JP2019089667A - ガラス基板 - Google Patents

ガラス基板 Download PDF

Info

Publication number
JP2019089667A
JP2019089667A JP2017218075A JP2017218075A JP2019089667A JP 2019089667 A JP2019089667 A JP 2019089667A JP 2017218075 A JP2017218075 A JP 2017218075A JP 2017218075 A JP2017218075 A JP 2017218075A JP 2019089667 A JP2019089667 A JP 2019089667A
Authority
JP
Japan
Prior art keywords
glass substrate
surface roughness
main surface
area
roughened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017218075A
Other languages
English (en)
Other versions
JP7045647B2 (ja
Inventor
隼人 奥
Hayato OKU
隼人 奥
好晴 山本
Yoshiharu Yamamoto
好晴 山本
弘樹 中塚
Hiroki Nakatsuka
弘樹 中塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2017218075A priority Critical patent/JP7045647B2/ja
Priority to CN201880073224.1A priority patent/CN111356663A/zh
Priority to PCT/JP2018/038676 priority patent/WO2019093087A1/ja
Priority to KR1020207014657A priority patent/KR102609772B1/ko
Priority to TW107137819A priority patent/TW201922661A/zh
Publication of JP2019089667A publication Critical patent/JP2019089667A/ja
Application granted granted Critical
Publication of JP7045647B2 publication Critical patent/JP7045647B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/34Masking

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Surface Treatment Of Glass (AREA)
  • Liquid Crystal (AREA)

Abstract

【課題】実際の剥離動作に適した表面粗さ分布を有するガラス基板を低コストに得る。【解決手段】本発明に係るガラス基板1は、第一の主表面2と、第二の主表面3とを有する。第一の主表面2の表面粗さRaが0.2nm以下で、第二の主表面3の中央領域4における表面粗さRaが0.3nm以上でかつ1.0nm以下で、第二の主表面3の外周領域5に、中央領域4における表面粗さRaよりも0.2nm以上大きな表面粗さRaを示す粗面化領域Aが設けられている。【選択図】図2

