JP2019091792A5 - - Google Patents

Download PDF

Info

Publication number
JP2019091792A5
JP2019091792A5 JP2017219259A JP2017219259A JP2019091792A5 JP 2019091792 A5 JP2019091792 A5 JP 2019091792A5 JP 2017219259 A JP2017219259 A JP 2017219259A JP 2017219259 A JP2017219259 A JP 2017219259A JP 2019091792 A5 JP2019091792 A5 JP 2019091792A5
Authority
JP
Japan
Prior art keywords
power storage
aqueous lithium
storage element
active material
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017219259A
Other languages
Japanese (ja)
Other versions
JP2019091792A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2017219259A priority Critical patent/JP2019091792A/en
Priority claimed from JP2017219259A external-priority patent/JP2019091792A/en
Publication of JP2019091792A publication Critical patent/JP2019091792A/en
Publication of JP2019091792A5 publication Critical patent/JP2019091792A5/ja
Pending legal-status Critical Current

Links

Description

[1] 負極、正極、セパレータ、及びリチウム塩を含む非水系電解液を含む非水系リチウム型蓄電素子であって、
前記負極が、負極集電体と、前記負極集電体の片面上又は両面上に設けられた、負極活物質を含む負極活物質層とを有し、かつ、前記負極活物質はリチウムイオンを吸蔵・放出できる炭素材料を含み、
前記負極活物質層表面のX線光電子分光測定(XPS)により得られる、S2pスペクトルの168eVのピーク面積に基づいて求めたSの元素濃度をS168eV(atomic%)、F1sスペクトルの685eVのピーク面積に基づいて求めたFの元素濃度をF685eV(atomic%)とするとき、元素濃度比S168eV/F685eVが、0.025以上0.5以下であり、
前記正極が、正極集電体と、前記正極集電体の片面上又は両面上に設けられた、正極活物質を含む正極活物質層とを有し、かつ、前記正極活物質は活性炭を含み、
前記正極活物質層のBET法により測定される単位面積当たりの比表面積をA(m/cm)とするとき、0.2≦A≦10であり、かつ、
前記正極活物質層表面のX線光電子分光測定(XPS)により得られる、S2pスペクトルの164eVのピーク面積に基づいて求めたSの元素濃度をS164eV(atomic%)、C1sスペクトルのCのピーク面積に基づいて求めたCの元素濃度をC(atomic%)とするとき、元素濃度比S164eV/Cが、0.001以上0.05以下である、非水系リチウム型蓄電素子。
[2] 前記非水系電解液が、下記化学式(1)で表される化合物Xと、下記化学式(2−1)〜(2−5)のそれぞれで表される化合物から選択される1種以上の化合物Yとを含む、[1]に記載の非水系リチウム型蓄電素子。

