JP2007087714A - Energy storage device - Google Patents

Energy storage device Download PDF

Info

Publication number
JP2007087714A
JP2007087714A JP2005273843A JP2005273843A JP2007087714A JP 2007087714 A JP2007087714 A JP 2007087714A JP 2005273843 A JP2005273843 A JP 2005273843A JP 2005273843 A JP2005273843 A JP 2005273843A JP 2007087714 A JP2007087714 A JP 2007087714A
Authority
JP
Japan
Prior art keywords
group
double bond
storage device
energy storage
organic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2005273843A
Other languages
Japanese (ja)
Inventor
Shigetaka Tsubouchi
繁貴 坪内
Yoshiaki Kumashiro
祥晃 熊代
Juichi Arai
寿一 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2005273843A priority Critical patent/JP2007087714A/en
Publication of JP2007087714A publication Critical patent/JP2007087714A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an energy storage device having high capacity and high reliability. <P>SOLUTION: The energy storage device is comprised of a positive electrode mainly comprising activated carbon, a negative electrode mainly comprising a carbonaceous material capable of absorbing and releasing lithium ions and previously absorbed with lithium ions, and an electrolyte, and the electrolyte contains an organic compound having a π-bond. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高容量でかつ信頼性の高いエネルギー貯蔵デバイスに関するものである。   The present invention relates to a high-capacity and reliable energy storage device.

エネルギー貯蔵デバイスは大別して、二次電池、電気二重層キャパシタの二つに分けられる。特に大電流で充放電可能な電気二重層キャパシタは電気自動車の動力電源や瞬停用バックアップ電源、また無停電電源装置等の用途に有望である。この電気二重層キャパシタは正負両極ともに非ファラデー的な反応機構を有する活性炭を主体とする分極性電極からなるため、ファラデー的な反応機構を有する電極を有するリチウム二次電池と比べて、急速充放電が可能であり、サイクル特性および電圧印加時の耐久性が高いという長所を有する。一方、電気二重層キャパシタの電極は正負両極ともに活性炭からなるため、リチウム二次電池に比べてエネルギー密度が低く、耐電圧が小さいという短所がある。   Energy storage devices are roughly divided into two types: secondary batteries and electric double layer capacitors. In particular, an electric double layer capacitor that can be charged and discharged with a large current is promising for applications such as a power source for electric vehicles, a backup power source for momentary power interruption, and an uninterruptible power source. Since this electric double layer capacitor consists of a polarizable electrode mainly composed of activated carbon having a non-Faraday reaction mechanism in both positive and negative electrodes, it is faster to charge and discharge than a lithium secondary battery having an electrode having a Faraday reaction mechanism. And has the advantages of high cycle characteristics and high durability during voltage application. On the other hand, since the electrodes of the electric double layer capacitor are made of activated carbon for both positive and negative electrodes, the energy density is lower than that of the lithium secondary battery, and the withstand voltage is low.

電気二重層キャパシタの耐電圧は水系電解液を有するものでは水の分解電圧で決定されるため1.2Vであり、有機系電解液を有するものでも2.5〜3.3V程度である。電気二重層キャパシタのセル容量Cは1/C=1/C+1/C(C:負極容量、C:正極容量)で表され、正負両極とも活性炭を主体とする場合、正極と負極の容量がほぼ等しく(C=C=C)、セル容量はC=C/2となり、セルエネルギーEはE=1/2C=1/4CV(V:耐電圧)となる。水系電解液に比べ耐電圧の高い有機系電解液を有する電気二重層キャパシタのほうが高エネルギーである。しかしながら、有機電解液を有する電気二重層キャパシタでもそのエネルギー密度は二次電池には及ばない。 The withstand voltage of the electric double layer capacitor is 1.2 V because it is determined by the decomposition voltage of water in the case of having an aqueous electrolyte, and is about 2.5 to 3.3 V even in the case of having an organic electrolyte. The cell capacity C t of the electric double layer capacitor is expressed by 1 / C t = 1 / C a + 1 / C c (C a : negative electrode capacity, C c : positive electrode capacity), and when both positive and negative electrodes are mainly activated carbon, The capacities of the positive electrode and the negative electrode are substantially equal (C a = C c = C), the cell capacity is C t = C / 2, and the cell energy E is E = 1 / 2C t V 2 = ¼ CV 2 (V: Voltage). An electric double layer capacitor having an organic electrolytic solution having a higher withstand voltage than an aqueous electrolytic solution has higher energy. However, even an electric double layer capacitor having an organic electrolyte has an energy density that does not reach that of a secondary battery.

これにとって代わり、特許文献1には、活性炭を主体とする電極を正極とし、X線回折による[002]面の面間隔が0.338〜0.356nmであるファラデー的な反応機構を示す炭素材料にあらかじめリチウムイオンを吸蔵させた電極を負極とした上限3.0Vの二次電源が提案されている。特許文献1で提案される二次電源は負極容量が正極容量より十分に大きいので、このキャパシタのセル容量は1/C=1/C+1/C≒1/Cとなり、C=CとするとセルエネルギーEはE=1/2C=1/2CVとなり、電気二重層キャパシタよりセルエネルギーを2倍向上させることができる。 Instead, Patent Document 1 discloses a carbon material exhibiting a Faraday-like reaction mechanism in which an electrode mainly composed of activated carbon is used as a positive electrode and a [002] plane interval by X-ray diffraction is 0.338 to 0.356 nm. A secondary power supply with an upper limit of 3.0 V has been proposed in which an electrode previously occluded with lithium ions is used as a negative electrode. Since the secondary power source proposed in Patent Document 1 has a negative electrode capacity sufficiently larger than the positive electrode capacity, the cell capacity of this capacitor is 1 / C t = 1 / C a + 1 / C c ≈1 / C c , and C c When C = C, the cell energy E becomes E = 1 / 2C t V 2 = 1 / 2CV 2 , and the cell energy can be improved twice as compared with the electric double layer capacitor.

