JP2019087510A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2019087510A
JP2019087510A JP2017217171A JP2017217171A JP2019087510A JP 2019087510 A JP2019087510 A JP 2019087510A JP 2017217171 A JP2017217171 A JP 2017217171A JP 2017217171 A JP2017217171 A JP 2017217171A JP 2019087510 A JP2019087510 A JP 2019087510A
Authority
JP
Japan
Prior art keywords
positive electrode
mixture layer
electrode mixture
active material
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017217171A
Other languages
Japanese (ja)
Other versions
JP6948562B2 (en
Inventor
大樹 加藤
Daiki Kato
大樹 加藤
浩二 高畑
Koji Takahata
浩二 高畑
英輝 萩原
Hideki Hagiwara
英輝 萩原
彰 齊藤
Akira Saito
彰 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017217171A priority Critical patent/JP6948562B2/en
Publication of JP2019087510A publication Critical patent/JP2019087510A/en
Application granted granted Critical
Publication of JP6948562B2 publication Critical patent/JP6948562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a technique, in a technique of adding LiPOto a positive electrode mixture layer, by which a nonaqueous electrolyte secondary battery having a suitable battery performance can be obtained efficiently.SOLUTION: In a nonaqueous electrolyte secondary battery herein disclosed, a positive electrode mixture layer includes a positive electrode active material, LiPOand a binder. In the nonaqueous electrolyte secondary battery, the positive electrode mixture layer includes at least one of a lithium compound for an active material, which is a precursor of the positive electrode active material, and a lithium compound for LiPO, which is a precursor of LiPO. The positive electrode mixture layer is formed so as to satisfy the following expression (1): 0.44≤(L×W)+(L×W)≤30.6 (1), where Lis a weight proportion of the lithium compound for LiPOin LiPO, Wis a weight proportion of LiPOto the positive electrode mixture layer, Lis a weight proportion of the lithium compound for the active material in the positive electrode active material, and Wis a weight proportion of the positive electrode active material to the positive electrode mixture layer.SELECTED DRAWING: None

Description

本発明は、非水電解液二次電池に関する。詳しくは、正極合材層にリン酸三リチウム(LiPO)が添加されている非水電解液二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery. Specifically, the present invention relates to a non-aqueous electrolyte secondary battery in which trilithium phosphate (Li 3 PO 4 ) is added to a positive electrode mixture layer.

リチウムイオン二次電池等の非水電解液二次電池(以下、単に「二次電池」とも言う)は、既存の電池に比べて軽量且つエネルギー密度が高いことから、近年、パソコンや携帯端末等のいわゆるポータブル電源や車両駆動用電源として用いられている。かかる非水電解液二次電池の正極は、例えば、導電性を有する箔体である正極集電体の表面に正極合材層が付与されることによって構成されている。   Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries (hereinafter, also simply referred to as "secondary batteries") are lighter and have higher energy density than existing batteries. Is used as a so-called portable power source for vehicles and a power source for driving a vehicle. The positive electrode of the non-aqueous electrolyte secondary battery is configured by, for example, applying a positive electrode mixture layer to the surface of a positive electrode current collector that is a conductive foil.

上記した非水電解液二次電池では、過充電状態(高電圧状態)になった際に生じる種々の問題を抑制するために、従来より、正極合材層にリン酸三リチウム(LiPO)などの無機リン酸化合物を添加する技術が提案されている(例えば特許文献1)。かかる無機リン酸化合物は、電池が過充電状態になった際に、非水電解液の分解によって生じた酸(例えばフッ化水素(HF))を粒子表面に吸着させることによって、過充電時の発熱や金属元素の溶出等を抑制することができる。 In the non-aqueous electrolyte secondary battery described above, trilithium phosphate (Li 3 PO) is conventionally added to the positive electrode mixture layer in order to suppress various problems that occur when the battery is in the overcharged state (high voltage state). A technique of adding an inorganic phosphoric acid compound such as 4 ) has been proposed (for example, Patent Document 1). Such an inorganic phosphate compound causes an acid (for example, hydrogen fluoride (HF)) generated by the decomposition of the non-aqueous electrolyte to be adsorbed on the particle surface when the battery is in the overcharged state, thereby causing the inorganic phosphate compound to be in the overcharge state. It is possible to suppress heat generation and elution of metal elements.

特開2014−103098号公報JP 2014-103098 A

上記したように、特許文献1では、過充電状態における種々の問題を抑制するためにLiPOなどを正極合材層に添加しているが、かかる技術には改良の余地が残されており、更に好適な性能を有する二次電池を効率良く得ることができる技術が望まれていた。
特に、特許文献1は、作動電位(開放電圧)が4.3V(vs.Li/Li)以上という高電位電池を対象とした技術であり、作動電位が4.25V以下の二次電池(4V級電池)に好ましく適用できる技術とは言い難かったため、4V級電池に適した技術の開発が望まれていた。
As described above, in Patent Document 1, Li 3 PO 4 or the like is added to the positive electrode mixture layer in order to suppress various problems in the overcharged state, but there is room for improvement in such technology. There is a need for a technology that can efficiently obtain a secondary battery having more preferable performance.
In particular, Patent Document 1 is a technology directed to a high potential battery having an operating potential (open circuit voltage) of 4.3 V (vs. Li / Li + ) or more, and a secondary battery having an operating potential of 4.25 V or less It has been difficult to say that the technology is preferably applicable to 4V class batteries), and therefore, development of technology suitable for 4V class batteries has been desired.

本発明は、かかる点に鑑みてなされたものであり、その主な目的は、正極合材層にLiPOを添加する技術において、好適な電池性能を有する非水電解液二次電池を効率良く得ることができる技術を提供することである。 This invention is made in view of this point, The main objective is the technology which adds Li 3 PO 4 to the positive electrode mixture layer, and the non-aqueous electrolyte secondary battery having suitable battery performance. It is providing a technology that can be obtained efficiently.

上記目的を実現するべく、本発明によって以下の構成の非水電解液二次電池が提供される。   In order to achieve the above object, the present invention provides a non-aqueous electrolyte secondary battery having the following constitution.

ここで開示される非水電解液二次電池は、正極集電体上に正極合材層が形成されている正極と、負極集電体上に負極合材層が形成されている負極と、フッ素を含んだリチウム化合物を支持塩として有する非水電解液とを備えており、正極合材層に正極活物質とLiPOとバインダとが含まれている。
また、ここで開示される非水電解液二次電池では、正極合材層に、正極活物質の前駆体である活物質用リチウム化合物と、LiPOの前駆体であるLiPO用リチウム化合物の少なくとも一方が含まれている。そして、LiPO中のLiPO用リチウム化合物の重量比をLとし、正極合材層に対するLiPOの重量比をWとし、正極活物質中の活物質用リチウム化合物の重量比をLとし、正極合材層に対する正極活物質の重量比をWとしたとき、下記の式(1)を満たすように正極合材層が形成されている。
0.44≦(L×W)+(L×W)≦30.6 (1)
The non-aqueous electrolyte secondary battery disclosed herein comprises a positive electrode having a positive electrode mixture layer formed on a positive electrode current collector, and a negative electrode having a negative electrode mixture layer formed on the negative electrode current collector. A non-aqueous electrolytic solution having a lithium compound containing fluorine as a support salt is provided, and the positive electrode mixture layer contains a positive electrode active material, Li 3 PO 4 and a binder.
Further, in the non-aqueous electrolyte secondary battery disclosed herein, the positive-electrode mixture layer, and the active material for a lithium compound which is a precursor of the positive electrode active material, Li 3 PO 4, which is a precursor of Li 3 PO 4 And / or at least one of the lithium compounds. Then, the weight ratio of Li 3 PO Li 3 PO 4 for a lithium compound in 4 and L A, the weight ratio of Li 3 PO 4 and W A for the positive-electrode mixture layer, the active material for a lithium compound in the positive electrode active material Assuming that the weight ratio of L is L B and the weight ratio of the positive electrode active material to the positive electrode mixture layer is W B , the positive electrode mixture layer is formed so as to satisfy the following formula (1).
0.44 ≦ (L A × W A ) + (L B × W B ) ≦ 30.6 (1)