Figure 2019091792
{式(1)中、R〜Rはそれぞれ独立に、水素原子、ハロゲン原子、ホルミル基、炭素数2〜7のアシル基、ニトリル基、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、炭素数2〜7のアルキルカルボニルオキシ基、又は炭素数2〜7のアルキルオキシカルボニル基を表す。}
Figure 2019091792
{式(2−1)〜(2−5)中のR〜R28は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1〜12のアルキル基、又は炭素数1〜12のハロゲン化アルキル基を表し;そして、
式(2−1)〜(2−3)及び(2−5)中のnは、それぞれ独立に、0〜3の整数である。}
[3] 前記化学式(1)で表される化合物が、チオフェン、2−メチルチオフェン、3−メチルチオフェン、2−シアノチオフェン、3−シアノチオフェン、2,5−ジメチルチオフェン、2−メトキシチオフェン、3−メトキシチオフェン、2−クロロチオフェン、3−クロロチオフェン、2−アセチルチオフェン、及び3−アセチルチオフェンから成る群から選択される1種以上であり、
前記化学式(2−1)で表される化合物が、エチレンスルファート及び1,3−プロピレンスルファートから成る群から選択される1種以上であり、
前記化学式(2−2)で表される化合物が、1,3−プロパンスルトン、2,4−ブタンスルトン、1,4−ブタンスルトン、1,3−ブタンスルトン、及び2,4−ペンタンスルトンから成る群から選択される1種以上であり、
前記化学式(2−3)で表される化合物が、1,3−プロペンスルトン及び1,4−ブテンスルトンから成る群から選択される1種以上であり、
前記化学式(2−4)で表される化合物が、3−スルフォレンであり、そして、
前記化学式(2−5)で表される化合物が、亜硫酸エチレン、1,2−亜硫酸プロピレン、及び1,3−亜硫酸プロピレンから成る群から選択される1種以上である、[2]に記載の非水系リチウム型蓄電素子。
[4] 前記非水系電解液が、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、及びフルオロエチレンカーボネートから成る群から選択される少なくとも1種の非水溶媒を含有する、[1]〜[3]のいずれか一項に記載の非水系リチウム型蓄電素子。
[5] 前記非水系電解液が、LiPF及びLiBFから成る群から選択される1種以上を含有する、[1]〜[4]のいずれか一項に記載の非水系リチウム型蓄電素子。
[6] 前記非水系電解液が、LiN(SOF)を含有する、[1]〜[5]のいずれか一項に記載の非水系リチウム型蓄電素子。
[7] 前記正極集電体及び前記負極集電体が、それぞれ、無孔の金属箔である、[1]〜[6]のいずれか一項に記載の非水系リチウム型蓄電素子。
[8] 前記正極活物質に含まれる活性炭が、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とするとき、0.3<V1≦0.8、及び0.5≦V2≦1.0を満たし、かつ、BET法により測定される比表面積が1,500m/g以上3,000m/g以下を示す活性炭を含む、[1]〜[7]のいずれか一項に記載の非水系リチウム型蓄電素子。
[9] 前記正極活物質に含まれる活性炭が、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量V1(cc/g)が0.8<V1≦2.5を満たし、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量V2(cc/g)が0.8<V2≦3.0を満たし、かつ、BET法により測定される比表面積が2,300m/g以上4,000m/g以下を示す活性炭を含む、[1]〜[8]のいずれか一項に記載の非水系リチウム型蓄電素子。
[10] 前記正極活物質が、リチウムイオンを吸蔵及び放出可能な遷移金属酸化物を更に含む、[1]〜[9]のいずれか一項に記載の非水系リチウム型蓄電素子。
[11] 前記遷移金属酸化物が、層状構造、スピネル構造、及びオリビン構造から選ばれる構造を有する遷移金属酸化物である、[10]に記載の非水系リチウム型蓄電素子。
[12] 前記遷移金属酸化物が、LiNiCoAl(1−a−b){a及びbは、それぞれ、0.2<a<0.97、0.2<b<0.97を満たす。}、LiNiCoMn(1−c−d){c及びdは、それぞれ、0.2<c<0.97、0.2<d<0.97を満たす。}、LiCoO、LiMn、LiFePO、LiMnPO{xは0≦x≦1を満たす。}、及びLi(PO{zは0≦z≦3を満たす。}から成る群から選択される1種以上である、[10]又は[11]に記載の非水系リチウム型蓄電素子。
[13] 前記負極活物質がリチウムイオンでドープされており、そのドープ量が、前記負極活物質の単位質量当たり530mAh/g以上2,500mAh/g以下である、[1]〜[12]のいずれか一項に記載の非水系リチウム型蓄電素子。
[14] 前記負極活物質のBET比表面積が1m/g以上1,500m/g以下である、[1]〜[13]のいずれか一項に記載の非水系リチウム型蓄電素子。
[15] 前記負極活物質が粒子状であり、その平均粒子径が、1μm以上10μm以下である、[13]又は[14]に記載の非水系リチウム型蓄電素子。
[16] セル電圧4.2Vでの初期の内部抵抗をRa(Ω)、静電容量をF(F)、電力量をE(Wh)、電極体を収納している外装体の体積をV(L)、及び環境温度−10℃における内部抵抗をRbとした時、以下の(a)、(b)、及び(c)の要件:
(a)RaとFの積Ra・Fが0.3以上3.0以下である、
(b)E/Vが15以上50以下である、及び
(c)Rb/Raが10以下である
を同時に満たす、[1]〜[15]のいずれか一項に記載の非水系リチウム型蓄電素子。
[17] セル電圧4.2Vでの初期の内部抵抗をRa(Ω)、セル電圧4.2V及び環境温度60℃において2か月間保存した後の25℃における内部抵抗をRc(Ω)とした時、以下の(d)及び(e)の要件:
(d)Rc/Raが0.3以上3.0以下である、並びに
(e)セル電圧4.2V及び環境温度60℃において2か月間保存した時に発生するガス量が、25℃において30×10−3cc/F以下である、
を同時に満たす、[1]〜[16]のいずれか一項に記載の非水系リチウム型蓄電素子。
[18] 前記負極、前記正極、前記セパレータ、及び前記非水系電解液が、外体に収納されており、
前記外装体が、金属缶又はラミネート包材である、[1]〜[17]のいずれか一項に記載の非水系リチウム型蓄電素子。
[19] [1]〜[18]のいずれか一項に記載の非水系リチウム型蓄電素子を含む、蓄電モジュール。
[20] [1]〜[18]のいずれか一項に記載の非水系リチウム型蓄電素子、又は[19]に記載の蓄電モジュールを含む、電力回生システム。
[21] [1]〜[18]のいずれか一項に記載の非水系リチウム型蓄電素子、又は[19]に記載の蓄電モジュールを含む、電力負荷平準化システム。
[22] [1]〜[18]のいずれか一項に記載の非水系リチウム型蓄電素子、又は[19]に記載の蓄電モジュールを含む、無停電電源システム。
[23] [1]〜[18]のいずれか一項に記載の非水系リチウム型蓄電素子、又は[19]に記載の蓄電モジュールを含む、非接触給電システム。
[22] [1]〜[18]のいずれか一項に記載の非水系リチウム型蓄電素子、又は[19]に記載の蓄電モジュールを含む、エナジーハーベストシステム。
[23] [1]〜[18]のいずれか一項に記載の非水系リチウム型蓄電素子、又は[19]に記載の蓄電モジュールを含む、蓄電システム。 [1] A non-aqueous lithium power storage device containing a negative electrode, a positive electrode, a separator, and a non-aqueous electrolytic solution containing a lithium salt.
The negative electrode has a negative electrode current collector and a negative electrode active material layer containing a negative electrode active material provided on one side or both sides of the negative electrode current collector, and the negative electrode active material contains lithium ions. Contains carbon materials that can be occluded and released
The elemental concentration of S determined based on the peak area of 168 eV in the S2p spectrum obtained by X-ray photoelectron spectroscopy (XPS) on the surface of the negative electrode active material layer is S 168 eV (atomic%), and the peak area of 685 eV in the F1 s spectrum. When the element concentration of F obtained based on the above is F 685 eV (atomic%), the element concentration ratio S 168 eV / F 685 eV is 0.025 or more and 0.5 or less.
The positive electrode has a positive electrode current collector and a positive electrode active material layer containing a positive electrode active material provided on one side or both sides of the positive electrode current collector, and the positive electrode active material contains activated carbon. ,
When the specific surface area per unit area measured by the BET method of the positive electrode active material layer is A (m 2 / cm 2 ), 0.2 ≦ A ≦ 10 and
The elemental concentration of S determined based on the peak area of 164 eV in the S2p spectrum obtained by X-ray photoelectron spectroscopy (XPS) on the surface of the positive electrode active material layer is S 164 eV (atomic%), and the peak area of C in the C1s spectrum. A non-aqueous lithium power storage element having an element concentration ratio of S164 eV / C of 0.001 or more and 0.05 or less, where C (atomic%) is the element concentration of C obtained based on the above.
[2] The non-aqueous electrolyte solution is one or more selected from the compound X represented by the following chemical formula (1) and the compounds represented by the following chemical formulas (2-1) to (2-5). The non-aqueous lithium-type power storage device according to [1], which comprises the compound Y of the above.
Figure 2019091792
{In formula (1), R 1 to R 4 are independently hydrogen atom, halogen atom, formyl group, acyl group having 2 to 7 carbon atoms, nitrile group, alkyl group having 1 to 6 carbon atoms, and 1 carbon atom. Represents an alkoxy group of ~ 6, an alkylcarbonyloxy group having 2 to 7 carbon atoms, or an alkyloxycarbonyl group having 2 to 7 carbon atoms. }
Figure 2019091792
{R 5 to R 28 in formulas (2-1) to (2-5) are independently hydrogen atoms, halogen atoms, alkyl groups having 1 to 12 carbon atoms, or halogenating having 1 to 12 carbon atoms. Represents an alkyl group; and
N in the formulas (2-1) to (2-3) and (2-5) is an integer of 0 to 3 independently. }
[3] The compounds represented by the chemical formula (1) are thiophene, 2-methylthiophene, 3-methylthiophene, 2-cyanothiophene, 3-cyanothiophene, 2,5-dimethylthiophene, 2-methoxythiophene, 3 One or more selected from the group consisting of −methoxythiophene, 2-chlorothiophene, 3-chlorothiophene, 2-acetylthiophene, and 3-acetylthiophene.
The compound represented by the chemical formula (2-1) is at least one selected from the group consisting of ethylene sulfate and 1,3-propylene sulfate.
The compound represented by the chemical formula (2-2) consists of a group consisting of 1,3-propane sultone, 2,4-butane sultone, 1,4-butane sultone, 1,3-butane sultone, and 2,4-pentane sultone. One or more selected
