JPH09306547A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH09306547A
JPH09306547A JP8121779A JP12177996A JPH09306547A JP H09306547 A JPH09306547 A JP H09306547A JP 8121779 A JP8121779 A JP 8121779A JP 12177996 A JP12177996 A JP 12177996A JP H09306547 A JPH09306547 A JP H09306547A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
secondary battery
electrolyte secondary
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8121779A
Other languages
Japanese (ja)
Inventor
Takayuki Yamahira
隆幸 山平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8121779A priority Critical patent/JPH09306547A/en
Publication of JPH09306547A publication Critical patent/JPH09306547A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery, having a high energy density, a proper cycle characteristic, and high safety. SOLUTION: In a nonaqueous electrolyte secondary battery, wherein a substance, for doping/dedoping a lithium ion, is adopted as a negative electrode 1, and a lithium composite oxide is adopted as a positive electrode 2; a nonaqueous electrolyte secondary battery is constituted by using LixMO2 as positive electrode active material, also phosphoric acid lithium hexafluoride, or boric acid lithium tetrafluoride as an electrolyte, and also adding a boric acid lithium of 0.1wt.% or more, 5.0wt.% or less, into the positive electrode. In the constitution of the LixMO2 , M: transition metals composed of one kind or more, x: 0.05 or more, and 1.10 or less; and moreover transition metals: one kind in a group, composed of the element of Co, Ni, Mn, and Fe, or the mixture of these elements.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は非水電解質二次電池
に関し、更に詳しくは非水電解質二次電池の正極材料の
構成に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to the constitution of a positive electrode material for a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】近年の電子技術のめざましい進歩によ
り、電子機器の高性能化、小型化、ポータブル化が進
み、これら電子機器に使用される二次電池エネルギーの
高密度化の要求が高くなってきている。従来、これらの
電子機器に使用される二次電池としては、ニッケルカド
ミウム電池や鉛電池等があるが、これらの電池では放電
電圧が低く、エネルギー密度の高い電池を形成すること
は困難であった。
2. Description of the Related Art Recent remarkable advances in electronic technology have led to higher performance, smaller size, and more portable electronic equipment, and there has been an increasing demand for higher density of secondary battery energy used in these electronic equipment. ing. Conventionally, as secondary batteries used in these electronic devices, there are nickel-cadmium batteries, lead batteries, etc., but these batteries have low discharge voltage and it is difficult to form batteries with high energy density. .

【0003】また、最近ではリチウムやリチウム合金、
もしくは炭素材料のようなリチウムイオンをドープおよ
び脱ドープが可能な物質を負極として用い、また正極に
リチウムコバルト複合酸化物等のリチウム複合酸化物を
使用する非水電解質二次電池の開発が行われている。こ
の電池は、電池電圧が高く、高エネルギー密度を有し、
自己放電も少なく、且つサイクル特性に優れているもの
である。
Recently, lithium, lithium alloys,
Alternatively, a non-aqueous electrolyte secondary battery using a material such as a carbon material that can be doped and dedoped with lithium ions as a negative electrode and a lithium composite oxide such as a lithium cobalt composite oxide for a positive electrode is being developed. ing. This battery has high battery voltage, high energy density,
The self-discharge is small and the cycle characteristics are excellent.

【0004】しかしながら、ニッケルカドミウム電池に
比較すれば自己放電量は少ないものの、それでも常温で
一ヶ月当たり、10%程度発生することが確認されてお
り、より一層、この自己放電量を低減することが望まし
い。
However, although the self-discharge amount is smaller than that of the nickel-cadmium battery, it has been confirmed that the self-discharge amount is still about 10% per month at room temperature, and it is possible to further reduce the self-discharge amount. desirable.

【0005】[0005]

【発明が解決しようとする課題】従って本発明の課題
は、エネルギー密度が高く、自己放電量の少ないサイク
ル特性に優れた非水電解質二次電池を提供しようとする
ものである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a non-aqueous electrolyte secondary battery having a high energy density and a small self-discharge amount and excellent cycle characteristics.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題に鑑み
なされたものであり、リチウムイオンのドープ且つ脱ド
ープが可能な物質を負極とし、リチウム複合酸化物を正
極とする非水電解質二次電池において、正極活物質とし
てLixMO2 を用い、電解質として6フッ化リン酸リ
チウムを用いると共に、正極中にリン酸リチウムを0.
1重量%以上、5.0重量%以下を添加して非水電解質
二次電池を構成する。
The present invention has been made in view of the above problems, and a non-aqueous electrolyte secondary in which a substance capable of doping and dedoping with lithium ions is used as a negative electrode and a lithium composite oxide is used as a positive electrode. In the battery, LixMO 2 was used as the positive electrode active material, lithium hexafluorophosphate was used as the electrolyte, and lithium phosphate was added to the positive electrode in an amount of 0.
A non-aqueous electrolyte secondary battery is formed by adding 1% by weight or more and 5.0% by weight or less.