Description

本発明は、ガラス基板に関する。
周知のように、近年の画像表示装置については、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、フィールドエミッションディスプレイ(FED)、有機ELディスプレイ(OLED)などに代表されるフラットパネルディスプレイ(以下、単にFPDという。)が主流となっている。これらFPDについては軽量化が推進されていることから、FPDに使用されるガラス基板についても薄板化に対する要求が高まっている。
上述したガラス基板は、例えば各種ダウンドロー法に代表される板状ガラスの成形方法により帯状に成形した板状ガラス(帯状板ガラス)を長手方向で所定の寸法に切断し、切断した板状ガラスの幅方向(帯状板ガラスの主表面に平行で、かつ長手方向に直交する向きをいう。以下、同じ。)両端部分をさらに切断した後、必要に応じて、各切断面に研磨加工等を施すことにより得られる。
ところで、この種のガラス基板を用いてFPDを製造するに際しては、その製造過程における静電気の帯電が問題となることがある。すなわち、絶縁体であるガラスは帯電し易いため、例えば載置台にガラス基板を載置して所定の加工を施す際、ガラス基板と載置台との接触及び剥離によりガラス基板が帯電することがある(これを、剥離帯電と呼ぶことがある。)。帯電したガラス基板に導電性の物体が近づくと放電が生じ、この放電によって、ガラス基板の主表面上に形成された各種素子や電子回路を構成する電極線の破損、あるいはガラス基板自体の破損を招くおそれがある(これらを、絶縁破壊又は静電破壊と呼ぶことがある。)。また、帯電したガラス基板は載置台に張り付き易く、これを無理やり引き剥がすことでガラス基板の破損を招くおそれもある。これらは当然に表示不良の原因となるため、極力回避すべき事象である。
上記事象を回避するための手段として、例えばガラス基板の裏面(載置台の載置面と接触する側の主表面)に所定のガスを供給して裏面に表面処理を施すことにより、裏面を粗面化する方法が考えられる(例えば、特許文献1を参照)。ガラス基板と載置面との接触面積が大きいほど剥離した際の帯電量が増大する傾向にあることから、載置面と接触するガラス基板の裏面を粗面化することで、ガラス基板と載置面との接触面積を減少させて、剥離時の帯電抑制を図っている。また、ガラス基板の裏面が平滑であるほど載置面の如き平滑面に張り付き易い点に鑑み、ガラス基板と載置面との接触面積を減少させることで、ガラス基板を載置面に張り付き難くして、剥離時のガラス基板の破損防止を図っている。
特開2014−80331号公報
上述した粗面化は、通常、ガラス基板における一方の主表面の全域にわたって均一になされる。しかしながら、粗面化の程度が主表面全域にわたって均一な状態では、実際のガラス基板の取扱い性を考慮した場合、必ずしも適切でない場合があることがわかってきた。すなわち、実際の剥離工程では、載置台の複数箇所に設置されたピンを上昇させることにより、ガラス基板を載置台から剥離させる。その際、ガラス基板はその端部から剥がれていくことになる。このような剥離動作を考慮した場合、表面粗さの分布が均一な状態だと、粗面化の効果が十分に得られない可能性がある。言い換えると、実際の剥離動作に適した表面粗さ分布が存在する可能性がある。また、単に剥がし易さだけを考慮するのであれば、裏面の粗面化度合い(表面粗さ)を全体的に高めればよいが、そうすると、必要以上に粗面化処理に時間をかけることになるため、生産性の面、ひいてはコスト面で好ましいとはいえない。
以上の事情に鑑み、本明細書では、実際の剥離動作に適した主表面の表面粗さ分布を有するガラス基板を低コストに得ることを、解決すべき技術課題とする。
前記課題の解決は、本発明に係るガラス基板により達成される。すなわち、このガラス基板は、第一の主表面と、第二の主表面とを有するガラス基板において、第一の主表面の表面粗さRaが0.2nm以下で、第二の主表面の中央領域における表面粗さRaが0.3nm以上でかつ1.0nm以下で、第二の主表面の外周領域に、中央領域における表面粗さRaよりも0.2nm以上大きな表面粗さRaを示す粗面化領域が設けられている点をもって特徴付けられる。なお、本明細書でいう「中央領域」とは、ガラス基板の第二の主表面の中央(重心)に位置し、第二の主表面の輪郭を縮尺0.6で縮小した形状を境界とする領域を意味する。また、「外周領域」とは、ガラス基板の第二の主表面の外周に位置し、第二の主表面のうち上述の中央領域を除いた残りの領域を意味する。また、中央領域における表面粗さRaは、中央領域の中央位置と、外周領域と中央領域との境界上の位置(本明細書では図1に示すP1〜P8の8ヶ所)とでそれぞれ測定した算術平均粗さの平均値とし、外周領域における表面粗さRaは、ガラス基板の第二の主表面を画成する各辺部を中央領域側に10mm移動させて形成される形状上の位置(本明細書では図1に示すP9〜P16の8ヶ所)でそれぞれ測定するものとする。「粗面化領域が設けられている」とは、外周領域の測定位置の何れかが、中央領域の表面粗さRaよりも0.2nm以上大きな表面粗さRaを示すことを意味する。
このように、本発明では、ガラス基板の一方の主表面(第一の主表面)において、その表面粗さRaを、各種素子や電極線、電子回路等を高精度に形成可能な程度の大きさ(0.2nm以下)としつつ、他方の主表面(第二の主表面)において、第二の主表面の中央領域における表面粗さRaを0.3nm以上でかつ1.0nm以下とし、かつ第二の主表面の外周領域に、中央領域における表面粗さRaよりも0.2nm以上大きな表面粗さRaを示す粗面化領域を設けるようにした。これにより、外周領域に位置する粗面化領域が剥離の起点となり、剥離を円滑に開始することができる。よって、ガラス基板の割れを低減でき、安全にガラス基板を剥がすことができる。また、ガラス基板が載置台に密着することによってガラス基板が載置台から剥離しない問題を低減できる。さらに、外周領域に含まれる一つ以上の粗面化領域における表面粗さRaについてのみ、所定の大きさ以上の値(中央領域の表面粗さRaより0.2nm以上大きい値)を示すようなガラス基板であればよいため、粗面化のための処理を最小限の領域及び量に抑えることができる。これにより粗面化処理を効率よく低コストに実施することができる。
また、本発明に係るガラス基板においては、粗面化領域が、第二の主表面が有する複数の辺部のうちいずれか一つの辺部に沿って延び、かつ外周領域の表面粗さRaが上記一つの辺部から遠ざかるにつれて減少していてもよい。なお、「粗面化領域が辺部に沿って延びる」とは、ある辺部からの距離が10mmである測定位置の表面粗さRaが、いずれも、中央領域の表面粗さRaよりも0.2nm以上大きいことを意味する。
このように、粗面化領域がいずれかの辺部に沿って延びる場合、外周領域の表面粗さRaが上記辺部から遠ざかるにつれて減少するように表面粗さ分布を設けることで、ガラス基板が剥がれ易い方向を意図的に作り出すことができる。従って、起点となる粗面化領域からガラス基板の剥離を円滑に進展させて、ガラス基板を容易にかつ安全に剥がすことが可能となる。
また、本発明に係るガラス基板においては、粗面化領域が、第二の主表面が有する複数の角部のうち少なくとも一つの角部に設けられていてもよい。なお、「粗面化領域が角部に設けられている」とは、ガラス基板の第二の主表面を画成する各辺部を中央領域側に10mm移動させて形成される形状において、頂点に位置する測定位置の表面粗さRaが、中央領域の表面粗さRaよりも0.2nm以上大きいことを意味する。