The compound represented by the chemical formula (2-3) is at least one selected from the group consisting of 1,3-propene sultone and 1,4-butene sultone.
The compound represented by the chemical formula (2-4) is 3-sulfolene, and
The compound represented by the chemical formula (2-5) is at least one selected from the group consisting of ethylene sulfite, propylene 1,2-sulfate, and propylene 1,3-sulfate, according to [2]. Non-aqueous lithium type power storage element.
[4] The non-aqueous electrolyte solution contains at least one non-aqueous solvent selected from the group consisting of dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, and fluoroethylene carbonate. , The non-aqueous lithium-type power storage element according to any one of [1] to [3].
[5] The non-aqueous lithium power storage device according to any one of [1] to [4], wherein the non-aqueous electrolyte solution contains at least one selected from the group consisting of LiPF 6 and LiBF 4. ..
[6] The non-aqueous lithium-type power storage element according to any one of [1] to [5], wherein the non-aqueous electrolyte solution contains LiN (SO 2 F) 2 .
[7] The non-aqueous lithium-type power storage element according to any one of [1] to [6], wherein the positive electrode current collector and the negative electrode current collector are each non-porous metal foil.
[8] The amount of mesopores derived from pores with a diameter of 20 Å or more and 500 Å or less calculated by the BJH method for the activated carbon contained in the positive electrode active material is V1 (cc / g), and the diameter is less than 20 Å calculated by the MP method. When the amount of micropores derived from the pores is V2 (cc / g), the ratios satisfying 0.3 <V1 ≦ 0.8 and 0.5 ≦ V2 ≦ 1.0 and measured by the BET method. The non-aqueous lithium-type power storage element according to any one of [1] to [7], which comprises activated carbon having a surface area of 1,500 m 2 / g or more and 3,000 m 2 / g or less.
[9] The activated carbon contained in the positive electrode active material satisfies a mesopore amount V1 (cc / g) of 0.8 <V1 ≦ 2.5 derived from pores having a diameter of 20 Å or more and 500 Å or less calculated by the BJH method. , The micropore amount V2 (cc / g) derived from pores with a diameter of less than 20 Å calculated by the MP method satisfies 0.8 <V2 ≦ 3.0, and the specific surface area measured by the BET method is 2, The non-aqueous lithium-type power storage element according to any one of [1] to [8], which comprises activated carbon exhibiting 300 m 2 / g or more and 4,000 m 2 / g or less.
[10] The non-aqueous lithium-type power storage element according to any one of [1] to [9], wherein the positive electrode active material further contains a transition metal oxide capable of storing and releasing lithium ions.
[11] The non-aqueous lithium-type power storage device according to [10], wherein the transition metal oxide is a transition metal oxide having a structure selected from a layered structure, a spinel structure, and an olivine structure.
[12] The transition metal oxide, Li x Ni a Co b Al (1-a-b) O 2 {a and b, respectively, 0.2 <a <0.97,0.2 <b < Satisfy 0.97. }, Li x Ni c Co d Mn (1-c-d) O 2 {c and d, respectively, satisfy 0.2 <c <0.97,0.2 <d < 0.97. }, Li x CoO 2 , Li x Mn 2 O 4 , Li x FePO 4 , Li x MnPO 4 {x satisfies 0 ≦ x ≦ 1. }, And Li z V 2 (PO 4 ) 3 {z satisfies 0 ≦ z ≦ 3. } The non-aqueous lithium-type power storage element according to [10] or [11], which is one or more selected from the group consisting of.
[13] Of [1] to [12], the negative electrode active material is doped with lithium ions, and the doping amount thereof is 530 mAh / g or more and 2,500 mAh / g or less per unit mass of the negative electrode active material. The non-aqueous lithium-type power storage element according to any one of the items.
[14] The non-aqueous lithium power storage device according to any one of [1] to [13], wherein the negative electrode active material has a BET specific surface area of 1 m 2 / g or more and 1,500 m 2 / g or less.
[15] The non-aqueous lithium-type power storage device according to [13] or [14], wherein the negative electrode active material is in the form of particles and the average particle size thereof is 1 μm or more and 10 μm or less.
[16] The initial internal resistance at a cell voltage of 4.2 V is Ra (Ω), the capacitance is F (F), the electric energy is E (Wh), and the volume of the exterior body containing the electrode body is V. When the internal resistance at (L) and the ambient temperature −10 ° C. is Rb, the following requirements (a), (b), and (c) are:
(A) The product Ra / F of Ra and F is 0.3 or more and 3.0 or less.
The non-aqueous lithium-type electricity storage according to any one of [1] to [15], wherein (b) E / V is 15 or more and 50 or less, and (c) Rb / Ra is 10 or less at the same time. element.
[17] The initial internal resistance at a cell voltage of 4.2 V was defined as Ra (Ω), and the internal resistance at a cell voltage of 4.2 V and an environmental temperature of 60 ° C. after storage for 2 months at 25 ° C. was defined as Rc (Ω). When, the following requirements (d) and (e):
(D) Rc / Ra is 0.3 or more and 3.0 or less, and (e) The amount of gas generated when stored for 2 months at a cell voltage of 4.2 V and an environmental temperature of 60 ° C. is 30 × at 25 ° C. 10 -3 cc / F or less,
The non-aqueous lithium-type power storage element according to any one of [1] to [16], which simultaneously satisfies the above conditions.
[18] The negative electrode, the positive electrode, the separator, and the nonaqueous electrolyte solution are accommodated in the armor body,
The non-aqueous lithium-type power storage element according to any one of [1] to [17], wherein the exterior body is a metal can or a laminated packaging material.
[19] A power storage module including the non-aqueous lithium power storage element according to any one of [1] to [18].
[20] A power regeneration system including the non-aqueous lithium-type power storage element according to any one of [1] to [18] or the power storage module according to [19].
[21] A power load leveling system including the non-aqueous lithium-type power storage element according to any one of [1] to [18] or the power storage module according to [19].
[22] An uninterruptible power supply system including the non-aqueous lithium power storage element according to any one of [1] to [18] or the power storage module according to [19].
[23] A non-contact power supply system including the non-aqueous lithium-type power storage element according to any one of [1] to [18] or the power storage module according to [19].
[22] An energy harvesting system including the non-aqueous lithium-type power storage element according to any one of [1] to [18] or the power storage module according to [19].
[23] A power storage system including the non-aqueous lithium power storage element according to any one of [1] to [18] or the power storage module according to [19].