また、特許文献2には、リチウムイオンを吸蔵、脱離しうる炭素材料にあらかじめ化学的方法又は電気化学的方法でリチウムイオンを吸蔵させた炭素材料を負極に用いる電池が提案されている。セルの静電容量QはQ=CVであり、耐電圧Vを上げることでセルの静電容量も増加させる事ができる。特許文献3には、リチウムイオンを吸蔵、脱離しうる炭素材料をリチウムと合金を形成しない多孔質集電体に担持させる負極を有する、上限電圧4.0Vの二次電源が提案されている。 Patent Document 2 proposes a battery using, as a negative electrode, a carbon material in which lithium ions are occluded in advance by a chemical method or an electrochemical method in a carbon material that can occlude and desorb lithium ions. The capacitance Q of the cell is Q = C t V, and the capacitance of the cell can be increased by increasing the withstand voltage V. Patent Document 3 proposes a secondary power supply with an upper limit voltage of 4.0 V, having a negative electrode that supports a carbon material capable of inserting and extracting lithium ions on a porous current collector that does not form an alloy with lithium.

急速充放電を可能としたまま、さらにセルエネルギーをあげるためには、さらなる高容量化が必要であり、4.0V以上の耐電圧が要求されている。また前記エネルギー貯蔵デバイスは蓄電デバイスとしての利用がメインであり、常に電力を蓄えておく必要がある。そのため4.0V以上の電圧を印加し続ける必要があり電解液の分解、それに伴うガス発生等の可能性もあり、同時に安全性も要求される。   In order to further increase the cell energy while enabling rapid charge / discharge, further increase in capacity is required, and a withstand voltage of 4.0 V or more is required. The energy storage device is mainly used as a power storage device, and it is necessary to always store power. Therefore, it is necessary to continue to apply a voltage of 4.0 V or more, there is a possibility of decomposition of the electrolytic solution, gas generation associated therewith, and safety is also required at the same time.

特開昭64−14882号公報JP-A 64-14882 特開平8−107048号公報Japanese Patent Laid-Open No. 8-1007048 特開平9−55342号公報JP-A-9-55342

本発明の目的は、高容量でかつ信頼性の高いエネルギー貯蔵デバイスを提供することである。   It is an object of the present invention to provide a high capacity and reliable energy storage device.

本発明は、活性炭を主体とする正極と、リチウムイオンを吸蔵、脱離しうる炭素質材料にあらかじめリチウムイオンを吸蔵させた材料を主体とする負極及び電解液を含むエネルギー貯蔵デバイスで該電解液がπ結合を持つ有機化合物を含有することを特徴とする。   The present invention relates to an energy storage device including a positive electrode mainly composed of activated carbon, a negative electrode mainly composed of a material in which lithium ions are previously occluded in a carbonaceous material capable of absorbing and desorbing lithium ions, and an electrolytic solution. It contains an organic compound having a π bond.

本発明によれば、電解液が正極電位で酸化する前記π結合を有する有機化合物を含有することにより、正極表面に安定な被膜を形成し長時間の4.0V以上の電圧印加に対しても、正極活物質表面での電解液の分解反応を抑制することができる。   According to the present invention, the electrolytic solution contains the organic compound having the π bond that oxidizes at the positive electrode potential, thereby forming a stable film on the positive electrode surface, and applying a voltage of 4.0 V or more for a long time. The decomposition reaction of the electrolyte solution on the surface of the positive electrode active material can be suppressed.

本発明において、電解液にπ結合を持つ有機化合物を1種以上添加するが、その具体例を述べると以下のとおりである。   In the present invention, one or more organic compounds having a π bond are added to the electrolytic solution, and specific examples thereof are as follows.

(1)非水電解液中に含有されるπ結合をもつ有機化合物が、(式1)で表される。   (1) An organic compound having a π bond contained in the non-aqueous electrolyte is represented by (Formula 1).

Figure 2007087714
Figure 2007087714

〜Rの少なくとも一個は以下の条件を満たす置換基を含む:アルキル基(二重結合を含むもの、環化したものを含んでも良い)、フェニル基、アルコキシ基(二重結合を含むもの、環化したものを含んでも良い)、フェノキシ基、カルボニル基又はハロゲン基。 At least one of R 1 to R 4 includes a substituent that satisfies the following conditions: an alkyl group (including a double bond or a cyclized group), a phenyl group, or an alkoxy group (including a double bond). A phenoxy group, a carbonyl group or a halogen group.

(2)非水電解液中に含有するπ結合をもつ有機化合物が、(式2)で表される。   (2) The organic compound having a π bond contained in the non-aqueous electrolyte is represented by (Formula 2).

Figure 2007087714
Figure 2007087714

〜Rの少なくとも一個は以下の条件を満たす置換基を含む:アルキル基(二重結合を含むもの、環化したものを含んでも良い)、フェニル基、アルコキシ基(二重結合を含むもの、環化したものを含んでも良い)、フェノキシ基、カルボニル基又はハロゲン基。 At least one of R 1 to R 6 includes a substituent that satisfies the following conditions: an alkyl group (including a double bond or a cyclized group), a phenyl group, or an alkoxy group (including a double bond). A phenoxy group, a carbonyl group or a halogen group.

(3)非水電解液中に含有されるπ結合をもつ有機化合物が、(式3)で表される。   (3) An organic compound having a π bond contained in the non-aqueous electrolyte is represented by (Formula 3).

Figure 2007087714
Figure 2007087714

〜Rは以下の条件を満たす置換基を含んでもよい:アルキル基(二重結合を含むもの、環化したものを含んでも良い)、フェニル基、アルコキシ基(二重結合を含むもの、環化したものを含んでも良い)、フェノキシ基、カルボニル基又はハロゲン基。 R 1 to R 5 may include a substituent that satisfies the following conditions: an alkyl group (including a double bond or a cyclized group), a phenyl group, an alkoxy group (including a double bond) A phenoxy group, a carbonyl group or a halogen group.

