JP2019086383A - リニアモータ解析装置、リニアモータ解析方法、および、リニアモータ解析プログラム - Google Patents

リニアモータ解析装置、リニアモータ解析方法、および、リニアモータ解析プログラム Download PDF

Info

Publication number
JP2019086383A
JP2019086383A JP2017214428A JP2017214428A JP2019086383A JP 2019086383 A JP2019086383 A JP 2019086383A JP 2017214428 A JP2017214428 A JP 2017214428A JP 2017214428 A JP2017214428 A JP 2017214428A JP 2019086383 A JP2019086383 A JP 2019086383A
Authority
JP
Japan
Prior art keywords
mesh
analysis
mover
stator
meshes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017214428A
Other languages
English (en)
Other versions
JP6941536B2 (ja
Inventor
宮田 健治
Kenji Miyata
健治 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2017214428A priority Critical patent/JP6941536B2/ja
Priority to PCT/JP2018/035981 priority patent/WO2019093010A1/ja
Publication of JP2019086383A publication Critical patent/JP2019086383A/ja
Application granted granted Critical
Publication of JP6941536B2 publication Critical patent/JP6941536B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/10Plotting field distribution ; Measuring field distribution
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Linear Motors (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

【課題】解析精度を保ちつつ、リニアモータの解析時間および記憶容量を適切に削減すること。【解決手段】計算機50は、駆動装置の可動子を含む可動子メッシュと、前記駆動装置の固定子を含む固定子メッシュとをそれぞれ作成するとともに、作成した両メッシュの領域に場を記述する変数を割り当てるメッシュ作成部51と、可動子の空間移動に応じて、メッシュ作成部51が作成した両メッシュの間の位置関係を変更するステップ変更部52と、ステップ変更部52が変更した両メッシュの間の位置関係ごとに、両メッシュの領域のうちの一部の領域である非解析領域に割り当てられた場を記述する変数を解析対象から除外する解析対象設定部53と、解析対象設定部53により除外されなかった両メッシュの残りの領域に割り当てた場を記述する変数をもとに、磁場解析を行う解析部54とを有する。【選択図】 図2

