JP2019107393A - 医用装置、医用装置の制御方法、およびプログラム - Google Patents

医用装置、医用装置の制御方法、およびプログラム Download PDF

Info

Publication number
JP2019107393A
JP2019107393A JP2017244069A JP2017244069A JP2019107393A JP 2019107393 A JP2019107393 A JP 2019107393A JP 2017244069 A JP2017244069 A JP 2017244069A JP 2017244069 A JP2017244069 A JP 2017244069A JP 2019107393 A JP2019107393 A JP 2019107393A
Authority
JP
Japan
Prior art keywords
image
fluoroscopic
maximum
medical device
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017244069A
Other languages
English (en)
Inventor
森 慎一郎
Shinichiro Mori
慎一郎 森
慶子 岡屋
Keiko Okaya
慶子 岡屋
隆介 平井
Ryusuke Hirai
隆介 平井
幸喜 柳川
Koki Yanagawa
幸喜 柳川
富美 丸山
Fumi Maruyama
富美 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Energy Systems and Solutions Corp
National Institutes for Quantum and Radiological Science and Technology
Original Assignee
Toshiba Energy Systems and Solutions Corp
National Institutes for Quantum and Radiological Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Energy Systems and Solutions Corp, National Institutes for Quantum and Radiological Science and Technology filed Critical Toshiba Energy Systems and Solutions Corp
Priority to JP2017244069A priority Critical patent/JP2019107393A/ja
Priority to KR1020180162808A priority patent/KR102188381B1/ko
Priority to EP18213770.3A priority patent/EP3501604A1/en
Priority to CN201811547476.1A priority patent/CN109999366B/zh
Priority to US16/223,401 priority patent/US10952695B2/en
Publication of JP2019107393A publication Critical patent/JP2019107393A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5288Devices using data or image processing specially adapted for radiation diagnosis involving retrospective matching to a physiological signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/467Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient characterised by special input means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/486Diagnostic techniques involving generating temporal series of image data
    • A61B6/487Diagnostic techniques involving generating temporal series of image data involving fluoroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1037Treatment planning systems taking into account the movement of the target, e.g. 4D-image based planning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1065Beam adjustment
    • A61N5/1067Beam adjustment in real time, i.e. during treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1068Gating the beam as a function of a physiological signal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1051Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an active marker
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1059Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using cameras imaging the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1061Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N2005/1074Details of the control system, e.g. user interfaces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10064Fluorescence image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing

Abstract

【課題】複数の透視画像から参照画像を選択する際の利便性を向上させることができる医用装置、医用装置の制御方法、およびプログラムを提供することである。【解決手段】実施形態の医用装置は、取得部と、選択部と、を持つ。取得部は、時系列に被検体を撮影した透視画像を取得する。選択部は、前記取得部によって取得された複数の前記透視画像の中から、前記被検体の最大呼気位置および最大吸気位置に対応する透視画像を含んで参照画像を選択する。【選択図】図1

Description

本発明の実施形態は、医用装置、医用装置の制御方法、およびプログラムに関する。
重粒子線や放射線などの治療ビームを患者(被検体)に照射する治療装置が知られている。被検体の患部、すなわち治療ビームBを照射する箇所は、呼吸や心拍、腸の動きなどによって移動する場合がある。これに対応する治療法として、ゲーテッド照射法や追尾照射法が知られている。
呼吸によって移動する患部に治療ビームを照射する場合、被検体の呼吸位相と同期させて照射を行う必要がある。呼吸位相同期の手法として、被検体の身体に取り付けた各種センサの出力値を利用して呼吸位相を把握する手法(外部呼吸同期)と、被検体の透視画像に基づいて呼吸位相を把握する手法(内部呼吸同期)がある。呼吸位相同期のための処理は、治療装置に制御信号を出力する医用装置によって行われる。医用装置は、例えば治療装置と有線または無線で通信することで、治療装置を制御する。
内部呼吸同期によって被検体の呼吸位相との同期を行う場合には、治療前に被検体の透視画像を複数撮影し、撮影した複数の透視画像に写る被検体における患部位置の画像パターンを参照して、治療中に撮影される被検体の透視画像から腫瘍位置を特定する。内部呼吸同期には、撮影した複数の透視画像から選択した参照画像が用いられる。参照画像は、例えば複数選択される。内部呼吸同期に用いられる参照画像としては、例えば、被検体の最大呼気位置および最大吸気位置に対応する透視画像が用いられる。また、被検体に咳などによる呼吸が乱れているときに対応する透視画像は、外乱の要因となるため、例えば参照画像の選択対象から除外される。しかし、複数の選択画像の中から参照画像を選択する作業が煩雑であり、利便性が高くなかった。
特開2017−144000号公報
本発明が解決しようとする課題は、複数の透視画像から参照画像を選択する際の利便性を向上させることができる医用装置、医用装置の制御方法、およびプログラムを提供することである。
実施形態の医用装置は、取得部と、選択部と、を持つ。取得部は、時系列に被検体を撮影した透視画像を取得する。選択部は、前記取得部によって取得された複数の前記透視画像の中から、前記被検体の最大呼気位置および最大吸気位置に対応する透視画像を含んで参照画像を選択する。
本実施形態によれば、複数の透視画像から参照画像を選択する際の利便性を向上させることができる医用装置、医用装置の制御方法、およびプログラムを提供することができる。
医用装置100を含む治療システム1の構成図。 医用装置100の入力・表示部120により表示されるインターフェース画像IMの一例を示す図。 医用装置100により実行される処理の流れのフローチャートの一例を示す図。 第1ボタンB1、第2ボタンB2、および第3ボタンB3の表示態様の変化を示す図。 第4ボタンB4、第5ボタンB5、および第6ボタンB6の内容を示す図。 医用装置100により実行される処理の流れの他のフローチャートの一例を示す図。 準備段階でインターフェース画像IMの領域A2に表示される画像の一例を示す図。 座標位置波形の1呼吸分を設定の説明のための図。 参照画像を選択する座標位置波形の変形例を示す図。 参照画像を選択する座標位置波形の変形例を示す図。
以下、実施形態の医用装置、医用装置の制御方法、およびプログラムを、図面を参照して説明する。なお、また、本願でいう「XXに基づく」とは、「少なくともXXに基づく」ことを意味し、XXに加えて別の要素に基づく場合も含む。また、「XXに基づく」とは、XXを直接に用いる場合に限定されず、XXに対して演算や加工が行われたものに基づく場合も含む。「XX」は、任意の要素(例えば、任意の情報)である。
<構成>
図1は、医用装置100を含む治療システム1の構成図である。治療システム1は、例えば、治療装置10と、医用装置100とを備える。
治療装置10は、例えば、寝台11と、放射線源12−1、12−2と、検出器13−1、13−2と、照射門14と、センサ15と、治療装置側制御部20とを備える。以下、符号におけるハイフンおよびこれに続く数字は、いずれの放射線源および検出器の組による透視用の放射線、或いは透視画像であるかを示すものとする。また、適宜、符号におけるハイフンおよびこれに続く数字を省略して説明を行う。
寝台11には、治療を受ける被検体Pが固定される。放射線源12−1は、被検体Pに対して放射線r−1を照射する。放射線源12−2は、放射線源12−1とは異なる角度から、被検体Pに対して放射線r−2を照射する。放射線r−1およびr−2は、電磁波の一例であり、例えばX線である。以下、これを前提とする。
放射線r−1は検出器13−1によって検出され、放射線r−2は検出器13−2によって検出される。検出器13−1および13−2は、例えばフラット・パネル・ディテクタ(FPD;Flat Panel Detector)、イメージインテンシファイア、カラーイメージインテンシファイアなどである。検出器13−1は、放射線r−1のエネルギーを検出してデジタル変換し、透視画像TI−1として医用装置100に出力する。検出器13−2は、放射線r−2のエネルギーを検出してデジタル変換し、透視画像TI−2として医用装置100に出力する。図1では、2組の放射線源および検出器を示したが、治療装置10は、3組以上の放射線源および検出器を備えてもよい。
照射門14は、治療段階において、被検体Pに対して治療ビームBを照射する。治療ビームBには、例えば、重粒子線、X線、γ線、電子線、陽子線、中性子線などが含まれる。図1では、1つの照射門14のみ示したが、治療装置10は複数の照射門を備えてもよい。
センサ15は、被検体Pの外部呼吸位相を認識するためのものであり、被検体Pの身体に取り付けられる。センサ15は、例えば、圧力センサである。センサ15は、被検体Pから受ける圧力を電圧値(検出値)によって検出する。センサ15で検出された電圧値は、外部呼吸位相に相当する。
治療装置側制御部20は、医用装置100からの制御信号に応じて、放射線源12−1、12−2、検出器13−1、13−2、および照射門14を動作させる。
医用装置100は、例えば、統括制御部110と、入力・表示部120と、入力操作取得部122と、表示制御部124と、取得部130と、対応付部131と、選択部132と、画像処理部136と、ターゲット位置特定部140と、出力制御部150と、記憶部160とを備える。統括制御部110、入力操作取得部122、表示制御部124、取得部130、対応付部131、選択部132、ターゲット位置特定部140、および出力制御部150は、例えば、少なくとも一部が、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)などのハードウェアプロセッサが記憶部160に格納されたプログラム(ソフトウェア)を実行することにより実現される。また、これらの構成要素のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)などのハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。
以下、医用装置100の各部の機能について説明する。医用装置100の説明において、透視画像TIに対する処理として説明されたものは、特に注記が無い限り、透視画像TI−1、TI−2の双方に対して並行して実行されるものとする。統括制御部110は、医用装置100の機能を統括的に制御する。
入力・表示部120は、例えば、LCD(Liquid Crystal Display)や有機EL(Electroluminescence)表示装置、LED(Light Emitting Diode)ディスプレイなどの表示装置と、操作者による入力操作を受け付ける入力装置とを含む。入力・表示部120は、表示装置と入力装置が一体に形成されたタッチパネルであってもよいし、マウスやキーボードなどの入力デバイスを備えてもよい。
入力操作取得部122は、入力・表示部120に対してなされた操作(タッチ、フリック、スワイプ、クリック、ドラッグ、キー入力など)の内容を認識し、認識した操作の内容を統括制御部110に出力する。表示制御部124は、統括制御部110からの指示に応じて、入力・表示部120に画像を表示させる。表示制御部124は、治療の準備段階と、前記治療ビームBの照射段階とのそれぞれの開始指示を受け付けるためのインターフェース画面を入力・表示部120に表示させる。なお、画像を表示させることには、演算結果に基づいて画像の要素を生成することと、予め作成された画像の要素を表示画面に割り当てることとが含まれる。
取得部130は、治療装置10から透視画像TIを取得する。また、取得部130は、センサ15の検出値を取得し、センサ15から出力される検出値に基づいて、外部呼吸波形を取得する。また、取得部130は、医用検査装置(不図示)から被検体Pの三次元ボリュームデータを取得する。
対応付部131は、取得部130が治療装置10から取得した透視画像TIと、透視画像TIの変化を解析して求められる、ターゲットの3次元位置(X、Y、Z座標)等とを対応付ける。ターゲットとは、被検体Pの患部、すなわち治療ビームBを照射する位置であってもよいし、マーカ或いは被検体Pの特徴箇所であってもよい。特徴箇所とは、横隔膜や心臓、骨など、透視画像TIにおいて周囲の箇所との差異が比較的鮮明に現れるため、透視画像TIをコンピュータが解析することで位置を特定しやすい箇所である。なお、対応付部131には、センサ15から取得した検出値(呼吸位相)を追跡値とし、取得部30が治療装置10から取得した透視画像TIとセンサ15から取得した検出値(呼吸位相)と、を対応付けるようにしてもよい。
選択部132は、対応付部131でターゲット位置を対応付けられた透視画像TIの中から、ターゲット位置特定に使用される参照画像を選択する。選択部132が選択する参照画像には、被検体Pの最大呼気位置および最大吸気位置に対応する透視画像TIが含まれる。また、被検体Pが咳やくしゃみをしたり、激しく動いたりしたときの呼吸位相に対応する透視画像TIは除かれる。これらの点については、後にさらに説明する。なお、選択部132では、対応付部131でターゲット位置に対応付けられる前の透視画像TIを選択し、選択した透視画像TIに対応付部131でターゲット位置に対応付けるようにしてもよい。
