufacturing method, and steel pipe pile
PCT/JP2019/014232 WO2020202334A1 (en) 2019-03-29 2019-03-29 Electric resistance welded steel pipe and method for manufacturing same, and steel pipe pile
TW109108314A TWI762881B (en) 2019-03-29 2020-03-13 Electric-welded steel pipe, method for manufacturing the same, and steel pipe pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/014232 WO2020202334A1 (en) 2019-03-29 2019-03-29 Electric resistance welded steel pipe and method for manufacturing same, and steel pipe pile

Publications (1)

Publication Number Publication Date
WO2020202334A1 true WO2020202334A1 (en) 2020-10-08

Family

ID=70413796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014232 WO2020202334A1 (en) 2019-03-29 2019-03-29 Electric resistance welded steel pipe and method for manufacturing same, and steel pipe pile

Country Status (5)

Country Link
JP (1) JP6690788B1 (en)
KR (1) KR102551615B1 (en)
CN (1) CN113614268B (en)
TW (1) TWI762881B (en)
WO (1) WO2020202334A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7346770B1 (en) * 2022-08-05 2023-09-19 Jfeシビル株式会社 artificial ground structure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4036256A4 (en) * 2019-10-31 2023-05-10 JFE Steel Corporation Electric resistance welded steel pipe and method for producing same, and line pipe and building structure
JP7081727B1 (en) * 2020-10-05 2022-06-07 Jfeスチール株式会社 Electric pipe and its manufacturing method
TWI768987B (en) * 2021-06-28 2022-06-21 中國鋼鐵股份有限公司 Steel with low temperature toughness and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103623A1 (en) * 2014-12-25 2016-06-30 Jfeスチール株式会社 High-strength thick-walled electric resistance welded steel pipe for conductor casing for deep well, production method therefor, and high-strength thick-walled conductor casing for deep well
WO2017130875A1 (en) * 2016-01-27 2017-08-03 Jfeスチール株式会社 High-strength hot-rolled steel sheet for electric resistance welded steel pipe, and method for manufacturing same
WO2017221690A1 (en) * 2016-06-22 2017-12-28 Jfeスチール株式会社 Hot-rolled steel sheet for thick high strength line pipes, welded steel pipe for thick high strength line pipes, and manfuacturing method therefor
WO2018139095A1 (en) * 2017-01-25 2018-08-02 Jfeスチール株式会社 Hot-rolled steel sheet for coiled tubing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123734U (en) 1984-07-18 1986-02-12 富士電機株式会社 Power transistor base drive current supply circuit
JP2687841B2 (en) 1993-06-01 1997-12-08 住友金属工業株式会社 Low yield ratio high strength steel pipe manufacturing method
JPH116032A (en) 1997-06-18 1999-01-12 Nkk Corp Earthquake-proof welded steel tube excellent in local buckling resistance, and its production
JP4300049B2 (en) 2003-03-28 2009-07-22 株式会社神戸製鋼所 Manufacturing method of high-strength steel pipe for building structure with low yield ratio
JP2017048459A (en) * 2015-09-03 2017-03-09 株式会社神戸製鋼所 Steel wire for machine structure component
KR102364255B1 (en) * 2017-09-19 2022-02-17 닛폰세이테츠 가부시키가이샤 steel pipe and plate
CN107815597A (en) * 2017-11-17 2018-03-20 武汉钢铁有限公司 A kind of high-intensity rim steel and production method with good flanging forming

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103623A1 (en) * 2014-12-25 2016-06-30 Jfeスチール株式会社 High-strength thick-walled electric resistance welded steel pipe for conductor casing for deep well, production method therefor, and high-strength thick-walled conductor casing for deep well
WO2017130875A1 (en) * 2016-01-27 2017-08-03 Jfeスチール株式会社 High-strength hot-rolled steel sheet for electric resistance welded steel pipe, and method for manufacturing same
WO2017221690A1 (en) * 2016-06-22 2017-12-28 Jfeスチール株式会社 Hot-rolled steel sheet for thick high strength line pipes, welded steel pipe for thick high strength line pipes, and manfuacturing method therefor
WO2018139095A1 (en) * 2017-01-25 2018-08-02 Jfeスチール株式会社 Hot-rolled steel sheet for coiled tubing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7346770B1 (en) * 2022-08-05 2023-09-19 Jfeシビル株式会社 artificial ground structure
WO2024029070A1 (en) * 2022-08-05 2024-02-08 Jfeシビル株式会社 Artificial ground structure
JP7430842B1 (en) 2022-08-05 2024-02-13 Jfeシビル株式会社 artificial ground structure

Also Published As

Publication number Publication date
TW202039884A (en) 2020-11-01
CN113614268B (en) 2022-12-02
KR102551615B1 (en) 2023-07-05
KR20210132698A (en) 2021-11-04
JP6690788B1 (en) 2020-04-28
JPWO2020202334A1 (en) 2021-04-30
CN113614268A (en) 2021-11-05
TWI762881B (en) 2022-05-01

Similar Documents

Publication Publication Date Title
US9580782B2 (en) Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and manufacturing method thereof
US9752216B2 (en) High-strength hot rolled steel sheet with excellent bendability and low-temperature toughness, and method for manufacturing the same
JP5499733B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
KR100799421B1 (en) Cold-formed steel pipe and tube having excellent in weldability with 490MPa-class of low yield ratio, and manufacturing process thereof
JP5630026B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP6690788B1 (en) ERW steel pipe, its manufacturing method, and steel pipe pile
JP6693606B1 (en) Square steel pipe, manufacturing method thereof, and building structure
KR102498956B1 (en) Hot-rolled steel sheet and its manufacturing method
JP2010196165A (en) Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and process for producing the same
JP7088417B2 (en) Electric pipe and its manufacturing method
JP6947333B2 (en) Electric resistance steel pipe and its manufacturing method, line pipe and building structure
JP6690787B1 (en) ERW steel pipe, its manufacturing method, and steel pipe pile
JP2010037567A (en) Thick, high-tension hot-rolled steel sheet excellent in low-temperature toughness, and producing method therefor
JP2010196157A (en) Thick, high tensile-strength hot-rolled steel sheet having excellent low temperature toughness and manufacturing method therefor
JP6123734B2 (en) Low yield ratio high strength electric resistance welded steel pipe for steel pipe pile and method for manufacturing the same
WO2023214472A1 (en) Hot-rolled steel sheet and method for manufacturing same, and electric resistance welded steel pipe and method for manufacturing same
JP2004076101A (en) High-strength high-toughness steel pipe material excellent in weldability and its production method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019548355

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217031054

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922941

Country of ref document: EP

Kind code of ref document: A1