本発明者は、上述した課題を解決するために種々の実験と検討を行った結果、正極合材層には多くの「余剰リチウム」が含まれており、かかる「余剰リチウム」の含有量が電池性能に大きな影響を与えていることを見出した。   As a result of conducting various experiments and studies in order to solve the above-mentioned problems, the present inventor contains a large amount of "surplus lithium" in the positive electrode mixture layer, and the content of the "surplus lithium" is It has been found that the battery performance is greatly affected.

具体的には、正極合材層の主成分である正極活物質は、水酸化リチウム(LiOH)や炭酸リチウム(LiCO)などの前駆体(活物質用リチウム化合物)を他の材料(遷移金属化合物など)と反応させることによって生成される。かかる正極活物質の生成の際には、活物質用リチウム化合物と他の材料とを適切に反応させるために、活物質用リチウム化合物が余剰に投入されており、生成後の正極活物質に未反応の活物質用リチウム化合物が含まれることがある。
また、LiPOの粉体材料の生成においても、上述の正極活物質の生成と同様に、水酸化リチウム(LiOH)などの前駆体(LiPO用リチウム化合物)と、他の材料(リン酸(HPO)など)とを反応させており、生成後のLiPOの粉体材料(以下、かかる粉体材料を単に「LiPO」ともいう)に未反応のLiPO用リチウム化合物が含まれることがある。
このように正極活物質とLiPOとを含む正極合材層には、各々の前駆体であるリチウム化合物が未反応の状態で含まれていることがある。本明細書では、かかるLiPO用リチウム化合物と活物質用リチウム化合物とを総じて「余剰リチウム」と称する。
Specifically, the positive electrode active material which is the main component of the positive electrode mixture layer is made of a precursor (lithium compound for active material) such as lithium hydroxide (LiOH) or lithium carbonate (Li 2 CO 3 ) as another material (lithium compound for active material). It is produced by reacting with a transition metal compound etc.). In order to cause the lithium compound for the active material and the other material to react appropriately when generating the positive electrode active material, an excess of the lithium compound for the active material is added, and the positive electrode active material after generation is not yet The reaction may contain a lithium compound for active material.
Further, also in the production of a powder material of Li 3 PO 4 , a precursor (lithium compound for Li 3 PO 4 ) such as lithium hydroxide (LiOH) and other materials as in the production of the positive electrode active material described above (Phosphoric acid (H 2 PO 3 ), etc.) is reacted, and unreacted Li 3 PO 4 powder material (hereinafter, such powder material is also simply referred to as “Li 3 PO 4 ”) after generation. Lithium compounds for Li 3 PO 4 may be included.
This way the positive-electrode mixture layer containing a positive electrode active material and Li 3 PO 4, may be a lithium compound are each precursor is contained in an unreacted state. In the present specification, the lithium compound for Li 3 PO 4 and the lithium compound for the active material are generally referred to as “excess lithium”.

本発明者は、種々の検討を行った結果、上述の余剰リチウムの含有量が二次電池の性能に大きな影響を与えることを見出した。具体的には、余剰リチウムの含有量が少なくなり過ぎると正極合材層の抵抗値が大幅に低下し、充放電反応の初期に急速に反応が進行し易くなるため、容量維持率や高温耐久性などが低下する恐れがある。
また、本発明者は、上述の余剰リチウムの含有量が二次電池の生産効率にも大きな影響を与え得ることを見出した。具体的には、正極合材に多くの余剰リチウムが含まれていると、バインダと余剰リチウムとが反応して正極合材がゲル化する可能性がある。このようなゲル化が生じると、所望の厚みの正極合材層を正極集電体の表面に形成することが困難になるため、二次電池の生産効率が大幅に低下する原因になる。
As a result of conducting various studies, the present inventor has found that the content of the above-mentioned excess lithium significantly affects the performance of the secondary battery. Specifically, if the content of the excess lithium is too small, the resistance value of the positive electrode mixture layer is significantly reduced, and the reaction is likely to progress rapidly in the early stage of the charge / discharge reaction. There is a risk that the sex etc. will decrease.
In addition, the inventor has found that the content of the above-mentioned excess lithium can greatly affect the production efficiency of the secondary battery. Specifically, when the positive electrode mixture contains a large amount of excess lithium, the binder and the excess lithium may react to gelate the positive electrode mixture. When such gelation occurs, it becomes difficult to form a positive electrode mixture layer of a desired thickness on the surface of the positive electrode current collector, which causes the production efficiency of the secondary battery to be significantly reduced.

ここで開示される非水電解液二次電池は、上述の知見に基づいて種々の実験と検討を行った結果なされたものであって、正極合材層における「余剰リチウムの含有量」が所定の範囲内に調整されている。なお、この「余剰リチウムの含有量」は、LiPO(粉体材料)中のLiPO用リチウム化合物の重量比をLとし、正極合材層に対するLiPOの重量比をWとし、正極活物質中の活物質用リチウム化合物の重量比をLとし、正極合材層に対する正極活物質の重量比をWとしたとき、「(L×W)+(L×W)」という式で表すことができる。
そして、ここで開示される非水電解液二次電池では、上述した式で表される余剰リチウムの含有量((L×W)+(L×W))が0.44以上30.6以下の範囲内に調整されている。これによって、余剰リチウムの含有量が多すぎることによる正極合材層のゲル化を防止することができると共に、余剰リチウムの含有量が少な過ぎることによる容量維持率や高温耐久性の低下を好適に防止することができる。
従って、ここで開示される非水電解液二次電池によれば、好適な電池性能を有する二次電池を効率良く得ることができる。
The non-aqueous electrolyte secondary battery disclosed herein is made as a result of conducting various experiments and studies based on the above-described findings, and the "content of excess lithium" in the positive electrode mixture layer is predetermined. It is adjusted in the range of. Incidentally, "the content of the excess lithium" This is, Li 3 PO 4 in a weight ratio of Li 3 PO 4 for lithium compounds (powder materials) in the L A, the weight ratio of Li 3 PO 4 with respect to the positive-electrode mixture layer Where W A is the weight ratio of the lithium compound for the active material in the positive electrode active material to L B and the weight ratio of the positive electrode active material to the positive electrode mixture layer is W B , “(L A × W A ) + It can be represented by the formula (L B × W B ).
And, in the non-aqueous electrolyte secondary battery disclosed herein, the content ((L A × W A ) + (L B × W B )) of the excess lithium represented by the above-mentioned formula is 0.44 or more It is adjusted within the range of 30.6 or less. As a result, it is possible to prevent gelation of the positive electrode mixture layer due to the content of excess lithium being too large, and to preferably lower the capacity retention ratio and the high temperature durability due to the content of excess lithium being too small. It can be prevented.
Therefore, according to the non-aqueous electrolyte secondary battery disclosed herein, it is possible to efficiently obtain a secondary battery having suitable battery performance.