(4)非水電解液中に含有されるπ結合をもつ有機化合物が、(式4)で表される。   (4) An organic compound having a π bond contained in the non-aqueous electrolyte is represented by (Formula 4).

Figure 2007087714
Figure 2007087714

n=0〜6であり、R〜R10は以下の条件を満たす置換基を含んでもよい:アルキル基(二重結合を含むもの、環化したものを含んでも良い)、フェニル基、アルコキシ基(二重結合を含むもの、環化したものを含んでも良い)、フェノキシ基、カルボニル基又はハロゲン基。 n = 0 to 6 and R 1 to R 10 may include a substituent that satisfies the following conditions: an alkyl group (including a double bond or a cyclized group), a phenyl group, an alkoxy group A group (including a double bond or a cyclized group), a phenoxy group, a carbonyl group or a halogen group.

(5)非水電解液中に含有されるπ結合をもつ有機化合物が、(式5)で表される。   (5) An organic compound having a π bond contained in the non-aqueous electrolyte is represented by (Formula 5).

Figure 2007087714
Figure 2007087714

〜R10は以下の条件を満たす置換基を含んでもよい:アルキル基(二重結合を含むもの、環化したものを含んでも良い)、フェニル基、アルコキシ基(二重結合を含むもの、環化したものを含んでも良い)、フェノキシ基、カルボニル基又はハロゲン基。 R 1 to R 10 may include a substituent that satisfies the following conditions: an alkyl group (including a double bond or a cyclized group), a phenyl group, an alkoxy group (including a double bond) A phenoxy group, a carbonyl group or a halogen group.

(6)非水電解液中に含有されるπ結合をもつ有機化合物が、(式6)で表される。   (6) The organic compound having a π bond contained in the nonaqueous electrolytic solution is represented by (Formula 6).

Figure 2007087714
Figure 2007087714

〜R14は以下の条件を満たす置換基を含んでもよい:アルキル基(二重結合を含むもの、環化したものを含んでも良い)、フェニル基、アルコキシ基(二重結合を含むもの、環化したものを含んでも良い)、フェノキシ基、カルボニル基又はハロゲン基。 R 1 to R 14 may include a substituent that satisfies the following conditions: an alkyl group (including a double bond or a cyclized group), a phenyl group, an alkoxy group (including a double bond) A phenoxy group, a carbonyl group or a halogen group.

(7)非水電解液中に含有されるπ結合をもつ有機化合物が、(式7)で表される。   (7) An organic compound having a π bond contained in the non-aqueous electrolyte is represented by (Formula 7).

Figure 2007087714
Figure 2007087714

〜Rに以下の条件を満たす置換基を含んでもよい:アルキル基(二重結合を含むもの、環化したものを含んでも良い)、フェニル基、アルコキシ基(二重結合を含むもの、環化したものを含んでも良い)、フェノキシ基、カルボニル基又はハロゲン基。 R 1 to R 4 may include a substituent that satisfies the following conditions: an alkyl group (including a double bond or a cyclized group), a phenyl group, an alkoxy group (including a double bond) A phenoxy group, a carbonyl group or a halogen group.

(8)非水電解液中に含有されるπ結合をもつ有機化合物が、(式8)で表される。   (8) An organic compound having a π bond contained in the non-aqueous electrolyte is represented by (Formula 8).

Figure 2007087714
Figure 2007087714

〜Rは以下の条件を満たす置換基を含んでもよい:アルキル基(二重結合を含むもの、環化したものを含んでも良い)、フェニル基、アルコキシ基(二重結合を含むもの、環化したものを含んでも良い)、フェノキシ基、カルボニル基又はハロゲン基。 R 1 to R 5 may include a substituent that satisfies the following conditions: an alkyl group (including a double bond or a cyclized group), a phenyl group, an alkoxy group (including a double bond) A phenoxy group, a carbonyl group or a halogen group.

(9)非水電解液中に含有されるπ結合をもつ有機化合物が、(式9)で表される。   (9) The organic compound having a π bond contained in the nonaqueous electrolytic solution is represented by (Formula 9).

Figure 2007087714
Figure 2007087714

〜Rは以下の条件を満たす置換基を含んでもよい:アルキル基(二重結合を含むもの、環化したものを含んでも良い)、フェニル基、アルコキシ基(二重結合を含むもの、環化したものを含んでも良い)、フェノキシ基、カルボニル基又はハロゲン基。 R 1 to R 4 may include a substituent that satisfies the following conditions: an alkyl group (including a double bond or a cyclized group), a phenyl group, an alkoxy group (including a double bond) A phenoxy group, a carbonyl group or a halogen group.

π結合をもつ前記有機化合物は2種以上混合して用いることができる。また、π結合をもつ前記有機化合物は0.1〜5.0重量%の範囲で電解液中に含有することが可能であり、含有量が多すぎると電解液の導電率が低下しセル特性が悪くなり、重合電位の低い化合物に関しては、重合により導電性高分子を生成し正負極間で内部短絡を起こす可能性がある。含有量が少なすぎると作用が小さくなり効果がなくなる。そこで1.0〜2.0重量%の含有量が好ましい。   Two or more organic compounds having a π bond can be used in combination. In addition, the organic compound having a π bond can be contained in the electrolyte solution in the range of 0.1 to 5.0% by weight. If the content is too large, the conductivity of the electrolyte solution is lowered and cell characteristics are reduced. With regard to a compound having a low polymerization potential, there is a possibility that a conductive polymer is generated by polymerization and an internal short circuit is caused between the positive and negative electrodes. If the content is too small, the action becomes small and the effect is lost. Therefore, a content of 1.0 to 2.0% by weight is preferable.