一方、化合物Yは、負極活物質表面のXPSにおいて、S2pスペクトルを発現する被膜を与える含硫黄化合物の前駆体として機能する。
式(2−1)〜(2−5)中のR〜R28における炭素数1〜12のアルキル基としては、炭素数1〜6のアルキル基が好ましく、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、へキシル基等である。炭素数1〜12のハロゲン化アルキル基としては、炭素数1〜6のハロゲン化アルキル基が好ましく、例えば、クロロメチル基、ジクロロエチル基、3,3,3−トリフルオロプロピル基、パーフルオロプロピル基等である。
化合物Xとして、具体的には、
化学式(2−1)で表される化合物として例えば、エチレンスルファート、1,3−プロピレンスルファート等を;
化学式(2−2)で表される化合物として例えば、1,3−プロパンスルトン、2,4−ブタンスルトン、1,4−ブタンスルトン、1,3−ブタンスルトン、2,4−ペンタンスルトン等を;
化学式(2−3)で表される化合物として例えば、1,3−プロペンスルトン、1,4−ブテンスルトン等を;
化学式(2−4)で表される化合物として例えば、3−スルフォレン等を;
化学式(2−5)で表される化合物として例えば、亜硫酸エチレン、1,2−亜硫酸プロピレン、1,3−亜硫酸プロピレン等を;
それぞれ挙げることができ、それぞれこれらから選択される1種以上を、本実施形態の非水系電解液に含有させるのが好ましい。
非水系電解液中の化合物Yの含有割合は、化学式(2−1)〜(2−5)のそれぞれで表される化合物の合計質量が、非水系電解液の全質量に占める割合として、0.01質量%以上4.5質量%以下が好ましく、0.05質量%以上4.0質量%以下がより好ましく、0.1質量%以上3.5質量%以下が更に好ましい。
On the other hand, compound Y functions as a precursor of a sulfur-containing compound that gives a film that expresses an S2p spectrum in XPS on the surface of the negative electrode active material.
As the alkyl group having 1 to 12 carbon atoms in R 5 to R 28 in the formulas (2-1) to (2-5), an alkyl group having 1 to 6 carbon atoms is preferable, and for example, a methyl group, an ethyl group, and the like. It is a propyl group, a butyl group, a pentyl group, a hexyl group, or the like. The alkyl halide group having 1 to 12 carbon atoms is preferably an alkyl halide group having 1 to 6 carbon atoms, for example, a chloromethyl group, a dichloroethyl group, a 3,3,3-trifluoropropyl group, or a perfluoropropyl group. It is a basis.
Specifically, as compound X,
Examples of the compound represented by the chemical formula (2-1) include ethylene sulfate and 1,3-propylene sulfate;
Examples of the compound represented by the chemical formula (2-2) include 1,3-propane sultone, 2,4-butane sultone, 1,4-butane sultone, 1,3-butane sultone, 2,4-pentane sultone, and the like;
Examples of the compound represented by the chemical formula (2-3) include 1,3-propene sultone, 1,4-butensultone, and the like;
As a compound represented by the chemical formula (2-4), for example, 3-sulfolene or the like;
Examples of the compound represented by the chemical formula (2-5) include ethylene sulfite, propylene 1,2-sulfone, and propylene 1,3-sulfone;
Each of them can be mentioned, and it is preferable that one or more selected from these is contained in the non-aqueous electrolytic solution of the present embodiment.
The content ratio of compound Y in the non-aqueous electrolyte solution is 0 as the ratio of the total mass of the compounds represented by each of the chemical formulas (2-1) to (2-5) to the total mass of the non-aqueous electrolyte solution. It is preferably 0.01% by mass or more and 4.5% by mass or less, more preferably 0.05% by mass or more and 4.0% by mass or less, and further preferably 0.1% by mass or more and 3.5% by mass or less.