本発明の一実施形態に係るリチウムイオン二次電池の外形を模式的に示す斜視図である。It is a perspective view which shows typically the external shape of the lithium ion secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係るリチウムイオン二次電池の電極体を模式的に示す斜視図である。It is a perspective view which shows typically the electrode body of the lithium ion secondary battery which concerns on one Embodiment of this invention. 余剰リチウムの測定に用いられる中和滴定法を説明する図である。It is a figure explaining the neutralization titration method used for the measurement of excess lithium. 余剰リチウムの総量と抵抗上昇率との関係を示すグラフである。It is a graph which shows the relationship between the total amount of excess lithium, and a resistance increase rate. 余剰リチウムの総量と正極合材層の増粘率との関係を示すグラフである。5 is a graph showing the relationship between the total amount of excess lithium and the thickening rate of the positive electrode mixture layer.

以下、本発明の一実施形態について図面を参照しながら説明する。なお、以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。また、各図における寸法関係(長さ、幅、厚み等)は実際の寸法関係を反映するものではない。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、負極の組成や非水電解液二次電池の構築に係る一般的技術等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the following drawings, the same reference numerals are given to members and portions that exhibit the same action. Also, the dimensional relationships (length, width, thickness, etc.) in the drawings do not reflect the actual dimensional relationships. Further, matters other than the matters particularly mentioned in the present specification and matters necessary for the practice of the present invention (for example, the general technology concerning the composition of the negative electrode and the construction of the non-aqueous electrolyte secondary battery) are This can be understood as a design matter of a person skilled in the art based on prior art in the field.

1.リチウムイオン二次電池
以下、ここで開示される非水電解液二次電池の一例としてリチウムイオン二次電池を説明する。図1は本実施形態に係るリチウムイオン二次電池の外形を模式的に示す斜視図であり、図2は本実施形態に係るリチウムイオン二次電池の電極体を模式的に示す斜視図である。このリチウムイオン二次電池100は、図1に示す角形の電池ケース50の内部に、図2に示す電極体80が収容されることによって構成される。
1. Lithium Ion Secondary Battery Hereinafter, a lithium ion secondary battery will be described as an example of the non-aqueous electrolyte secondary battery disclosed herein. FIG. 1 is a perspective view schematically showing the outer shape of the lithium ion secondary battery according to the present embodiment, and FIG. 2 is a perspective view schematically showing an electrode body of the lithium ion secondary battery according to the present embodiment . The lithium ion secondary battery 100 is configured by housing the electrode body 80 shown in FIG. 2 inside the rectangular battery case 50 shown in FIG.

(1)電池ケース
電池ケース50は、上端が開放された扁平なケース本体52と、その上端の開口部を塞ぐ蓋体54とから構成されている。蓋体54には、正極端子70および負極端子72が設けられている。図示は省略するが、正極端子70は、電池ケース50内に収容された電極体80の正極10と電気的に接続され、負極端子72は負極20と電気的に接続される。
(1) Battery Case The battery case 50 is composed of a flat case main body 52 whose upper end is opened and a lid 54 for closing the opening of the upper end. The lid 54 is provided with a positive electrode terminal 70 and a negative electrode terminal 72. Although not shown, the positive electrode terminal 70 is electrically connected to the positive electrode 10 of the electrode body 80 housed in the battery case 50, and the negative electrode terminal 72 is electrically connected to the negative electrode 20.

(2)電極体
次に、上記した電池ケース50の内部に収容される電極体80について説明する。図2に示すように、本実施形態における電極体80は、長尺シート状の正極10と負極20を長尺シート状のセパレータ40とともに積層して捲回することによって作製された捲回電極体である。なお、ここで開示される非水電解液二次電池に用いられる電極体は、図2に示すような捲回電極体に限定されず、例えば、複数枚の正極と負極とをセパレータを介して交互に積層させた積層電極体であってもよい。
(2) Electrode Body Next, the electrode body 80 housed inside the above-described battery case 50 will be described. As shown in FIG. 2, the electrode body 80 in the present embodiment is a wound electrode body produced by laminating and winding a long sheet-like positive electrode 10 and a negative electrode 20 together with a long sheet-like separator 40. It is. In addition, the electrode body used for the non-aqueous-electrolyte secondary battery disclosed here is not limited to a wound electrode body as shown in FIG. 2, For example, the positive electrode of several sheets and a negative electrode are interposed via a separator. It may be a laminated electrode body laminated alternately.

(a)正極
図2における正極10では、長尺シート状の正極集電体12の表面(両面)に、正極活物質を主成分とする正極合材層14が形成されている。そして、正極10の幅方向の一方の側縁部には、正極合材層14が塗工されていない正極合材層非形成部16が形成されており、この正極合材層非形成部16が上記した正極端子70(図1参照)と電気的に接続される。
本実施形態における正極合材層14には、少なくとも、正極活物質とリン酸三リチウム(LiPO)とバインダとが含まれている。また、かかる正極合材層14には、正極活物質の前駆体であるリチウム化合物(活物質用リチウム化合物)と、LiPOの前駆体であるリチウム化合物(LiPO用リチウム化合物)との少なくとも一方が含まれている。本明細書における「余剰リチウム」とは、正極合材層14中に未反応の状態で存在している「活物質用リチウム化合物」と「LiPO用リチウム化合物」の総称である。かかる余剰リチウムを含む正極合材層14の詳細な組成については後に詳しく説明する。
(A) Positive Electrode In the positive electrode 10 in FIG. 2, the positive electrode mixture layer 14 mainly composed of a positive electrode active material is formed on the surface (both sides) of the long sheet-like positive electrode current collector 12. A positive electrode mixture layer non-formed portion 16 not coated with the positive electrode mixture layer 14 is formed at one side edge portion in the width direction of the positive electrode 10. This positive electrode mixture layer non-formed portion 16 Are electrically connected to the above-mentioned positive electrode terminal 70 (see FIG. 1).
The positive electrode mixture layer 14 in the present embodiment contains at least a positive electrode active material, trilithium phosphate (Li 3 PO 4 ) and a binder. Further, in such a positive-electrode mixture layer 14, the lithium compound which is a precursor of positive electrode active material (active material for a lithium compound), a lithium compound which is a precursor of Li 3 PO 4 (Li 3 PO 4 for lithium compound) And at least one side is included. The “excess lithium” in the present specification is a generic term for “lithium compound for active material” and “lithium compound for Li 3 PO 4 ” existing in the positive electrode mixture layer 14 in an unreacted state. The detailed composition of the positive electrode mixture layer 14 containing such excess lithium will be described in detail later.