負極の黒鉛系炭素材料にあらかじめリチウムイオンを吸蔵させる予備充電の方法には物理的方法、化学的方法又は電気化学的方法がある。電気化学的方法には大別し二つの方法があり電流によって制御する方法と、正負極間の短絡によって自発的になされる方法がある。前者では制御がかかる分、充電には時間がかかるため、後者の方法が好ましい。特に短絡による起電力を利用した充電は平衡反応であり、負極活物質のリチウム吸蔵量よりも過剰量のリチウム量で短絡させる場合反応はより速く進み、リチウムの吸蔵量も多くなるため、充電時間を短くするにはリチウム金属の量を増やすのが好ましい。   There are a physical method, a chemical method, and an electrochemical method as a precharge method for preliminarily storing lithium ions in the graphite-based carbon material of the negative electrode. There are roughly two electrochemical methods. There are a method of controlling by an electric current and a method of spontaneously by a short circuit between positive and negative electrodes. Since the former requires control, charging takes time, so the latter method is preferable. In particular, charging using an electromotive force due to short circuit is an equilibrium reaction, and when the short circuit is performed with an excess amount of lithium than the lithium storage amount of the negative electrode active material, the reaction proceeds faster and the amount of lithium storage increases, so the charging time In order to shorten the length, it is preferable to increase the amount of lithium metal.

短絡により負極の黒鉛系炭素材料にあらかじめリチウムイオンを吸蔵させる方法では流れる電流値をモニターし充電容量を算出し指定容量で終了させるか、充電時間で終了させる方法がある。電位差をモニターする方法もあるが短絡中の負極電位はほぼ0V(Li/Li)を示すため判定には困難を極める。短絡終了後の開回路状態でのOCVから判定は可能であるが、一度短絡を止め判定基準となるOCVを安定するだけの時間が必要なため操作的には手間がかかる。同じセル構成であるならば時間によってリチウム吸蔵量を制御する事が可能であり、短絡時間と容量の関係の検量線を作成しておくことでリチウムの吸蔵量は充電時間によって制御可能であり、この方法で負極の黒鉛系炭素材料にチウムイオンの吸蔵量を制御するのが最も好ましい。 As a method of preliminarily inserting lithium ions into the graphite-based carbon material of the negative electrode by a short circuit, there is a method of monitoring the value of the flowing current and calculating the charge capacity and ending with the specified capacity or ending with the charge time. Although there is a method of monitoring the potential difference, the negative electrode potential during short-circuiting is almost 0 V (Li / Li + ), so that determination is extremely difficult. The determination can be made from the OCV in the open circuit state after the end of the short circuit, but it takes time and effort to stop the short circuit once and stabilize the OCV as the determination reference. If it is the same cell configuration, it is possible to control the lithium storage amount by time, and by creating a calibration curve of the relationship between short circuit time and capacity, the lithium storage amount can be controlled by charging time, It is most preferable to control the amount of occlusion of thium ions in the negative electrode graphite carbon material by this method.

図1は、本発明によるエネルギー貯蔵デバイスのフロート充電試験用セルの断面図であって、1はSUS製のプレスセルであり、2が厚さ40μmのポリエチレン製セパレータ、3と4は正極の集電体である。3が圧延した厚さ20μmのアルミニウム箔で、4が電解エッチングした厚さ20μmのアルミニウム箔であり、4の上に5の活性炭合剤を塗布しプレスしたものが上に5の活性炭合剤を塗布しプレスしたものが結着されている。6と7は負極の集電体で圧延した厚さ20μmの銅箔であり、7の上に8の黒鉛合剤を塗布しプレスしたものが結着されており、5と8が2のセパレータを介して向き合って配置されている。それと背面方向に2のセパレータを介して厚さ1mmのリチウム金属箔を配置している。全てのセパレータ2に電解液を浸透させている。   FIG. 1 is a cross-sectional view of a cell for a float charging test of an energy storage device according to the present invention, wherein 1 is a press cell made of SUS, 2 is a polyethylene separator having a thickness of 40 μm, and 3 and 4 are collections of positive electrodes. It is an electric body. 3 is a rolled 20 μm thick aluminum foil, 4 is an electrolytically etched 20 μm thick aluminum foil, 5 activated carbon mixture is applied onto 4 and pressed, and 5 activated carbon mixture is placed on top. Applied and pressed are bound. 6 and 7 are 20 μm-thick copper foils rolled with a negative electrode current collector, and 8 is applied with a graphite mixture and pressed, and 5 and 8 are 2 separators. Are arranged facing each other. In addition, a lithium metal foil having a thickness of 1 mm is arranged in the back direction through two separators. The electrolyte solution is infiltrated into all the separators 2.

[比較例1]水蒸気賦活処理法で賦活された石油コークス系活性炭粉末80重量%、カーボンブラック10重量%、ポリビニリデンフルオライド10重量%からなる混合物にN−メチルピロリドンを加えて混練したものを、幅5cm、長さ15cm、厚さ20μmのエッチング加工されたアルミニウム箔に塗布し、120℃で3時間乾燥したものを電極シートとし、このシートを15Φの大きさに打ち抜いたものを正極とした。   [Comparative Example 1] A mixture of 80% by weight of petroleum coke activated carbon powder activated by a steam activation treatment method, 10% by weight of carbon black and 10% by weight of polyvinylidene fluoride and kneaded by adding N-methylpyrrolidone. , Applied to an etched aluminum foil having a width of 5 cm, a length of 15 cm, and a thickness of 20 μm, dried at 120 ° C. for 3 hours as an electrode sheet, and punched into a size of 15Φ as a positive electrode .

非晶質黒鉛98重量%、スチレン−ブタジエン共重合架橋体1重量%、カルボキシメチルセルロース1重量%を加えて混練したもの、幅13cm、長さ15cm、厚さ20μmの圧延加工された銅箔に塗布し、120℃で3時間乾燥したものを電極シートとし、このシートを15Φの大きさに打ち抜いたものを負極とした。   A mixture of 98% by weight of amorphous graphite, 1% by weight of a crosslinked styrene-butadiene copolymer, and 1% by weight of carboxymethylcellulose, kneaded, applied to a rolled copper foil having a width of 13 cm, a length of 15 cm, and a thickness of 20 μm. And what was dried at 120 degreeC for 3 hours was used as the electrode sheet, and what punched this sheet | seat to the magnitude | size of 15 (PHI) was used as the negative electrode.