<非水系リチウム型蓄電素子>
本実施形態の非水系リチウム型蓄電素子は、負極、正極、セパレータ、及び非水系電解液が、外体に収納されて構成される。好ましくは、負極、正極、及びセパレータは、後述する電極積層体又は電極捲回体が、上記の非水系電解液とともに、後述の外装体内に収納されて構成される。
<Non-aqueous lithium-type power storage element>
Nonaqueous lithium-type storage element of the present embodiment, negative electrode, positive electrode, a separator, and a nonaqueous electrolytic solution, and is housed in armor body. Preferably, the negative electrode, the positive electrode, and the separator are configured such that the electrode laminate or the electrode winding body described later is housed in the exterior body described later together with the non-aqueous electrolyte solution described above.

iii)低温特性の評価(Rb/Raの算出)
完成した非水系リチウム型蓄電素子について、−10℃に設定した恒温槽内に2時間静置した後、恒温槽を−10℃に保ったまま富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、1.0Bの電流値で4.2Vに到達するまで定電流充電し、続いて4.2Vの定電圧を印加する定電圧充電を、合計で2時間行った。次いで、50Cの電流値で2.2Vまで定電流放電を行って、放電カーブ(時間−電圧)を得た。この放電カーブにおいて、放電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる放電時間=0秒における電圧をEoとして、下記数式:
降下電圧ΔE=4.2−Eo、及び
Rb=ΔE/(10C(電流値A))
により、低温内部抵抗Rbを算出した。
そして、この低温内部抵抗Rbと、上記「ii)初期時定数の評価(Ra・Fの算出)」で求めた常温内部抵抗Raとから求めた比Rb/Raは、6.2であった。
iii) Evaluation of low temperature characteristics (calculation of Rb / Ra)
After allowing the completed non-aqueous lithium-type power storage element to stand in a constant temperature bath set at -10 ° C for 2 hours, the charging / discharging device (5V) manufactured by Fujitsu Telecom Networks Limited keeps the constant temperature bath at -10 ° C. , 360A), constant current charging was performed at a current value of 1.0B until 4.2V was reached, followed by constant voltage charging to which a constant voltage of 4.2V was applied for a total of 2 hours. Then in, until 2.2V at a current value of 50C and subjected to constant-current discharge, discharge curves - was obtained (time voltage). In this discharge curve, the voltage at discharge time = 0 second obtained by extrapolating from the voltage values at the time points of discharge time of 2 seconds and 4 seconds by linear approximation is defined as Eo, and the following formula:
Voltage drop ΔE = 4.2-Eo and Rb = ΔE / (10C (current value A))
The low temperature internal resistance Rb was calculated.
The ratio Rb / Ra obtained from the low temperature internal resistance Rb and the normal temperature internal resistance Ra obtained in the above-mentioned "ii) Evaluation of initial time constant (calculation of Ra and F)" was 6.2.

Claims (25)