Description

本発明は、リニアモータ解析装置、リニアモータ解析方法、および、リニアモータ解析プログラムに関する。
配置された固定子に沿って直線移動する可動子を有するリニアモータは、直線駆動装置などに応用されている。特許文献1には、リニアモータの磁場解析法として、可動子の周囲の空気領域にメッシュを作成し、可動子が進行ルートに沿って移動する度に周囲のメッシュを再構築(リメッシュ)しながら磁場解析する方法が記載されている。
X. Wang他、「Research on Permanent Magnet Linear Synchronous Motor for Rope-less Hoist System」、JOURNAL OF COMPUTERS、Vol.7,No.6、JUNE 2012、pp.1361-1368
非特許文献1の方法では、可動子が移動するたびにリメッシュが発生するため、磁場解析の入力データとなるメッシュデータの作成に計算時間が長くかかってしまう。一方で、現在の可動子の周囲だけリメッシュすればよいので、生成されるメッシュデータの大きさは、余分に大きくしなくて済む。
一方、リメッシュを不要とする解析方法として、可動子が移動する前後方向に可動子・固定子両方ともに余分に長い空気領域を設け、より広い解析空間を設定し、可動子進行方向の前後両端部に周期境界条件を設定する方法を検討する。しかしこの方法では、可動子の移動距離も考慮して、周期境界条件を設定する境界部の磁場が非常に弱いという前提で解析する必要があるため、通常の解析よりも可動子の移動方向により長いメッシュ空間を設ける必要がある。このため、必要以上に広い解析空間を必要とし、より長い計算時間と多くの記憶容量を必要とする。
そこで、本発明は、解析精度を保ちつつ、リニアモータの解析時間および記憶容量を適切に削減することを、主な課題とする。
前記課題を解決するために、本発明のリニアモータ解析装置は、以下の特徴を有する。
本発明は、駆動装置の可動子を含む可動子メッシュと、前記駆動装置の固定子を含む固定子メッシュとをそれぞれ作成するとともに、作成した両メッシュの領域に場を記述する変数を割り当てるメッシュ作成部と、
前記可動子の空間移動に応じて、前記メッシュ作成部が作成した前記両メッシュの間の位置関係を変更するステップ変更部と、
前記ステップ変更部が変更した前記両メッシュの間の位置関係ごとに、前記両メッシュの領域のうちの一部の領域である非解析領域に割り当てられた前記場を記述する変数を解析対象から除外する解析対象設定部と、
前記解析対象設定部により除外されなかった前記両メッシュの残りの領域に割り当てた前記場を記述する変数をもとに、磁場解析を行う解析部とを有することを特徴とする。
その他の手段は、後記する。
本発明によれば、解析精度を保ちつつ、リニアモータの解析時間および記憶容量を適切に削減することができる。
本発明の一実施形態に関するリニアモータ解析システムの構成図である。 本発明の一実施形態に関する計算機の構成図である。 本発明の一実施形態に関するリニアモータ解析システムの動作を示すフローチャートである。 本発明の一実施形態に関する進行方向型における解析対象の可動子を含む空間を示す空間図である。 本発明の一実施形態に関する図4の状態において、解析対象設定部が可動子メッシュ内に可動子非解析領域を設定する工程の説明図である。 本発明の一実施形態に関する可動子が進行ルートの始点に位置するときの空間図である。 本発明の一実施形態に関する図6の状態から可動子が左方向に進んだときの空間図である。 本発明の一実施形態に関する図7の状態から可動子が左方向に進んだ結果、進行ルートの終点に位置するときの空間図である。 本発明の一実施形態に関する節点移動ステップ変更法におけるタイムステップ1における固定子メッシュと可動子メッシュとの位置関係を示す。 本発明の一実施形態に関する節点移動ステップ変更法におけるタイムステップ2における固定子メッシュと可動子メッシュとの位置関係を示す。 本発明の一実施形態に関する節点移動ステップ変更法におけるタイムステップ3における固定子メッシュと可動子メッシュとの位置関係を示す。 本発明の一実施形態に関する座標系ステップ変更法におけるタイムステップ1における固定子メッシュと可動子メッシュとの位置関係を示す。 本発明の一実施形態に関する座標系ステップ変更法におけるタイムステップ2における固定子メッシュと可動子メッシュとの位置関係を示す。 本発明の一実施形態に関する座標系ステップ変更法におけるタイムステップ3における固定子メッシュと可動子メッシュとの位置関係を示す。 本発明の一実施形態に関する重ね合わせ型における解析対象の可動子を含む空間を示す空間図である。 本発明の一実施形態に関する図15の空間図から固定子メッシュだけを抜粋した空間図である。 本発明の一実施形態に関する図15の空間図に対して、上部の可動子メッシュと、下部の固定子メッシュとを重複させる前の状態に分離したときの立体的な空間図である。 本発明の一実施形態に関する可動子2が進行ルートの始点に位置するときの空間図である。 本発明の一実施形態に関する図18の状態から可動子が左方向に進んだときの空間図である。 本発明の一実施形態に関する図19の状態から可動子が左方向に進んだ結果、進行ルートの終点に位置するときの空間図である。 本発明の一実施形態に関する図4のような進行ルートが固定子で囲われていない空間においても、重ね合わせ型を適用したときの空間図である。 本発明の一実施形態に関する図21の空間図に対して、上部の可動子メッシュと、下部の固定子メッシュとを重複させる前の状態に分離したときの立体的な空間図である。
以下、本発明の一実施形態を、図面を参照して詳細に説明する。
図1は、リニアモータ解析システムの構成図である。
リニアモータ解析システムは、計算機(リニアモータ解析装置)50、表示装置60、記憶媒体70、および、入力装置80から構成される。また、リニアモータ解析システムの解析対象となるリニアモータ(駆動装置)や、リニアモータにより駆動するアクチュエータは、可動子2と固定子1とを含めて構成される(図4参照)。
入力装置80は、メッシュデータの作成に必要な可動子2および固定子1に関する各種データ(形状データ、空間内の位置データなど)や、解析を行うソルバに必要な各種パラメータ(メッシュサイズ、要素の形状など)などの入力データを受け付ける。