このように、粗面化領域を、第二の主表面の四つの角部の少なくとも一つに設けることにより、当該角部が剥離の起点となるので、ガラス基板の剥離を円滑に開始させることができる。
また、この場合、本発明に係るガラス基板においては、粗面化領域が、複数の角部全てに設けられていてもよい。
このように、粗面化領域を、複数の角部全てに設けることによって、全ての角部が剥離の起点となるので、ガラス基板の剥離を円滑に開始させることができる。
以上に述べたように、本発明によれば、実際の剥離動作に適した裏面の表面粗さ分布を有するガラス基板を低コストに得ることが可能となる。
本発明の第一実施形態に係るガラス基板の平面図である。 図1に示すガラス基板の第二の主表面における表面粗さ分布を模式的に描いた図である。 図1に示すガラス基板の製造方法の一例を説明するための図であって、ガラス基板の第二の主表面に表面処理を施す工程の概略正面図である。 本発明の第二実施形態に係るガラス基板の第二の主表面における表面粗さ分布を模式的に描いた図である。 図4に示すガラス基板の製造方法の一例を説明するための図であって、ガラス基板の第二の主表面に表面処理を施す工程の搬送方向に直交する向きの概略側面図である。 本発明の第三実施形態に係るガラス基板の第二の主表面における表面粗さ分布を模式的に描いた図である。 図6に示すガラス基板の製造方法の一例を説明するためのフローチャートである。 本発明の第四実施形態に係るガラス基板の第二の主表面における表面粗さ分布を模式的に描いた図である。 図8に示すガラス基板の製造方法の一例を説明するためのフローチャートである。
≪本発明の第一実施形態≫
以下、本発明の第一実施形態を、図1〜図3を参照して説明する。
本実施形態に係るガラス基板1は、図1に示すように矩形状をなすもので、例えばケイ酸塩ガラス、シリカガラスなどで形成され、好ましくはホウ珪酸ガラスで形成され、より好ましくは無アルカリガラスで形成される。この場合、ガラス基板1のガラス組成の一例として、質量%で、SiO2:50〜70%、Al23:12〜25%、B23:0〜12%、MgO:0〜8%、CaO:0〜15%、SrO:0〜12%、BaO:0〜15%含有するものを挙げることができる。
なお、ここでいう無アルカリガラスとは、アルカリ成分(アルカリ金属酸化物)が実質的に含まれていないガラスを指し、具体的には、アルカリ成分が3000ppm以下のガラスを指す。経年劣化を少しでも防止又は軽減する観点からは、アルカリ成分が1000ppm以下のガラスが好ましく、500ppm以下のガラスがより好ましく、300ppm以下のガラスがさらに好ましい。
ガラス基板1の厚み寸法は、例えば700μm以下に設定され、好ましくは600μm以下に設定され、より好ましくは500μm以下に設定され、さらに好ましくは400μm以下に設定される。厚み寸法が小さいほど、剥離工程でガラス基板1の破損を生じ易いからであり、故に、厚み寸法が小さいほど、本発明による効果を有効に享受し得るからである。なお、厚み寸法の下限については特に設けられていないが、成形後の取り扱い性(例えば剥離時の取り扱い性など)などを考慮すると、1μm以上、好ましくは5μm以上に設定されるのがよい。
ガラス基板1の第一の主表面2の面積、すなわち第二の主表面3の面積(ともに図2を参照)は、例えば0.09m2以上に設定され、好ましくは0.2m2以上に設定され、より好ましくは0.5m2以上に設定され、さらに好ましくは1.0m2以上に設定される。第二の主表面3の面積が大きいほど、剥離帯電を引き起こし易く、またその際の帯電量も多くなる傾向にあるためである。故に、第二の主表面3の面積が大きいほど、本発明による効果を有効に享受し得る。なお、面積の上限については特に設けられていないが、成形後の取り扱い性、特に表面処理時の取り扱い性などを考慮すると、第二の主表面3の面積は、例えば10m2以下に設定され、好ましくは6.5m2以下に設定される。
次に、ガラス基板1の表面性状、特に表面粗さについて述べる。
ガラス基板1の第一の主表面2における表面粗さRaは、0.2nm以下である。なお、ここでいう表面粗さRaは、JIS R 1683:2014に準拠した算術平均粗さであり、原子間力顕微鏡により測定、評価される(以下、本明細書において同じ。)。
図2は、ガラス基板1の第二の主表面3における表面粗さRaの分布の一例を示している。図2中、棒状グラフの高さは表面粗さRaの大きさ、棒状グラフの上方又は側方に記載された括弧内の数字又は記号は図1に示すガラス基板1の第二の主表面3上の位置(図1を参照)をそれぞれ示している。図2に示すように、第二の主表面3の表面粗さRaは、中央領域4と外周領域5とで相違している。具体的には、図2に示すように、第二の主表面3の中央領域4における表面粗さRaが0.3nm以上でかつ1.0nm以下であるのに対し、第二の主表面3の外周領域5には、中央領域4の表面粗さRaよりも0.2nm以上大きな表面粗さRaを示す粗面化領域Aが設けられている。
ここで、中央領域4とは、図1に示すように、第二の主表面3の中央(重心)に位置し、第二の主表面3の輪郭を縮尺0.6で縮小した形状を境界とする領域を指す。なお、第二の主表面3の重心と、第二の主表面3の輪郭を縮尺0.6で縮小した形状の重心は一致している。また、外周領域5とは、第二の主表面3のうち上述のように定義した中央領域4を除いた残りの領域を指す。
また、中央領域4における表面粗さRaは、本明細書では、中央領域4の中央位置P0と、外周領域5と中央領域4との境界10上の位置(本明細書では図1に示すように境界10の角部P1〜P4と、これら角部P1〜P4の中間位置P5〜P8)でそれぞれ測定した算術平均粗さの平均値として評価される。また、外周領域5の表面粗さRaは、ガラス基板1の第二の主表面3の各辺部6〜8を中央領域側に10mm移動させて形成される形状の角部P9〜P12及びその形状の各辺部6’〜8’の中間位置P13〜P16で測定して評価される。
「第二の主表面3の外周領域5には、中央領域4の表面粗さRaよりも0.2nm以上大きな表面粗さRaを示す粗面化領域Aが設けられている」とは、外周領域5の測定位置P9〜P16における算術平均粗さの値のいずれかが、中央領域4の表面粗さRa(P1〜P8の平均値)よりも0.2nm以上大きいことを意味する。
また、本実施形態では、図2に示すように、粗面化領域Aが、第二の主表面3が有する複数の辺部6〜8のうち一つの短辺部8に沿って延びている。ここで、「粗面化領域Aが、第二の主表面3が有する複数の辺部6〜8のうち一つの辺部8に沿って延び」とは、中央領域4側に10mm移動させた辺部8’にある測定位置P9,P11及びP14の表面粗さRaが、いずれも、中央領域4の表面粗さRa(P1〜P8の平均値)よりも0.2nm以上大きいことを意味する。
本実施形態では、図2に示すように、外周領域5の表面粗さRaが上記一つの短辺部8から遠ざかるにつれて減少している。このため、外周領域5のうちでP10、P12及びP15の表面粗さRaは、中央領域4の表面粗さRaよりも小さい。つまり、中央領域4の表面粗さRaよりも小さい領域が、中央領域4を挟んで粗面化領域Aと平行に設けられている。