負極、正極、セパレータ、及びリチウム塩を含む非水系電解液を含む非水系リチウム型蓄電素子であって、
前記負極が、負極集電体と、前記負極集電体の片面上又は両面上に設けられた、負極活物質を含む負極活物質層とを有し、かつ、前記負極活物質はリチウムイオンを吸蔵・放出できる炭素材料を含み、
前記負極活物質層表面のX線光電子分光測定(XPS)により得られる、S2pスペクトルの168eVのピーク面積に基づいて求めたSの元素濃度をS168eV(atomic%)、F1sスペクトルの685eVのピーク面積に基づいて求めたFの元素濃度をF685eV(atomic%)とするとき、元素濃度比S168eV/F685eVが、0.025以上0.5以下であり、
前記正極が、正極集電体と、前記正極集電体の片面上又は両面上に設けられた、正極活物質を含む正極活物質層とを有し、かつ、前記正極活物質は活性炭を含み、
前記正極活物質層のBET法により測定される単位面積当たりの比表面積をA(m/cm)とするとき、0.2≦A≦10であり、かつ、
前記正極活物質層表面のX線光電子分光測定(XPS)により得られる、S2pスペクトルの164eVのピーク面積に基づいて求めたSの元素濃度をS164eV(atomic%)、C1sスペクトルのCのピーク面積に基づいて求めたCの元素濃度をC(atomic%)とするとき、元素濃度比S164eV/Cが、0.001以上0.05以下である、非水系リチウム型蓄電素子。
A non-aqueous lithium power storage device containing a negative electrode, a positive electrode, a separator, and a non-aqueous electrolyte solution containing a lithium salt.
The negative electrode has a negative electrode current collector and a negative electrode active material layer containing a negative electrode active material provided on one side or both sides of the negative electrode current collector, and the negative electrode active material contains lithium ions. Contains carbon materials that can be occluded and released
The elemental concentration of S determined based on the peak area of 168 eV in the S2p spectrum obtained by X-ray photoelectron spectroscopy (XPS) on the surface of the negative electrode active material layer is S 168 eV (atomic%), and the peak area of 685 eV in the F1 s spectrum. When the element concentration of F obtained based on the above is F 685 eV (atomic%), the element concentration ratio S 168 eV / F 685 eV is 0.025 or more and 0.5 or less.
The positive electrode has a positive electrode current collector and a positive electrode active material layer containing a positive electrode active material provided on one side or both sides of the positive electrode current collector, and the positive electrode active material contains activated carbon. ,
When the specific surface area per unit area measured by the BET method of the positive electrode active material layer is A (m 2 / cm 2 ), 0.2 ≦ A ≦ 10 and
The elemental concentration of S determined based on the peak area of 164 eV in the S2p spectrum obtained by X-ray photoelectron spectroscopy (XPS) on the surface of the positive electrode active material layer is S 164 eV (atomic%), and the peak area of C in the C1s spectrum. A non-aqueous lithium power storage element having an element concentration ratio of S164 eV / C of 0.001 or more and 0.05 or less, where C (atomic%) is the element concentration of C obtained based on the above.
前記非水系電解液が、下記化学式(1)で表される化合物Xと、下記化学式(2−1)〜(2−5)のそれぞれで表される化合物から選択される1種以上の化合物Yとを含む、請求項1に記載の非水系リチウム型蓄電素子。
Figure 2019091792
{式(1)中、R〜Rはそれぞれ独立に、水素原子、ハロゲン原子、ホルミル基、炭素数2〜7のアルキルカルボニル基、ニトリル基、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、炭素数2〜7のアルキルカルボニルオキシ基、又は炭素数2〜7のアルキルオキシカルボニル基を表す。}
Figure 2019091792
{式(2−1)〜(2−5)中のR〜R28は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1〜12のアルキル基、又は炭素数1〜12のハロゲン化アルキル基を表し;そして、
式(2−1)〜(2−3)及び(2−5)中のnは、それぞれ独立に、0〜3の整数である。}
The non-aqueous electrolyte solution is one or more compounds Y selected from the compound X represented by the following chemical formula (1) and the compounds represented by the following chemical formulas (2-1) to (2-5). The non-aqueous lithium-type power storage element according to claim 1, comprising the above.
Figure 2019091792
{In formula (1), R 1 to R 4 are independently hydrogen atom, halogen atom, formyl group, alkylcarbonyl group having 2 to 7 carbon atoms, nitrile group, alkyl group having 1 to 6 carbon atoms, and carbon number of carbon atoms. It represents an alkoxy group of 1 to 6, an alkylcarbonyloxy group having 2 to 7 carbon atoms, or an alkyloxycarbonyl group having 2 to 7 carbon atoms. }
Figure 2019091792
{R 5 to R 28 in formulas (2-1) to (2-5) are independently hydrogen atoms, halogen atoms, alkyl groups having 1 to 12 carbon atoms, or halogenating having 1 to 12 carbon atoms. Represents an alkyl group; and
N in the formulas (2-1) to (2-3) and (2-5) is an integer of 0 to 3 independently. }
前記化学式(1)で表される化合物が、チオフェン、2−メチルチオフェン、3−メチルチオフェン、2−シアノチオフェン、3−シアノチオフェン、2,5−ジメチルチオフェン、2−メトキシチオフェン、3−メトキシチオフェン、2−クロロチオフェン、3−クロロチオフェン、2−アセチルチオフェン、及び3−アセチルチオフェンから成る群から選択される1種以上であり、
前記化学式(2−1)で表される化合物が、エチレンスルファート及び1,3−プロピレンスルファートから成る群から選択される1種以上であり、
前記化学式(2−2)で表される化合物が、1,3−プロパンスルトン、2,4−ブタンスルトン、1,4−ブタンスルトン、1,3−ブタンスルトン、及び2,4−ペンタンスルトンから成る群から選択される1種以上であり、
前記化学式(2−3)で表される化合物が、1,3−プロペンスルトン及び1,4−ブテンスルトンから成る群から選択される1種以上であり、
前記化学式(2−4)で表される化合物が、3−スルフォレンであり、そして、
前記化学式(2−5)で表される化合物が、亜硫酸エチレン、1,2−亜硫酸プロピレン、及び1,3−亜硫酸プロピレンから成る群から選択される1種以上である、請求項2に記載の非水系リチウム型蓄電素子。
The compounds represented by the chemical formula (1) are thiophene, 2-methylthiophene, 3-methylthiophene, 2-cyanothiophene, 3-cyanothiophene, 2,5-dimethylthiophene, 2-methoxythiophene, 3-methoxythiophene. , 2-Chlorothiophene, 3-chlorothiophene, 2-acetylthiophene, and one or more selected from the group consisting of 3-acetylthiophene.
The compound represented by the chemical formula (2-1) is at least one selected from the group consisting of ethylene sulfate and 1,3-propylene sulfate.
The compound represented by the chemical formula (2-2) consists of a group consisting of 1,3-propane sultone, 2,4-butane sultone, 1,4-butane sultone, 1,3-butane sultone, and 2,4-pentane sultone. One or more selected
The compound represented by the chemical formula (2-3) is at least one selected from the group consisting of 1,3-propene sultone and 1,4-butene sultone.
The compound represented by the chemical formula (2-4) is 3-sulfolene, and
The compound according to claim 2, wherein the compound represented by the chemical formula (2-5) is at least one selected from the group consisting of ethylene sulfite, propylene 1,2-sulfate, and propylene 1,3-sulfate. Non-aqueous lithium type power storage element.
前記非水系電解液が、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、及びフルオロエチレンカーボネートから成る群から選択される少なくとも1種の非水溶媒を含有する、請求項1〜3のいずれか一項に記載の非水系リチウム型蓄電素子。 Claimed that the non-aqueous electrolyte solution contains at least one non-aqueous solvent selected from the group consisting of dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, and fluoroethylene carbonate. The non-aqueous lithium-type power storage element according to any one of 1 to 3. 前記非水系電解液が、LiPF及びLiBFから成る群から選択される1種以上を含有する、請求項1〜4のいずれか一項に記載の非水系リチウム型蓄電素子。 The non-aqueous lithium power storage device according to any one of claims 1 to 4, wherein the non-aqueous electrolyte solution contains at least one selected from the group consisting of LiPF 6 and LiBF 4 . 前記非水系電解液が、LiN(SOF)を含有する、請求項1〜5のいずれか一項に記載の非水系リチウム型蓄電素子。 The non-aqueous lithium power storage device according to any one of claims 1 to 5, wherein the non-aqueous electrolyte solution contains LiN (SO 2 F) 2 . 前記正極集電体及び前記負極集電体が、それぞれ、無孔の金属箔である、請求項1〜6のいずれか一項に記載の非水系リチウム型蓄電素子。 The non-aqueous lithium-type power storage element according to any one of claims 1 to 6, wherein the positive electrode current collector and the negative electrode current collector are metal foils having no holes, respectively. 前記正極活物質に含まれる活性炭が、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とするとき、0.3<V1≦0.8、及び0.5≦V2≦1.0を満たし、かつ、BET法により測定される比表面積が1,500m/g以上3,000m/g以下を示す活性炭を含む、請求項1〜7のいずれか一項に記載の非水系リチウム型蓄電素子。 The activated carbon contained in the positive electrode active material is derived from pores having a diameter of 20 Å or more and 500 Å or less calculated by the BJH method and having a mesopore amount of V1 (cc / g) and a diameter of less than 20 Å calculated by the MP method. When the amount of micropores to be formed is V2 (cc / g), 0.3 <V1 ≦ 0.8 and 0.5 ≦ V2 ≦ 1.0 are satisfied, and the specific surface area measured by the BET method is 1. The non-aqueous lithium-type power storage element according to any one of claims 1 to 7, which comprises activated carbon exhibiting 500 m 2 / g or more and 3,000 m 2 / g or less. 