エチレンカーボネートとエチルメチルカーボネートを1:3の割合で混合した溶媒に1.5mol/LのLiPFを溶解させた溶液を電解液とした。 A solution in which 1.5 mol / L LiPF 6 was dissolved in a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a ratio of 1: 3 was used as an electrolytic solution.

厚さ40μm、空孔率45%のポリエチレン製のシートをセパレータとした。   A separator made of a polyethylene sheet having a thickness of 40 μm and a porosity of 45% was used.

[実施例1]
比較例1において電解液にシクロヘキシルベンゼン1重量%を加えた以外、比較例1に同じである。
[Example 1]
The same as Comparative Example 1 except that 1% by weight of cyclohexylbenzene was added to the electrolytic solution in Comparative Example 1.

[実施例2]
比較例1において電解液に4−メチルアニソール1重量%を加えた以外、比較例1に同じである。
[Example 2]
The same as Comparative Example 1 except that 1% by weight of 4-methylanisole was added to the electrolytic solution in Comparative Example 1.

[実施例3]
比較例1において電解液にビフェニル1重量%を加えた以外、比較例1に同じである。
[Example 3]
The same as Comparative Example 1 except that 1% by weight of biphenyl was added to the electrolytic solution in Comparative Example 1.

[実施例4]
比較例1において電解液にo−テルフェニル1重量%を加えた以外、比較例1に同じである。
[Example 4]
The same as Comparative Example 1 except that 1% by weight of o-terphenyl was added to the electrolytic solution in Comparative Example 1.

[実施例5]
比較例1において電解液に3−クロロチオフェン1重量%を加えた以外、比較例1に同じである。
[Example 5]
The same as Comparative Example 1 except that 1% by weight of 3-chlorothiophene was added to the electrolytic solution in Comparative Example 1.

[実施例6]
比較例1において電解液にN−メチルピロール1重量%を加えた以外、比較例1に同じである。
[Example 6]
The same as Comparative Example 1 except that 1% by weight of N-methylpyrrole was added to the electrolytic solution in Comparative Example 1.

[実施例7]
比較例1において電解液にフラン1重量%を加えた以外、比較例1に同じである。
[Example 7]
The same as Comparative Example 1 except that 1% by weight of furan was added to the electrolyte in Comparative Example 1.

比較例1及び実施例1〜7のセルについてセル内の容量を安定化させるために4CレートでLi/Liで2Vから4.2Vまで充電した後、4Cレートで2Vまで放電する充放電サイクルを4サイクル行い4サイクル後の放電容量を初期容量とした結果を表1に示す。 In order to stabilize the capacity in the cells of Comparative Example 1 and Examples 1 to 7, a charge / discharge cycle in which Li / Li + is charged from 2 V to 4.2 V at 4 C rate and then discharged to 2 V at 4 C rate. Table 1 shows the results obtained by performing 4 cycles and setting the discharge capacity after 4 cycles as the initial capacity.

次に、比較例1及び実施例1〜7のセルについて4CレートでLi/Liで2Vから4.2Vまで充電した後、4.2Vの電圧印加条件で24時間CV充電を行い、4Cレートで2Vまで放電する充放電サイクルを20サイクル行い、20サイクル(約500時間)後の放電容量を試験後容量とし、初期容量に対する試験後容量の容量維持率を維持率とした結果を表1に示す。 Next, the cells of Comparative Example 1 and Examples 1 to 7 were charged from 2V to 4.2V with Li / Li + at a 4C rate, and then CV charged for 24 hours under a voltage application condition of 4.2V. Table 1 shows the results of performing 20 charge / discharge cycles to discharge to 2 V, setting the discharge capacity after 20 cycles (about 500 hours) as the post-test capacity, and the capacity maintenance ratio of the post-test capacity relative to the initial capacity as the maintenance ratio. Show.

Figure 2007087714
Figure 2007087714

表1に示すように実施例1〜7のセルは20サイクル後の放電容量において電解液にπ結合をもつ有機化合物の含有していない比較例1のセルに比べて容量の維持率は向上している。このことから正極電位で酸化するπ結合をもつ有機化合物を電解液に含有させることで、4.2Vの印加に対しても長時間耐え、容量減少率が少なくなることが確認された。   As shown in Table 1, the capacity retention rate of the cells of Examples 1 to 7 was improved in the discharge capacity after 20 cycles as compared with the cell of Comparative Example 1 which did not contain an organic compound having a π bond in the electrolyte. ing. From this, it was confirmed that by containing an organic compound having a π bond that oxidizes at the positive electrode potential in the electrolytic solution, it can withstand 4.2 V for a long time and the capacity reduction rate is reduced.

本発明は、瞬停時等の電力供給に際し高容量のエネルギーを提供できるエネルギー蓄電デバイスに適用できる。   INDUSTRIAL APPLICABILITY The present invention can be applied to an energy storage device that can provide high-capacity energy when supplying power during a momentary power failure or the like.

本発明によるエネルギー貯蔵デバイスのフロート充電試験用セルの断面図。Sectional drawing of the cell for the float charge test of the energy storage device by this invention.

符号の説明Explanation of symbols

1…プレスセル、2…セパレータ、3…正極集電箔、4…正極集電体、5…正極活性炭合剤、6…負極集電箔、7…負極集電体、8…負極炭素質材料合剤、9…リチウム金属箔。   DESCRIPTION OF SYMBOLS 1 ... Press cell, 2 ... Separator, 3 ... Positive electrode collector foil, 4 ... Positive electrode collector, 5 ... Positive electrode activated carbon mixture, 6 ... Negative electrode collector foil, 7 ... Negative electrode collector, 8 ... Negative electrode carbonaceous material Mixture, 9 ... lithium metal foil.

Claims (15)

活性炭を主体とする正極と、リチウムイオンを吸蔵、脱離しうる炭素質材料にあらかじめリチウムイオンを吸蔵させた材料を主体とする負極及び非水電解液を含み、該非水電解液がπ結合をもつ有機化合物を含有することを特徴とするエネルギー貯蔵デバイス。   A positive electrode mainly composed of activated carbon; a negative electrode mainly composed of a material in which lithium ions are previously occluded in a carbonaceous material capable of occluding and desorbing lithium ions; and a non-aqueous electrolyte solution, the non-aqueous electrolyte solution having a π bond An energy storage device comprising an organic compound. 非水電解液中に含有されるπ結合をもつ有機化合物が、(式1)で表される請求項1記載のエネルギー貯蔵デバイス。
Figure 2007087714
〜Rの少なくとも一個は以下の条件を満たす置換基を含む:アルキル基(二重結合を含むもの、環化したものを含んでも良い)、フェニル基、アルコキシ基(二重結合を含むもの、環化したものを含んでも良い)、フェノキシ基、カルボニル基又はハロゲン基。
The energy storage device according to claim 1, wherein the organic compound having a π bond contained in the non-aqueous electrolyte is represented by (Formula 1).
Figure 2007087714
At least one of R 1 to R 4 includes a substituent that satisfies the following conditions: an alkyl group (including a double bond or a cyclized group), a phenyl group, or an alkoxy group (including a double bond). A phenoxy group, a carbonyl group or a halogen group.
非水電解液中に含有されるπ結合をもつ有機化合物が、(式2)で表される請求項1記載のエネルギー貯蔵デバイス。
Figure 2007087714
〜Rの少なくとも一個は以下の条件を満たす置換基を含む:アルキル基(二重結合を含むもの、環化したものを含んでも良い)、フェニル基、アルコキシ基(二重結合を含むもの、環化したものを含んでも良い)、フェノキシ基、カルボニル基又はハロゲン基。
The energy storage device according to claim 1, wherein the organic compound having a π bond contained in the non-aqueous electrolyte is represented by (Formula 2).
Figure 2007087714
At least one of R 1 to R 6 includes a substituent that satisfies the following conditions: an alkyl group (including a double bond or a cyclized group), a phenyl group, or an alkoxy group (including a double bond). A phenoxy group, a carbonyl group or a halogen group.
非水電解液中に含有されるπ結合をもつ有機化合物が、(式3)で表される請求項1記載のエネルギー貯蔵デバイス。
Figure 2007087714
〜Rに以下の条件を満たす置換基を含んでもよい:アルキル基(二重結合を含むもの、環化したものを含んでも良い)、フェニル基、アルコキシ基(二重結合を含むもの、環化したものを含んでも良い)、フェノキシ基、カルボニル基又はハロゲン基。
The energy storage device according to claim 1, wherein the organic compound having a π bond contained in the non-aqueous electrolyte is represented by (Formula 3).
Figure 2007087714
R 1 to R 5 may include a substituent that satisfies the following conditions: an alkyl group (including a double bond or a cyclized group), a phenyl group, an alkoxy group (including a double bond) A phenoxy group, a carbonyl group or a halogen group.
非水電解液中に含有されるπ結合をもつ有機化合物が、(式4)で表される請求項1記載のエネルギー貯蔵デバイス。
Figure 2007087714
n=0〜6であり、R〜R10は以下の条件を満たす置換基を含んでもよい:アルキル基(二重結合を含むもの、環化したものを含んでも良い)、フェニル基、アルコキシ基(二重結合を含むもの、環化したものを含んでも良い)、フェノキシ基、カルボニル基又はハロゲン基。
The energy storage device according to claim 1, wherein the organic compound having a π bond contained in the non-aqueous electrolyte is represented by (Formula 4).
Figure 2007087714
n = 0 to 6 and R 1 to R 10 may include a substituent that satisfies the following conditions: an alkyl group (including a double bond or a cyclized group), a phenyl group, an alkoxy group A group (including a double bond or a cyclized group), a phenoxy group, a carbonyl group or a halogen group.
非水電解液中に含有されるπ結合をもつ有機化合物が、(式5)で表される請求項1記載のエネルギー貯蔵デバイス。
Figure 2007087714
〜R10は以下の条件を満たす置換基を含んでもよい:アルキル基(二重結合を含むもの、環化したものを含んでも良い)、フェニル基、アルコキシ基(二重結合を含むもの、環化したものを含んでも良い)、フェノキシ基、カルボニル基又はハロゲン基。
The energy storage device according to claim 1, wherein the organic compound having a π bond contained in the non-aqueous electrolyte is represented by (Formula 5).
Figure 2007087714
R 1 to R 10 may include a substituent that satisfies the following conditions: an alkyl group (including a double bond or a cyclized group), a phenyl group, an alkoxy group (including a double bond) A phenoxy group, a carbonyl group or a halogen group.
非水電解液中に含有されるπ結合をもつ有機化合物が、(式6)で表される請求項1記載のエネルギー貯蔵デバイス。
Figure 2007087714
〜R14は以下の条件を満たす置換基を含んでもよい:アルキル基(二重結合を含むもの、環化したものを含んでも良い)、フェニル基、アルコキシ基(二重結合を含むもの、環化したものを含んでも良い)、フェノキシ基、カルボニル基又はハロゲン基。
The energy storage device according to claim 1, wherein the organic compound having a π bond contained in the non-aqueous electrolyte is represented by (Formula 6).
Figure 2007087714
R 1 to R 14 may include a substituent that satisfies the following conditions: an alkyl group (including a double bond or a cyclized group), a phenyl group, an alkoxy group (including a double bond) A phenoxy group, a carbonyl group or a halogen group.
非水電解液中に含有されるπ結合をもつ有機化合物が、(式7)で表される請求項1記載のエネルギー貯蔵デバイス。
Figure 2007087714
〜Rは以下の条件を満たす置換基を含んでもよい:アルキル基(二重結合を含むもの、環化したものを含んでも良い)、フェニル基、アルコキシ基(二重結合を含むもの、環化したものを含んでも良い)、フェノキシ基、カルボニル基又はハロゲン基。
The energy storage device according to claim 1, wherein the organic compound having a π bond contained in the nonaqueous electrolytic solution is represented by (Formula 7).
Figure 2007087714
R 1 to R 4 may include a substituent that satisfies the following conditions: an alkyl group (including a double bond or a cyclized group), a phenyl group, an alkoxy group (including a double bond) A phenoxy group, a carbonyl group or a halogen group.
非水電解液中に含有されるπ結合をもつ有機化合物が、(式8)で表される請求項1記載のエネルギー貯蔵デバイス。
Figure 2007087714
〜Rは以下の条件を満たす置換基を含んでもよい:アルキル基(二重結合を含むもの、環化したものを含んでも良い)、フェニル基、アルコキシ基(二重結合を含むもの、環化したものを含んでも良い)、フェノキシ基、カルボニル基又はハロゲン基。
The energy storage device according to claim 1, wherein the organic compound having a π bond contained in the non-aqueous electrolyte is represented by (Formula 8).
Figure 2007087714
R 1 to R 5 may include a substituent that satisfies the following conditions: an alkyl group (including a double bond or a cyclized group), a phenyl group, an alkoxy group (including a double bond) A phenoxy group, a carbonyl group or a halogen group.
非水電解液中に含有されるπ結合をもつ有機化合物が、(式9)で表される請求項1記載のエネルギー貯蔵デバイス。
Figure 2007087714
〜Rは以下の条件を満たす置換基を含んでもよい:アルキル基(二重結合を含むもの、環化したものを含んでも良い)、フェニル基、アルコキシ基(二重結合を含むもの、環化したものを含んでも良い)、フェノキシ基、カルボニル基又はハロゲン基。
The energy storage device according to claim 1, wherein the organic compound having a π bond contained in the non-aqueous electrolyte is represented by (formula 9).
Figure 2007087714
R 1 to R 4 may include a substituent that satisfies the following conditions: an alkyl group (including a double bond or a cyclized group), a phenyl group, an alkoxy group (including a double bond) A phenoxy group, a carbonyl group or a halogen group.
前記π結合をもつ有機化合物が請求項2〜10のいずれかに記載の有機化合物からなる群から選ばれる2種以上を含むエネルギー貯蔵デバイス。   The energy storage device containing 2 or more types as which the organic compound which has the said (pi) bond is chosen from the group which consists of the organic compound in any one of Claims 2-10. 非水電解液の溶質がLiPF、LiBF、LiClO、LiCFCO、LiN(SOCF、LiN(SO、LiCFSO、LiC(SOCF、LiAsF及びLiSbFからなる群から選ばれる1種以上を含み、溶質濃度が0.4〜2.0mol/Lである請求項1〜11のいずれかに記載のエネルギー貯蔵デバイス。 The solute of the non-aqueous electrolyte is LiPF 6 , LiBF 4 , LiClO 4 , LiCF 3 CO 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiCF 3 SO 3 , LiC (SO 2 CF 3) 3, LiAsF 6 and LiSbF include one or more selected from the group consisting of 6, the energy storage device according to any one of claims 1 to 11 solute concentration is 0.4~2.0mol / L . 非水電解液の溶媒がエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、メチルアセテート、エチルアセテート、テトラヒドロフラン、1,2−ジオキサン、1,3−ジオキサン、1,4−ジオキサン、1,3−ジオキソラン及びγ−ブチロラクトンからなる群から選ばれる1種以上を含む混合溶媒である請求項1〜12のいずれかに記載のエネルギー貯蔵デバイス。   The solvent of the non-aqueous electrolyte is ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl acetate, ethyl acetate, tetrahydrofuran, 1,2-dioxane, 1,3-dioxane, 1,4- The energy storage device according to any one of claims 1 to 12, which is a mixed solvent containing at least one selected from the group consisting of dioxane, 1,3-dioxolane and γ-butyrolactone. 正極が活性炭及び気相成長炭素から選ばれる1種以上を含む請求項1〜13のいずれかに記載のエネルギー貯蔵デバイス。   The energy storage device according to any one of claims 1 to 13, wherein the positive electrode contains one or more selected from activated carbon and vapor grown carbon. 負極の炭素質材料が天然黒鉛、人造黒鉛、黒鉛化メソカーボン小球体、黒鉛ウィスカ、黒鉛化炭素繊維、気相成長炭素、石油コークス、石炭コークス及びピッチコークスを熱処理した易黒鉛化成炭素材料、フルフリルアルコール樹脂の焼成品、ノボラック樹脂の焼成品及びフェノール樹脂の焼成品から選ばれる1種以上の材料である請求項1〜14のいずれかに記載のエネルギー貯蔵デバイス。   Carbonaceous material for negative electrode is natural graphite, artificial graphite, graphitized mesocarbon spherule, graphite whisker, graphitized carbon fiber, vapor-grown carbon, petroleum coke, coal coke and pitch coke, graphitizable chemical conversion carbon material, full The energy storage device according to any one of claims 1 to 14, which is at least one material selected from a fired product of a furyl alcohol resin, a fired product of a novolac resin, and a fired product of a phenol resin.
JP2005273843A 2005-09-21 2005-09-21 Energy storage device Abandoned JP2007087714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005273843A JP2007087714A (en) 2005-09-21 2005-09-21 Energy storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005273843A JP2007087714A (en) 2005-09-21 2005-09-21 Energy storage device

Publications (1)

Publication Number Publication Date
JP2007087714A true JP2007087714A (en) 2007-04-05

Family

ID=37974490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005273843A Abandoned JP2007087714A (en) 2005-09-21 2005-09-21 Energy storage device

Country Status (1)

Country Link
JP (1) JP2007087714A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101154753B (en) * 2006-09-28 2011-03-16 三洋电机株式会社 Non-aqueous electrolyte secondary cell
US8628895B2 (en) 2008-12-16 2014-01-14 Samsung Electronics Co., Ltd. Hyper-branched polymer, electrode including the polymer, electrolyte membrane including the polymer, and fuel cell including the electrode and/or the electrolyte membrane
JP2019091792A (en) * 2017-11-14 2019-06-13 旭化成株式会社 Nonaqueous lithium-type power storage element

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107048A (en) * 1994-08-12 1996-04-23 Asahi Glass Co Ltd Electric double-layer capacitor
JPH10321258A (en) * 1997-05-16 1998-12-04 Nec Molienerg Canada Ltd Nonaqueous rechargeable lithium battery
JP2001015158A (en) * 1999-06-30 2001-01-19 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, charge control system for nonaqueous electrolyte secondary battery, and apparatus using the charge control system
JP2002260725A (en) * 2001-03-06 2002-09-13 Ube Ind Ltd Nonaqueous electrolyte solution and lithium secondary battery using same
JP2002280065A (en) * 2001-03-19 2002-09-27 Sony Corp Electrolyte and battery
JP2002298849A (en) * 2001-04-02 2002-10-11 Asahi Glass Co Ltd Secondary electric power source
JP2003022838A (en) * 2001-07-09 2003-01-24 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2004063114A (en) * 2002-07-25 2004-02-26 Mitsubishi Chemicals Corp Electrolytic solution and secondary battery
JP2004103372A (en) * 2002-09-09 2004-04-02 Central Glass Co Ltd Nonaqueous electrolytic solution for electrochemical device, and electrochemical device using the same
JP2004214139A (en) * 2003-01-08 2004-07-29 Sony Corp Electrolyte and battery using the same
JP2005093238A (en) * 2003-09-17 2005-04-07 Sony Corp Electrolyte and battery using the same
JP2005135906A (en) * 2003-10-10 2005-05-26 Mitsui Chemicals Inc Nonaqueous electrolytic solution and lithium secondary battery using it
JP2006286924A (en) * 2005-03-31 2006-10-19 Fuji Heavy Ind Ltd Lithium ion capacitor

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107048A (en) * 1994-08-12 1996-04-23 Asahi Glass Co Ltd Electric double-layer capacitor
JPH10321258A (en) * 1997-05-16 1998-12-04 Nec Molienerg Canada Ltd Nonaqueous rechargeable lithium battery
JP2001015158A (en) * 1999-06-30 2001-01-19 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, charge control system for nonaqueous electrolyte secondary battery, and apparatus using the charge control system
JP2002260725A (en) * 2001-03-06 2002-09-13 Ube Ind Ltd Nonaqueous electrolyte solution and lithium secondary battery using same
JP2002280065A (en) * 2001-03-19 2002-09-27 Sony Corp Electrolyte and battery
JP2002298849A (en) * 2001-04-02 2002-10-11 Asahi Glass Co Ltd Secondary electric power source
JP2003022838A (en) * 2001-07-09 2003-01-24 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2004063114A (en) * 2002-07-25 2004-02-26 Mitsubishi Chemicals Corp Electrolytic solution and secondary battery
JP2004103372A (en) * 2002-09-09 2004-04-02 Central Glass Co Ltd Nonaqueous electrolytic solution for electrochemical device, and electrochemical device using the same
JP2004214139A (en) * 2003-01-08 2004-07-29 Sony Corp Electrolyte and battery using the same
JP2005093238A (en) * 2003-09-17 2005-04-07 Sony Corp Electrolyte and battery using the same
JP2005135906A (en) * 2003-10-10 2005-05-26 Mitsui Chemicals Inc Nonaqueous electrolytic solution and lithium secondary battery using it
JP2006286924A (en) * 2005-03-31 2006-10-19 Fuji Heavy Ind Ltd Lithium ion capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101154753B (en) * 2006-09-28 2011-03-16 三洋电机株式会社 Non-aqueous electrolyte secondary cell
US8628895B2 (en) 2008-12-16 2014-01-14 Samsung Electronics Co., Ltd. Hyper-branched polymer, electrode including the polymer, electrolyte membrane including the polymer, and fuel cell including the electrode and/or the electrolyte membrane
JP2019091792A (en) * 2017-11-14 2019-06-13 旭化成株式会社 Nonaqueous lithium-type power storage element

Similar Documents

Publication Publication Date Title
JP2008294314A (en) Capacitor
US20090311609A1 (en) Nonaqueous electrolyte secondary battery and nonaqueous electrolyte solution
JP6301657B2 (en) Recycling method of lithium ion secondary battery
JP2006286924A (en) Lithium ion capacitor
JP2005353652A (en) Secondary power supply
JP5042754B2 (en) Electrochemical capacitor
JP2000106218A (en) Secondary power source
JP2009176786A (en) Hybrid capacitor
JP2008034304A (en) Energy storing device
JP5205863B2 (en) Non-aqueous electrolyte secondary battery
JPH1131637A (en) Electric double-layer capacitor, carbon material for it and electrode
JP2007087714A (en) Energy storage device
JPH1154383A (en) Electric double layer capacitor
JP2000090971A (en) Secondary power source
JP2008283161A (en) Electrochemical capacitor and electrolyte therefor
JPH1154384A (en) Electric double layer capacitor
JP2000036325A (en) Secondary power supply
JP2000306609A (en) Secondary power supply
JP2007294539A (en) Lithium ion hybrid capacitor
JP4863001B2 (en) Electric storage device and manufacturing method thereof
JP2012028366A (en) Power storage device
JP2012064820A (en) Manufacturing method for lithium ion capacitor
KR100537366B1 (en) Hybrid capacitor
JP2009130066A (en) Lithium ion capacitor
JP2007329033A (en) Energy storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20101012