(b)負極
負極20についても、正極10と同様に、長尺シート状の負極集電体22の両面に負極活物質を主成分とする負極合材層24が形成されている。そして、負極20の幅方向の一方の側縁部に負極合材層非形成部26が形成されており、この負極合材層非形成部26が負極端子72(図1参照)と電気的に接続される。
(B) Negative Electrode In the same manner as the positive electrode 10, the negative electrode mixture layer 24 mainly composed of a negative electrode active material is formed on both sides of the long sheet-like negative electrode current collector 22. Then, a negative electrode mixture layer non-formed portion 26 is formed at one side edge portion in the width direction of the negative electrode 20, and this negative electrode mixture layer non-formed portion 26 electrically connects with the negative electrode terminal 72 (see FIG. 1). Connected

本実施形態において、負極合材層24の組成は、特に制限されず、一般的なリチウムイオン二次電池の負極合材層と同様の組成にすることができる。例えば、負極活物質には、黒鉛(グラファイト)、難黒鉛化炭素(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)、カーボンナノチューブ、或いはこれらを組み合わせた構造を有するもの等の炭素材料を用いることができる。なお、エネルギー密度の観点から、これらの炭素材料中でも黒鉛系材料(天然黒鉛(石墨)や人造黒鉛等)を用いることが好ましい。また、負極合材層24には、その他の添加材(例えばバインダや増粘剤等)が含まれていてもよい。バインダとしては、例えばスチレンブタジエンラバー(SBR)等が挙げられ、増粘剤としては、例えばカルボキシメチルセルロース(CMC)等が挙げられる。   In the present embodiment, the composition of the negative electrode mixture layer 24 is not particularly limited, and can be the same composition as the negative electrode mixture layer of a general lithium ion secondary battery. For example, as the negative electrode active material, carbon materials such as graphite (graphite), non-graphitizable carbon (hard carbon), graphitizable carbon (soft carbon), carbon nanotubes, or materials having a combination thereof are used. Can. Among these carbon materials, it is preferable to use a graphite-based material (natural graphite (graphite), artificial graphite or the like) from the viewpoint of energy density. The negative electrode mixture layer 24 may also contain other additives (for example, a binder, a thickener, and the like). Examples of the binder include styrene butadiene rubber (SBR), and examples of the thickener include carboxymethyl cellulose (CMC).

(c)セパレータ
セパレータ40には、微小な孔を複数有する所定幅の帯状のシート材が用いられる。セパレータ40についても、一般的なリチウムイオン二次電池に用いられるものと同様のものを用いることができ、例えば、多孔質ポリオレフィン系樹脂等ならなるシート材を使用することができる。
(C) Separator As the separator 40, a belt-like sheet material having a predetermined width and having a plurality of minute holes is used. The same separator as that used for a general lithium ion secondary battery can be used for the separator 40, and for example, a sheet material made of a porous polyolefin resin or the like can be used.

(3)非水電解液
また、本実施形態に係るリチウムイオン二次電池100の電池ケース50内には、上記した電極体80とともに非水電解液が収納(充填)されている。かかる非水電解液としては、例えば、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合溶媒(例えば体積比3:4:3)に、支持塩を所定の濃度(例えば1mol/L程度)で含有させたものが挙げられる。なお、かかる支持塩としては、フッ素を含んだリチウム化合物、例えば、LiPF、LiBF、LiCFSO等が用いられる。
(3) Nonaqueous Electrolyte Further, in the battery case 50 of the lithium ion secondary battery 100 according to this embodiment, the nonaqueous electrolyte is housed (filled) together with the above-mentioned electrode body 80. As the non-aqueous electrolytic solution, for example, a mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) (for example, volume ratio 3: 4: 3) What is contained by (for example, about 1 mol / L) is mentioned. As such a supporting salt, lithium compounds containing fluorine, for example, LiPF 6 , LiBF 4 , LiCF 3 SO 3 and the like are used.

2.正極合材層の詳細な組成
上記したように、本実施形態に係るリチウムイオン二次電池100の正極合材層14には、正極活物質と、LiPOと、バインダと、余剰リチウムとが含まれている。これらを含む正極合材層14の詳細な組成について以下に説明する。
2. Detailed Composition of Positive Electrode Mixture Layer As described above, the positive electrode mixture layer 14 of the lithium ion secondary battery 100 according to the present embodiment includes a positive electrode active material, Li 3 PO 4 , a binder, and excess lithium. It is included. The detailed composition of the positive electrode mixture layer 14 including these will be described below.

(1)正極活物質
正極活物質は、リチウムイオンを可逆的に吸蔵および放出可能な化合物であり、少なくともリチウムを含む酸化物(リチウム複合酸化物)から構成されている。かかる正極活物質の固形分率は、正極合材層14全体の固形分を100wt%とした場合、87wt%〜90wt%(例えば88wt%)であると好ましい。
また、本実施形態における正極活物質の種類は、特に制限されず、一般的なリチウムイオン二次電池の正極活物質と同様のものを使用することができる。かかる正極活物質に用いられるリチウム複合酸化物の具体例としては、リチウムニッケル複合酸化物(例えば、LiNiO)、リチウムコバルト複合酸化物(例えば、LiCoO)、リチウムマンガン複合酸化物(例えば、LiMn)、リチウムニッケルコバルトマンガン複合酸化物(例えば、LiNi1/3Co1/3Mn1/3)などが挙げられる。
これらのリチウム複合酸化物は、前駆体である活物質用リチウム化合物と、他の金属元素の供給源とを混合させた後に焼成することによって生成される。かかる活物質用リチウム化合物の具体例としては、水酸化リチウム(LiOH)や炭酸リチウム(LiCO)などが挙げられる。
(1) Positive Electrode Active Material The positive electrode active material is a compound capable of reversibly absorbing and desorbing lithium ions, and is composed of an oxide containing at least lithium (lithium composite oxide). The solid content of the positive electrode active material is preferably 87 wt% to 90 wt% (eg, 88 wt%), where the solid content of the entire positive electrode mixture layer 14 is 100 wt%.
Moreover, the kind in particular of the positive electrode active material in this embodiment is not restrict | limited, The thing similar to the positive electrode active material of a general lithium ion secondary battery can be used. Specific examples of the lithium composite oxide used for the positive electrode active material include lithium nickel composite oxide (for example, LiNiO 2 ), lithium cobalt composite oxide (for example, LiCoO 2 ), lithium manganese composite oxide (for example, LiMn) 2 O 4 ), lithium-nickel-cobalt-manganese composite oxide (eg, LiNi 1/3 Co 1/3 Mn 1/3 O 2 ), and the like.
These lithium composite oxides are produced by mixing a precursor lithium compound for an active material and a source of another metal element and then calcining. Specific examples of such an active material for a lithium compound, lithium hydroxide (LiOH) and lithium carbonate (Li 2 CO 3), and the like.

(2)リン酸三リチウム
上記したように、本実施形態における正極合材層14にはリン酸三リチウム(LiPO)が含まれている。当該LiPOは、リチウムイオン二次電池100が過充電状態となった際に、非水電解液の分解で生じた酸(例えばフッ化水素(HF))を表面に吸着させることができる。これによって、過充電時の発熱や金属元素の溶出等を抑制することができる。かかるLiPOの固形分率は、正極合材層14全体の固形分を100wt%とした場合、1wt%〜4wt%(例えば3wt%)であると好ましい。
このLiPOの粉体材料は、前駆体であるLiPO用リチウム化合物と、リン酸(HPO)とを反応させることによって生成される。かかるLiPO用リチウム化合物の具体例としては、水酸化リチウム(LiOH)などが挙げられる。
(2) Trilithium Phosphate As described above, the positive electrode mixture layer 14 in the present embodiment contains trilithium phosphate (Li 3 PO 4 ). When the lithium ion secondary battery 100 is overcharged, the Li 3 PO 4 can adsorb an acid (for example, hydrogen fluoride (HF)) generated by the decomposition of the non-aqueous electrolytic solution on the surface. . By this, it is possible to suppress heat generation at the time of overcharge, elution of the metal element, and the like. The solid content of the Li 3 PO 4 is preferably 1 wt% to 4 wt% (for example, 3 wt%), where the solid content of the entire positive electrode mixture layer 14 is 100 wt%.
The powder material of this Li 3 PO 4 is produced by reacting a lithium compound for Li 3 PO 4 , which is a precursor, with phosphoric acid (H 2 PO 3 ). Concrete examples of the Li 3 PO 4 for lithium compound include lithium hydroxide (LiOH).

(3)バインダ
また、正極合材層14を正極集電体12の表面に好適に付着させるために、正極合材層14にはバインダが添加されている。バインダは、一般的なリチウムイオン二次電池で用いられる樹脂材料を使用することができる。かかるバインダの一例としては、ポリフッ化ビニリデン(PVdF)、ポリ塩化ビニリデン(PVdC)、ポリエチレンオキサイド(PEO)等が挙げられる。
また、正極合材層14には、バインダ以外の添加剤が添加されていてもよい。バインダ以外の添加剤の一例として、カーボンブラック等の炭素材料からなる導電剤が挙げられる。なお、正極合材層14全体の固形分を100wt%とした場合、バインダを含む添加剤の総固形分率は、6wt%〜12wt%(例えば9wt%)であると好ましい。
(3) Binder Further, in order to adhere the positive electrode mixture layer 14 to the surface of the positive electrode current collector 12, a binder is added to the positive electrode mixture layer 14. As the binder, a resin material used in a general lithium ion secondary battery can be used. Examples of such a binder include polyvinylidene fluoride (PVdF), polyvinylidene chloride (PVdC), polyethylene oxide (PEO) and the like.
In addition, additives other than the binder may be added to the positive electrode mixture layer 14. As an example of an additive other than a binder, the electrically conductive agent which consists of carbon materials, such as carbon black, is mentioned. When the solid content of the entire positive electrode mixture layer 14 is 100 wt%, the total solid content of the additive including the binder is preferably 6 wt% to 12 wt% (e.g. 9 wt%).

(4)余剰リチウム
そして、本実施形態における正極合材層14には、上述した活物質用リチウム化合物やLiPO用リチウム化合物などの余剰リチウム(すなわち、水酸化リチウム(LiOH)や炭酸リチウム(LiCO)など)が含まれている。
かかる余剰リチウムの含有量が少なくなり過ぎると、正極合材層14の抵抗値が大幅に低下するため、充放電反応の初期に反応が急速に進行し、容量維持率や高温耐久性などが大幅に低下する恐れがある。また、余剰リチウムの含有量が多過ぎた場合には、バインダと余剰リチウムとが反応して正極合材層14がゲル化し、生産効率が低下するという問題が生じる恐れもある。
これに対して、本実施形態に係るリチウムイオン二次電池100では、正極合材層14中の余剰リチウムの含有量が調整されている。かかる正極合材層14に含まれる余剰リチウムの総量は、LiPO(粉体材料)中のLiPO用リチウム化合物の重量比をLとし、正極合材層14に対するLiPOの重量比をWとし、正極活物質中の活物質用リチウム化合物の重量比をLとし、正極合材層14に対する正極活物質の重量比をWとしたとき(L×W)+(L×W)という式で表される。本実施形態に係るリチウムイオン二次電池100では、この余剰リチウムの総量が下記の式(1)を満たすように調整されている。
0.44≦(L×W)+(L×W)≦30.6 (1)
(4) Excess Lithium And, in the positive electrode mixture layer 14 in the present embodiment, excess lithium such as the above-mentioned lithium compound for active material or lithium compound for Li 3 PO 4 (ie, lithium hydroxide (LiOH) or lithium carbonate (Such as Li 2 CO 3 ).
If the content of the excess lithium is too small, the resistance value of the positive electrode mixture layer 14 is significantly reduced, so the reaction proceeds rapidly at the beginning of the charge / discharge reaction, and the capacity retention rate, high temperature durability, etc. are significantly reduced. There is a risk of In addition, when the content of the excess lithium is too large, there is a possibility that the binder and the excess lithium react to gelate the positive electrode mixture layer 14 to cause a problem that the production efficiency is lowered.
On the other hand, in the lithium ion secondary battery 100 according to the present embodiment, the content of the excess lithium in the positive electrode mixture layer 14 is adjusted. The total amount of excess lithium contained in such mixture layer 14, Li 3 PO 4 in a weight ratio of Li 3 PO 4 for lithium compounds (powder materials) in the L A, Li 3 PO for the positive-electrode mixture layer 14 Assuming that the weight ratio of 4 is W A , the weight ratio of the lithium compound for the active material in the positive electrode active material is L B, and the weight ratio of the positive electrode active material to the positive electrode mixture layer 14 is W B (L A × W A ) It is represented by the formula called (L B × W B ). In the lithium ion secondary battery 100 according to the present embodiment, the total amount of surplus lithium is adjusted to satisfy the following formula (1).
0.44 ≦ (L A × W A ) + (L B × W B ) ≦ 30.6 (1)

上述した式(1)を満たすように余剰リチウムの総量を調整することによって、正極合材層14の抵抗値を適切な値に維持することができるため、抵抗値の大幅な低下による容量維持率や高温耐久性の低下などを適切に防止することができる。また、バインダと余剰リチウムとの反応による正極合材層14のゲル化を防止することができる。従って、本実施形態によれば、好適な電池性能を有するリチウムイオン二次電池を効率良く得ることができる。   By adjusting the total amount of excess lithium so as to satisfy the above-mentioned equation (1), the resistance value of the positive electrode mixture layer 14 can be maintained at an appropriate value, so the capacity retention ratio due to the significant reduction of the resistance value And high temperature durability can be properly prevented. Moreover, gelation of the positive electrode mixture layer 14 due to the reaction between the binder and the excess lithium can be prevented. Therefore, according to this embodiment, a lithium ion secondary battery having suitable battery performance can be efficiently obtained.

なお、正極合材層14中の余剰リチウムの総量は、中和滴定法によって測定することができる。例えば、正極集電体から正極合材層を剥離させて採集し、当該正極合材層を所定の溶媒(例えば、NMP)に混合させることによって試験溶液を調製する。次に、調製した試験溶液にフェノールフタレイン溶液を添加し、試験溶液が変色するpH≒8の第一中和点(図3参照)まで1mol/LのHCl水溶液を滴下する。そして、このときのHCl水溶液の滴下量に基づいて、正極合材層に含まれる余剰リチウムの総量((L×W)+(LB×W))を測定することができる。 The total amount of excess lithium in the positive electrode mixture layer 14 can be measured by the neutralization titration method. For example, the positive electrode mixture layer is peeled off and collected from the positive electrode current collector, and the positive electrode mixture layer is mixed with a predetermined solvent (for example, NMP) to prepare a test solution. Next, a phenolphthalein solution is added to the prepared test solution, and a 1 mol / L aqueous HCl solution is dropped to a first neutralization point (see FIG. 3) of pH ≒ 8 at which the test solution is discolored. And based on the dripping amount of the HCl aqueous solution at this time, the total amount ((L A × W A ) + (L B × W B )) of the excess lithium contained in the positive electrode mixture layer can be measured.

そして、本実施形態に係るリチウムイオン二次電池100を作製する際には、正極合材層14を形成する前に、LiPO(粉体材料)中のLiPO用リチウム化合物の重量比Lと、正極活物質中の活物質用リチウム化合物の重量比Lとを測定すると好ましい。かかる測定結果に基づいてLiPOの重量比Wと正極活物質の重量比Wとを調整することによって、正極合材層14における余剰リチウムの総量((L×W)+(L×W))を0.44〜30.6の範囲内に容易に調整することができる。
なお、一般的な正極活物質中の活物質用リチウム化合物の重量比Lは、0wt%〜0.3wt%程度(例えば、0.12wt%)であり、LiPO(粉体材料)中のLiPO用リチウム化合物の重量比Lは、0wt%〜0.9wt%程度(例えば、0.36wt%)である。
Then, in making a lithium ion secondary battery 100 according to this embodiment, before forming the positive-electrode mixture layer 14, the Li 3 PO 4 Li 3 PO 4 for lithium compounds (powder materials) in the weight ratio L a, when measuring the weight ratio L B of the active material for a lithium compound in the positive electrode active material preferably. By adjusting the weight ratio W B weight ratio W A and the positive electrode active material of Li 3 PO 4 based on the measurement result, the total amount of excess lithium in the positive-electrode mixture layer 14 ((L A × W A ) + (L B × W B )) can be easily adjusted within the range of 0.44 to 30.6.
The weight ratio L B of the general cathode active material active material for a lithium compound in about 0wt% ~0.3wt% (e.g., 0.12 wt%) was, Li 3 PO 4 (powder materials) the weight ratio L a of Li 3 PO 4 for a lithium compound in an about 0wt% ~0.9wt% (e.g., 0.36 wt%).

また、上記した実施形態においては、ここで開示される非水電解液二次電池の一例としてリチウムイオン二次電池を説明したが、かかる説明は本発明の適用対象を限定することを意図したものではなく、本発明はリチウムイオン二次電池以外の非水電解液二次電池に適用することもできる。
但し、作動電位が4.25V(vs.Li/Li)以下のリチウムイオン二次電池(4V級電池)は、正極合材層中の余剰リチウムの総量が電池性能に与える影響が大きいため、高温耐久性などが低下しやすいという性質を有している。従って、かかる4V級電池は、本発明の効果をより顕著に発揮させることができるため、本発明の適用対象として特に好ましい。
Further, in the above embodiment, the lithium ion secondary battery has been described as an example of the non-aqueous electrolyte secondary battery disclosed herein, but such description is intended to limit the application object of the present invention Instead, the present invention can also be applied to non-aqueous electrolyte secondary batteries other than lithium ion secondary batteries.
However, a lithium ion secondary battery (4 V class battery) whose working potential is 4.25 V (vs. Li / Li + ) or less has a large effect on the battery performance due to the total amount of excess lithium in the positive electrode mixture layer. It has the property that high temperature durability and the like are easily reduced. Accordingly, such a 4V class battery is particularly preferable as an application target of the present invention, since the effect of the present invention can be exhibited more remarkably.

[試験例]
以下、本発明に関する試験例を説明するが、試験例の説明は本発明を限定することを意図したものではない。
[Test example]
Hereinafter, although the test example regarding this invention is demonstrated, description of a test example is not intending limiting this invention.

1.各試験例の作製
本試験例では、余剰リチウムの総量が異なる7種類の正極合材を用意し、各々の正極合材を用いて4V級のリチウムイオン二次電池(サンプル1〜サンプル7)を作製した。
1. Preparation of Each Test Example In this test example, 7 types of positive electrode mixtures having different total amounts of surplus lithium are prepared, and 4 V class lithium ion secondary batteries (samples 1 to 7) are prepared using each positive electrode mixture. Made.

具体的には、サンプル1〜サンプル7の各々について、正極活物質(リチウムニッケルコバルトマンガン複合酸化物)と、LiPOと、導電材(AB:アセチレンブラック)と、バインダ(PVdF)とを混合し、当該混合物を分散媒(水)に分散させることによってペースト状の正極合材を調製した。そして、調製した正極合材を正極集電体(アルミニウム箔)の両面に塗布し乾燥させた後、所定の圧力でプレスすることによってシート状の正極を作製した。
また、負極活物質(グラファイト)と、バインダ(SBR:スチレンーブタジエン共重合体)と、増粘剤(CMC:カルボキシメチルセルロース)とを分散媒(水)に混合させてペースト状の負極合材を調製し、当該負極合材をシート状の負極集電体(銅箔)の両面に塗布し乾燥させた後にプレスすることによってシート状の負極を作製した。
次に、上述の正極と負極とをセパレータを介して積層させた後に、該積層体を捲回することによって捲回電極体を作製した。そして、捲回電極体を非水電解液とともに電池ケースに収容した後に、電池ケースを密閉して評価試験用の4V級リチウムイオン二次電池を作製した。なお、非水電解液には、ECとDMCとEMCとを3:4:3の体積比で含む混合溶媒に支持塩(LiPF)を約1mol/リットルの濃度で含有させた非水電解液を使用した。
Specifically, for each of the samples 1 to 7, the positive electrode active material (lithium-nickel-cobalt-manganese composite oxide), Li 3 PO 4 , the conductive material (AB: acetylene black), and the binder (PVdF) The mixture was mixed, and the mixture was dispersed in a dispersion medium (water) to prepare a paste-like positive electrode mixture. Then, the prepared positive electrode mixture was applied to both surfaces of a positive electrode current collector (aluminum foil) and dried, and then pressed at a predetermined pressure to produce a sheet-like positive electrode.
In addition, a negative electrode active material (graphite), a binder (SBR: styrene-butadiene copolymer), and a thickener (CMC: carboxymethyl cellulose) are mixed in a dispersion medium (water) to form a paste-like negative electrode mixture. After preparing and apply | coating and drying the said negative electrode compound material on both surfaces of a sheet-like negative electrode collector (copper foil), the sheet-like negative electrode was produced by pressing.
Next, the positive electrode and the negative electrode described above were laminated via a separator, and then the laminated body was wound to produce a wound electrode body. Then, after the wound electrode body was housed in the battery case together with the non-aqueous electrolyte, the battery case was sealed to prepare a 4V class lithium ion secondary battery for evaluation test. In addition, the non-aqueous electrolyte is a non-aqueous electrolyte in which a mixed solvent containing EC, DMC and EMC in a volume ratio of 3: 4: 3 contains a supporting salt (LiPF 6 ) at a concentration of about 1 mol / liter. It was used.

2.余剰リチウムの測定
上述した電池の作製において、ペースト状の正極合材を調製する前に正極活物質を採集し、当該正極活物質中の活物質用リチウム化合物の重量比Lを中和滴定法によって測定した。具体的には、2.01g〜2.04gの正極活物質を100mlの溶媒(イオン交換水)に混合させて試験溶液を調製した。次に、試験溶液に10%塩化バリウム水溶液(2ml)とフェノールフタレイン溶液とを添加した後、1mol/LのHCl水溶液を一滴ずつ滴下した。そして、試験溶液が変色した時点(pH≒8)のHCl水溶液の滴下量に基づいて、正極活物質中の活物質用リチウム化合物の重量比Lを算出した。
さらに、本試験例では、上述の正極活物質と同様の手順に従って、LiPO(粉体材料)中のLiPO用リチウム化合物の重量比Lを測定した。各々の測定結果を表1に示す。
そして、本試験例では、上述したLiPO用リチウム化合物の重量比Lと活物質用リチウム化合物の重量比Lとに基づいて、正極合材層中の余剰リチウムの総量((L×W)+(LB×W))を算出した。算出結果を表1に示す。
2. In the preparation of the measurement described above battery excess lithium, pasty collected positive electrode active material before preparing the positive electrode, the positive electrode active neutralizing weight ratio L B of the active material for a lithium compound in the substance titration Measured by Specifically, a test solution was prepared by mixing 2.01 g to 2.04 g of the positive electrode active material in 100 ml of a solvent (ion-exchanged water). Next, a 10% aqueous solution of barium chloride (2 ml) and a phenolphthalein solution were added to the test solution, and then a 1 mol / L aqueous solution of HCl was dropped dropwise. Then, based on the dropping amount of aqueous HCl at which the test solution was discolored (pH ≒ 8), to calculate the weight ratio L B of the active material for a lithium compound in the positive electrode active material.
Furthermore, in the present test example, according to the procedure similar to the positive electrode active material described above, it was weighed ratio L A of Li 3 PO 4 Li 3 PO 4 for lithium compounds (powder materials) in. The respective measurement results are shown in Table 1.
In the present test example, based on the weight ratio L B weight ratio L A and the active material for a lithium compound Li 3 PO 4 for a lithium compound described above, the total amount of excess lithium positive electrode layer ((L A x W A ) + (L B x W B )) was calculated. The calculation results are shown in Table 1.

3.評価試験
本試験例では、上記したサンプル1〜サンプル7の粘度増加率(%)を測定すると共に高温耐久試験を行った。以下、具体的な条件を説明する。
3. Evaluation Test In this test example, the viscosity increase rate (%) of the samples 1 to 7 described above was measured and a high temperature durability test was performed. Specific conditions will be described below.

(1)粘度増加率
サンプル1〜サンプル7の二次電池を作製する途中でペースト状の正極合材を採集し、B型粘度計(5番ロータ、2rpm)を用いて粘度を測定した。そして、サンプル1の粘度を基準(100%)とし、当該サンプル1の粘度に対する各サンプルの正極合材の粘度を粘度増加率として算出した。算出結果を表1および図4に示す。
(1) Viscosity increase rate During preparation of the secondary batteries of Samples 1 to 7, the paste-like positive electrode mixture was collected, and the viscosity was measured using a B-type viscometer (No. 5 rotor, 2 rpm). And the viscosity of the sample 1 was made into the reference | standard (100%), and the viscosity of the positive electrode compound material of each sample with respect to the viscosity of the said sample 1 was computed as a viscosity increase rate. The calculation results are shown in Table 1 and FIG.

(2)高温耐久試験
本試験では、各サンプルの二次電池に初期充放電を施した後に、各々の二次電池を高温環境で保存する高温耐久試験を実施し、当該試験の前後における抵抗上昇率を測定した。
具体的には、各サンプルの二次電池を4.1Vまで充電した後に3.0Vまで放電する初期充放電を行った。そして、各サンプルの二次電池をSOC60%の状態に調整し、25℃の温度環境下で10Cのレートで10秒間のCC放電を行い、このときの電流(I)−電圧(V)のプロット値の一次近似直線の傾きから初期抵抗値を求めた。
次に、各サンプルの二次電池を60℃の高温環境下で24時間保存する高温耐久試験を実施した後、上記の初期抵抗値と同様の条件で抵抗値(試験後の抵抗値)を測定し、試験後の抵抗値と初期抵抗値に基づいて、高温耐久試験による抵抗上昇率(%)を求めた。結果を表1および図5に示す。
(2) High-Temperature Durability Test In this test, the secondary battery of each sample is subjected to initial charge and discharge, and then the high-temperature durability test for storing each secondary battery in a high temperature environment is performed. The rate was measured.
Specifically, an initial charge and discharge was performed in which the secondary battery of each sample was charged to 4.1 V and then discharged to 3.0 V. Then, the secondary battery of each sample is adjusted to a state of SOC 60%, CC discharge is performed for 10 seconds at a rate of 10 C in a temperature environment of 25 ° C., and a plot of current (I) -voltage (V) at this time. The initial resistance value was determined from the slope of the linear approximation of the value.
Next, after performing a high temperature endurance test for storing the secondary battery of each sample in a high temperature environment of 60 ° C. for 24 hours, the resistance value (resistance value after the test) is measured under the same conditions as the initial resistance value described above. Then, based on the resistance value and the initial resistance value after the test, the resistance increase rate (%) in the high temperature endurance test was determined. The results are shown in Table 1 and FIG.

Figure 2019087510
Figure 2019087510

表1および図4に示すように、余剰リチウムの総量が30.6を超えたサンプル7では、正極合材の粘度の増加が確認された。これは、正極合材層に多く含まれた余剰リチウムがバインダと反応して正極合材がゲル化したためと解される。
また、表1および図5に示すように、余剰リチウムの総量が0.44を下回ったサンプル1では、高温耐久試験後に抵抗が上昇することが確認された。これは、正極合材層中の余剰リチウムが少なくなり過ぎて正極合材層の抵抗値が大幅に低下した結果、反応が急速に進行し易くなって高温耐久性が低下したためと解される。
そして、サンプル2〜サンプル6では、正極合材のゲル化や高温耐久性の低下が好適に抑制されていた。このことから、余剰リチウムの総量を0.44〜30.6の範囲内に調整することによって、高性能の二次電池を効率良く作製できることが確認された。
As shown in Table 1 and FIG. 4, in Sample 7 in which the total amount of excess lithium exceeded 30.6, an increase in the viscosity of the positive electrode mixture was confirmed. It is considered that this is because excess lithium contained in the positive electrode mixture layer reacts with the binder to gel the positive electrode mixture.
In addition, as shown in Table 1 and FIG. 5, it was confirmed that, in sample 1 in which the total amount of excess lithium was less than 0.44, the resistance increased after the high temperature durability test. This is considered to be due to the fact that the reaction easily progresses rapidly and the high temperature durability is lowered as the excess lithium in the positive electrode mixture layer becomes too small and the resistance value of the positive electrode mixture layer is significantly reduced.
And in Samples 2 to 6, the gelation of the positive electrode mixture and the lowering of the high temperature durability were suitably suppressed. From this, it was confirmed that a high-performance secondary battery can be efficiently produced by adjusting the total amount of excess lithium in the range of 0.44 to 30.6.

以上、本発明を詳細に説明したが、上記した実施形態は例示にすぎず、ここで開示される発明には上述の具体例を様々に変形、変更したものが含まれる。   Although the present invention has been described in detail, the above-described embodiment is merely an example, and the invention disclosed herein includes various modifications and alterations of the specific example described above.

10 正極
12 正極集電体
14 正極合材層
16 正極合材層非形成部
20 負極
22 負極集電体
24 負極合材層
26 負極合材層非形成部
40 セパレータ
50 電池ケース
52 ケース本体
54 蓋体
70 正極端子
72 負極端子
80 捲回電極体
100 リチウムイオン二次電池
10 positive electrode 12 positive electrode current collector 14 positive electrode mixture layer 16 positive electrode mixture layer non-formed portion 20 negative electrode 22 negative electrode current collector 24 negative electrode mixture layer 26 negative electrode mixture layer non-formed portion 40 separator 50 battery case 52 case main body 54 lid 70 positive electrode terminal 72 negative electrode terminal 80 wound electrode body 100 lithium ion secondary battery

Claims (1)

正極集電体上に正極合材層が形成されている正極と、負極集電体上に負極合材層が形成されている負極と、フッ素を含んだリチウム化合物を支持塩として有する非水電解液とを備えており、前記正極合材層に正極活物質とLiPOとバインダとが含まれている非水電解液二次電池であって、
ここで、前記正極合材層に、前記正極活物質の前駆体である活物質用リチウム化合物と、前記LiPOの前駆体であるLiPO用リチウム化合物の少なくとも一方が含まれており、
前記LiPO中の前記LiPO用リチウム化合物の重量比をLとし、前記正極合材層に対する前記LiPOの重量比をWとし、前記正極活物質中の前記活物質用リチウム化合物の重量比をLとし、前記正極合材層に対する前記正極活物質の重量比をWとしたとき、下記の式(1)を満たすように前記正極合材層が形成されている、非水電解液二次電池。
0.44≦(L×W)+(L×W)≦30.6 (1)
Nonaqueous electrolysis comprising a positive electrode having a positive electrode mixture layer formed on a positive electrode current collector, a negative electrode having a negative electrode mixture layer formed on a negative electrode current collector, and a lithium compound containing fluorine as a support salt A non-aqueous electrolyte secondary battery comprising: a solution; and the positive electrode mixture layer containing a positive electrode active material, Li 3 PO 4 and a binder,
Here, the positive electrode mixture layer contains at least one of a lithium compound for an active material which is a precursor of the positive electrode active material and a lithium compound for Li 3 PO 4 which is a precursor of the Li 3 PO 4 . Yes,
Wherein the weight ratio of Li 3 PO the Li 3 PO 4 for a lithium compound in 4 and L A, the weight ratio of the Li 3 PO 4 with respect to the positive-electrode mixture layer and W A, the utilization of the positive electrode active material in the weight ratio of the material for a lithium compound and L B, when the weight ratio of the positive active material for the positive-electrode mixture layer was W B, the positive-electrode mixture layer is formed to satisfy equation (1) below The non-aqueous electrolyte secondary battery.
0.44 ≦ (L A × W A ) + (L B × W B ) ≦ 30.6 (1)
JP2017217171A 2017-11-10 2017-11-10 Non-aqueous electrolyte secondary battery Active JP6948562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017217171A JP6948562B2 (en) 2017-11-10 2017-11-10 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017217171A JP6948562B2 (en) 2017-11-10 2017-11-10 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2019087510A true JP2019087510A (en) 2019-06-06
JP6948562B2 JP6948562B2 (en) 2021-10-13

Family

ID=66763328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017217171A Active JP6948562B2 (en) 2017-11-10 2017-11-10 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6948562B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112501522A (en) * 2020-11-06 2021-03-16 宁波市海曙文昌金属制品有限公司 High-temperature-resistant piercing plug and preparation method thereof
JP2022141192A (en) * 2021-03-15 2022-09-29 プライムプラネットエナジー&ソリューションズ株式会社 Positive electrode and non-aqueous electrolyte secondary battery including the same
CN117638200A (en) * 2024-01-24 2024-03-01 宁德新能源科技有限公司 Lithium ion battery and electronic device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306547A (en) * 1996-05-16 1997-11-28 Sony Corp Nonaqueous electrolyte secondary battery
JP2000327339A (en) * 1999-05-17 2000-11-28 Mitsubishi Cable Ind Ltd Li-Co-BASED COMPOUND OXIDE AND ITS PRODUCTION
WO2016051653A1 (en) * 2014-09-30 2016-04-07 三洋電機株式会社 Positive electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery using same
JP2016152113A (en) * 2015-02-17 2016-08-22 日立化成株式会社 Lithium ion secondary battery
JP2016225114A (en) * 2015-05-29 2016-12-28 日本化学産業株式会社 Processing method for cathode active material for lithium secondary battery
WO2017146248A1 (en) * 2016-02-26 2017-08-31 三井金属鉱業株式会社 Lithium metal composite oxide having layered structure
WO2018123213A1 (en) * 2016-12-28 2018-07-05 パナソニック株式会社 Nonaqueous electrolyte secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306547A (en) * 1996-05-16 1997-11-28 Sony Corp Nonaqueous electrolyte secondary battery
JP2000327339A (en) * 1999-05-17 2000-11-28 Mitsubishi Cable Ind Ltd Li-Co-BASED COMPOUND OXIDE AND ITS PRODUCTION
WO2016051653A1 (en) * 2014-09-30 2016-04-07 三洋電機株式会社 Positive electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery using same
JP2016152113A (en) * 2015-02-17 2016-08-22 日立化成株式会社 Lithium ion secondary battery
JP2016225114A (en) * 2015-05-29 2016-12-28 日本化学産業株式会社 Processing method for cathode active material for lithium secondary battery
WO2017146248A1 (en) * 2016-02-26 2017-08-31 三井金属鉱業株式会社 Lithium metal composite oxide having layered structure
WO2018123213A1 (en) * 2016-12-28 2018-07-05 パナソニック株式会社 Nonaqueous electrolyte secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112501522A (en) * 2020-11-06 2021-03-16 宁波市海曙文昌金属制品有限公司 High-temperature-resistant piercing plug and preparation method thereof
JP2022141192A (en) * 2021-03-15 2022-09-29 プライムプラネットエナジー&ソリューションズ株式会社 Positive electrode and non-aqueous electrolyte secondary battery including the same
CN117638200A (en) * 2024-01-24 2024-03-01 宁德新能源科技有限公司 Lithium ion battery and electronic device
CN117638200B (en) * 2024-01-24 2024-04-30 宁德新能源科技有限公司 Lithium ion battery and electronic device

Also Published As

Publication number Publication date
JP6948562B2 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
JP5430920B2 (en) Nonaqueous electrolyte secondary battery
WO2017199891A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, positive electrode mixture paste for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
KR101678798B1 (en) Method for producing nonaqueous electrolyte secondary battery
EP2919304B1 (en) Positive electrode active material and hybrid ion battery
JP5931916B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2020013747A (en) Positive electrode active material for lithium ion secondary battery and method of producing the same, positive electrode mixture paste for lithium ion secondary battery, and lithium ion secondary battery
JP4841133B2 (en) Nonaqueous electrolyte secondary battery
US11996556B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, positive electrode mixture paste for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP5999457B2 (en) Lithium secondary battery and manufacturing method thereof
KR20150139780A (en) Nonaqueous electrolyte secondary battery and manufacturing method of the same
JP2013084395A (en) Lithium ion secondary battery manufacturing method
CN103931030B (en) Lithium ion secondary battery and method for manufacturing same
WO2011129066A1 (en) Lithium-ion secondary battery
JP2005340056A (en) Nonaqueous electrolyte secondary battery
JP2015060767A (en) Positive electrode material for lithium secondary battery, and lithium secondary battery
JP2020123460A (en) Pre-doping material, positive electrode including pre-doping material, and method for producing non-aqueous electrolyte secondary battery including positive electrode thereof, and method for producing metal oxide
JP6948562B2 (en) Non-aqueous electrolyte secondary battery
CN106133952A (en) Rechargeable nonaqueous electrolytic battery
EP3451437B1 (en) Lithium ion secondary cell charging method, lithium ion secondary cell system, and power storage device
JP2015170477A (en) Nonaqueous electrolyte secondary battery
JP6667111B2 (en) Non-aqueous electrolyte secondary battery
WO2012090728A1 (en) Non-aqueous electrolyte secondary cell
JP2014026868A (en) Cathode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP6774632B2 (en) Non-aqueous electrolyte secondary battery
KR20200088771A (en) Negative electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210901

R151 Written notification of patent or utility model registration

Ref document number: 6948562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151