前記正極活物質に含まれる活性炭が、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量V1(cc/g)が0.8<V1≦2.5を満たし、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量V2(cc/g)が0.8<V2≦3.0を満たし、かつ、BET法により測定される比表面積が2,300m/g以上4,000m/g以下を示す活性炭を含む、請求項1〜8のいずれか一項に記載の非水系リチウム型蓄電素子。 The activated carbon contained in the positive electrode active material has a mesopore amount V1 (cc / g) derived from pores having a diameter of 20 Å or more and 500 Å or less calculated by the BJH method, satisfying 0.8 <V1 ≦ 2.5, and the MP method. The micropore amount V2 (cc / g) derived from pores having a diameter of less than 20 Å, which was calculated in accordance with the above, satisfies 0.8 <V2 ≦ 3.0, and the specific surface area measured by the BET method is 2,300 m 2 /. The non-aqueous lithium-type power storage element according to any one of claims 1 to 8, which contains activated carbon exhibiting g or more and 4,000 m 2 / g or less. 前記正極活物質が、リチウムイオンを吸蔵及び放出可能な遷移金属酸化物を更に含む、請求項1〜9のいずれか一項に記載の非水系リチウム型蓄電素子。 The non-aqueous lithium-type power storage element according to any one of claims 1 to 9, wherein the positive electrode active material further contains a transition metal oxide capable of storing and releasing lithium ions. 前記遷移金属酸化物が、層状構造、スピネル構造、及びオリビン構造から選ばれる構造を有する遷移金属酸化物である、請求項10に記載の非水系リチウム型蓄電素子。 The non-aqueous lithium power storage device according to claim 10, wherein the transition metal oxide is a transition metal oxide having a structure selected from a layered structure, a spinel structure, and an olivine structure. 前記遷移金属酸化物が、LiNiCoAl(1−a−b){a及びbは、それぞれ、0.2<a<0.97、0.2<b<0.97を満たす。}、LiNiCoMn(1−c−d){c及びdは、それぞれ、0.2<c<0.97、0.2<d<0.97を満たす。}、LiCoO、LiMn、LiFePO、LiMnPO{xは0≦x≦1を満たす。}、及びLi(PO{zは0≦z≦3を満たす。}から成る群から選択される1種以上である、請求項10又は11に記載の非水系リチウム型蓄電素子。 The transition metal oxides are Li x Ni a Co b Al (1-ab) O 2 {a and b, respectively, 0.2 <a <0.97 and 0.2 <b <0.97, respectively. Meet. }, Li x Ni c Co d Mn (1-c-d) O 2 {c and d, respectively, satisfy 0.2 <c <0.97,0.2 <d < 0.97. }, Li x CoO 2 , Li x Mn 2 O 4 , Li x FePO 4 , Li x MnPO 4 {x satisfies 0 ≦ x ≦ 1. }, And Li z V 2 (PO 4 ) 3 {z satisfies 0 ≦ z ≦ 3. } The non-aqueous lithium-type power storage element according to claim 10 or 11, which is one or more selected from the group consisting of. 前記負極活物質がリチウムイオンでドープされており、そのドープ量が、前記負極活物質の単位質量当たり530mAh/g以上2,500mAh/g以下である、請求項1〜12のいずれか一項に記載の非水系リチウム型蓄電素子。 According to any one of claims 1 to 12, the negative electrode active material is doped with lithium ions, and the doping amount thereof is 530 mAh / g or more and 2,500 mAh / g or less per unit mass of the negative electrode active material. The non-aqueous lithium-type power storage element described. 前記負極活物質のBET比表面積が、1m/g以上1,500m/g以下である、請求項1〜13のいずれか一項に記載の非水系リチウム型蓄電素子。 The non-aqueous lithium-type power storage element according to any one of claims 1 to 13, wherein the BET specific surface area of the negative electrode active material is 1 m 2 / g or more and 1,500 m 2 / g or less. 前記負極活物質が粒子状であり、その平均粒子径が、1μm以上10μm以下である、請求項13又は14に記載の非水系リチウム型蓄電素子。 The non-aqueous lithium-type power storage device according to claim 13 or 14, wherein the negative electrode active material is in the form of particles, and the average particle size thereof is 1 μm or more and 10 μm or less. セル電圧4.2Vでの初期の内部抵抗をRa(Ω)、静電容量をF(F)、電力量をE(Wh)、電極体を収納している外装体の体積をV(L)、及び環境温度−10℃における内部抵抗をRbとした時、以下の(a)、(b)、及び(c)の要件:
(a)RaとFの積Ra・Fが0.3以上3.0以下である、
(b)E/Vが15以上50以下である、及び
(c)Rb/Raが10以下である
を同時に満たす、請求項1〜15のいずれか一項に記載の非水系リチウム型蓄電素子。
The initial internal resistance at a cell voltage of 4.2 V is Ra (Ω), the capacitance is F (F), the electric energy is E (Wh), and the volume of the exterior body containing the electrode body is V (L). And, when the internal resistance at an ambient temperature of −10 ° C. is Rb, the following requirements (a), (b), and (c) are:
(A) The product Ra / F of Ra and F is 0.3 or more and 3.0 or less.
The non-aqueous lithium power storage device according to any one of claims 1 to 15, wherein (b) E / V is 15 or more and 50 or less, and (c) Rb / Ra is 10 or less at the same time.
セル電圧4.2Vでの初期の内部抵抗をRa(Ω)、セル電圧4.2V及び環境温度60℃において2か月間保存した後の25℃における内部抵抗をRc(Ω)とした時、以下の(d)及び(e)の要件:
(d)Rc/Raが0.3以上3.0以下である、並びに
(e)セル電圧4.2V及び環境温度60℃において2か月間保存した時に発生するガス量が、25℃において30×10−3cc/F以下である、
を同時に満たす、請求項1〜16のいずれか一項に記載の非水系リチウム型蓄電素子。
When the initial internal resistance at a cell voltage of 4.2 V is Ra (Ω), and the internal resistance at 25 ° C after storage at a cell voltage of 4.2 V and an environmental temperature of 60 ° C for 2 months is Rc (Ω), the following Requirements for (d) and (e):
(D) Rc / Ra is 0.3 or more and 3.0 or less, and (e) The amount of gas generated when stored for 2 months at a cell voltage of 4.2 V and an environmental temperature of 60 ° C. is 30 × at 25 ° C. 10 -3 cc / F or less,
The non-aqueous lithium-type power storage element according to any one of claims 1 to 16, which simultaneously satisfies the above conditions.
前記負極、前記正極、前記セパレータ、及び前記非水系電解液が、外体に収納されており、
前記外装体が、金属缶又はラミネート包材である、請求項1〜17のいずれか一項に記載の非水系リチウム型蓄電素子。
The negative electrode, the positive electrode, the separator, and the nonaqueous electrolyte solution are accommodated in the armor body,
The non-aqueous lithium-type power storage element according to any one of claims 1 to 17, wherein the exterior body is a metal can or a laminated packaging material.
請求項1〜18のいずれか一項に記載の非水系リチウム型蓄電素子を含む、蓄電モジュール。 A power storage module including the non-aqueous lithium power storage element according to any one of claims 1 to 18. 請求項1〜18のいずれか一項に記載の非水系リチウム型蓄電素子、又は請求項19に記載の蓄電モジュールを含む、電力回生システム。 A power regeneration system comprising the non-aqueous lithium-type power storage element according to any one of claims 1 to 18 or the power storage module according to claim 19. 請求項1〜18のいずれか一項に記載の非水系リチウム型蓄電素子、又は請求項19に記載の蓄電モジュールを含む、電力負荷平準化システム。 A power load leveling system comprising the non-aqueous lithium-type power storage element according to any one of claims 1 to 18 or the power storage module according to claim 19. 請求項1〜18のいずれか一項に記載の非水系リチウム型蓄電素子、又は請求項19に記載の蓄電モジュールを含む、無停電電源システム。 An uninterruptible power supply system comprising the non-aqueous lithium power storage element according to any one of claims 1 to 18 or the power storage module according to claim 19. 請求項1〜18のいずれか一項に記載の非水系リチウム型蓄電素子、又は請求項19に記載の蓄電モジュールを含む、非接触給電システム。 A non-contact power supply system comprising the non-aqueous lithium power storage element according to any one of claims 1 to 18 or the power storage module according to claim 19. 請求項1〜18のいずれか一項に記載の非水系リチウム型蓄電素子、又は請求項19に記載の蓄電モジュールを含む、エナジーハーベストシステム。 An energy harvesting system comprising the non-aqueous lithium-type power storage element according to any one of claims 1 to 18 or the power storage module according to claim 19. 請求項1〜18のいずれか一項に記載の非水系リチウム型蓄電素子、又は請求項19に記載の蓄電モジュールを含む、蓄電システム。 A power storage system comprising the non-aqueous lithium power storage element according to any one of claims 1 to 18 or the power storage module according to claim 19.
JP2017219259A 2017-11-14 2017-11-14 Nonaqueous lithium-type power storage element Pending JP2019091792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017219259A JP2019091792A (en) 2017-11-14 2017-11-14 Nonaqueous lithium-type power storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017219259A JP2019091792A (en) 2017-11-14 2017-11-14 Nonaqueous lithium-type power storage element