計算機50は、入力装置80からの入力データをもとに、磁場解析法に関するプログラム(詳細は図2)を動作させることにより、磁場解析を実行する。
表示装置60は、計算機50の磁場解析の結果データを画面表示する。
記憶媒体70には、計算機50の磁場解析に使用されるデータや、磁場解析の結果データが格納される。なお、記憶媒体70は、計算機50に外部接続されている形態を図1で例示したが、計算機50に内蔵されていてもよいし、計算機50からネットワークを介してアクセス可能なネットワークストレージとして構成されていてもよい。
図2は、計算機50の構成図である。
計算機50は、メッシュ作成部51と、ステップ変更部52と、解析対象設定部53と、解析部54とを実現するためのアルゴリズムが記載された各プログラムを記憶媒体70からメモリに読み込み、CPU(Central Processing Unit)がプロセスとして実行する。以下、図3のフローチャートに沿って、計算機50の各構成要素の詳細を明らかにする。
図3は、リニアモータ解析システムの動作を示すフローチャートである。
S11のメッシュ作成処理では、メッシュ作成部51は、可動子2を含む可動子メッシュと、固定子1を含む固定子メッシュとを作成する。メッシュ作成方法には、例えば以下の2つの方法がある。
・可動子2の進行方向(空間移動方向)に沿って可動子メッシュを生成する方法(以下、「進行方向型」とする。詳細は図4以降の実施例1で後記する。)
・固定子メッシュの一部の領域に可動子メッシュを重ね合わせるように生成する方法(以下、「重ね合わせ型」とする。詳細は図15以降の実施例2で後記する。)
なお、図2のメッシュ作成部51は、可動子空間25と固定子空間15との境界面(二次元解析では境界線)において常にメッシュが整合するように、可動子2の進行方向について等間隔になるようにメッシュ分割しておくことが望ましい。これにより、ステップ変更部52は、可動子空間25を一定の間隔でステップ的に移動させることができ、解析部54による解析処理を単純化できる。
そして、メッシュ作成部51は、作成した可動子メッシュの領域と、固定子メッシュの領域とについて、有限要素法で解析するための電磁場を記述する場の変数を配置する。配置する変数は、例えば、磁気ベクトルポテンシャルに関する変数であり、配置先が導体領域であるときには渦電流を記述するために電気スカラポテンシャルに関する変数も追加される場合がある。
図3のS13の解析対象設定処理では、解析対象設定部53は、ステップ変更部52が位置関係を変更した可動子メッシュの領域の一部(進行方向型の場合)、または、固定子メッシュの領域の一部(重ね合わせ型の場合)を解析対象から除外する「非解析領域」とする。一方、非解析領域として除外されなかった両メッシュの残りの領域は、解析対象として設定される「解析領域」である。これにより、メッシュ作成部51が作成した両メッシュの領域全体は、両メッシュの解析領域よりも、非解析領域の分だけ大きくなる。
S14の解析処理では、解析部54は、解析対象設定部53が設定した解析領域の場を記述する変数に関して、可動子メッシュおよび固定子メッシュの各種解析(磁場解析など)をソルバとして実行する。
S15の処理終了判定処理では、ステップ変更部52において、次回ステップでの解析処理が必要か否かを判定する。例えば、今回のステップ変更処理(S12)により可動子2が進行ルートの終点に到着したときには、ステップ変更部52は、次回ステップでの解析処理が不要と判定する。
S15で処理終了(Yes)なら、図3のフローチャートの処理を終了する。S15で処理継続(No)なら、S12の処理を実施後、S13に戻って次のステップに処理を進める。
S12のステップ変更処理では、ステップ変更部52は、メッシュ作成部51が作成した可動子メッシュに対して、可動子2の移動に伴い、ステップ的に(単位時間ごとに)可動子メッシュと固定子メッシュとの位置関係を変更する。このステップ変更処理には、例えば以下の2つの方法がある。
・可動子メッシュの各節点をステップ的に移動させる方法(以下で「節点移動ステップ変更法」とする、詳細は図9〜図11の説明で後記する)。
・固定子メッシュを静止座標系で、可動子メッシュを運動座標系でとらえ、可動子メッシュの節点は動かさない。可動子メッシュと固定子メッシュとの境界領域における互いの辺の組合せをステップ的に変更する方法(以下で「座標系ステップ変更法」とする、詳細は図12〜図14の説明で後記する)。
なお、S11の2種類のメッシュ作成処理(進行方向型、重ね合わせ型)と、S12の2種類のステップ変更処理(節点移動ステップ変更法、座標系ステップ変更法)とは、任意に組み合わせが可能である(2×2=4通り)。
以上、図3に沿ってリニアモータ解析システムの動作を説明した。メッシュ作成部51がS11で最初に作成した固定子メッシュおよび可動子メッシュを、ステップ変更部52が可動子2の移動に伴って繰り返しS12で再利用する。これにより、メッシュ作成部51は可動子2の移動に伴うリメッシュ処理が不要となり、メッシュ作成処理の計算量を削減できる。
また、解析対象設定部53がS13で非解析領域をメッシュ内に設けることにより、解析部54のS14での計算対象が解析領域だけになることで、解析処理の計算量を削減できる。つまり、メッシュを粗くするような解析精度を劣化させる計算量の削減方法ではなく、解析に影響がない部分の領域を非解析領域にすることで、解析精度を保ちつつ、適切に計算量を削減できる。
以下、図4〜図14を参照して、S11のメッシュ作成処理において、メッシュ作成部51が進行方向型のメッシュを作成する実施例1を説明する。一方、重ね合わせ型のメッシュ作成処理は、図15以降の実施例2で説明する。
図4は、進行方向型における解析対象の可動子2を含む空間を示す空間図である。この空間図は、二次元解析する場合には平面図であり、三次元解析する場合には二次元断面図である。
図4の可動子2は、上側の固定子1と、下側の固定子1との間を右側から左側に移動する。このような配置例は、例えば、固定子1がトンネル構造をもつ場合などで出現する。図4の中央部に位置する可動子2は、その周囲が可動子空気領域20で囲まれている。可動子2と可動子空気領域20とを合わせて可動子空間25とし、メッシュ作成部51は、その可動子空間25に対して可動子メッシュを作成する(S11)。
同様に、図4の上側および下側にそれぞれ位置する固定子1は、それぞれ周囲が固定子空気領域10で囲まれている。固定子1と固定子空気領域10とを合わせて固定子空間15とし、メッシュ作成部51は、その固定子空間15に対して固定子メッシュを作成する(S11)。