画像処理部136は、デフォーマブルレジストレーション、DRR(Digitally Reconstructed Radiograph)画像生成などの画像処理を行う。デフォーマブルレジストレーションとは、時系列の3次元ボリュームデータに対して、ある時点の3次元ボリュームデータについて指定された位置情報を、他の時点の3次元ボリュームデータに展開する処理である。DRR画像とは、3次元ボリュームデータに対して、上記の仮想的な放射線源から放射線が照射されたと仮定した場合に、この放射線に対応して3次元ボリュームデータから生成される仮想的な透視画像である。
ターゲット位置特定部140は、選択部132で選択された参照画像を手掛かりとして透視画像TIにおけるターゲットの位置を特定する。なお、ターゲット位置は、一点であってもよいし、二次元または三次元の広がりを持つ領域であってもよい。
出力制御部150は、ターゲット位置特定部140により特定されたターゲット位置に基づいて、治療装置10に照射許可信号を出力する。例えば、ゲーテッド照射法では、出力制御部150は、ターゲット位置がゲーティングウインドウ内に収まる場合に、治療装置10にゲートオン信号を出力する。ゲーティングウインドウとは、二次元平面または三次元空間において設定される領域であり、照射許可範囲の一例である。ゲートオン信号とは、被検体Pに治療ビームBを照射することを指示する信号であり、照射許可信号の一例である。以下、これらを前提として説明する。治療装置10は、ゲートオン信号が入力されている場合、治療ビームBを照射し、ゲートオン信号が入力されていない場合、治療ビームBを照射しない。なお、照射許可範囲は、固定的に設定されるものに限らず、患部の移動に追従して移動するものであってもよい。
記憶部160は、例えば、RAM(Random Access Memory)やROM(Read Only Memory)、HDD(Hard Disk Drive)、フラッシュメモリなどにより実現される。記憶部160には、前述したプログラムの他、時系列の三次元CT画像(以下、4DCT画像)、透視画像TI、センサ15の出力値などが格納される。
<治療の流れ>
以下、治療システム1における治療の流れについて説明する。治療システム1における治療は、計画段階、位置決め段階、準備段階、治療段階の複数の段階に分けて行われる。ここでは、各段階ごとにその治療の流れを説明する。また、治療システム1は、例えば、内部呼吸同期であるマーカレス追跡およびマーカ追跡、外部呼吸同期の3つのモードを切り替えて治療を行うことができる。ここでは、マーカレス追跡について説明する。なお、マーカレス追跡にはテンプレートマッチング法や機械学習を用いた手法等がある。以下では、テンプレートマッチング法を用いたマーカレス追跡について説明し、照射方法としてゲーテッド照射法を採用するものとして説明する。医用装置100は、テンプレートマッチング法と、機械学習を用いた手法とを切り替え可能であってもよい。
[計画段階]
計画段階において、まず、被検体PのCT撮影が行われる。CT撮影では、様々な呼吸位相毎に、様々な方向から被検体Pが撮影される。次に、CT撮影の結果に基づいて4DCT画像が生成される。4DCT画像は、三次元のCT画像(前述した三次元ボリュームデータの一例)を時系列にn個並べたものである。このn個および時系列画像の時間間隔を乗算して求められる期間は、例えば、呼吸位相が1周期分変化する期間をカバーするように設定される。4DCT画像は、記憶部160に格納される。
次に、医師や放射線技師などが、n個のCT画像のうち、例えば1つのCT画像に対して、輪郭を入力する。この輪郭は、患部である腫瘍の輪郭や治療ビームBを照射したくない臓器の輪郭等である。次に、例えば画像処理部136が、デフォーマブルレジストレーションによって、n個のCT画像のそれぞれについて輪郭を設定する。次に、治療計画が決定される。治療計画とは、設定された輪郭情報に基づいて、患部がどの位置にあるときに、どこに、どの方向から、どれだけの治療ビームBを照射するかを規定するものであり、ゲーテッド照射法や追尾照射法などの治療法に応じて決定される。なお、計画段階の処理の一部または全部は、外部装置によって実行されてもよい。例えば、4DCT画像を生成する処理は、CT装置によって実行されてもよい。
ここで、腫瘍の輪郭で区画される領域や、その領域の重心、或いは被検体Pの特徴箇所の位置などがターゲット位置となる。更に、治療計画において、ターゲット位置がどの位置にあれば治療ビームBを照射してよいのかが決定される。デフォーマブルレジストレーションによって輪郭が設定された際に、ターゲット位置に対してマージンが自動的に、または手動で設定され、マージンを反映させてゲーティングウインドウが設定される。このマージンは、装置や位置決めの誤差などを吸収するためのものである。
[位置決め段階]
位置決め段階においては、寝台位置の調整が行われる。被検体Pは寝台11に寝かされ、シェル等で固定される。まず、寝台位置の粗い調整が行われる。この段階において、作業者が、被検体Pの位置と姿勢を目視で確認し、照射門14からの治療ビームBが当たりそうな位置へ寝台11を動かす。これにより、寝台11の位置が粗く調整される。次に、寝台位置を細かく調整するために利用する画像が撮影される。例えば、3D−2Dレジストレーションが行われる場合は透視画像TIが撮影される。透視画像TIは、例えば被検体Pが息を吐き切ったタイミングで撮影される。寝台11の位置は粗く調整済みであるため、透視画像TIには、被検体Pの患部付近が写っている。
3D−2Dレジストレーションが行われる場合、この段階において、放射線源12−1、12−2、検出器13−1、13−2、および被検体Pの治療計画情報を使用して三次元ボリュームデータからDRR画像が生成される。DRR画像と透視画像TIに基づいて寝台移動量が算出され、寝台11が移動させられる。透視画像TIの撮影、寝台移動量算出、寝台11の移動を繰り返すことで、寝台11の位置が細かく調整される。
[準備段階(その1)]
位置決め段階が終了すると、準備段階に移行する。まず4DCT画像から各位相のDRR画像が作成される。DRR画像の作成は4DCT画像撮影以降であればいつ実施してもよい。このとき、治療計画において設定されたゲーティングウインドウを射影した位置がDRR上のゲーティングウインドウとして設定される。準備段階では、まず参照画像として選択される対象となる透視画像TIの撮影が行われる。透視画像TIの撮影にあたり、医師等は、例えば被検体Pに対して数回(2回以上)の深呼吸を行うように指示する。被検体Pが医師等の指示に従って数回の深呼吸を行う間に、透視画像TIは、被検体Pの2呼吸分をカバーするように撮影される。また、被検体Pが深呼吸を行う間、被検体Pの外部呼吸波形が、透視画像TIと同期して取得される。取得された外部呼吸波形は、表示制御部124により入力・表示部120に表示される。撮影された透視画像TIには、外部呼吸波形から求められる被検体Pの呼吸位相に基づく追跡値が対応付けられる。
また、この段階において、DRR画像とDRR画像上のターゲット位置の情報から、透視画像TIとターゲット位置との関係が学習され、更に、医師によるターゲット位置の修正が受け付けられる。そして、ターゲット位置が学習された透視画像TIの中から、追跡値に基づいて、一つ以上の参照画像が選択され、選択された参照画像からテンプレートが生成される。テンプレートは、参照画像となる透視画像TIそのものであってもよいし、この透視画像TIの特徴的な一部を切り出したものであってよい。ターゲット位置の学習は、計画段階から治療段階までの間の、いずれのタイミングで実施されてもよい。例えば、被検体Pの2呼吸分の透視画像TIうち、前半の1呼吸分の透視画像TIからテンプレートを作成した場合、そのテンプレートを使用して、後半の1呼吸分の透視画像TIでターゲットの追跡ができるか確認してもよい。その際、表示制御部124はDRR画像上に設定されたゲーティングウインドウを透視画像TI上に表示してもよい。
[準備段階(その2)]
そして、再度、透視画像TIの撮影が開始される。ターゲット位置特定部140は、時系列で入力される透視画像TIに対してテンプレートとのマッチングを行い、透視画像TIに対してターゲット位置を割り付ける。表示制御部124は、透視画像TIを動画として入力・表示部120に表示させながら、ターゲット位置が割り付けられた透視画像TIのフレームにターゲット位置を重畳表示させる。この結果、医師等によりターゲット位置の追跡結果が確認される。
この際に、表示制御部124はDRR画像上に設定されたゲーティングウインドウを透視画像TI上に表示する。出力制御部150は、透視画像TI−1、TI−2の双方に関して、ターゲット位置がゲーティングウインドウ内に収まっているか否かを判定する。治療段階では、ターゲット位置がゲーティングウインドウ内に収まっている場合にゲートオン信号が治療装置10に出力されるのであるが、準備段階では、ゲートオン信号の出力の有無が統括制御部110を介して表示制御部124に伝えられる。表示制御部124は、動画の表示に併せてゲートオン信号の出力の有無を入力・表示部120に表示させる。この結果、医師等によりゲートオン信号の出力タイミングが確認される。
[治療段階]
治療段階では、表示制御部124はDRR画像上に設定されたゲーティングウインドウを透視画像TI上に表示する。出力制御部150が、透視画像TI−1、TI−2の双方に関して、ターゲット位置がゲーティングウインドウ内に収まっている場合にゲートオン信号を治療装置10に出力する。これによって、治療ビームBが被検体Pの患部に照射され、治療が行われる。なお、ターゲット位置が患部の位置である場合には、追跡したターゲット位置がゲーティングウインドウ内に収まっている場合に治療ビームBが照射され、ターゲット位置が被検体Pの特徴箇所の位置である場合には、予め学習されたターゲット位置と患部の位置との関係に基づいて、ターゲット位置から導出された患部の位置がゲーティングウインドウ内に収まっている場合に治療ビームBが照射される。なお、これらの複合手法によって患部の位置に治療ビームBが照射されてもよい。すなわち、ターゲット位置として患部の位置と、特徴箇所の位置とをそれぞれ設定しておき、患部が第1ゲーティングウインドウに収まり、特徴箇所が第2ゲーティングウインドウに収まる場合に治療ビームBを照射するようにしてもよい。
<表示画像、フローチャート>
以下、上記説明した治療の流れをサポートするための、医用装置100の処理について説明する。
図2は、医用装置100の入力・表示部120により表示されるインターフェース画像IMの一例を示す図である。インターフェース画像IMは、例えば、領域A1−1、A1−2、A2、A3、A4、A5、A6、およびA7を含む。
領域A1−1では、透視画像TI−1に対してゲーティングウインドウGWやターゲット位置PTが重畳表示される。領域A1−2では、透視画像TI−2に対してゲーティングウインドウGWやターゲット位置PTが重畳表示される。領域A2には、外部呼吸波形やターゲット位置やゲート信号の出力などの各種グラフなどが表示される。
領域A3には、モードなどの選択を受け付けるセレクトウインドウSW、透視画像TIの撮影開始または撮影停止を指示するための第1ボタンB1、透視画像TIの撮影の一時停止を指示するための第2ボタンB2、治療セッションの終了を指示するための第3ボタンB3、時系列のDRR画像や透視画像TIを遡って確認するためのスライドバーやコマ送りスイッチなどが設定されたコントロールエリアCA、準備段階が完了したことを確認するためのチェックボックスCBなどが設定される。インターフェース画像IMの各部に対する操作は、例えば、タッチ操作、マウスによるクリック、或いはキーボード操作などにより行われる。例えば、第1ボタンB1は、タッチ操作またはマウスによるクリックによって操作される。
領域A4には、モードに応じた治療段階が、次のステップに進むことを指示するための第4ボタンB4、第5ボタンB5、および第6ボタンB6が設定される。領域A5には、センサ15の出力値に基づく外部呼吸波形のグラフなどが表示される。領域A6には、被検体Pの治療計画情報などを示す画像やテキスト情報が表示される。領域A7では、被検体PのCT画像の断面に対し、X線の照射方向、照射野、および治療ビームBの照射方向、ターゲットの輪郭やマーカROI等が重畳表示される。
以下、インターフェース画像IMの各種機能について、フローチャートを参照しながら説明する。図3は、医用装置100により実行される処理の流れの一例を示すフローチャート(その1)である。なお、以降の説明において、医用装置100に対する操作がなされたことを検知する際には、統括制御部110が入力操作取得部122から入力される情報を参照して判断するものとし、都度の説明を省略する。
まず、統括制御部110が、入力操作取得部122から入力される情報を参照し、第1ボタンB1の操作によって撮影開始が選択されたか否かを判定する(ステップS102)。図4は、第1ボタンB1、第2ボタンB2、および第3ボタンB3の表示態様の変化を示す図である。図示するように、第1ボタンB1は、初期状態で、撮影が「OFF」すなわち停止している状態を示すと共に、「撮影開始」の指示を受け付ける態様となっている。第1ボタンB1が操作されると、撮影が「ON」すなわち実行されている状態を示すと共に、「撮影停止」の指示を受け付ける態様に変化する。第1ボタンB1は、これらの二つの態様の間で状態遷移する。
なお、第2ボタンB2は、初期状態で、操作されると撮影の「一時停止」の指示を受け付ける態様となっている。第2ボタンB2は、操作されると、「撮影再開」の指示を受け付ける態様に変化する。また、第3ボタンB3は、初期状態で、インターフェース画像IMを「閉じる」指示を受け付ける態様となっており、操作されるとインターフェース画像IMの表示が停止され、一連の処理が終了する。
第1ボタンB1の操作によって撮影開始が選択されると、統括制御部110は、出力制御部150に指示し、テンプレートとなる透視画像TIの撮影を治療装置10に指示する(ステップS104)。出力制御部150は、例えば、k回の呼吸分の透視画像TIを撮影するように治療装置10に指示する。
次に、統括制御部110は、第4ボタンB4の操作によってレジストレーションが指示されたか否かを判定する(ステップS106)。図5は、第4ボタンB4、第5ボタンB5、および第6ボタンB6の内容を示す図である。第4ボタンB4は、レジストレーション(透視画像TIにおけるターゲット位置PTの学習)の指示を受け付け、第5ボタンB5は、参照画像の選択指示を受け付け、第6ボタンB6はゲートオン信号の確認指示を受け付ける。
第4ボタンB4の操作によってレジストレーションが指示されると、統括制御部110は、対応付部131に指示してDRR画像におけるターゲット位置PTから透視画像TIにおけるターゲット位置を求め、得られたターゲット位置PTを透視画像TIに重畳させて入力・表示部120に表示させるように表示制御部124に指示する(ステップS108)。前述したように、画像処理部136は、計画段階で撮影されたCT画像から作成したDRR画像や、計画段階以降に撮影された透視画像TIに基づいて、ターゲット位置PTが既知であるDRR画像と、透視画像TIとの間で画像の特徴部位をマッチングする処理などを行って、透視画像TIにおけるターゲット位置PTを導出する。透視画像TIとターゲット位置PTの関係は、対応付部131に提供される。また、透視画像TIにターゲット位置PTが重畳した画像は、例えば、インターフェース画像IMの領域A1−1、A1−2に表示される。この状態で、統括制御部110は、ターゲット位置の調整を受け付ける(ステップS110)。ターゲット位置PTの調整は、例えば領域A1−1、A1−2に対するドラッグ/ドロップ操作によって行われる。ターゲット位置PTの調整が行われると、統括制御部110は、調整された透視画像TIとターゲット位置PTの関係を対応付部131に提供する。
次に、統括制御部110は、第5ボタンB5の操作によって参照画像の選択指示がされたか否かを判定する(ステップS112)。第5ボタンB5が操作されると、統括制御部110は、選択部132参照画像の選択を指示する(ステップS114)。選択部132は、透視画像TIの中から参照画像を選択し、記憶部160に記憶させる。
次に、統括制御部110は、第6ボタンB6の操作によってゲートオン信号の確認が指示されたか否かを判定する(ステップS116)。ゲートオン信号の確認が指示されると、統括制御部110は、表示制御部124に指示し、チェックボックスCBに「レ」を入れた状態に変更させる(ステップS118)。チェックボックスCBに「レ」が入った状態では、ゲートオン信号の出力タイミングは計算されて表示されるが、実際にゲートオン信号は治療装置10に出力されない。
次に、統括制御部110は、第1ボタンB1の操作によって撮影開始が選択されたか否かを判定する(ステップS120)。第1ボタンB1の操作によって撮影開始が選択されると、統括制御部110は、出力制御部150に指示し、透視画像TIの撮影を治療装置10に指示すると共に、表示制御部124に指示し、撮影された透視画像TIを用いた確認画像を入力・表示部120に表示させる(ステップS122)。
確認画像は、領域AI−1、AI−2に表示される。確認画像は、動画として再生される透視画像TIに対して、ターゲット位置PTやゲーティングウインドウGWが重畳された画像である(図2参照)。また、出力制御部150は、ターゲット位置PTがゲーティングウインドウGWに収まっている場合に、ゲートオン信号を表示制御部124に出力し、領域A2に表示させる。医師等は、この確認画像を視認することで、被検体Pの患部などのターゲット位置PTが正しい位置として認識されているかどうか、ターゲット位置PTがゲーティングウインドウGWに収まるタイミングは適切かどうか、ゲートオン信号の出力効率等を確認することができる。確認画像は、第1ボタンB1の操作によって撮影停止が選択されるまで表示される(ステップS124)。撮影停止が選択された後も、スライドバーやコマ送りスイッチなどが設定されたコントロールエリアCAを操作することで、確認画像を遡って確認することができる。
第1ボタンB1の操作によって撮影停止が選択されると、統括制御部110は、チェックボックスCBの「レ」が外されているか否かを判定する(ステップS126)。チェックボックスCBの「レ」が外されていない場合、統括制御部110は、第1ボタンB1の操作によって撮影開始が選択されたか否かを判定する(ステップS128)。撮影開始が選択された場合は、ステップS122に処理が戻され、撮影開始が選択されていない場合はステップS126に処理が戻される。チェックボックスCBの「レ」が外されている場合、統括制御部110は、治療装置10から開始信号を受信したか否かを判定する(ステップS130)。この開始信号は、治療装置10のスイッチ(不図示)が操作されることで治療装置10が治療開始可能になったときに出力される信号である。治療装置10から開始信号を受信すると、統括制御部110は、治療を開始するように、表示制御部124、ターゲット位置特定部140および出力制御部150に指示し、出力制御部150は透視画像TIの撮影を治療装置に指示する(ステップS132)。また、ステップ126でチェックボックスが外されている場合、治療装置10から開始信号を受信していなくても、統括制御部110が第1ボタンB1の操作によって撮影開始されたかどうかを判定し、ターゲット位置特定部140が特定したターゲット位置PTがゲーティングウインドウに収まっていれば、治療装置10へゲートオン信号を出力してもよい(不図示)。この場合、治療装置からビームBが出力されることはない。また、ステップ126でチェックボックスが外されていないが、撮影開始が選択された後にチェックボックスを外された場合、撮影途中からゲートオン信号を出力してもよい(不図示)。ターゲット位置特定部140は、透視画像TIとテンプレートとのマッチングを行い、ターゲット位置PTを特定する。出力制御部150は、ターゲット位置がゲーティングウインドウに収まっている場合にゲートオン信号を治療装置10に出力する。表示制御部124は、透視画像TIにターゲット位置やゲーティングウインドウGWを重畳させた治療画像を、入力・表示部120に表示させる。治療画像は、領域A1−1、A1−2に表示される。治療は、第1ボタンB1の操作によって撮影停止が選択されるまで継続する(ステップS134)。なお、医用装置100は、治療装置10から照射完了の信号を受信した場合、或いは、治療装置10において照射終了操作がなされたことを示す信号を治療装置10から受信した場合も、治療を終了してよい。
表示制御部124は、確認画像および治療画像において、ゲートオン信号を出力する際(確認段階では出力する条件が成立した際)に、ゲーティングウインドウの色を変更するようにしてもよい。例えば、透視画像TI−1とTI−2のいずれにおいてもターゲット位置PTがゲーティングウインドウGWに収まっていない場合に第1の色、透視画像TI−1とTI−2のいずれか一方のみにおいてターゲット位置PTがゲーティングウインドウGWに収まっている場合に第2の色、透視画像TI−1とTI−2の双方においてターゲット位置PTがゲーティングウインドウGWに収まっている場合に(すなわちゲートオン信号を出力する条件が成立した場合に)第3の色でゲーティングウインドウGWの枠線を表示してよい。また、透視画像TI−1とTI−2のいずれにおいてもターゲット位置PTがゲーティングウインドウGWに収まっていない場合には、エラーアイコンを表示してもよい。
また、表示制御部124は、ゲートオン信号を出力する条件が成立した場合に、ゲーティングウインドウGWの内側領域と外側領域のいずれかの色彩または輝度を変更してもよい。更に、医用装置100は、ゲートオン信号を出力する条件が成立した場合に、音または振動で通知する通知部を備えてもよい。
また、マーカレス追跡、マーカ追跡、外部呼吸同期などのモードの切り替えは、適宜のタイミングで受け付けられてもよい。例えば。上記のフローチャートにおけるステップS102の手前の処理で受け付けられるのではなく、準備段階から治療段階にかけての任意のタイミングで受け付けられてよい。また、適宜、処理のやり直しが受け付けられる。例えば、確認画像を表示している場面において、参照画像の撮影からやり直すための操作が受け付けられる。なお、透視画像TIの撮影後にモード切り替えが行われた場合、既に撮影された透視画像TIをテンプレートに採用してもよい。
また、複数回に分けて治療が行われる場合、前回以前に作成されたテンプレートを引き継いで治療が行われてもよい。図6は、医用装置100により実行される処理の流れの他の一例を示すフローチャート(その2)である。図示するように、セレクトウインドウSWにおいてマーカレス追跡が選択された後、統括制御部110は、いずれかの領域において「前回のテンプレートを使用する」ことが選択されたか否かを判定する(ステップS101)。「前回のテンプレートを使用する」ことが選択された場合、ステップS102〜S114の処理がスキップされ、ステップS116に処理が進められる。
次に、準備段階で行われる参照画像の選択について説明する。参照画像は、準備段階において、被検体Pが深呼吸を行った際に撮影された時系列の透視画像TIの中から選択される。対応付部131は、参照画像を選択するにあたり、透視画像TIにターゲット位置、または外部呼吸波形における被検体Pの呼吸位相を対応付ける。以下、参照画像の選択態様について説明する。
(参照画像の第1の選択態様)
まず、参照画像の第1の選択態様について説明する。参照画像は、撮影した透視画像TIのすべてであってもよいが、複数の透視画像TIのうち、似通った透視画像TIが参照画像となると、情報が偏ってしまうことがある。このような情報の偏りを少なくして効率的にターゲットの動きの情報を得られるような透視画像TIを選択することが望まれる。また、最大呼気位置と最大吸気位置の透視画像TIを参照画像に含めることにより、ターゲットの位置特定に効果的になる。参照画像を選択する段階では、対応付部131が透視画像TIとターゲット位置を対応付けており、図2に示すインターフェース画像IMの領域A1には透視画像TIが表示され、領域A2にはターゲット位置の座標の波形である座標位置波形α(図7参照)が表示される。医師等は、座標位置波形αにおける任意の一点を指定する。座標位置波形αの一点Tpの指定は、座標位置波形αが表示された面を触れることによって行われる。選択部132は、医師等により指定された一点から座標位置波形αのうちの指定した呼吸分、例えば1呼吸分を切り取って設定する。なお、インターフェース画像IMの領域A2には、センサ15で取得された外部呼吸波形が座標位置波形αとともに、あるいは座標位置波形αに代えて表示されてもよい。また、座標位置波形αの一点を指定する代わりに、外部呼吸波形の一点を指定するようにしてもよい。
例えば、図7に示す座標位置波形αの一点Tpを医師等が指定したとする。この場合、選択部132は、1呼吸分の呼吸位相を切り取るにあたり、医師等が指定した一点Tpを含む1呼吸を特定する。例えば、一点Tpに近い最大吸気位置を中心として前後の最大吸気位置を特定する。最大呼気とは、1呼吸の間で被検体Pが息を吐き切った状態をいい、最大吸気とは、1呼吸の間で被検体が息を吐き出す直前の状態をいう。例えば、呼吸位相の変化が負から正に転じる点、正から負に転じる点を最大呼気または最大吸気として特定する。なお、最大呼気位置および最大吸気位置は、本発明の実施に支障のない範囲で、前記の転じる点とその近傍の点を含む。検出した位置は、医師等が手動で修正してもよい。なお、このとき、インターフェース画像IMの領域A1−1,A1−2には、領域A2に示すカーソルQが位置する呼吸位相に対応する透視画像TIが表示される。図7に示す例では、インターフェース画像IMの領域A2においてカーソルQが最大呼気位置の時刻T80に表示されている。インターフェース画像IMの領域A1−1,A1−2には最大呼気位置の時刻T80の透視画像TI−1、TI−2が表示されている。
こうして特定された呼吸位相を1呼吸分として切り取る。なお、1呼吸分の呼吸位相は、最大呼気位置を挟む2つの最大吸気位置の間における呼吸位相以外の呼吸位相でもよい。例えば、任意の一点Tpを始点、または中心として決定された呼吸位相であってもよいし、最大吸気位置を挟む2つの最大呼気位置の間における呼吸位相としてもよい。
インターフェース画像IMの領域A2には、例えば図7に示すように、座標位置波形αが表示される。対応付部131は、例えば、医師等が指定した一点Tpか座標位置波形αの最大呼気位置と最大吸気位置を特定して座標位置波形αの1呼吸分を設定する。なお、図7に示すグラフの縦軸はターゲット位置の座標位置、横軸は時間である。また、縦軸に示される座標位置は、ここでは、ターゲット位置のX、Y、Zのいずれかの座標位置である。例えば、被検体Pの体軸に沿った方向をZ軸方向、左右を向いた方向をX軸方向、前後を向いた方向をY軸方向として、Z軸方向の座標位置を図7示す縦軸に示している。なお、X方向、Y方向、Z方向のうち、Z方向の変位が最も大きいことから、Z方向の座標位置の変化によって座標位置波形αを生成しているが、X方向やY方向の座標位置の変化によって座標位置波形を生成してもよい。
選択部132は、例えば、図8に示すように、切り取った1呼吸分の座標位置波形αの中で最大呼吸位置の透視画像TI及び最大呼吸位置を中心として、時間的に前後に同数の透視画像TIを選択する。ここでは、具体的には、最大呼気位置の時刻T50の前における時刻「T0」「T12.5」「T25」「T37.5」の4つの透視画像TI、最大呼気位置の時刻「T50」の透視画像TI、及び最大呼気位置の時刻「T50」の後における時刻「T62.5」「T75」「T87.5」「T100」の4つの透視画像TIの合計9つの透視画像TIを選択する。
選択部132は、被検体Pのターゲット位置が対応付けられた複数の透視画像TIの中から、最大呼気位置と最大吸気位置に対応する透視画像TIを含む透視画像TIを参照画像として選択する。例えば、呼吸位相が最大呼気位置に最も近い透視画像TIが参照画像として選択されてもよいし、最大呼気位置等の任意の呼吸位相から前後数枚、例えば3枚程度の透視画像TIが参照画像として選択されてもよい。なお、参照画像の選択方法は任意であり、例えば、上記の例では、ターゲット位置との対応付けがなされた透視画像TIの全部が参照画像として選択されているが、呼吸位相との対応付けがなされた透視画像TIの一部が参照画像として選択されてもよい。また、最大呼気位置および最大吸気位置の透視画像TIは、座標位置波形αにおける他の位置の透視画像TIよりも参照画像として好適に用いることができる画像である。
また、波形の1呼吸分の設定は、医師等による座標位置波形αの一点の指定がなくとも、自動的に行われるようにしてもよい。例えば、センサ15で取得された座標位置波形αから最大呼気位置及び最大吸気位置を特定し、座標位置波形αにおける任意の最大呼気位置の前後の最大呼気位置の間の部分を座標位置波形αの1呼吸分とするようにしてもよい。また、照射位相の位置を中心として、指定した呼吸分を設定してもよい。また、医師等による点の指定は一点ではなく、二点以上であってもよく、例えば、呼吸位相の始点の終点を指定できるようにしてもよい。
また、医師等が一点Tpを設定する際に、座標位置波形αまたは腫瘍の位置が表示された面を触れる態様に代えて、カーソルQによって指定されている点を設定できる設定ボタンが設けられるようにしてもよい。また、座標位置波形αの範囲内でカーソルQを移動可能として、選択候補となる透視画像TIを医師等が選択できるようにしてもよい。
(参照画像の第2の選択態様)
次に、参照画像の第2の選択態様について説明する。参照画像を選択する座標位置波形αの1呼吸分は、最大呼気位置を挟む2つの最大吸気位置の間における呼吸以外の呼吸として設定してもよい。第2の選択態様では、インターフェース画像IMの領域A2に表示されている座標位置波形αのうち、医師等が触れて指定した一点を始点として、最大呼気位置から最大吸気位置を経て(または最大吸気位置から最大呼気位置を経て)、始点と同じ座標位置となる終点までを1呼吸分として設定する。例えば、図9に点線で示すように、座標位置波形αにおける一点を始点Tsとし、最大呼気位置から最大吸気位置を経て始点Tsと同じ座標位置となる終点Teまでを1呼吸分として設定する。こうして設定された1呼吸分に含まれる透視画像TIが参照画像となる。
座標位置波形αにおけるどの範囲で1呼吸分を設定したとしても、1呼吸分には、必ず最大呼気位置および最大吸気位置が含まれる。したがって、1呼吸分における透視画像TIには、最大呼気位置及び最大吸気位置の透視画像TIが含まれるので、これらを参照画像として選択することができる。この態様では、最大呼気位置を挟む2つの最大吸気位置の間における呼吸以外の呼吸として設定する代わりに、座標位置波形αの一点を入力し、この一点を中心として、1呼吸分の範囲で前後に含まれる均等数の透視画像TIを参照画像としてもよい。
(参照画像の第3の選択態様)
次に、参照画像の第3の選択態様について説明する。第3の態様では、指定した呼吸範囲が例えば複数回の呼吸にまたがる場合において、最大呼気位置および最大吸気位置が異なるときには、最大呼気位置と最大吸気位置の座標位置の差が最大となる最大呼気位置と最大吸気位置を含んだ範囲から参照画像を選択する。
ここで、図10に示すように、およそ3呼吸分の間において、それぞれ3つの最大呼気位置および最大吸気位置が現れたとする。この場合には、座標位置の差が最大となる最大吸気位置と最大呼気位置を含んだ範囲、ここでは、時刻T0と時刻T250の間の範囲における透視画像TIが参照画像として選択される。
また、時刻T0と時刻T250の間の範囲には、参照画像として選択可能となる透視画像TIが半呼吸分よりも多く含まれている。この多数の透視画像TI中から参照画像を選択する場合には、例えば、座標位置の差が最大となる最大吸気位置の座標位置と最大呼気位置の座標位置を所定数に均等に分割して、該当する座標位置D0〜D11に相当する位置における透視画像を参照画像として選択するようにしてもよい。
例えば、座標位置D0、D11の透視画像TIは、時刻T250、T0の透視画像TIとなるが、例えば、座標位置D4の透視画像TIは、時刻T0と時刻T50の間、時刻T5と時刻T100の間、時刻T100と時刻T150の間、時刻T150と時刻T200の間、時刻T200と時刻T250の間、の5枚の透視画像TIの中から適宜選択すればよい。選択の仕方としては、特に限定されず、例えば、最も時刻の大きい透視画像TIを選択してもよいし、最も時刻の小さい透視画像TIを選択してもよい。また、最大呼気位置や最大吸気位置の時刻に最も近い透視画像TIを選択してもよいし、複数、ここでは3呼吸のうち、透視画像TIが最大数含まれる1呼吸における透視画像TIを選択してもよい。あるいは、3呼吸の中からまんべんなく透視画像TIを参照画像として選択してもよい。
(参照画像の第4の選択態様)
参照画像を選択するにあたり、透視画像TIを撮影している最中に、被検体Pが咳やくしゃみをして呼吸が乱れたり、呼吸が浅かったりすることがある。この場合の透視画像TIは、参照画像としては使用しない方がターゲット位置の特定には効率的である。このため、第4の選択態様では、上記の参照画像の第1の選択態様から第3の選択態様において、透視画像TIから参照画像を選択する前に、呼吸が乱れたり浅かったりする間に撮影された透視画像TIを自動または手動で選択して参照画像の選択対象から削除する。
被検体Pの呼吸の乱れ等がある間に撮影された透視画像TIを自動で選択するにあたっては、例えば、外部呼吸波形やターゲット位置の波形を観察し、これらの波形の乱れが大きかったり、これらの波形の単位時間当たりの変動量が大きく、所定のしきい値を超えているときに被検体Pの呼吸の乱れ等を検出すればよい。また、被検体Pの呼吸の乱れ等がある間に撮影された透視画像TIを手動で選択するにあたっては、例えば、医師などがこれらの波形と透視画像TIを見ながら、被検体Pの呼吸の乱れ等がある間に撮影された透視画像TIを判断し、手動で削除してもよい。
以上説明した実施形態に係る医用装置100によれば、時系列の透視画像に、被検体の呼吸位相に基づく追跡値を対応付ける対応付部131と、対応付けられた追跡値に基づいて、前記時系列の透視画像の中から参照画像を選択する選択部132とを備えることにより、複数の透視画像から参照画像を選択する際の利便性を向上させることができる。
また、実施形態に係る医用装置100によれば、追跡値のうちの1つ(一点)を入力可能とされた入力・表示部120を備え、選択部132は、入力・表示部120に入力された追跡値のうちの1に応じた呼吸位相を含む被検体Pの1呼吸分の透視画像TIを参照画像として選択することにより、追跡値のうちの一点を入力するだけで参照画像が選択される。したがって、複数の透視画像から参照画像を選択する際の利便性を向上させることができる。
また、実施形態に係る医用装置100によれば、選択部132は、追跡値のうちの一点に応じた呼吸位相の直前における被検体Pの最大呼気位置を中心とした範囲の透視画像を参照画像として選択することにより、最大呼気位置の透視画像を参照画像に含めて好適な範囲の参照画像を選択することができる。なお、最大呼気位置は、最大吸気位置に変えてもよい。
また、実施形態に係る医用装置100によれば、追跡値のうちの1つ(一点)を入力可能とされた入力・表示部120を備え、選択部132は、被検体Pの最大呼気位置に応じた追跡値が入力・表示部120に入力されたときに、入力された最大呼気位置を中心とした範囲の透視画像を参照画像として選択することにより、最大呼気位置の透視画像を参照画像に含めて好適な範囲の参照画像を選択することができる。なお、最大呼気位置は、最大吸気位置や照射位置に変えてもよい。
また、実施形態に係る医用装置100によれば、選択部132は、最大呼気位置を中心として、前後に均等の数の透視画像を参照画像として選択することにより、最大呼気位置の透視画像を参照画像に含めて好適な範囲および数量の参照画像を選択することができる。なお、最大呼気位置は、最大吸気位置に代えてもよい。
また、実施形態に係る医用装置100によれば、選択部132は、被検体Pの数呼吸分の間で、最大呼気位置および最大吸気位置が異なるときに、複数の最大呼気位置と最大吸気位置のうち、最大呼気位置と最大吸気位置の差が最大となる最大呼気位置と最大吸気位置の透視画像を含んで参照画像を選択することにより、参照画像の偏りを防止することができ、患部の正確な追跡に寄与することができる。
また、実施形態に係る医用装置100によれば、選択部132は、複数の透視画像TIを追跡値に基づいて並べ替え、追跡値の最大値と最小値の間で均等である追跡値が対応付けられた透視画像TIを参照画像として選択することにより、異なる追跡値の参照画像を効率よく選択できる。
また、実施形態に係る医用装置100によれば、表示制御部124は、ゲーティングウインドウを透視画像に重畳表示させ、ゲートオン信号を出力する際にゲーティングウインドウの色を変更することにより、ゲートオン信号の出力を医師等に分かりやすく知らせることができる。
また、実施形態に係る医用装置100によれば、表示制御部124は、ゲーティングウインドウを透視画像に重畳表示させ、ゲートオン信号を出力する際に、ゲーティングウインドウの内側領域と外側領域のいずれかの色彩または輝度を変更することにより、ゲートオン信号の出力を医師等に分かりやすく知らせることができる。
また、実施形態に係る医用装置100によれば、ゲートオン信号を出力する際に、音または振動で通知する通知部を備えることにより、ゲートオン信号の出力を医師等に分かりやすく知らせることができる。
(変形例)
上記実施形態で例示したフローチャートにおける各ステップは、その性質に反しない限り、実行順序が変更され、複数同時に実施され、或いは実施毎に異なった順序で実施されてもよい。
上記実施形態では、治療装置10と医用装置100が別体の装置であるように説明したが、治療装置10と医用装置100は一体の装置であってもよい。また、治療装置10と医用装置100が別体の装置である場合において、出力制御部150は、医用装置100に内蔵される機能であってもよい。
また、透視画像TIに対応付けた波形に一点を入力し、この一点を中心として1呼吸分より多い範囲または少ない範囲において、最大呼気位置と最大吸気位置を含む前後に均等数の透視画像TIを参照画像としてもよい。また、透視画像TIのうち、画素値が近い画像同士をグルーピングして、各グループごとに参照画像を選択するようにしてもよい。グルーピングされた参照画像における患部の位置は、例えば、各参照画像における患部の平均位置としてもよい。
また、ターゲットの移動が大きく、透視画像TI間のターゲット位置が大きく異なる場合等には、時系列の透視画像TIの間に、補間画像を挿入するようにしてもよい。時系列の透視画像TIの間に補間画像を挿入することにより、情報が補間でき、効率良く参照画像を選択することができる。また、補間画像を挿入するスムージングを実行させるためのスムージングボタンを設け、医師等の操作に基づいてスムージングを行うようにしてもよい。
また、上記実施形態では、1呼吸分の座標位置波形αから参照画像を選択し、テンプレートを作成しているが、1呼吸分未満の座標位置波形α、例えば半呼吸分の座標位置波形αから参照画像を選択してテンプレートを作成するようにしてもよい。この場合、最大呼気位置の近傍および最大吸気位置の近傍では、座標位置の変化があまり見られず、最大呼気位置および最大吸気位置から離れた位置では、座標位置の変化が比較的大きく見られる。このため、最大呼気位置の近傍および最大吸気位置の近傍では、選択する参照画像を少なくし、最大呼気位置および最大吸気位置から離れた位置では、選択する参照画像を多くするようにしてもよい。具体的に図10を参照して、最大呼気位置の近傍および最大吸気位置の近傍のD0〜D2、D9〜D11付近では選択する参照画像を少なくし、D3〜D8付近では選択する参照画像を多くするようにしてもよい。このように、選択する画像をソートすることにより、半呼吸分の選択画像であっても効率良く参照画像を選択し、テンプレートを作成することができる。また、1呼吸分あるいはそれ以上の座標位置波形から参照画像を選択する場合でも、最大呼気位置の近傍および最大吸気位置の近傍では、選択する参照画像を少なくし、最大呼気位置および最大吸気位置から離れた位置では、選択する参照画像を多くするようにしてもよい。
また、上記実施形態で選択した参照画像を使用し、例えば参照画像からテンプレートを作成することで、治療照射時に取得した透視画像TIとテンプレートを比較するテンプレートマッチング法でターゲット位置を特定することができる。あるいは、参照画像を気化器学習することで、透視画像TI上のターゲット位置を特定することができる。
上記実施形態で説明した医用装置の制御方法は、時系列に被検体を撮影した透視画像を取得し、取得された複数の前記透視画像の中から、前記被検体の最大呼気位置および最大吸気位置に対応する透視画像を含んで参照画像を選択する、医用装置の制御方法である。
上記実施形態で説明したプログラムは、コンピュータに、時系列に被検体を撮影した透視画像を取得させ、取得された複数の前記透視画像の中から、前記被検体の最大呼気位置および最大吸気位置に対応する透視画像を含んで参照画像を選択させる、プログラムである。
以上説明した少なくともひとつの実施形態によれば、時系列に被検体(P)を撮影した透視画像(TI)を取得する取得部(130)と、前記取得部によって取得された複数の前記透視画像の中から、前記被検体の最大呼気位置および最大吸気位置に対応する透視画像を含んで参照画像を選択する選択部(132)とを持つことにより、複数の透視画像から参照画像を選択する際の利便性を向上させることができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1…治療システム、10…治療装置、11…寝台、12−1、12−2…放射線源、13−1、13−2…検出器、14…照射門、15…センサ、20…治療装置側制御部、100…医用装置、110…統括制御部、120…入力・表示部、122…入力操作取得部、124…表示制御部、130…取得部、131…対応付部、132…選択部、136…画像処理部、140…ターゲット位置特定部、150…出力制御部、160…記憶部

Claims (15)

  1. 時系列に被検体を撮影した透視画像を取得する取得部と、
    前記取得部によって取得された複数の前記透視画像の中から、前記被検体の最大呼気位置および最大吸気位置に対応する透視画像を含んで参照画像を選択する選択部と、
    を備える医用装置。
  2. 前記取得部によって取得された前記透視画像に対して、前記被検体の呼吸位相に基づく追跡値を対応付ける対応付部を備える請求項1に記載の医用装置。
  3. 前記追跡値のうちの1つを入力可能とされた入力部を備え、
    前記選択部は、前記入力部に入力された前記追跡値に応じた前記呼吸位相を含む前記被検体における所定数分の呼吸の透視画像を前記参照画像として選択する請求項2に記載の医用装置。
  4. 前記選択部は、前記入力部に入力された前記追跡値に応じた前記呼吸位相の直前または直後における前記被検体の最大呼気位置または最大吸気位置を中心とした範囲の透視画像を前記参照画像として選択する請求項3に記載の医用装置。
  5. 前記選択部は、前記入力部に入力された追跡値が前記被検体の最大呼気位置または最大吸気位置に応じた前記追跡値であるときに、入力された前記最大呼気位置または最大吸気位置を中心とした範囲の透視画像を前記参照画像として選択する請求項3に記載の医用装置。
  6. 前記選択部は、前記最大呼気位置または最大吸気位置を中心として、前後に均等数の透視画像を参照画像として選択する請求項4または5に記載の医用装置。
  7. 前記選択部は、前記取得部によって取得された複数の前記透視画像を前記追跡値に基づいて並べ替え、前記追跡値の最大値と最小値の間で均等である追跡値が対応付けられた前記透視画像を参照画像として選択する請求項2〜6のうちのいずれか1項に記載の医用装置。
  8. 前記選択部は、前記被検体の数呼吸分の間で、最大呼気位置および最大吸気位置が異なるときに、複数の最大呼気位置と最大吸気位置のうち、最大呼気位置と最大吸気位置の差が最大となる最大呼気位置と最大吸気位置の透視画像を含んで前記参照画像を選択する請求項1〜7のうちのいずれか1項に記載の医用装置。
  9. 前記被検体の呼吸の乱れ位置に対応する透視画像を前記選択部によって選択される透視画像から除外する除外部を備える請求項1〜8のうちのいずれか1項に記載の医用装置。
  10. 前記選択部によって選択された参照画像に基づいてテンプレートを作成するテンプレート作成部を備える請求項1〜9のうちのいずれか1項に記載の医用装置。
  11. 表示部に画像を表示させる表示制御部を更に備え、
    前記表示制御部は、照射許可範囲を透視画像に重畳表示させ、追跡対象箇所の位置が照射許可範囲内に収まって照射許可信号を出力する際に照射許可範囲の色を変更する請求項1〜10のうちのいずれか1項に記載の医用装置。
  12. 表示部に画像を表示させる表示制御部を更に備え、
    前記表示制御部は、照射許可範囲を透視画像に重畳表示させ、照射許可信号を出力する際に、照射許可範囲の内側領域と外側領域のいずれかの色彩または輝度を変更する請求項1〜11のうちのいずれか1項に記載の医用装置。
  13. 照射許可信号を出力する際に、音または振動で通知する通知部を備える請求項1〜12のうちのいずれか1項に記載の医用装置。
  14. コンピュータが、
    時系列に被検体を撮影した透視画像を取得する取得し、
    取得された複数の前記透視画像の中から、前記被検体の最大呼気位置および最大吸気位置に対応する透視画像を含んで参照画像を選択する、
    医用装置の制御方法。
  15. コンピュータに、
    時系列に被検体を撮影した透視画像を取得させ、
    取得された複数の前記透視画像の中から、前記被検体の最大呼気位置および最大吸気位置に対応する透視画像を含んで参照画像を選択させる、
    プログラム。
JP2017244069A 2017-12-20 2017-12-20 医用装置、医用装置の制御方法、およびプログラム Pending JP2019107393A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017244069A JP2019107393A (ja) 2017-12-20 2017-12-20 医用装置、医用装置の制御方法、およびプログラム
KR1020180162808A KR102188381B1 (ko) 2017-12-20 2018-12-17 의용 장치 및 의용 장치의 제어 방법
EP18213770.3A EP3501604A1 (en) 2017-12-20 2018-12-18 Medical apparatus and method
CN201811547476.1A CN109999366B (zh) 2017-12-20 2018-12-18 医用装置、医用装置的控制方法以及存储介质
US16/223,401 US10952695B2 (en) 2017-12-20 2018-12-18 Medical apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017244069A JP2019107393A (ja) 2017-12-20 2017-12-20 医用装置、医用装置の制御方法、およびプログラム