【0007】リチウムイオンのドープ且つ脱ドープが可
能な物質を負極とし、リチウム複合酸化物を正極とする
非水電解質二次電池において、正極活物質としてLix
MO2 を用い、電解質として4フッ化ホウ酸リチウムを
用いると共に、正極中にホウ酸リチウムを0.1重量%
以上5.0重量%以下を添加して非水電解質二次電池を
構成する。
In a non-aqueous electrolyte secondary battery in which a substance capable of doping and dedoping lithium ions is used as a negative electrode and a lithium composite oxide is used as a positive electrode, Lix is used as a positive electrode active material.
MO 2 is used, lithium tetrafluoroborate is used as the electrolyte, and lithium borate is added to the positive electrode in an amount of 0.1% by weight.
The non-aqueous electrolyte secondary battery is formed by adding the above 5.0 wt% or less.

【0008】前記LixMO2 の構成は、Mは一種以上
から成る遷移金属であり、また、xは0.05以上1.
10以下であるとし、更に、前記遷移金属はCo、N
i、Mn、Feの元素から成る族の中の1種、またはこ
れらの混合物として上記課題を解決する。
In the composition of LixMO 2 , M is a transition metal composed of one or more, and x is 0.05 or more and 1.
10 or less, and the transition metal is Co, N
The above problem is solved by one kind of a group consisting of elements of i, Mn and Fe, or a mixture thereof.

【0009】本発明は上述したように、正極にリン酸リ
チウムを0.1〜5.0重量%添加することにより、保
存性に優れた特性を有するリチウムイオン電池を作製で
き、従って、高エネルギー密度でサイクル特性に優れ、
且つ安全性の高い非水電解質二次電池が実現する。
As described above, according to the present invention, by adding 0.1 to 5.0% by weight of lithium phosphate to the positive electrode, a lithium ion battery having excellent storability can be manufactured, and therefore high energy can be obtained. Excellent cycle characteristics due to density,
Also, a highly safe non-aqueous electrolyte secondary battery is realized.

【0010】[0010]

【発明の実施の形態】前述の課題を解決するために、本
発明者らは正極活物質であるLixMO2 にリン酸リチ
ウムおよびホウ酸リチウムを0.1〜5.0重量%添加
することにより、保存特性が改善されること見いだし
た。但し、Mは1種以上の遷移金属、好ましくはCo、
Ni、Mn、Feの中の少なくとも一種、またはそれら
の混合物であり、また、xは0.05以上1.10以下
である。
BEST MODE FOR CARRYING OUT THE INVENTION In order to solve the above-mentioned problems, the present inventors have added 0.1 to 5.0% by weight of lithium phosphate and lithium borate to LixMO 2 as a positive electrode active material. , And found that the storage characteristics were improved. However, M is one or more transition metals, preferably Co,
It is at least one of Ni, Mn, and Fe, or a mixture thereof, and x is 0.05 or more and 1.10.

【0011】これは、フッ素を含むリチウム塩が有機溶
媒中の微量な水分、不純物、また、充放電における分解
物と反応し、フッ素が遊離してリチウムイオンと反応す
るためと考えられる。特に高電圧(即ち、酸化方向)が
印加される正極において分解物が著しく発生すものであ
る。尚、前記不純物とは水と同様な化学特性を有するも
の、例えば水酸基を有するアルコール類、ケトン基を有
するケトン類があげられる。
It is considered that this is because the lithium salt containing fluorine reacts with a trace amount of water and impurities in the organic solvent and decomposition products in charge and discharge, and fluorine is liberated and reacts with lithium ions. In particular, decomposition products are remarkably generated in the positive electrode to which a high voltage (that is, the oxidizing direction) is applied. The impurities include those having the same chemical properties as water, such as alcohols having a hydroxyl group and ketones having a ketone group.

【0012】前記正極活性物は、例えばリチウム、コバ
ルト、ニッケルの炭酸塩を出発原料とし、これに炭酸塩
を組成に応じて混合し、酸素存在雰囲気下600℃〜1
000℃の温度範囲で焼成することにより得られる。ま
た、出発原料は炭酸塩に限定することなく、水酸化物、
酸化物からも同様に合成が可能である。
The positive electrode active material is, for example, a lithium, cobalt, or nickel carbonate as a starting material, and the carbonate is mixed according to the composition, and the mixture is mixed in an oxygen-existing atmosphere at 600 ° C. to 1 ° C.
It is obtained by firing in the temperature range of 000 ° C. Further, the starting material is not limited to carbonate, hydroxide,
Similarly, it can be synthesized from an oxide.

【0013】一方、負極には本発明では炭素材料を用い
るが、リチウムをドープ、脱ドープ可能なものであれば
良く、熱分解炭素類、コークス類(例えば、ピッチコー
クス、ニードルコークス、石油コークス等)、グラファ
イト類、ガラス状炭素類、有機高分子化合物焼成体(例
えば、フェノール樹脂、フラン樹脂等を適当な温度で焼
成し炭素化したもの)、炭素繊維、活性炭等、或いは金
属リチウム、リチウム合金(例えば、リチウム−アルミ
合金)の他、ポリアセチレン、ポリピロール等のポリマ
ーも使用可能である。
On the other hand, although a carbon material is used for the negative electrode in the present invention, any material capable of being doped or dedoped with lithium may be used, such as pyrolytic carbons, cokes (for example, pitch coke, needle coke, petroleum coke, etc.). ), Graphites, glassy carbons, organic polymer compound fired bodies (for example, those obtained by firing phenolic resins, furan resins, etc. at appropriate temperatures to carbonize them), carbon fibers, activated carbon, etc., or metallic lithium, lithium alloys Besides (for example, lithium-aluminum alloy), polymers such as polyacetylene and polypyrrole can also be used.

【0014】電解液としては、例えばリチウム塩を電解
質とし、これを有機溶媒に溶解させた電解液が用いられ
る。ここで有機溶媒としては特に限定するものではない
が、プロピレンカーボネート、エチレンカーボネート、
1,2−ジメトキシエタン、γ−ブチルラクトン、テト
ラヒドロフラン、2−メチルテトラヒドロフラン、1,
3−ジオキソラン、スルホラン、アセトニトリル、ジエ
チルカーボネート、ジプロピルカーボネート等の単独、
もしくは2種以上の混合溶媒が使用可能である。電解質
としてはLiPF6 、LiBF4 が使用可能である。
As the electrolytic solution, for example, an electrolytic solution in which a lithium salt is used as an electrolyte and this is dissolved in an organic solvent is used. Here, the organic solvent is not particularly limited, propylene carbonate, ethylene carbonate,
1,2-dimethoxyethane, γ-butyl lactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,
3-dioxolane, sulfolane, acetonitrile, diethyl carbonate, dipropyl carbonate, etc. alone,
Alternatively, a mixed solvent of two or more kinds can be used. LiPF 6 and LiBF 4 can be used as the electrolyte.

【0015】つぎに図1を参照して実施例について説明
する。
Next, an embodiment will be described with reference to FIG.

【0016】実施例1 正極活物質としてLiCoO2 の合成を以下のように行
った。炭酸リチウムと炭酸コバルトをLi、Coをモル
比1になるように混合し、空気中で900℃、5時間焼
成した。この材料についてX線回折測定を行った結果、
JCPDSカードのLiCoO2 と良く一致していた。
正極活物質中の炭酸リチウムを定量したところ全く検出
されず、0%であった。その後、自動乳鉢を用いて粉砕
してLiCoO2 を得た。
Example 1 LiCoO 2 was synthesized as a positive electrode active material as follows. Lithium carbonate and cobalt carbonate were mixed in a molar ratio of Li and Co of 1 and fired in air at 900 ° C. for 5 hours. As a result of X-ray diffraction measurement of this material,
It was in good agreement with LiCoO 2 of the JCPDS card.
When lithium carbonate in the positive electrode active material was quantified, it was not detected at all and was 0%. Then, to obtain a LiCoO 2 was pulverized using an automatic mortar.

【0017】尚、正極活物質中の炭酸リチウム量は、試
料を硫酸で分解し生成したCO2 を塩酸バリウムと水酸
化ナトリウム溶液中に導入して吸収させた後、塩酸標準
溶液で滴定することによりCO2 を定量し、そのCO2
量から換算して求めた。
The amount of lithium carbonate in the positive electrode active material should be determined by introducing CO 2 produced by decomposing a sample with sulfuric acid into a barium chloride and sodium hydroxide solution to absorb it, and then titrating with a hydrochloric acid standard solution. the CO 2 was quantified by its CO 2
Calculated from the amount.

【0018】このようにして得られたLiCoO2 を用
い、LiCoO2 を90.5重量%、リン酸リチウムを
0.1重量%、導電材としてグラファイトを6.0重量
%、結着材としてポリフッ化ビニリデンを3.0重量%
の割合で混合して正極合材を作製し、これをN−メチル
−2ピロリドンに分散してスラリー状とした。つぎに、
このスラリーを図1に示すように正極集電体10である
帯状のアルミニウム箔の両面に塗布し、乾燥後ローラー
プレス機で圧縮成形して正極2を作製する。
Using LiCoO 2 thus obtained, 90.5 wt% LiCoO 2 , 0.1 wt% lithium phosphate, 6.0 wt% graphite as a conductive material, and polyfluoride as a binder. 3.0% by weight of vinylidene chloride
To prepare a positive electrode mixture, which was dispersed in N-methyl-2pyrrolidone to form a slurry. Next,
As shown in FIG. 1, this slurry is applied to both sides of a strip-shaped aluminum foil that is the positive electrode current collector 10, dried and then compression-molded with a roller press to form a positive electrode 2.

【0019】つぎに、負極活物質は、出発物質に石油ピ
ッチを用い、これを酸素を含む官能基を10〜20%導
入(所謂、酸素架橋)した後、不活性ガス中1000℃
で焼成して得たガラス状炭素に近い性質の難黒鉛炭素材
料を用いた。この材料について、X線回折測定を行った
結果、(002)面の面間隔は0.376nmで、また
真比重は1.58であった。
Next, for the negative electrode active material, petroleum pitch was used as a starting material, 10 to 20% of a functional group containing oxygen was introduced (so-called oxygen cross-linking), and then 1000 ° C. in an inert gas.
A non-graphite carbon material having properties close to those of glassy carbon obtained by firing at was used. As a result of X-ray diffraction measurement of this material, the (002) plane spacing was 0.376 nm, and the true specific gravity was 1.58.

【0020】このようにして得られた炭素材料を90.
0重量%、結着材としてポリフッ化ビニリデンを10.
0重量%の割合で混合して負極合材を作成し、これをN
−メチル−2−ピロリドンに分散してスラリー状とし
た。つぎに、このスラリーを負極集電体9である帯状の
銅箔の両面に塗布し、乾燥後ローラープレス機で圧縮成
形して負極1を作製した。
90.
0 wt%, polyvinylidene fluoride as a binder 10.
A mixture of 0% by weight was mixed to prepare a negative electrode mixture, and this was mixed with N
-Methyl-2-pyrrolidone was dispersed into a slurry. Next, this slurry was applied on both sides of a strip-shaped copper foil which is the negative electrode current collector 9, dried and then compression-molded by a roller press machine to prepare the negative electrode 1.

【0021】この帯状の負極1、正極2、および厚さ2
5μmの微孔性ポリプレンフィルムからなるセパレータ
3を順に積層してから渦巻状に多数回、巻回することに
より巻回体を作製する。つぎに、ニッケルメッキを施し
た鉄製の電池缶5の底部に絶縁板4を挿入し、上記巻回
体を収納する。更に、負極の集電を取るためにニッケル
製の負極リード11の一端を負極1に圧着し、他端を電
池缶5に溶接した。また、正極の集電を取るためにアル
ミニウム製の正極リード12の一端を正極2に取りつ
け、他端を電池内圧に応じて電流を遮断する電流遮断装
置8を持つ電池蓋7に溶接した。
This strip-shaped negative electrode 1, positive electrode 2, and thickness 2
A separator 3 made of a microporous polypropylene film having a thickness of 5 μm is sequentially laminated and then wound in a spiral shape many times to produce a wound body. Next, the insulating plate 4 is inserted into the bottom of the nickel-plated iron battery can 5 to house the wound body. Further, in order to collect the current of the negative electrode, one end of a negative electrode lead 11 made of nickel was pressure-bonded to the negative electrode 1, and the other end was welded to the battery can 5. Further, in order to collect current from the positive electrode, one end of a positive electrode lead 12 made of aluminum was attached to the positive electrode 2, and the other end was welded to a battery lid 7 having a current interrupting device 8 that interrupts current according to the internal pressure of the battery.

【0022】そして、この電池缶5の中にプロピレンカ
ーボネートが50体積%とジエチルカーボネートが50
体積%の混合媒体中にLiPF6 1mol溶解させた電
解液を注入した。更に、アスファルトを塗布した絶縁封
口ガスケット6を介して電池缶5をかしめることで電池
蓋7を固定し、直径14mm、高さ50mmの円筒型電
池を作製した。
In the battery can 5, 50% by volume of propylene carbonate and 50% of diethyl carbonate are contained.
An electrolyte solution in which 1 mol of LiPF 6 was dissolved in a mixed medium of volume% was injected. Further, the battery lid 5 was fixed by caulking the battery can 5 through the insulating sealing gasket 6 coated with asphalt, and a cylindrical battery having a diameter of 14 mm and a height of 50 mm was produced.

【0023】実施例2 実施例1で得たLiCoO2 を用い、LiCoO2 を9
0.0重量%、リン酸リチウムを1.0重量%、導電材
としてグラファイトを6.0重量%、結着材としてポリ
フッ化ビニリデンを3.0重量%の割合で混合して正極
合材とし、これ以外は実施例1と同様にして円筒型電池
を作製した。
Example 2 Using the LiCoO 2 obtained in Example 1, 9% of LiCoO 2 was used.
0.0% by weight, lithium phosphate 1.0% by weight, graphite as a conductive material 6.0% by weight, and polyvinylidene fluoride as a binder 3.0% by weight to form a positive electrode mixture. A cylindrical battery was manufactured in the same manner as in Example 1 except for this.

【0024】実施例3 実施例1で得たLiCoO2 を用い、LiCoO2 を8
6.0重量%、リン酸リチウムを5.0重量%、導電材
としてグラファイトを6.0重量%、結着材としてポリ
フッ化ビニリデンを3.0重量%の割合で混合して正極
合材とし、これ以外は実施例1と同様にして円筒型電池
を作製した。
Example 3 Using the LiCoO 2 obtained in Example 1, 8 LiCoO 2 was used.
6.0 wt%, lithium phosphate 5.0 wt%, graphite as a conductive material 6.0 wt%, polyvinylidene fluoride as a binder at a ratio of 3.0 wt% to form a positive electrode mixture. A cylindrical battery was manufactured in the same manner as in Example 1 except for this.

【0025】実施例4 実施例1で得たLiCoO2 を用い、LiCoO2 を9
0.5重量%、ホウ酸リチウムを0.1重量%、導電材
としてグラファイトを6.0重量%、結着材としてポリ
フッ化ビニリデンを3.0重量%の割合で混合して正極
合材とし、また、電解液の電解質をLiBF4 とした以
外は実施例1と同様にして円筒型電池を作製した。
Example 4 Using the LiCoO 2 obtained in Example 1, 9% of LiCoO 2 was used.
0.5% by weight, lithium borate 0.1% by weight, graphite as a conductive material 6.0% by weight, and polyvinylidene fluoride as a binder at a ratio of 3.0% by weight to form a positive electrode mixture. A cylindrical battery was manufactured in the same manner as in Example 1 except that the electrolyte of the electrolytic solution was LiBF 4 .

【0026】実施例5 実施例1で得たLiCoO2 を用い、LiCoO2 を9
0.0重量%、ホウ酸リチウムを1.0重量%、導電材
としてグラファイトを6.0重量%、結着材としてポリ
フッ化ビニリデンを3.0重量%の割合で混合して正極
合材とし、また、電解液の電解質をLiBF4 とした以
外は実施例1と同様にして円筒型電池を作製した。
Example 5 Using the LiCoO 2 obtained in Example 1, 9 LiCoO 2 was used.
0.0% by weight, lithium borate 1.0% by weight, graphite as a conductive material 6.0% by weight, and polyvinylidene fluoride as a binder at a ratio of 3.0% by weight to form a positive electrode mixture. A cylindrical battery was manufactured in the same manner as in Example 1 except that the electrolyte of the electrolytic solution was LiBF 4 .

【0027】実施例6 実施例1で得たLiCoO2 を用い、LiCoO2 を8
6.0重量%、ホウ酸リチウムを5.0重量%、導電材
としてグラファイトを6.0重量%、結着材としてポリ
フッ化ビニリデンを3.0重量%の割合で混合して正極
合材とし、また、電解液の電解質をLiBF4 とした以
外は実施例1と同様にして円筒型電池を作製した。
Example 6 Using the LiCoO 2 obtained in Example 1, 8% of LiCoO 2 was used.
6.0% by weight, lithium borate 5.0% by weight, graphite as a conductive material 6.0% by weight, and polyvinylidene fluoride as a binder at a ratio of 3.0% by weight to prepare a positive electrode mixture. A cylindrical battery was manufactured in the same manner as in Example 1 except that the electrolyte of the electrolytic solution was LiBF 4 .

【0028】比較例1 実施例1で得たLiCoO2 を用い、LiCoO2 を9
1.0重量%、リン酸リチウムを0.0重量%、導電材
としてグラファイトを6.0重量%、結着材としてポリ
フッ化ビニリデンを3.0重量%の割合で混合して正極
合材とし、これ以外は実施例1と同様にして円筒型電池
を作製した。
Comparative Example 1 LiCoO 2 obtained in Example 1 was used, and LiCoO 2 was mixed with 9
1.0% by weight, lithium phosphate 0.0% by weight, graphite as a conductive material 6.0% by weight, polyvinylidene fluoride as a binder at a ratio of 3.0% by weight to prepare a positive electrode mixture. A cylindrical battery was manufactured in the same manner as in Example 1 except for this.

【0029】比較例2 実施例1で得たLiCoO2 を用い、LiCoO2 を8
1.0重量%、リン酸リチウムを10.0重量%、導電
材としてグラファイトを6.0重量%、結着材としてポ
リフッ化ビニリデンを3.0重量%の割合で混合して正
極合材とし、これ以外は実施例1と同様にして円筒型電
池を作製した。
[0029] Using the LiCoO 2 obtained in Comparative Example 2 Example 1, a LiCoO 2 8
1.0% by weight, lithium phosphate 10.0% by weight, graphite as a conductive material 6.0% by weight, polyvinylidene fluoride as a binder at a ratio of 3.0% by weight to prepare a positive electrode mixture. A cylindrical battery was manufactured in the same manner as in Example 1 except for this.

【0030】比較例3 実施例1で得たLiCoO2 を用い、LiCoO2 を8
1.0重量%、ホウ酸リチウムを10.0重量%、導電
材としてグラファイトを6.0重量%、結着材としてポ
リフッ化ビニリデンを3.0重量%の割合で混合して正
極合材とし、また、電解液の電解質をLiBF4 とした
以外は実施例1と同様にして円筒型電池を作製した。
[0030] Using the LiCoO 2 obtained in Comparative Example 3 Example 1, a LiCoO 2 8
1.0% by weight, lithium borate 10.0% by weight, graphite as a conductive material 6.0% by weight, and polyvinylidene fluoride as a binder at a ratio of 3.0% by weight to form a positive electrode mixture. A cylindrical battery was manufactured in the same manner as in Example 1 except that the electrolyte of the electrolytic solution was LiBF 4 .

【0031】上述したように作製した電池を500mA
にて、上限電圧4.2Vで充電後、160mAで2.7
5Vまで放電した時の電池容量を調査した。その結果を
表1に示す。
A battery manufactured as described above was supplied with 500 mA.
At 2.7 mA at 160 mA after being charged at the upper limit voltage of 4.2 V
The battery capacity when discharged to 5 V was investigated. Table 1 shows the results.

【表1】 つぎに、これらの電池を充電状態にて環境温度60℃で
10日の保存テストを行った。保存後の容量を表1に合
わせて表示した。
[Table 1] Next, these batteries were subjected to a storage test in a charged state at an environmental temperature of 60 ° C. for 10 days. The capacity after storage is shown according to Table 1.

【0032】表1から分かるように、リン酸リチウム、
ホウ酸リチウムを添加した電池は非常に優れた保存製を
示している。これは電解質が不純物、或いは電圧、高温
等により、分解が促進された場合の最終生成物であるリ
ン酸リチウム、またはホウ酸リチウムを添加しておくこ
とで、化学平衡が成立し、分解が抑制されるものと推定
される。但し、リン酸リチウム、またはホウ酸リチウム
を10重量%以上添加した場合は導電性が疎外され、容
量の低下が認められた。
As can be seen from Table 1, lithium phosphate,
Batteries to which lithium borate has been added show very good preservation. This is because the chemical equilibrium is established and the decomposition is suppressed by adding lithium phosphate or lithium borate, which is the final product when the decomposition is accelerated by the electrolyte due to impurities, voltage, high temperature, etc. Presumed to be done. However, when lithium phosphate or lithium borate was added in an amount of 10% by weight or more, the conductivity was alienated, and a decrease in capacity was observed.

【0033】[0033]

【発明の効果】以上の説明からも明らかなように、本発
明は上述したように、リン酸リチウム、またはホウ酸リ
チウムを正極に0.1〜5.0重量%添加することによ
り、保存性に優れた特性を有するリチウムイオン電池を
作製でき、従って、高エネルギー密度でサイクル特性に
優れ、且つ安全性の高い非水電解質二次電池が提供で
き、工業的、商業的に大きく貢献するものである。
As is apparent from the above description, the present invention, as described above, can be stored by adding 0.1 to 5.0% by weight of lithium phosphate or lithium borate to the positive electrode. It is possible to produce a lithium-ion battery having excellent characteristics, and therefore, it is possible to provide a non-aqueous electrolyte secondary battery with high energy density, excellent cycle characteristics, and high safety, which makes a great contribution industrially and commercially. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による非水電解質二次電池の側面断面
図である。
FIG. 1 is a side sectional view of a non-aqueous electrolyte secondary battery according to the present invention.

【符号の説明】 1…負極、2…正極、3…セパレータ、4…絶縁板、5
…電池缶 6…絶縁封口ガスケット、7…電池蓋、8…電流遮断装
置、9…負極集電体 10…正極集電体、11…負極リード、12…正極リー
[Explanation of Codes] 1 ... Negative electrode, 2 ... Positive electrode, 3 ... Separator, 4 ... Insulating plate, 5
... Battery can 6 ... Insulation sealing gasket, 7 ... Battery lid, 8 ... Current interruption device, 9 ... Negative electrode current collector 10 ... Positive electrode current collector, 11 ... Negative electrode lead, 12 ... Positive electrode lead

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンのドープ且つ脱ドープが
可能な物質を負極とし、リチウム複合酸化物を正極とす
る非水電解質二次電池において、 正極活物質としてLixMO2 を用い、電解質として6
フッ化リン酸リチウムを用いると共に、 正極中にリン酸リチウムを0.1重量%以上5.0重量
%以下を添加することを特徴とする非水電解質二次電
池。
1. A non-aqueous electrolyte secondary battery in which a substance capable of doping and de-doping with lithium ions is used as a negative electrode and a lithium composite oxide is used as a positive electrode, and LixMO 2 is used as a positive electrode active material and 6 is used as an electrolyte.
A non-aqueous electrolyte secondary battery, wherein lithium fluorophosphate is used and lithium phosphate is added to the positive electrode in an amount of 0.1% by weight or more and 5.0% by weight or less.
【請求項2】 リチウムイオンのドープ且つ脱ドープが
可能な物質を負極とし、リチウム複合酸化物を正極とす
る非水電解質二次電池において、 正極活物質としてLixMO2 を用い、電解質として4
フッ化ホウ酸リチウムを用いると共に、 正極中にホウ酸リチウムを0.1重量%以上5.0重量
%以下を添加したことを特徴とする非水電解質二次電
池。
2. A non-aqueous electrolyte secondary battery in which a material capable of doping and de-doping with lithium ions is used as a negative electrode and a lithium composite oxide is used as a positive electrode, and LixMO 2 is used as a positive electrode active material, and 4 as an electrolyte.
A non-aqueous electrolyte secondary battery characterized by using lithium fluoroborate and adding 0.1% by weight or more and 5.0% by weight or less of lithium borate to the positive electrode.
【請求項3】 前記LixMO2 の構成は、 Mは一種以上から成る遷移金属であり、 また、xは0.05以上1.10以下である正極活物質
を用いたことを特徴とする非水電解質二次電池。
3. The composition of LixMO 2 is characterized in that M is a transition metal composed of one or more, and x is 0.05 or more and 1.10. Electrolyte secondary battery.
【請求項4】 請求項3に記載の正極活物質であって、
その遷移金属は、Co、Ni、Mn、Feの元素から成
る族の中の1種、またはこれらの混合物である正極活物
質を用いたことを特徴とする非水電解質二次電池。
4. The positive electrode active material according to claim 3, wherein
The non-aqueous electrolyte secondary battery is characterized in that the transition metal uses a positive electrode active material which is one of a group consisting of elements of Co, Ni, Mn and Fe, or a mixture thereof.
JP8121779A 1996-05-16 1996-05-16 Nonaqueous electrolyte secondary battery Pending JPH09306547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8121779A JPH09306547A (en) 1996-05-16 1996-05-16 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8121779A JPH09306547A (en) 1996-05-16 1996-05-16 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH09306547A true JPH09306547A (en) 1997-11-28

Family

ID=14819687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8121779A Pending JPH09306547A (en) 1996-05-16 1996-05-16 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH09306547A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353544A (en) * 1999-06-09 2000-12-19 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte secondary battery
JP2002117847A (en) * 2000-10-06 2002-04-19 Sony Corp Positive electrode active material and nonaqueous electrolyte battery, as well as their manufacturing method
JP2008123972A (en) * 2006-11-16 2008-05-29 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary cell
JP2011155021A (en) * 2011-05-09 2011-08-11 Sony Corp Positive electrode active material and nonaqueous electrolyte battery
US8021786B2 (en) 2007-03-29 2011-09-20 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary cell
WO2013129032A1 (en) * 2012-03-02 2013-09-06 三洋電機株式会社 Positive electrode for non-aqueous electrolyte rechargeable battery, method for producing same, and non-aqueous electrolyte rechargeable battery
WO2014050115A1 (en) * 2012-09-28 2014-04-03 三洋電機株式会社 Non-aqueous electrolyte secondary battery
WO2015079664A1 (en) * 2013-11-29 2015-06-04 三洋電機株式会社 Positive electrode for non-aqueous electrolyte secondary battery
JP2017091664A (en) * 2015-11-04 2017-05-25 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
EP3454398A1 (en) 2017-09-11 2019-03-13 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery
JP2019087510A (en) * 2017-11-10 2019-06-06 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2020155319A (en) * 2019-03-20 2020-09-24 トヨタ自動車株式会社 Lithium ion secondary battery
WO2023032482A1 (en) * 2021-08-31 2023-03-09 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4565287B2 (en) * 1999-06-09 2010-10-20 株式会社豊田中央研究所 Non-aqueous electrolyte secondary battery
JP2000353544A (en) * 1999-06-09 2000-12-19 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte secondary battery
JP2002117847A (en) * 2000-10-06 2002-04-19 Sony Corp Positive electrode active material and nonaqueous electrolyte battery, as well as their manufacturing method
JP2008123972A (en) * 2006-11-16 2008-05-29 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary cell
US8012625B2 (en) 2006-11-16 2011-09-06 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary cell
US8021786B2 (en) 2007-03-29 2011-09-20 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary cell
JP2011155021A (en) * 2011-05-09 2011-08-11 Sony Corp Positive electrode active material and nonaqueous electrolyte battery
JPWO2013129032A1 (en) * 2012-03-02 2015-07-30 三洋電機株式会社 Non-aqueous electrolyte secondary battery positive electrode, method for producing the same, and non-aqueous electrolyte secondary battery
WO2013129032A1 (en) * 2012-03-02 2013-09-06 三洋電機株式会社 Positive electrode for non-aqueous electrolyte rechargeable battery, method for producing same, and non-aqueous electrolyte rechargeable battery
US9444097B2 (en) 2012-03-02 2016-09-13 Sanyo Electric Co., Ltd. Positive electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
WO2014050115A1 (en) * 2012-09-28 2014-04-03 三洋電機株式会社 Non-aqueous electrolyte secondary battery
WO2015079664A1 (en) * 2013-11-29 2015-06-04 三洋電機株式会社 Positive electrode for non-aqueous electrolyte secondary battery
JPWO2015079664A1 (en) * 2013-11-29 2017-03-16 三洋電機株式会社 Positive electrode for non-aqueous electrolyte secondary battery
JP2017091664A (en) * 2015-11-04 2017-05-25 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
EP3454398A1 (en) 2017-09-11 2019-03-13 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery
KR20190029456A (en) 2017-09-11 2019-03-20 도요타 지도샤(주) Nonaqueous electrolyte secondary battery
JP2019087510A (en) * 2017-11-10 2019-06-06 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2020155319A (en) * 2019-03-20 2020-09-24 トヨタ自動車株式会社 Lithium ion secondary battery
WO2023032482A1 (en) * 2021-08-31 2023-03-09 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP3010781B2 (en) Non-aqueous electrolyte secondary battery
EP1148570B1 (en) Nonaqueous electrolyte secondary battery
US7214449B2 (en) Cathode active material and non-aqueous electrolyte secondary battery
US7709157B2 (en) Non-aqueous electrolyte secondary battery and electrolyte for the same
JP3769871B2 (en) Method for producing positive electrode active material
JP2001023687A (en) Nonaqueous electrolyte battery
KR20120089197A (en) Electrolyte for electrochemical device and the electrochemical device thereof
US20030170550A1 (en) Nonaqueous electrolyte battery
JPH09306547A (en) Nonaqueous electrolyte secondary battery
JP2001338639A (en) Non-aqueous electrolyte battery
JP3564756B2 (en) Non-aqueous electrolyte secondary battery
JP2000058122A (en) Nonaqueous electrolytic solution for secondary battery and nonaqueous electrolytic solution secondary battery
JPH11273708A (en) Rolled electrode battery
JP2002025617A (en) Nonaqueous electrolyte secondary battery
JP3010783B2 (en) Non-aqueous electrolyte secondary battery
JP4560854B2 (en) Nonaqueous electrolyte secondary battery
JP2001006730A (en) Nonaqueous electrolyte battery
JP3103899B2 (en) Non-aqueous electrolyte secondary battery
JP4166295B2 (en) Non-aqueous electrolyte battery
JPH1140193A (en) Nonaqueous electrolyte battery
JP2002117903A (en) Nonaqueous electrolyte battery
JPH09213375A (en) Non-aqueous electrolyte secondary battery
JP3557240B2 (en) Non-aqueous electrolyte secondary battery
US20180337423A1 (en) Negative-electrode active material for non-aqueous secondary battery and non-aqueous secondary battery
JP3089662B2 (en) Non-aqueous electrolyte secondary battery