なお、図4では、上側の固定子1用の固定子メッシュと、下側の固定子1用の固定子メッシュとを別々に作成したが、例えば、上側の固定子1が存在せず、下側の固定子1だけが存在する区間では、上側の固定子メッシュは作成しなくてもよい。
可動子メッシュは、可動子空間25の初期位置において、固定子メッシュよりも右側に少なくとも可動子空間25の移動距離分長めに用意する。
図5は、図4の状態において、解析対象設定部53が可動子メッシュ内に可動子非解析領域21を設定する工程の説明図である。
固定子空間15の横幅Xaに対して、可動子空間25の横幅のほうが長いので、可動子空間25の左側Xbと、右側Xcとがそれぞれ横幅Xaからはみ出している。解析対象設定部53は、この可動子空間25のはみ出した領域を可動子非解析領域21とする(S13)。つまり、解析対象設定部53は、1つの可動子空間25を、左側に長さXb分だけはみ出した第1の可動子非解析領域21と、固定子空間15の横幅Xaと同じ横幅となる解析領域と、右側に長さXc分だけはみ出した第2の可動子非解析領域21とに分類する。
なお、メッシュ作成部51が作成するメッシュは、固定子空間15と可動子空間25の境界面(二次元解析では境界線)が、可動子空間25の進行方向に等間隔にメッシュ分割されていることが望ましい。こうすれば、可動子空間25がステップ的に移動するたびに、固定子空間15と可動子空間25の境界面はすでにメッシュの整合がとれた状態になり、高精度な解析が可能になる。
また、図4,図5では、固定子メッシュを上下の両側に設けたが、固定子1(固定子メッシュ)を、上側だけ、または、下型だけに設ける場合にも前記の各種処理を適用してもよい。
さらに、図5では、可動子空間25の長さ(=Xb+Xa+Xc)は、固定子空間15の長さ(=Xa)よりも長い一例を示したが、固定子空間15の長さをXaより長く設定してもよい。例えば、固定子空間15の長さを可動子空間25の長さと同じ(=Xb+Xa+Xc)とし、固定子空間15の解析領域と、可動子空間25の解析領域とをともに長さXaとしてもよい。この場合、固定子空間15の非解析領域も可動子非解析領域21と同じように、左側に長さXb分だけはみ出した第1の非解析領域と、右側に長さXc分だけはみ出した第2の非解析領域とで構成される。
以下、図6〜図14を参照して、ステップ変更部52のステップ変更処理(S12)を説明する。
図6は、可動子2が進行ルートの始点に位置するときの空間図である。可動子空間25の左端に示した可動子非解析領域21は設けなくとも良い。
図7は、図6の状態から可動子2が左方向に進んだときの空間図である。
図8は、図7の状態から可動子2が左方向に進んだ結果、進行ルートの終点に位置するときの空間図である。可動子空間25の右端に示した可動子非解析領域21は設けなくとも良い。
ステップ変更部52は、可動子2が左方向に移動することに連動して、可動子空気領域20を含む可動子空間25も連動して左方向にステップ的に移動させる。
これにより、固定子空間15は位置が変更されないので、その固定子空間15からはみだした可動子非解析領域21は、時間経過とともに、左側の(前方の)可動子非解析領域21の横幅は徐々に長くなり、右側の(後方の)可動子非解析領域21は徐々に短くなる。
図9〜図11は、節点移動ステップ変更法におけるステップ変更処理(S12)の詳細を示す説明図である。節点移動ステップ変更法では、上側の固定子メッシュ(要素W11〜W17,W21〜W27)の各節点は動かさず、下側の可動子メッシュ(要素R11〜R17,R21〜R27)の各節点について空間内をステップ的に移動させる。
なお、図9では、要素W12の下辺と、要素R11の上辺との間を離して互いに双方向の矢印で接続するように図示したが、これはあくまで説明をわかりやすくするためであり、実際には、要素W12の下辺と要素R11の上辺とは互いに重複した位置(辺を共有する位置)に配置されている。
図9、図10、図11は、それぞれ、可動子2が1ステップずつ移動したときのタイムステップ1,2,3における固定子メッシュと可動子メッシュとの位置関係を示す。
例えば、固定子メッシュの要素W12に着目すると、双方向の矢印で示すように、タイムステップ1では正面の可動子メッシュの要素R11と境界を共有する。次のタイムステップ2では、ステップ変更部52は、可動子メッシュ全体を1要素(1マス)ずつ左側に移動させる。これにより、要素W12の対応相手が要素R11から要素R12にシフトされる。同様に、タイムステップ3では要素W12の対応相手が要素R12から要素R13にシフトされる。
図12〜図14は、座標系ステップ変更法におけるステップ変更処理(S12)の説明図である。座標系ステップ変更法は、可動子メッシュの節点を動かさない方法であり、以下説明する。
図12、図13、図14は、それぞれ、可動子2が1ステップずつ移動したときのタイムステップ1,2,3における固定子メッシュと可動子メッシュとの位置関係を示す。
例えば、固定子メッシュの要素W12に着目すると、双方向の矢印で示すように、タイムステップ1では左下の可動子メッシュの要素R11と境界を共有する。
次のタイムステップ2では、ステップ変更部52は、固定子メッシュと可動子メッシュとの対応付け(双方向の矢印)を固定子メッシュから見たときに1要素(1マス)ずつ右側に移動させる。これにより、要素W12の対応相手が要素R11から要素R12にシフトされる。
同様に、タイムステップ3では、要素W12の対応相手が要素R12から要素R13にシフトされる。
このように、ステップ変更部52は、運動座標系にある可動子メッシュと、静止座標系にある固定子メッシュとの境界領域における互いの辺が一致するように(対応付けられるように)、辺の組合せをステップ的に変更する座標系ステップ変更法でも、節点移動ステップ変更法と同等の効果を得ることができる。
以上、図4〜図14を参照して、進行方向型のメッシュを作成する場合を実施例1として説明した。
図15からは、重ね合わせ型のメッシュ作成処理を実施例2として説明する。
図15は、重ね合わせ型における解析対象の可動子2を含む空間を示す空間図である。実施例1の図4と同様に、二次元解析する場合には平面図であり、三次元解析する場合には二次元断面図である。