Publications (1)

Publication Number Publication Date
JP2019107393A true JP2019107393A (ja) 2019-07-04

Family

ID=64746006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017244069A Pending JP2019107393A (ja) 2017-12-20 2017-12-20 医用装置、医用装置の制御方法、およびプログラム

Country Status (5)

Country Link
US (1) US10952695B2 (ja)
EP (1) EP3501604A1 (ja)
JP (1) JP2019107393A (ja)
KR (1) KR102188381B1 (ja)
CN (1) CN109999366B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7484374B2 (ja) 2020-04-21 2024-05-16 株式会社島津製作所 動体追跡装置および動体追跡装置の作動方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11273326B2 (en) * 2017-06-29 2022-03-15 Canon Medical Systems Corporation Radiotherapy system and treatment support apparatus
US11596807B2 (en) * 2019-11-25 2023-03-07 Accuray Incorporated Partial deformation maps for reconstructing motion-affected treatment dose
US11786756B2 (en) * 2020-12-30 2023-10-17 Varian Medical Systems, Inc. Radiotherapy methods, systems, and workflow-oriented graphical user interfaces
US11759656B2 (en) 2020-12-30 2023-09-19 Varian Medical Systems, Inc. Radiotherapy methods, systems, and workflow-oriented graphical user interfaces
US11844962B2 (en) 2020-12-30 2023-12-19 Varian Medical Systems, Inc. Radiotherapy methods, systems, and workflow-oriented graphical user interfaces
US11638840B2 (en) 2020-12-30 2023-05-02 Varian Medical Systems, Inc. Radiotherapy methods, systems, and workflow-oriented graphical user interfaces
US11712587B2 (en) 2020-12-30 2023-08-01 Varian Medical Systems, Inc. Radiotherapy methods, systems, and workflow-oriented graphical user interfaces
US11786757B2 (en) 2020-12-30 2023-10-17 Varian Medical Systems, Inc. Radiotherapy methods, systems, and workflow-oriented graphical user interfaces
US11817210B2 (en) 2020-12-30 2023-11-14 Varian Medical Systems, Inc. Radiotherapy methods, systems, and workflow-oriented graphical user interfaces
US11660473B2 (en) 2020-12-30 2023-05-30 Varian Medical Systems, Inc. Radiotherapy methods, systems, and workflow-oriented graphical user interfaces
US11654303B2 (en) 2020-12-30 2023-05-23 Varian Medical Systems, Inc. Radiotherapy methods, systems, and workflow-oriented graphical user interfaces
US11577095B2 (en) 2020-12-30 2023-02-14 Varian Medical Systems, Inc. Radiotherapy methods, systems, and workflow-oriented graphical user interfaces
US11607563B2 (en) * 2020-12-30 2023-03-21 Varian Medical Systems, Inc. Radiotherapy methods, systems, and workflow-oriented graphical user interfaces
US20230097277A1 (en) * 2021-09-29 2023-03-30 Siemens Heal Thineers International Ag On-line adaptive deep inspiration breath-hold treatment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6076005A (en) * 1998-02-25 2000-06-13 St. Jude Children's Research Hospital Respiration responsive gating means and apparatus and methods using the same
JP2007503926A (ja) * 2003-09-05 2007-03-01 バリアン・メディカル・システムズ・テクノロジーズ・インコーポレイテッド 医療処置をゲーティングするための装置及び方法
US20140343401A1 (en) * 2013-05-14 2014-11-20 Michael Huber Systems and methods for considering target motion in medical field
JP2016059712A (ja) * 2014-09-19 2016-04-25 株式会社東芝 粒子線治療システム、粒子線治療方法、および、粒子線治療プログラム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4030162B2 (ja) * 1997-11-04 2008-01-09 富士通株式会社 息検出機能付情報処理装置及び息検出による画像表示制御方法
US6980679B2 (en) * 1998-10-23 2005-12-27 Varian Medical System Technologies, Inc. Method and system for monitoring breathing activity of a subject
US7398116B2 (en) * 2003-08-11 2008-07-08 Veran Medical Technologies, Inc. Methods, apparatuses, and systems useful in conducting image guided interventions
US20070053491A1 (en) * 2005-09-07 2007-03-08 Eastman Kodak Company Adaptive radiation therapy method with target detection
JP2007301153A (ja) * 2006-05-11 2007-11-22 Ge Medical Systems Global Technology Co Llc 医用画像撮影装置
US9248312B2 (en) 2007-10-26 2016-02-02 Accuray Incorporated Automatic correlation modeling of an internal target
US8295435B2 (en) * 2008-01-16 2012-10-23 Accuray Incorporated Cardiac target tracking
JP2010069099A (ja) * 2008-09-19 2010-04-02 Toshiba Corp 画像処理装置及びx線コンピュータ断層撮影装置
WO2010083415A1 (en) 2009-01-16 2010-07-22 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Methods for tracking motion of internal organs and methods for radiation therapy using tracking methods
JP5710290B2 (ja) * 2010-01-29 2015-04-30 株式会社東芝 画像診断装置及び画像診断装置の制御プログラム
JP5897273B2 (ja) * 2010-07-22 2016-03-30 株式会社東芝 医用画像表示装置及びx線コンピュータ断層撮影装置
JP5575022B2 (ja) * 2011-03-18 2014-08-20 三菱重工業株式会社 放射線治療装置制御装置、その処理方法、及びプログラム
JP5672147B2 (ja) * 2011-05-24 2015-02-18 コニカミノルタ株式会社 胸部診断支援情報生成システム
CN105101878B (zh) * 2013-04-05 2018-04-10 东芝医疗系统株式会社 医用图像处理装置以及医用图像处理方法
CN106029171B (zh) 2014-02-24 2019-01-22 国立研究开发法人量子科学技术研究开发机构 放射线治疗用运动物体跟踪装置、放射线治疗用照射区域决定装置以及放射线治疗装置
TWI564041B (zh) * 2014-08-28 2017-01-01 Apex Medical Corp A breathing gas supply system and a control method thereof, and a computer program product for executing the method
JP6533991B2 (ja) 2016-02-16 2019-06-26 東芝エネルギーシステムズ株式会社 医用画像処理装置、方法、プログラム及び放射線治療装置
CN106994022A (zh) * 2017-04-06 2017-08-01 广州军区联勤部药品仪器检验所 用于评估pet/ct设备呼吸运动伪影校正性能的动态胸腔体模系统和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6076005A (en) * 1998-02-25 2000-06-13 St. Jude Children's Research Hospital Respiration responsive gating means and apparatus and methods using the same
JP2007503926A (ja) * 2003-09-05 2007-03-01 バリアン・メディカル・システムズ・テクノロジーズ・インコーポレイテッド 医療処置をゲーティングするための装置及び方法
US20140343401A1 (en) * 2013-05-14 2014-11-20 Michael Huber Systems and methods for considering target motion in medical field
JP2016059712A (ja) * 2014-09-19 2016-04-25 株式会社東芝 粒子線治療システム、粒子線治療方法、および、粒子線治療プログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7484374B2 (ja) 2020-04-21 2024-05-16 株式会社島津製作所 動体追跡装置および動体追跡装置の作動方法

Also Published As

Publication number Publication date
CN109999366B (zh) 2021-05-18
KR20190074975A (ko) 2019-06-28
KR102188381B1 (ko) 2020-12-08
EP3501604A1 (en) 2019-06-26
US10952695B2 (en) 2021-03-23
CN109999366A (zh) 2019-07-12
US20190183446A1 (en) 2019-06-20

Similar Documents

Publication Publication Date Title
CN109999366B (zh) 医用装置、医用装置的控制方法以及存储介质
KR102175394B1 (ko) 의용 장치, 및 의용 장치의 제어 방법
JP7140320B2 (ja) 医用装置、医用装置の制御方法、およびプログラム
KR102391281B1 (ko) 의용 장치 및 의용 장치의 제어 방법
JP7116944B2 (ja) 医用装置、医用装置の制御方法、およびプログラム
US20170296843A1 (en) Processing device for a radiation therapy system
JP6878262B2 (ja) 医用装置、医用装置の制御方法、およびプログラム
JP7264389B2 (ja) 医用装置、医用装置の制御方法およびプログラム
JP7125703B2 (ja) 医用装置、医用装置の制御方法およびプログラム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230501

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230510

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240422