なお、粗面化領域Aの表面粗さRaは、剥離のし易さの観点では大きいほど良いが、あまりに大きくし過ぎると、後述する表面処理に必要以上の時間を要することになる。また、FPDの製造工程の熱処理でピッチズレが起こりやすくなる。以上の観点から、粗面化領域Aの表面粗さRaは、中央領域4の表面粗さRa+0.5nm以下に設定するのがよく、好ましくは中央領域4の表面粗さRa+0.3nm以下に設定するのがよい。
上記構成のガラス基板1は、例えば各種ダウンドロー法に代表される公知の成形方法により帯状に成形したガラス基板を長手方向で所定の寸法に切断し、切断して得たガラス基板の幅方向両端部分をさらに切断した後、必要に応じて、各切断面に研削及び研磨加工を施す等により得られる。なお、各種ダウンドロー法としては、オーバーフローダウンドロー法が好適な一例として挙げられる。オーバーフローダウンドロー法によれば、ガラス基板の第一の主表面2が火造り面となり、その表面粗さRaを容易に0.2nm以下とすることができる。
また、ガラス基板1の裏面となる第二の主表面3における表面粗さRaの分布については、例えば以下に示す表面処理工程を端面加工工程の後に設けることにより得られる。
図3は、図2に示す表面粗さRaの分布を第二の主表面3に付与するための表面処理工程20を示している。この表面処理工程20は、ガラス基板1を所定の方向X1に搬送するための搬送装置21と、搬送装置21で搬送されているガラス基板1の第二の主表面3(図3でいえば下面)に所定の表面処理を施す表面処理装置22と、搬送装置21及び表面処理装置22を収容する処理室23とを備える。
このうち、搬送装置21は、例えば複数対のローラ24を有しており、複数対のローラ24の少なくとも一部を回転駆動させることにより、ローラ24上に位置するガラス基板1を所定の方向X1に搬送可能としている。回転駆動していない残りのローラ24がある場合、これら残りのローラ24はいわゆるフリーローラである。なお、図3では、複数対のローラ24は表面処理装置22の搬送方向X1前後に配設されているが、必要に応じて、表面処理装置22の挿通路25上に配設してもかまわない。
表面処理装置22は、ガラス基板1の第二の主表面3に処理ガスGを供給して所定の表面処理を施すためのもので、処理対象となるガラス基板1が挿通される挿通路25と、挿通路25に開口する一又は複数の給気口26と、給気口26とは異なる位置で挿通路25に開口する一又は複数の排気口27と、処理ガスGを生成する処理ガス生成装置28と、使用した処理ガスGを無害化する排ガス処理装置29とを備える。処理ガス生成装置28は給気路30を介して給気口26につながり、排ガス処理装置29は排気路31を介して排気口27とつながっている。
処理ガスGの種類並びに組成は、ガラス基板1に対する所定の表面処理(腐食による粗面化)を可能とする限りにおいて任意であり、例えばフッ化水素ガスなどの酸性ガス、又はこの種のガスを一部に含むものを使用することができる。
上記構成の表面処理工程20では、処理ガス生成装置28で生成された処理ガスGは給気路30に導入され、給気路30の下流端に位置する給気口26から放出される。給気口26が面する挿通路25に図1に示すガラス基板1(図3中、二点鎖線で示している)が挿通されると、給気口26から放出された処理ガスGがガラス基板1の第二の主表面3と接触し、第二の主表面3に所定の表面処理が施される。これにより、ガラス基板1の第二の主表面3が腐食し、粗面化される。
この際、表面処理条件を適宜に設定することにより、図2に示す表面粗さRaの分布が第二の主表面3に付与され得る。具体的には、ガラス基板1の長辺部6,7の長手方向と、搬送方向X1(図3を参照)とを一致させた状態で、ガラス基板1を水平姿勢で搬送する。これにより、ガラス基板1は、短辺部8側(図1)を先頭にして挿通路25に導入される。また、ガラス基板1の挿通路25への導入開始に伴い、ガラス基板1の搬送速度を次第に大きくし、又は/及び、挿通路25中の第二の主表面3に供給する処理ガスGの流量を次第に小さくする等の制御を行う。このように各種表面処理条件を設定することにより、粗面化領域Aが一つの短辺部8に沿って延び(図1)、かつ外周領域5の表面粗さRaが一つの短辺部8から遠ざかるにつれて減少する表面粗さRaの分布が第二の主表面3に付与され得る。
なお、ガラス基板1に供給された処理ガスGは、挿通路25に面する排気口27(本実施形態では二つ)を介して排気路31に引き込まれ、排気路31の下流側に位置する排ガス処理装置29に導入される。導入された処理ガスGは、排ガス処理装置29によって有害物質を取り除いた状態で系外に排出される。
このように、本発明に係るガラス基板1では、第一の主表面2において、その表面粗さRaを、各種素子や電極線、電子回路等を高精度に形成可能な程度の大きさ(0.2nm以下)とし、第二の主表面3において、第二の主表面3の中央領域4における表面粗さRaを0.3nm以上でかつ1.0nm以下とし、かつ第二の主表面3の外周領域5に、中央領域4における表面粗さRaよりも0.2nm以上大きな表面粗さRaを示す粗面化領域Aを設けるようにした。これにより、外周領域5に位置する粗面化領域Aが剥離の起点となり、剥離を円滑に開始することができる。よって、ガラス基板1の割れを低減でき、安全にガラス基板1を剥がすことができる。また、ガラス基板1が載置台に密着することによってガラス基板1が載置台から剥離しない問題を低減できる。さらに、外周領域5に含まれる一つ以上の粗面化領域Aにおける表面粗さRaについてのみ、所定の大きさ以上の値(中央領域4の表面粗さRaより0.2nm以上大きい値)を示すようなガラス基板1であればよいため、粗面化のための処理、例えば図3に示す処理ガスGによる表面処理を最小限の領域及び量に抑えることができる。これにより粗面化処理を効率よく低コストに実施することができる。
また、本実施形態では、粗面化領域Aが辺部8に沿って延び、かつ外周領域5の表面粗さRaが上記辺部8から遠ざかるにつれて減少する表面粗さRaの分布を第二の主表面3に設けるようにした。このように、表面粗さRaの分布に、長辺部6,7に沿った所定の偏りを設けることによって、ガラス基板1を剥がし易い方向(ここでは長辺部6,7に沿った向き)を意図的に作り出すことができる。従って、起点となる粗面化領域A内の短辺部8から長辺部6,7に沿って剥離が円滑に進展しやすく、ガラス基板1を容易にかつ安全に剥がすことが可能となる。
以上、本発明の第一実施形態を説明したが、本発明に係るガラス基板は、上記実施形態には限定されることなく、本発明の範囲内で種々の形態を採ることが可能である。
≪本発明の第二実施形態≫
図4は、本発明の第二実施形態に係るガラス基板1の第二の主表面3における表面粗さRaの分布の一例を示している。図4中、棒状グラフの高さは表面粗さRaの大きさ、棒状グラフの上方又は側方に記載された括弧内の数字又は記号は図1に示すガラス基板1の第二の主表面3上の位置をそれぞれ示している。図4に示すように、本実施形態においても、第二の主表面3の外周領域5には、中央領域4の表面粗さRaよりも0.2nm以上大きな表面粗さRaを示す粗面化領域Aが設けられている。
また、本実施形態では、上記構成に加えて、粗面化領域Aが長辺部7に沿って延び、かつ外周領域5の表面粗さRaが上記長辺部7から遠ざかるにつれて減少する表面粗さRaの分布を示している。つまり、本実施形態は、前述の第一実施形態と、粗面化領域Aが延びる方向、及び、外周領域5の表面粗さRaが変化する方向が異なる。
図4に示す如き第二の主表面3の表面粗さRaの分布については、例えば以下に示す表面処理工程を端面加工工程の後に設けることにより得られる。
図5は、図4に示す表面粗さRaの分布を第二の主表面3に付与するための表面処理工程40を示している。この表面処理工程40は、図3と同様、ガラス基板1を所定の方向X1に搬送するための搬送装置41と、表面処理装置42と、搬送装置41及び表面処理装置42を収容する処理室43とを備える。
このうち、搬送装置41は、一対のローラ44,45を有している。一対のローラ44,45の回転軸は、水平面に対して傾斜している。これにより、長辺部7側が長辺部6側よりも下方に位置するようにガラス基板1を傾斜させた状態で、ガラス基板1を所定の方向X1に搬送可能としている。
この場合、表面処理装置42の挿通路46は、ガラス基板1が短辺部8,9に沿って傾斜した状態で挿通路46に挿通可能なように、第一のローラ44側が第二のローラ45側よりも下方に位置するようにその姿勢を傾斜させている。その他の構成は図3に示す表面処理装置22と同じであるので、詳細な説明を省略する。
上記構成の表面処理工程40では、処理ガス生成装置28(図3)で生成された処理ガスGは給気路30(図3)に導入され、給気路30の下流端に位置する給気口47(図5)から放出される。給気口47が面する挿通路46に図1に示すガラス基板1(図5中、二点鎖線で示している)が挿通されると、給気口47から放出された処理ガスGがガラス基板1の第二の主表面3に供給され、第二の主表面3に所定の表面処理が施される。これにより、ガラス基板1の第二の主表面3が腐食し、粗面化される。
この際、表面処理条件を適宜に設定することにより、図4に示す表面粗さRaの分布が第二の主表面3に付与され得る。具体的には、ガラス基板1の長辺部6,7の長手方向と、搬送方向X1とを一致させ(図3を参照)、かつ長辺部7側が長辺部6側より下方に位置するようにガラス基板1を傾斜させた状態で搬送しながら、処理ガスGを第二の主表面3に供給する(図5)。このように、各主表面処理条件を設定することにより、第二の主表面3の下方に位置する領域ほど、相対的に粗面化の度合いが高まり、第二の主表面3の上方に位置する領域ほど、相対的に粗面化の度合いが低下する。よって、上述の表面処理工程40を経て得られたガラス基板1においては、図4に示すように、粗面化領域Aが長辺部7に沿って延び、かつ外周領域5の表面粗さRaが上記長辺部7から遠ざかるにつれて減少する表面粗さRaの分布が第二の主表面3に付与され得る。
このように、本実施形態では、粗面化領域Aが長辺部7に沿って延び、かつ外周領域5の表面粗さRaが、上記長辺部7から遠ざかるにつれて減少する表面粗さRaの分布を第二の主表面3に設けるようにした。このように、表面粗さRaの分布に、短辺部8,9に沿った所定の偏りを設けることによって、ガラス基板1を剥がし易い方向(ここでは短辺部8,9に沿った向き)を第一実施形態とは異なる向きに作り出すことができる。従って、起点となる粗面化領域A内の長辺部7から短辺部8,9に沿って剥離が円滑に進展しやすく、ガラス基板1を容易にかつ安全に剥がすことが可能となる。
≪本発明の第三実施形態≫
図6は、本発明の第三実施形態に係るガラス基板1の第二の主表面3における表面粗さRaの分布の一例を示している。図6中、棒状グラフの高さは表面粗さRaの大きさ、棒状グラフの上方又は側方に記載された括弧内の数字又は記号は図1に示すガラス基板1の第二の主表面3上の位置をそれぞれ示している。図6に示すように、本実施形態においても、第二の主表面3の外周領域5には、中央領域4の表面粗さRaよりも0.2nm以上大きな表面粗さRaを示す粗面化領域Aが設けられている。
また、本実施形態では、粗面化領域Aが、第二の主表面3を画成する四つの角部のうち一つの角部に設けられている。「粗面化領域Aが角部に設けられている」とは、各辺部6〜9を中央領域側に10mm移動させて形成される形状6’〜9’において、頂点に位置する測定位置P9〜P12の表面粗さRaのいずれかが、中央領域4の表面粗さRaよりも0.2nm以上大きいことを意味する(図1参照)。図6に示すガラス基板1では、左下の角部(測定位置P11)に粗面化領域Aが設けられている。
図6に示す如き第二の主表面3の表面粗さRaの分布については、例えば図7に示すフローに従って、ガラス基板1に対して各種処理を施すことにより得られる。
具体的には、図7に示すように、まず図3に示す表面処理工程20においてガラス基板1に処理ガスGによる表面処理を施すことにより、第二の主表面3をその全域にわたって粗面化する(第一粗面化工程S1)。然る後、ガラス基板1の第二の主表面3のうち所定の角部(ここでは図1に示す位置P11が含まれる角部)を除いた領域にマスキングを施す(マスキング工程S2)。そして、マスキングした状態のガラス基板1に対して、再び図3に示す表面処理工程20の表面処理を施すことにより、マスキングされていない所定の角部のみを再び粗面化する(第二粗面化工程S3)。これにより、粗面化領域Aが、第二の主表面3を画成する四つの角部のうち所定の一つの角部(位置P11を含む角部)に設けられた表面粗さRaの分布が第二の主表面3に付与され得る。
このように、本実施形態では、粗面化領域Aを、第二の主表面3の四つの角部の少なくとも一つに設けるようにしたので、粗面化領域Aに位置する角部P11が剥離の起点となる。従って、ガラス基板1の剥離を円滑に開始させることができる。
≪本発明の第四実施形態≫
図8は、本発明の第四実施形態に係るガラス基板1の第二の主表面3における表面粗さRaの分布の一例を示している。図8中、棒状グラフの高さは表面粗さRaの大きさ、棒状グラフの上方又は側方に記載された括弧内の数字又は記号は図1に示すガラス基板1の第二の主表面3上の位置をそれぞれ示している。図8に示すように、本実施形態においても、第二の主表面3の外周領域5には、中央領域4の表面粗さRaよりも0.2nm以上大きな表面粗さRaを示す粗面化領域Aが設けられている。
また、本実施形態では、粗面化領域Aが、第二の主表面3を画成する四つの角部全てに設けられている。図8に示すガラス基板1では、測定位置P9〜P12の表面粗さRaが何れも、中央領域4の表面粗さRaよりも0.2nm以上大きく、四つ全ての角部に粗面化領域Aが設けられている(図8)。
図8に示す如き第二の主表面3の表面粗さRaの分布については、例えば図9に示すフローに従って、ガラス基板1に対して各種処理を施すことにより得られる。
具体的には、図9に示すように、まず図3に示す表面処理工程20においてガラス基板1に処理ガスGによる表面処理を施すことにより、第二の主表面3をその全域にわたって粗面化する(第一粗面化工程S4)。然る後、ガラス基板1の第二の主表面3のうち四つ全ての角部(ここでは図1に示す位置P9〜P12が含まれる角部)を除いた領域にマスキングを施す(マスキング工程S5)。そして、マスキングした状態のガラス基板1に対して、再び図3に示す表面処理工程20の表面処理を施すことにより、マスキングされていない四つ全ての角部を再び粗面化する(第二粗面化工程S3)。これにより、粗面化領域Aが、第二の主表面3を画成する四つの角部全てに設けられた表面粗さRaの分布が第二の主表面3に付与され得る。
このように、本実施形態では、粗面化領域Aを、第二の主表面3の四つの角部全てに設けるようにしたので、粗面化領域Aに位置する全ての角部P9〜P12が剥離の起点となり、剥離を円滑に開始させることができる。
なお、第三実施形態では、所定の一つの角部に粗面化領域Aが設けられた場合を例示し、第四実施形態では、四つの角部全てに粗面化領域Aが設けられた場合を例示したが、もちろん、二つ又は三つの角部に粗面化領域Aが設けられた表面粗さRaの分布を第二の主表面3に付与することも可能である。
また、第三及び第四実施形態において、外周領域5のうち角部以外の領域における表面粗さRaの大きさは任意であるから、例えば図1に示す位置P13〜P16における表面粗さRaの全て又は一部が中央領域4の表面粗さRaより0.2nm以上大きい分布をとることも可能である。このように外周領域5の外周縁、すなわち第二の主表面3の外周縁全ての領域が粗面化領域Aであれば、剥離をより円滑に開始させることができる。
また、第一実施形態では、ガラス基板1の搬送速度や処理ガスGの供給流量を調整することで、図2に示す表面粗さRaの分布を第二の主表面3に付与した場合を例示し、第二実施形態では、ガラス基板1を所定の向きに傾斜させた状態で搬送しながら表面処理を施すことで、図4に示す表面粗さRaの分布を第二の主表面3に付与した場合を例示したが、これらの分布は、上記以外の方法で形成することも可能である。すなわち、図示は省略するが、短辺部8,9の長手方向と搬送方向X1とを一致させた状態で、ガラス基板1を水平姿勢で搬送しながら、第一実施形態のように搬送速度や処理ガスGの供給流量を適宜に設定することによっても、図4に示す表面粗さRaの分布を第二の主表面3に付与し得る。あるいは、同じく図示は省略するが、短辺部8,9の長手方向と、搬送方向X1とを一致させ、かつ短辺部8側が短辺部9側より下方に位置するようにガラス基板1を傾斜させた状態で搬送しながら、処理ガスGを第二の主表面3に供給することによっても、図2に示す表面粗さRaの分布を第二の主表面3に付与し得る。
あるいは、第一及び第二実施形態に係る表面粗さRaの分布は、上記以外の方法で形成することも可能である。例えば図示は省略するが、表面処理工程20,40の前工程として、ガラス基板1を水等で洗浄する洗浄工程を設けると共に、洗浄時に第二の主表面3に付着する水分に所定の偏りを設けた状態とする。この際、例えば短辺部8側ほど付着した水分が多く、短辺部9側ほど付着した水分が少なくなるよう、水分の付着状態に偏りを設けた後、図3に示すような表面処理を施すことにより、図2に示す表面粗さRaの分布を第二の主表面3に付与し得る。あるいは、長辺部7側ほど付着した水分が多く、長辺部6側ほど付着した水分が少なくなるよう、水分の付着状態に偏りを設けた後、図3に示すような表面処理を施すことにより、図4に示す表面粗さRaの分布を第二の主表面3に付与し得る。この場合、水分の付着度合いによって処理ガスGによる表面処理(粗面化)の度合いが変化するものと推察される。従って、水分の付着状態に上述の如き偏りを設けた状態でガラス基板1に表面処理を施すのであれば、搬送速度や処理ガスGの供給流量、あるいはガラス基板1の搬送姿勢を変化させる必要はない。すなわち、搬送速度や処理ガスGの供給流量が一定で、ガラス基板1が水平姿勢で搬送される場合であっても、図2や図4に示す表面粗さRaの分布を付与し得る。もちろん、前洗浄が必要でなければ、上述した水分の付着状態の偏りを第二の主表面3に設けるためだけに、水分を例えば霧状にして供給する工程を表面処理工程20,40の前に設けることも可能である。
もちろん、第二の主表面3の中央領域4における表面粗さRaが0.3nm以上でかつ1.0nm以下で、外周領域5に、中央領域4における表面粗さRaよりも0.2nm以上大きな表面粗さRaを示す粗面化領域Aが設けられている限りにおいて、当該表面粗さRaの分布を第二の主表面3に付与するための手段は任意である。
また、第一〜第四実施形態に係るガラス基板1では、図示は省略するが、FPDを製造するに際し、載置台の複数個所に設置されたピンを上昇させることにより、ガラス基板1を載置台から剥離させる態様を採用することができる。この場合、複数のピンを同時に上昇させても、外周領域5に位置する粗面化領域Aが起点となり、剥離を円滑に開始することができるが、複数のピンのうちで粗面化領域Aに位置するピンを先行して上昇させることが好ましい。粗面化領域A又はその周辺に位置するピンを先行して上昇させれば、粗面化領域Aがより確実に起点となるので、剥離をより円滑に開始することができる。加えて、起点とする粗面化領域Aからの距離が近い順にピンを上昇させることが好ましい。起点とする粗面化領域Aからの距離が近い順にピンを上昇させれば、起点の剥離をより円滑に伸展させることができる。
本発明の実施例として、1000枚のガラス基板を製造した。ガラス基板は、日本電気硝子社製のディスプレイ用の無アルカリガラス基板(製品名:OA−11)とした。ガラス基板のサイズは、2200mm×2500mm、厚みは50μmとした。成形方法は、オーバーフローダウンドロー法とした。ガラス基板の第二の主表面には、図5に示す表面処理工程による表面処理を施した。
製造されたガラス基板から1枚のガラス基板を採取し、第二の主表面の表面粗さRaを測定装置(Bruker社製、型式:Dimension ICON)で測定した。その結果、中央領域の表面粗さRa(P0〜P8の平均値)は0.4nmであった。外周領域の表面粗さRaは、P9で0.3nm、P10で0.3nm、P11で0.6nm、P12で0.6nm、P13で0.3nm、P14で0.4nm、P15で0.4nm、P16で0.6nmであった。したがって、ガラス基板の第二の主表面3には、図4に示すように、粗面化領域Aが長辺部7に沿って延び、かつ外周領域5の表面粗さRaが上記長辺部7から遠ざかるにつれて減少する表面粗さRaの分布が付与された。得られたガラス基板を剥離試験に供した。剥離試験では、載置台に載置した後、載置台が備える複数のピンを同時に上昇させることによって載置台からガラス基板を剥離させた。
比較例では、水平姿勢でガラス基板の第二の主表面に表面処理を施した点を除き、実施例と同じ条件でガラス基板を製造した。その結果、中央領域の表面粗さRa(P0〜P8の平均値)は0.4nmであった。外周領域(P9〜P16)の表面粗さRaは、0.3〜0.5nmであった。したがって、ガラス基板の第二の主表面には、粗面化領域Aが形成されなかった。このガラス基板を剥離試験に供した。
比較例に係る剥離試験では、1000枚のガラス基板のうちで50枚のガラス基板がピンを上昇させても載置台から剥離しなかった。これに対し、実施例の剥離試験では、1000枚のガラス基板の全部がピンの上昇に伴って載置台から剥離した。すなわち、ガラス基板が載置台から剥離しない問題を抑制できた。このことから、本発明のガラス基板によれば、外周領域に位置する粗面化領域Aを起点として利用でき、剥離を円滑に開始可能なことが確認できた。
1 ガラス基板
2 第一の主表面
3 第二の主表面
4 中央領域
5 外周領域
6,7 長辺部
8,9 短辺部
10 中央領域と外周領域との境界
20,40 表面処理工程
21,41 搬送装置
22,42 表面処理装置
23,43 処理室
24,44,45 ローラ
25,46 挿通路
26,47 給気口
27 排気口
28 処理ガス生成装置
29 排ガス処理装置
30 給気路
31 排気路
A 粗面化領域
G 処理ガス
P0〜P16 表面粗さRaの測定位置

Claims (4)

  1. 第一の主表面と、第二の主表面とを有するガラス基板において、
    前記第一の主表面の表面粗さRaが0.2nm以下で、
    前記第二の主表面の中央領域における表面粗さRaが0.3nm以上でかつ1.0nm以下で、
    前記第二の主表面の外周領域に、前記中央領域における表面粗さRaよりも0.2nm以上大きな表面粗さRaを示す粗面化領域が設けられていることを特徴とするガラス基板。
  2. 前記粗面化領域は、前記第二の主表面が有する複数の辺部のうち何れか一つの辺部に沿って延び、かつ前記外周領域の表面粗さRaが、前記一つの辺部から遠ざかるにつれて減少している請求項1に記載のガラス基板。
  3. 前記粗面化領域は、前記第二の主表面が有する複数の角部のうち少なくとも一つの角部に設けられている請求項1に記載のガラス基板。
  4. 前記粗面化領域は、前記複数の角部全てに設けられている請求項3に記載のガラス基板。
JP2017218075A 2017-11-13 2017-11-13 ガラス基板 Active JP7045647B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017218075A JP7045647B2 (ja) 2017-11-13 2017-11-13 ガラス基板
CN201880073224.1A CN111356663A (zh) 2017-11-13 2018-10-17 玻璃基板
PCT/JP2018/038676 WO2019093087A1 (ja) 2017-11-13 2018-10-17 ガラス基板
KR1020207014657A KR102609772B1 (ko) 2017-11-13 2018-10-17 유리 기판
TW107137819A TW201922661A (zh) 2017-11-13 2018-10-25 玻璃基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017218075A JP7045647B2 (ja) 2017-11-13 2017-11-13 ガラス基板

Publications (2)

Publication Number Publication Date
JP2019089667A true JP2019089667A (ja) 2019-06-13
JP7045647B2 JP7045647B2 (ja) 2022-04-01

Family

ID=66439095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017218075A Active JP7045647B2 (ja) 2017-11-13 2017-11-13 ガラス基板

Country Status (5)

Country Link
JP (1) JP7045647B2 (ja)
KR (1) KR102609772B1 (ja)
CN (1) CN111356663A (ja)
TW (1) TW201922661A (ja)
WO (1) WO2019093087A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128673A1 (ja) * 2009-05-07 2010-11-11 日本電気硝子株式会社 ガラス基板及びその製造方法
JP2015202997A (ja) * 2014-04-16 2015-11-16 旭硝子株式会社 基板、基板製造システム、剥離装置、基板製造方法および剥離方法
JP2018052805A (ja) * 2016-09-21 2018-04-05 旭硝子株式会社 ガラス板

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG71048A1 (en) * 1996-09-30 2000-03-21 Hoya Corp Glass substrate magnetic recording medium and method of manufacturing the magnetic recording medium
KR101707056B1 (ko) * 2009-03-10 2017-02-15 니폰 덴키 가라스 가부시키가이샤 유리 기판 및 그 제조 방법
CN103373818B (zh) * 2012-04-17 2017-05-17 安瀚视特控股株式会社 显示器用玻璃基板的制造方法、玻璃基板以及显示器用面板
KR101522452B1 (ko) * 2012-04-17 2015-05-21 아반스트레이트 가부시키가이샤 디스플레이용 글래스 기판의 제조 방법, 글래스 기판 및 디스플레이용 패널
JP2014009124A (ja) * 2012-06-29 2014-01-20 Avanstrate Inc ディスプレイ用ガラス基板の製造方法、および、ディスプレイ用ガラス基板の製造装置
JP2014080331A (ja) 2012-10-17 2014-05-08 Asahi Glass Co Ltd 反射防止性ガラスの製造方法
US9153457B2 (en) * 2013-06-14 2015-10-06 Tokyo Electron Limited Etch process for reducing directed self assembly pattern defectivity using direct current positioning
CN106415333B (zh) * 2014-03-14 2019-01-18 日本电气硝子株式会社 显示器的罩部件及其制造方法
JP6663596B2 (ja) * 2015-03-10 2020-03-13 日本電気硝子株式会社 半導体用支持ガラス基板及びこれを用いた積層基板
CN107857479B (zh) * 2016-09-21 2022-12-06 Agc株式会社 玻璃板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128673A1 (ja) * 2009-05-07 2010-11-11 日本電気硝子株式会社 ガラス基板及びその製造方法
JP2015202997A (ja) * 2014-04-16 2015-11-16 旭硝子株式会社 基板、基板製造システム、剥離装置、基板製造方法および剥離方法
JP2018052805A (ja) * 2016-09-21 2018-04-05 旭硝子株式会社 ガラス板

Also Published As

Publication number Publication date
TW201922661A (zh) 2019-06-16
KR102609772B1 (ko) 2023-12-05
CN111356663A (zh) 2020-06-30
JP7045647B2 (ja) 2022-04-01
KR20200078564A (ko) 2020-07-01
WO2019093087A1 (ja) 2019-05-16

Similar Documents

Publication Publication Date Title
KR101838339B1 (ko) 디스플레이용 글래스 기판의 제조 방법, 글래스 기판 및 디스플레이용 패널
JP5066895B2 (ja) ディスプレイ用ガラス基板およびその製造方法
TW201501821A (zh) 清潔玻璃基板之方法
TWI741032B (zh) 玻璃板及玻璃基板之製造方法
JP6520928B2 (ja) エッチング装置、エッチング方法、基板の製造方法、および基板
JP2005255478A (ja) ガラス基板
KR101543832B1 (ko) 글래스 기판 및 글래스 기판의 제조 방법
WO2019093087A1 (ja) ガラス基板
JP6836699B2 (ja) ガラス板
JP2015202997A (ja) 基板、基板製造システム、剥離装置、基板製造方法および剥離方法
WO2015012307A1 (ja) ガラス基板の製造方法、ガラス基板、および、ディスプレイ用パネル
JP6870617B2 (ja) ディスプレイ用ガラス基板およびその製造方法
KR101521345B1 (ko) 글래스 기판의 제조 방법
JP2017218351A (ja) ガラス基板の製造方法、及びガラス基板
KR101543831B1 (ko) 글래스 기판 및 글래스 기판의 제조 방법
JP6225908B2 (ja) ディスプレイ用ガラス基板およびその製造方法
JP2017071516A (ja) ガラス基板の製造方法
JP2013212965A (ja) 板状ガラスの表面処理装置及び表面処理方法
KR20110132896A (ko) 경사식 에칭장치용 에칭액 조성물 및 이를 이용한 에칭방법
JP2001206734A (ja) ガラス基板の処理方法及びそのガラス基板を用いた表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220119

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220119

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220127

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220303

R150 Certificate of patent or registration of utility model

Ref document number: 7045647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150