メッシュ作成部51は、可動子2と、その周囲を囲む可動子空気領域20とで構成される可動子空間25に対して可動子メッシュを作成する(S11)。
図16は、図15の空間図から固定子メッシュだけを抜粋した空間図である。
メッシュ作成部51は、可動子2を囲む「口」の字型の固定子1と、その外側を囲む外側固定子空気領域11と、固定子1の内側である内側固定子空気領域12とで構成される固定子空間15に対して固定子メッシュを作成する(S11)。なお、固定子空間15は、固定子1を内包するように形成され、例えば、解析空間全体に設定される。
ステップ変更部52は、可動子メッシュが存在する可動子空間25を固定子空間15における可動子2の進行ルートの現在位置に重ね合わせる。換言すると、可動子空間25の領域には、固定子空間15のメッシュと可動子空間25のメッシュが共存した形になっている。
図17は、図15の空間図に対して、上部の可動子メッシュと、下部の固定子メッシュとを重複させる前の状態に分離したときの立体的な空間図である。
メッシュ作成部51は、作成した可動子メッシュの領域と、固定子メッシュの領域との両方について、有限要素法で解析するための電磁場を記述する場の変数を配置する。
解析対象設定部53は、可動子空間25と重なっている固定子空間15の一部である固定子非解析領域19を解析対象から除外し、固定子空間15から固定子非解析領域19を除外した領域ならびに可動子空間25を解析領域とする(S13)。
図18は、可動子2が進行ルートの始点に位置するときの空間図である。可動子2の進行ルートは、内側固定子空気領域12に沿って設定され、例えば、内側固定子空気領域12の右端を始点とし、左端を終点とする。
図19は、図18の状態から可動子2が左方向に進んだときの空間図である。
図20は、図19の状態から可動子2が左方向に進んだ結果、進行ルートの終点に位置するときの空間図である。
ステップ変更部52は、図18〜図20に示すように、可動子2を進行ルートに沿って移動させる(S12)。この移動方法として、前記した節点移動ステップ変更法を用いてもよいし、座標系ステップ変更法を用いてもよい。
以上、図15〜図20を参照して、重ね合わせ型のメッシュを作成する場合を説明した。これにより、可動子2の進行方向に固定子1が存在して周期境界条件が利用できないケースでも、解析が可能になる。
なお、実施例1の進行方向型のメッシュを用いる利点は、重ね合わせ型のように可動子メッシュが固定子メッシュに内包されず、別々の位置に配置されるため、境界面を互いに整合させるためのメッシュ作成の制約が少なくて済むことである。
また、実施例2の重ね合わせ型のメッシュを用いる利点は、図15では「口」の字型の固定子1を例示したように、固定子1の形状の制約に限定されず、幅広く適用できる点である。以下、上側と下側とで別々に配置された図4の固定子1に対しても、重ね合わせ型のメッシュを適用できる例を図21,図22を参照して説明する。
図21は、図4のような進行ルートが固定子1で囲われていない空間においても、実施例2の重ね合わせ型を適用したときの空間図である。
メッシュ作成部51は、可動子2と、その周囲を囲む可動子空気領域20とで構成される可動子空間25に対して可動子メッシュを作成する(S11)。
メッシュ作成部51は、可動子2を上下で挟む2つの固定子1に対して、図4とは異なり、2つの固定子1と、可動子2の進行ルートとを内包するように大きめに(例えば解析空間全体に)外側固定子空気領域11を設定する。そして、メッシュ作成部51は、外側固定子空気領域11(固定子空間15)に対して固定子メッシュを作成する(S11)。
図22は、図21の空間図に対して、上部の可動子メッシュ(可動子空間25)と、下部の固定子メッシュ(固定子空間15)とを重複させる前の状態に分離したときの立体的な空間図である。
解析対象設定部53は、可動子空間25と重なっている固定子空間15の一部である固定子非解析領域19を解析対象から除外し、固定子空間15から固定子非解析領域19を除外した領域ならびに可動子空間25を解析領域とする(S13)。
以上説明した本実施形態の計算量削減効果をより詳しく説明するために、比較例として、本実施形態と同様にリメッシュを不要とする冒頭に述べた周期境界条件を用いる方法と比較する。
この周期境界条件を用いる方法では、リメッシュを発生させないことで、メッシュデータの作成負荷を削減する点では、本実施形態と共通するものの、メッシュデータが大きくなってしまうことで、解析負荷が増大してしまう。
一方、本実施形態では、メッシュ作成部51が作成したメッシュデータが多少大きくなってしまっても、その後処理である解析対象設定部53の非解析領域の設定により、解析部54への計算負荷を適切に削減できる。また本実施形態では、適正な境界条件で磁場解析できる。
なお、本発明は前記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。
また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、上記の各構成、機能、処理部、処理手段などは、それらの一部または全部を、例えば集積回路で設計するなどによりハードウェアで実現してもよい。
また、前記の各構成、機能などは、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。
各機能を実現するプログラム、テーブル、ファイルなどの情報は、メモリや、ハードディスク、SSD(Solid State Drive)などの記録装置、または、IC(Integrated Circuit)カード、SDカード、DVD(Digital Versatile Disc)などの記録媒体に置くことができる。
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際にはほとんど全ての構成が相互に接続されていると考えてもよい。
さらに、各装置を繋ぐ通信手段は、無線LANに限定せず、有線LANやその他の通信手段に変更してもよい。
1 固定子
2 可動子
10 固定子空気領域
11 外側固定子空気領域
12 内側固定子空気領域
15 固定子空間
19 固定子非解析領域
20 可動子空気領域
21 可動子非解析領域
25 可動子空間
50 計算機(リニアモータ解析装置)
51 メッシュ作成部
52 ステップ変更部
53 解析対象設定部
54 解析部
60 表示装置
70 記憶媒体
80 入力装置

Claims (7)

  1. 駆動装置の可動子を含む可動子メッシュと、前記駆動装置の固定子を含む固定子メッシュとをそれぞれ作成するとともに、作成した両メッシュの領域に場を記述する変数を割り当てるメッシュ作成部と、
    前記可動子の空間移動に応じて、前記メッシュ作成部が作成した前記両メッシュの間の位置関係を変更するステップ変更部と、
    前記ステップ変更部が変更した前記両メッシュの間の位置関係ごとに、前記両メッシュの領域のうちの一部の領域である非解析領域に割り当てられた前記場を記述する変数を解析対象から除外する解析対象設定部と、
    前記解析対象設定部により除外されなかった前記両メッシュの残りの領域に割り当てた前記場を記述する変数をもとに、磁場解析を行う解析部とを有することを特徴とする
    リニアモータ解析装置。
  2. 前記ステップ変更部は、作成した前記可動子メッシュをステップ的に移動させることで、前記両メッシュの間の位置関係を変更することを特徴とする
    請求項1に記載のリニアモータ解析装置。
  3. 前記ステップ変更部は、運動座標系にある前記可動子メッシュと静止座標系にある前記固定子メッシュの境界領域における互いの辺が一致するように辺の組合せをステップ的に変更することで、前記両メッシュの間の位置関係を変更することを特徴とする
    請求項1に記載のリニアモータ解析装置。
  4. 前記メッシュ作成部は、前記可動子の空間移動方向における前記可動子メッシュの幅が、前記固定子メッシュの幅よりも少なくとも前記可動子の空間移動距離分長くなるように、前記両メッシュを作成し、
    前記解析対象設定部は、前記可動子の空間移動方向における前記固定子メッシュの幅からはみ出した前記可動子メッシュの領域を、前記非解析領域とすることを特徴とする
    請求項1に記載のリニアモータ解析装置。
  5. 前記メッシュ作成部は、前記固定子の位置および前記可動子の空間移動ルートを内包するように前記固定子メッシュを作成し、その固定子メッシュ内の前記空間移動ルートに位置する前記可動子を含むように前記可動子メッシュを作成し、
    前記解析対象設定部は、前記両メッシュの重複領域に位置する前記固定子メッシュの領域を、前記非解析領域とすることを特徴とする
    請求項1に記載のリニアモータ解析装置。
  6. メッシュ作成部と、ステップ変更部と、解析対象設定部と、解析部とを有するリニアモータ解析装置により実行され、
    前記メッシュ作成部は、駆動装置の可動子を含む可動子メッシュと、前記駆動装置の固定子を含む固定子メッシュとをそれぞれ作成するとともに、作成した両メッシュの領域に場を記述する変数を割り当て、
    前記ステップ変更部は、前記可動子の空間移動に応じて、前記メッシュ作成部が作成した前記両メッシュの間の位置関係を変更し、
    前記解析対象設定部は、前記ステップ変更部が変更した前記両メッシュの間の位置関係ごとに、前記両メッシュの領域のうちの一部の領域である非解析領域に割り当てられた前記場を記述する変数を解析対象から除外し、
    前記解析部は、前記解析対象設定部により除外されなかった前記両メッシュの残りの領域に割り当てた前記場を記述する変数をもとに、磁場解析を行うことを特徴とする
    リニアモータ解析方法。
  7. 請求項6に記載のリニアモータ解析方法を、コンピュータであるリニアモータ解析装置に実行させるためのリニアモータ解析プログラム。
JP2017214428A 2017-11-07 2017-11-07 リニアモータ解析装置、リニアモータ解析方法、および、リニアモータ解析プログラム Active JP6941536B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017214428A JP6941536B2 (ja) 2017-11-07 2017-11-07 リニアモータ解析装置、リニアモータ解析方法、および、リニアモータ解析プログラム
PCT/JP2018/035981 WO2019093010A1 (ja) 2017-11-07 2018-09-27 リニアモータ解析装置、リニアモータ解析方法、および、リニアモータ解析プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017214428A JP6941536B2 (ja) 2017-11-07 2017-11-07 リニアモータ解析装置、リニアモータ解析方法、および、リニアモータ解析プログラム

Publications (2)

Publication Number Publication Date
JP2019086383A true JP2019086383A (ja) 2019-06-06
JP6941536B2 JP6941536B2 (ja) 2021-09-29

Family

ID=66439100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017214428A Active JP6941536B2 (ja) 2017-11-07 2017-11-07 リニアモータ解析装置、リニアモータ解析方法、および、リニアモータ解析プログラム

Country Status (2)

Country Link
JP (1) JP6941536B2 (ja)
WO (1) WO2019093010A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000025145A1 (fr) * 1998-10-26 2000-05-04 Hitachi, Ltd. Methode d'analyse d'un champ elctromagnetique de machine tournante et dispositif d'analyse d'un champ electromagnetique
JP2001155055A (ja) * 1999-08-31 2001-06-08 Hitachi Ltd 自動要素分割法および自動要素分割システム
JP2003075521A (ja) * 2001-09-03 2003-03-12 Nippon Soken Holdings:Kk 三次元メッシュ生成方法、回転機の磁界解析方法、三次元メッシュ生成装置、回転機の磁界解析装置、コンピュータプログラム、及び記録媒体
JP2003085218A (ja) * 2001-09-06 2003-03-20 Nippon Soken Holdings:Kk 三次元メッシュ生成方法、回転機の磁界解析方法、三次元メッシュ生成装置、回転機の磁界解析装置、コンピュータプログラム、及び記録媒体
JP2007089260A (ja) * 2005-09-20 2007-04-05 Hitachi Ltd リニア同期モータ
JP2010067170A (ja) * 2008-09-12 2010-03-25 Hitachi Ltd 解析装置、メッシュ生成プログラム
JP2010072711A (ja) * 2008-09-16 2010-04-02 Hitachi Ltd 高速磁場解析方法、高速磁場解析プログラム、および記録媒体
KR20120109740A (ko) * 2011-03-25 2012-10-09 국방과학연구소 함정에 분포된 자기장 신호원 특성 분석 장치 및 방법과 그 시스템
JP2013131071A (ja) * 2011-12-21 2013-07-04 Fujitsu Ltd 磁性体特性解析プログラム、磁性体特性解析装置、及び磁性体特性解析方法
CN103660991A (zh) * 2013-12-12 2014-03-26 南车株洲电力机车有限公司 一种常导磁浮列车非线性悬浮控制方法及其控制系统
WO2015145550A1 (ja) * 2014-03-24 2015-10-01 富士機械製造株式会社 リニアモータ
JP2016025700A (ja) * 2014-07-17 2016-02-08 国立大学法人横浜国立大学 磁気ねじアクチュエータ

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000025145A1 (fr) * 1998-10-26 2000-05-04 Hitachi, Ltd. Methode d'analyse d'un champ elctromagnetique de machine tournante et dispositif d'analyse d'un champ electromagnetique
JP2001155055A (ja) * 1999-08-31 2001-06-08 Hitachi Ltd 自動要素分割法および自動要素分割システム
JP2003075521A (ja) * 2001-09-03 2003-03-12 Nippon Soken Holdings:Kk 三次元メッシュ生成方法、回転機の磁界解析方法、三次元メッシュ生成装置、回転機の磁界解析装置、コンピュータプログラム、及び記録媒体
JP2003085218A (ja) * 2001-09-06 2003-03-20 Nippon Soken Holdings:Kk 三次元メッシュ生成方法、回転機の磁界解析方法、三次元メッシュ生成装置、回転機の磁界解析装置、コンピュータプログラム、及び記録媒体
JP2007089260A (ja) * 2005-09-20 2007-04-05 Hitachi Ltd リニア同期モータ
JP2010067170A (ja) * 2008-09-12 2010-03-25 Hitachi Ltd 解析装置、メッシュ生成プログラム
JP2010072711A (ja) * 2008-09-16 2010-04-02 Hitachi Ltd 高速磁場解析方法、高速磁場解析プログラム、および記録媒体
KR20120109740A (ko) * 2011-03-25 2012-10-09 국방과학연구소 함정에 분포된 자기장 신호원 특성 분석 장치 및 방법과 그 시스템
JP2013131071A (ja) * 2011-12-21 2013-07-04 Fujitsu Ltd 磁性体特性解析プログラム、磁性体特性解析装置、及び磁性体特性解析方法
CN103660991A (zh) * 2013-12-12 2014-03-26 南车株洲电力机车有限公司 一种常导磁浮列车非线性悬浮控制方法及其控制系统
WO2015145550A1 (ja) * 2014-03-24 2015-10-01 富士機械製造株式会社 リニアモータ
JP2016025700A (ja) * 2014-07-17 2016-02-08 国立大学法人横浜国立大学 磁気ねじアクチュエータ

Also Published As

Publication number Publication date
JP6941536B2 (ja) 2021-09-29
WO2019093010A1 (ja) 2019-05-16

Similar Documents

Publication Publication Date Title
Tamanini et al. Generalized hybrid metric-Palatini gravity
US10013059B2 (en) Haptic authoring tool for animated haptic media production
JP6827826B2 (ja) 電磁界解析装置、方法及びプログラム
JP7348525B2 (ja) コア設計装置、コア設計方法、およびプログラム
Ilhan et al. Conformal mapping: Schwarz-Christoffel method for flux-switching PM machines
JP2022527534A (ja) 量子コンピューティングにおける困難な変分量子問題を解くための中間再最適化を伴う断熱的進行
WO2019093010A1 (ja) リニアモータ解析装置、リニアモータ解析方法、および、リニアモータ解析プログラム
US20150356223A1 (en) Techniques for Generating Nanowire Pad Data from Pre-Existing Design Data
Nieri et al. Quiver algebras of 4D gauge theories
CN104915991A (zh) 一种针对相交线状地理要素的空间剖分方法
JP2016143210A (ja) 磁界シミュレータプログラム、磁界シミュレータ装置および磁界シミュレーション方法
Bourgine Quantum W1+∞ subalgebras of BCD type and symmetric polynomials
Rodger Modeling movement in electrical machines
JP7057235B2 (ja) 分割磁石渦電流損解析方法
Katona et al. Accuracy of the robust design analysis for the flux barrier modelling of an interior permanent magnet synchronous motor
US11580286B2 (en) Electronic generation of three-dimensional quantum circuit diagrams
Ahmed et al. Rapid co-kriging based multi-fidelity surrogate assisted performance optimization of a transverse flux PMLSM
Tachibana General relativistic symmetry of electron spin vorticity
KR20180006304A (ko) 기록 매체, 최단 경로 특정 방법 및 정보 처리 장치
Cherrière et al. Topology optimization of asymmetric pmsm rotor
JP4785051B2 (ja) 電磁界解析方法および電磁界解析用プログラム
Yeşiltaş symmetric Hamiltonian model and Dirac equation in 1+ 1 dimensions
JP6108343B2 (ja) 物理量シミュレーション方法及びそれを用いた物理量シミュレーションシステム
JP2010122839A (ja) 解析メッシュ作成装置
JP5266769B2 (ja) 分子の物性値生成方法、生成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210906

R150 Certificate of patent or registration of utility model

Ref document number: 6941536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150