Publications (2)

Publication Number Publication Date
JP2019091792A JP2019091792A (en) 2019-06-13
JP2019091792A5 true JP2019091792A5 (en) 2020-12-17

Family

ID=66836637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017219259A Pending JP2019091792A (en) 2017-11-14 2017-11-14 Nonaqueous lithium-type power storage element

Country Status (1)

Country Link
JP (1) JP2019091792A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112310358B (en) 2019-07-29 2021-12-10 宁德时代新能源科技股份有限公司 Negative electrode active material and secondary battery
JP7371396B2 (en) * 2019-08-28 2023-10-31 株式会社Gsユアサ Non-aqueous electrolyte secondary battery and method for manufacturing non-aqueous electrolyte secondary battery
CN111048832A (en) * 2019-10-21 2020-04-21 江西赣锋电池科技有限公司 Lithium iron phosphate long-life battery electrolyte for energy storage
CN110931872B (en) * 2019-12-11 2022-07-08 多氟多新能源科技有限公司 Lithium ion battery electrolyte additive and lithium ion battery electrolyte
CN111668545A (en) * 2020-06-16 2020-09-15 杉杉新材料(衢州)有限公司 1, 2-cyclic glycerol sulfite additive and lithium ion battery electrolyte containing same
CN117859228A (en) * 2021-08-30 2024-04-09 松下知识产权经营株式会社 Nonaqueous electrolyte battery and nonaqueous electrolyte used therefor
CN114824165B (en) * 2022-06-30 2022-10-14 宁德新能源科技有限公司 Negative electrode plate, electrochemical device and electronic equipment

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803978B2 (en) * 2004-01-15 2011-10-26 旭化成株式会社 Non-aqueous lithium storage element
JP2007087714A (en) * 2005-09-21 2007-04-05 Hitachi Chem Co Ltd Energy storage device
JP2013012387A (en) * 2011-06-29 2013-01-17 Toyota Industries Corp Electrolyte and lithium ion secondary battery
JP2014027196A (en) * 2012-07-30 2014-02-06 Jm Energy Corp Power storage device
JP2016001567A (en) * 2014-06-12 2016-01-07 日本電気株式会社 Electrolyte and secondary battery using the same
US10468199B2 (en) * 2016-01-22 2019-11-05 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium power storage element
WO2017126689A1 (en) * 2016-01-22 2017-07-27 旭化成株式会社 Nonaqueous lithium power storage element
CN110164700B (en) * 2016-01-22 2021-07-30 旭化成株式会社 Nonaqueous lithium-type storage element
JP6834138B2 (en) * 2016-02-09 2021-02-24 株式会社リコー Non-aqueous electrolyte storage element

Similar Documents

Publication Publication Date Title
JP2019091792A5 (en)
JP7239267B2 (en) Electrochemical Cells Containing Lewis Acid:Lewis Base Complex Electrolyte Additives
JP4519685B2 (en) Non-aqueous electrolyte battery
US11710828B2 (en) Electrochemical devices including porous layers
JP7060612B2 (en) Multi-layered composite electrolyte and secondary battery using this
KR20220083753A (en) electrode composition
JP6015653B2 (en) Non-aqueous electrolyte and lithium ion battery
JP5618698B2 (en) Non-aqueous electrolyte battery
JP6972324B2 (en) Negative electrode for lithium secondary battery, this manufacturing method and lithium secondary battery including this
JP5472554B1 (en) Non-aqueous electrolyte secondary battery
JP2016076358A (en) Lithium ion secondary battery and battery system
JP2008252013A (en) Lithium-ion capacitor
WO2018073694A2 (en) Electrolyte solutions and electrochemical cells containing same
JP6056955B2 (en) Lithium secondary battery
JPWO2016021596A1 (en) Lithium secondary battery and manufacturing method thereof
JP2014011023A (en) Nonaqueous electrolyte secondary battery
WO2017218616A1 (en) Electrolyte solutions and electrochemical cells containing same
JP2016085836A (en) Nonaqueous liquid electrolyte for lithium ion secondary batteries, and lithium ion secondary battery
JP5817009B1 (en) Non-aqueous secondary battery
JP6747312B2 (en) Non-aqueous electrolyte, power storage element and method for manufacturing power storage element
JP2013051210A (en) Lithium secondary battery
JP7137757B2 (en) Non-aqueous electrolyte storage element
JP2015072769A (en) Nonaqueous electrolytic solution and lithium ion secondary battery
JP7318344B2 (en) NON-AQUEOUS ELECTROLYTE STORAGE ELEMENT, METHOD FOR USING THE SAME, AND METHOD FOR MANUFACTURING THE SAME
JP5925792B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery