JP2019076864A - Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system - Google Patents

Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system Download PDF

Info

Publication number
JP2019076864A
JP2019076864A JP2017207490A JP2017207490A JP2019076864A JP 2019076864 A JP2019076864 A JP 2019076864A JP 2017207490 A JP2017207490 A JP 2017207490A JP 2017207490 A JP2017207490 A JP 2017207490A JP 2019076864 A JP2019076864 A JP 2019076864A
Authority
JP
Japan
Prior art keywords
reverse osmosis
osmosis membrane
membrane treatment
water
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017207490A
Other languages
Japanese (ja)
Other versions
JP7008470B2 (en
Inventor
勇規 中村
Yuki Nakamura
勇規 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2017207490A priority Critical patent/JP7008470B2/en
Publication of JP2019076864A publication Critical patent/JP2019076864A/en
Application granted granted Critical
Publication of JP7008470B2 publication Critical patent/JP7008470B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

To provide a reverse osmosis membrane treatment method and a reverse osmosis membrane treatment system capable of suppressing the reduction of the permeable water amount of a reverse osmosis membrane even when using a halogen-based oxidizer as a bactericidal agent in reverse osmosis membrane treatment using a polyamide-based reverse osmosis membrane.SOLUTION: In a reverse osmosis membrane treatment method including a reverse osmosis membrane treatment step performing the reverse osmosis membrane treatment of water to be treated with a bactericidal agent containing a halogen-based oxidizer using a reverse osmosis membrane treatment device 12 having a polyamide-based reverse osmosis membrane, the total amount of monovalent cations in the water to be treated is less than 4 times to the total amount of divalent cations in the number of moles.SELECTED DRAWING: Figure 1

Description

本発明は、逆浸透膜処理方法および逆浸透膜処理システムに関する。   The present invention relates to a reverse osmosis membrane treatment method and a reverse osmosis membrane treatment system.

従来から、工業用水や市水等の被処理水を逆浸透膜(RO膜)で処理して、透過水(処理水)と濃縮水とを得る逆浸透膜処理方法および逆浸透膜処理システムが知られている。   Conventionally, reverse osmosis membrane treatment method and reverse osmosis membrane treatment system to obtain treated water and treated water by treating treated water such as industrial water and city water with reverse osmosis membrane (RO membrane) Are known.

逆浸透膜を用いる逆浸透膜処理においては、スライム抑制を目的として、各種の塩素系酸化剤や臭素系酸化剤を逆浸透膜の被処理水(供給水)中に存在させる方法が知られている。塩素系酸化剤としては、次亜塩素酸や、安定化次亜塩素酸組成物等が知られ、臭素系酸化剤としては、次亜塩素酸等の酸化剤と臭化物イオンとの反応物や、次亜臭素酸、または安定化次亜臭素酸組成物(特許文献1参照)等が知られている。   In reverse osmosis membrane treatment using a reverse osmosis membrane, a method is known in which various chlorine-based oxidizing agents and bromine-based oxidizing agents are present in the water to be treated (feed water) of the reverse osmosis membrane for the purpose of slime suppression. There is. Hypochlorous acid, a stabilized hypochlorous acid composition, and the like are known as a chlorine-based oxidizing agent, and as a bromine-based oxidizing agent, a reaction product of an oxidizing agent such as hypochlorous acid with a bromide ion, Hypobromous acid or a stabilized hypobromous acid composition (see Patent Document 1) and the like are known.

ポリアミド系の逆浸透膜を用いる逆浸透膜処理において、これらの塩素系酸化剤や臭素系酸化剤を用いると、殺菌剤の影響により逆浸透膜の透過水量を低下させてしまうことがある。   In the reverse osmosis membrane treatment using a polyamide-based reverse osmosis membrane, the use of these chlorine-based oxidizing agents and bromine-based oxidizing agents may reduce the amount of water permeated through the reverse osmosis membrane due to the effect of the bactericidal agent.

特開2015−062889号公報JP, 2015-062889, A

本発明の目的は、ポリアミド系の逆浸透膜を用いる逆浸透膜処理において、殺菌剤としてハロゲン系酸化剤を用いても、逆浸透膜の透過水量の低下を抑制することができる、逆浸透膜処理方法および逆浸透膜処理システムを提供することにある。   An object of the present invention is a reverse osmosis membrane capable of suppressing a decrease in the amount of water permeated by the reverse osmosis membrane in reverse osmosis membrane treatment using a polyamide type reverse osmosis membrane, even when using a halogen-based oxidizing agent as a bactericide A treatment method and a reverse osmosis membrane treatment system are provided.

本発明は、ハロゲン系酸化剤を含む殺菌剤を存在させた被処理水を、ポリアミド系の逆浸透膜を用いて逆浸透膜処理する逆浸透膜処理工程を含み、前記被処理水中の1価カチオンの総量が、2価カチオンの総量に対してモル数で4倍未満である、逆浸透膜処理方法である。   The present invention includes a reverse osmosis membrane treatment step of reverse osmosis membrane treatment of treated water in the presence of a germicidal agent containing a halogen-based oxidizing agent using a polyamide-based reverse osmosis membrane, and the monovalent water in the treated water It is a reverse osmosis membrane treatment method in which the total amount of cations is less than 4 times by mole relative to the total amount of divalent cations.

前記逆浸透膜処理方法において、前記被処理水中の1価カチオンおよび2価カチオンの量を測定するイオン量測定工程をさらに含むことが好ましい。   The reverse osmosis membrane treatment method preferably further includes an ion amount measuring step of measuring the amount of monovalent cations and divalent cations in the water to be treated.

前記逆浸透膜処理方法において、前記被処理水中の1価カチオンの総量が2価カチオンの総量に対してモル数で4倍以上である場合に、2価カチオンを添加することによって、1価カチオンの総量を2価カチオンの総量に対してモル数で4倍未満にすることが好ましい。   In the reverse osmosis membrane treatment method, a monovalent cation is added by adding a divalent cation when the total amount of monovalent cations in the water to be treated is four or more times the number of moles with respect to the total amount of divalent cations. Preferably, the total amount of is less than 4 times the number of moles relative to the total amount of divalent cations.

前記逆浸透膜処理方法において、前記1価カチオンが、ナトリウムイオンを含むことが好ましい。   In the reverse osmosis membrane treatment method, it is preferable that the monovalent cation contains a sodium ion.

前記逆浸透膜処理方法において、前記2価カチオンが、カルシウムイオンを含むことが好ましい。   In the reverse osmosis membrane treatment method, the divalent cation preferably contains a calcium ion.

前記逆浸透膜処理方法において、前記被処理水のpHが、4〜8の範囲であることが好ましい。   In the reverse osmosis membrane treatment method, the pH of the water to be treated is preferably in the range of 4 to 8.

前記逆浸透膜処理方法において、前記ハロゲン系酸化剤が、臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物であることが好ましい。   In the reverse osmosis membrane treatment method, the halogen-based oxidizing agent is preferably a stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound.

また、本発明は、ハロゲン系酸化剤を含む殺菌剤を存在させた被処理水を、ポリアミド系の逆浸透膜を用いて逆浸透膜処理する逆浸透膜処理手段を備え、前記逆浸透膜に流入する被処理水の1価カチオンの総量が、2価カチオンの総量に対してモル数で4倍未満である、逆浸透膜処理システムである。   The present invention further comprises reverse osmosis membrane treatment means for reverse osmosis membrane treatment of treated water containing a germicidal agent containing a halogen-based oxidizing agent using a polyamide-based reverse osmosis membrane, wherein the reverse osmosis membrane comprises It is a reverse osmosis membrane processing system in which the total amount of monovalent cations of inflowing treated water is less than 4 times by mole relative to the total amount of divalent cations.

前記逆浸透膜処理システムにおいて、前記被処理水中の1価カチオンおよび2価カチオンの量を測定するイオン量測定手段をさらに備えることが好ましい。   Preferably, the reverse osmosis membrane treatment system further comprises an ion amount measuring means for measuring the amount of monovalent cations and divalent cations in the water to be treated.

前記逆浸透膜処理システムにおいて、前記被処理水に2価カチオンを添加する2価カチオン添加手段をさらに備え、前記被処理水中の1価カチオンの総量が2価カチオンの総量に対してモル数で4倍以上である場合に、2価カチオンを添加することによって、1価カチオンの総量を2価カチオンの総量に対してモル数で4倍未満にすることが好ましい。   The reverse osmosis membrane treatment system further comprises divalent cation addition means for adding divalent cations to the water to be treated, wherein the total amount of monovalent cations in the water to be treated is in moles relative to the total amount of divalent cations When the amount is 4 times or more, the total amount of monovalent cations is preferably less than 4 times the number of moles with respect to the total amount of divalent cations by adding divalent cations.

前記逆浸透膜処理システムにおいて、前記1価カチオンが、ナトリウムイオンを含むことが好ましい。   In the reverse osmosis membrane treatment system, the monovalent cation preferably includes a sodium ion.

前記逆浸透膜処理システムにおいて、前記2価カチオンが、カルシウムイオンを含むことが好ましい。   In the reverse osmosis membrane treatment system, the divalent cation preferably contains a calcium ion.

前記逆浸透膜処理システムにおいて、前記被処理水のpHが、4〜8の範囲であることが好ましい。   In the reverse osmosis membrane treatment system, the pH of the water to be treated is preferably in the range of 4 to 8.

前記逆浸透膜処理システムにおいて、前記ハロゲン系酸化剤が、臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物であることが好ましい。   In the reverse osmosis membrane treatment system, the halogen-based oxidizing agent is preferably a stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound.

本発明により、ポリアミド系の逆浸透膜を用いる逆浸透膜処理において、殺菌剤としてハロゲン系酸化剤を用いても、逆浸透膜の透過水量の低下を抑制することができる。   According to the present invention, in the reverse osmosis membrane treatment using a polyamide-based reverse osmosis membrane, even if a halogen-based oxidizing agent is used as a bactericide, it is possible to suppress a decrease in the amount of water permeated by the reverse osmosis membrane.

本発明の実施形態に係る逆浸透膜処理システムの一例を示す概略構成図である。It is a schematic block diagram which shows an example of the reverse osmosis membrane processing system which concerns on embodiment of this invention. 本発明の実施形態に係る逆浸透膜処理システムの他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the reverse osmosis membrane processing system which concerns on embodiment of this invention. 本発明の実施形態に係る逆浸透膜処理システムの他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the reverse osmosis membrane processing system which concerns on embodiment of this invention. 本発明の実施形態に係る逆浸透膜処理システムの他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the reverse osmosis membrane processing system which concerns on embodiment of this invention.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. The present embodiment is an example for implementing the present invention, and the present invention is not limited to the present embodiment.

<逆浸透膜処理方法および逆浸透膜処理システム>
本発明の実施形態に係る逆浸透膜処理システムの一例の概略を図1に示し、その構成について説明する。
<Retro osmosis membrane treatment method and reverse osmosis membrane treatment system>
An outline of an example of a reverse osmosis membrane treatment system according to an embodiment of the present invention is shown in FIG. 1 and its configuration will be described.

図1に示す逆浸透膜処理システム1は、逆浸透膜処理手段として、ポリアミド系の逆浸透膜を有する逆浸透膜処理装置12を備える。逆浸透膜処理システム1は、被処理水を貯留するための被処理水槽10を備えてもよい。逆浸透膜処理システム1は、被処理水中の1価カチオンおよび2価カチオンの量を測定するイオン量測定手段として、イオン量測定装置24を備えることが好ましい。   The reverse osmosis membrane processing system 1 shown in FIG. 1 includes a reverse osmosis membrane processing device 12 having a polyamide-based reverse osmosis membrane as a reverse osmosis membrane processing means. Reverse osmosis membrane processing system 1 may be provided with treated water tank 10 for storing treated water. The reverse osmosis membrane treatment system 1 preferably includes an ion amount measuring device 24 as an ion amount measuring means for measuring the amount of monovalent cations and divalent cations in the water to be treated.

逆浸透膜処理システム1において、被処理水槽10の入口には、被処理水配管14が接続されている。被処理水槽10の出口と、逆浸透膜処理装置12の入口とは、被処理水供給配管16により接続されている。逆浸透膜処理装置12の透過水出口には、透過水配管18が接続され、濃縮水出口には、濃縮水配管20が接続されている。被処理水槽10には、殺菌剤添加手段として殺菌剤添加配管22が接続されている。また、被処理水槽10には、イオン量測定装置24が設置されている。イオン量測定装置24は、被処理水配管14や、濃縮水配管20に設置されていてもよい。また、被処理水槽10、逆浸透膜処理装置12、被処理水配管14、被処理水供給配管16および濃縮水配管20のうち少なくとも1つに殺菌剤濃度検出手段として殺菌剤濃度測定装置が設置されていてもよい。   In the reverse osmosis membrane treatment system 1, a treated water pipe 14 is connected to the inlet of the treated water tank 10. The outlet of the treated water tank 10 and the inlet of the reverse osmosis membrane treatment apparatus 12 are connected by a treated water supply pipe 16. A permeated water pipe 18 is connected to the permeated water outlet of the reverse osmosis membrane treatment apparatus 12, and a concentrated water pipe 20 is connected to the concentrated water outlet. A sterilizer addition pipe 22 is connected to the water tank 10 as a sterilizer addition means. Further, an ion amount measuring device 24 is installed in the treated water tank 10. The ion amount measuring device 24 may be installed in the treated water pipe 14 or the concentrated water pipe 20. In addition, a bactericide concentration measuring device is installed as a bactericide concentration detecting means in at least one of the treated water tank 10, the reverse osmosis membrane treatment device 12, the treated water piping 14, the treated water supply piping 16 and the concentrated water piping 20. It may be done.

本実施形態に係る逆浸透膜処理方法および逆浸透膜処理システム1の動作について説明する。   The operation of the reverse osmosis membrane treatment method and the reverse osmosis membrane treatment system 1 according to the present embodiment will be described.

逆浸透膜処理システム1において、被処理水は、被処理水配管14を通して、必要に応じて被処理水槽10に送液され、貯留される。被処理水槽10において、被処理水中の1価カチオンおよび2価カチオンの量が測定される(イオン量測定工程)。次に、被処理水槽10において、被処理水中に、ハロゲン系酸化剤を含む殺菌剤が殺菌剤添加配管22を通して添加され、殺菌剤を存在させる(殺菌剤添加工程)。殺菌剤は、被処理水配管14において添加されてもよいし、図2に示す逆浸透膜処理システム3のように被処理水供給配管16において添加されてもよい。   In the reverse osmosis membrane treatment system 1, the water to be treated is sent to the water tank 10 to be treated as needed through the water pipe 14 to be treated and stored. In the treated water tank 10, the amounts of monovalent cations and divalent cations in the treated water are measured (ion amount measuring step). Next, in the water tank 10 to be treated, a bactericide containing a halogen-based oxidizing agent is added to the water to be treated through the bactericide addition pipe 22 to make the bactericide present (bactericide adding step). The sterilizing agent may be added in the treated water pipe 14, or may be added in the treated water supply pipe 16 as in the reverse osmosis membrane treatment system 3 shown in FIG.

殺菌剤を存在させた殺菌剤含有水は、被処理水供給配管16を通して、逆浸透膜処理装置12に供給され、逆浸透膜処理装置12において、逆浸透膜処理が行われる(逆浸透膜処理工程)。逆浸透膜処理で得られた透過水は、処理水として透過水配管18を通して排出され、濃縮水は濃縮水配管20を通して排出される。   The bactericide-containing water containing the bactericidal agent is supplied to the reverse osmosis membrane treatment apparatus 12 through the treated water supply pipe 16, and the reverse osmosis membrane treatment is performed in the reverse osmosis membrane treatment apparatus 12 (reverse osmosis membrane treatment) Process). The permeated water obtained by the reverse osmosis membrane treatment is discharged as treated water through the permeated water pipe 18, and the concentrated water is discharged through the concentrated water pipe 20.

本発明者らは検討を重ねた結果、被処理水中の1価カチオンの総量が2価カチオンの総量に対してモル数で4倍未満であることにより、ポリアミド系の逆浸透膜を用いる水処理において、殺菌剤としてハロゲン系酸化剤を用いても、逆浸透膜の透過水量の低下を抑制することができることを見出した。1価カチオンの総量が2価カチオンの総量に対してモル数で4倍未満である被処理水に対してハロゲン系酸化剤を添加することで、ハロゲン系酸化剤による透過水量の低下を抑制しながら逆浸透膜処理システムを運転することができる。   As a result of repeated investigations, the present inventors conducted a water treatment using a polyamide-based reverse osmosis membrane because the total amount of monovalent cations in treated water is less than 4 times the number of moles with respect to the total amount of divalent cations. In the above, it has been found that even if a halogen-based oxidizing agent is used as a bactericide, it is possible to suppress a decrease in the amount of water permeated by the reverse osmosis membrane. By adding a halogen-based oxidizing agent to the water to be treated in which the total amount of monovalent cations is less than 4 times the number of moles with respect to the total amount of divalent cations, the decrease in the amount of water permeated by the halogen-based oxidizing agent is suppressed. While the reverse osmosis membrane treatment system can be operated.

ポリアミド系の逆浸透膜を用いる逆浸透膜処理において、殺菌剤としてハロゲン系酸化剤を用いると、ポリアミド系の逆浸透膜のポリアミド構造の一部が塩素原子や臭素原子等のハロゲン原子に置換されて膜の構造変化が起こることにより、透過水量が低下すると考えられる。しかし、被処理水中の1価カチオンの総量が2価カチオンの総量に対してモル数で4倍未満であると、ハロゲン系酸化剤により生じる膜の構造変化が2価カチオンにより阻害されて、透過水量の低下が抑制されると推定される。   When a halogen-based oxidizing agent is used as a bactericidal agent in reverse osmosis membrane treatment using a polyamide-based reverse osmosis membrane, part of the polyamide structure of the polyamide-based reverse osmosis membrane is substituted with a halogen atom such as a chlorine atom or a bromine atom It is thought that the amount of permeated water decreases due to the structural change of the membrane. However, if the total amount of monovalent cations in the water to be treated is less than 4 times the number of moles with respect to the total amount of divalent cations, the structural change of the film caused by the halogen-based oxidizing agent is inhibited by the divalent cations It is estimated that the decrease in water volume is suppressed.

被処理水中の1価カチオンの総量が2価カチオンの総量に対してモル数で4倍未満であることにより、逆浸透膜の透過水量の低下を抑制することができるが、被処理水中の1価カチオンの総量が2価カチオンの総量に対してモル数で2倍以下であることが好ましく、1倍以下であることがより好ましい。なお、「被処理水中の1価カチオンの総量が2価カチオンの総量に対してモル数で4倍未満である」とは、被処理水中に1価カチオンが含まれない場合も含む。   When the total amount of monovalent cations in the water to be treated is less than 4 times the number of moles with respect to the total amount of divalent cations, a decrease in the amount of water permeated by the reverse osmosis membrane can be suppressed. The total amount of divalent cations is preferably 2 times or less by mole, and more preferably 1 time or less, with respect to the total amount of divalent cations. The phrase "the total amount of monovalent cations in the water to be treated is less than 4 times the number of moles relative to the total amount of divalent cations" also includes the case where monovalent water is not contained in the water to be treated.

被処理水中の1価カチオンの総量が2価カチオンの総量に対してモル数で4倍以上である場合には、被処理水に2価カチオンを添加することによって、1価カチオンの総量を2価カチオンの総量に対してモル数で4倍未満にすればよい。   When the total amount of monovalent cations in the water to be treated is four or more times the number of moles with respect to the total amount of divalent cations, the total amount of monovalent cations can be 2 by adding divalent cations to the water to be treated. The number of moles may be less than 4 times the total amount of valence cations.

図3に示す逆浸透膜処理システム5は、逆浸透膜処理手段として、ポリアミド系の逆浸透膜を有する逆浸透膜処理装置12と、被処理水に2価カチオンを添加する2価カチオン添加手段として、2価カチオン添加配管26とを備える。逆浸透膜処理システム5は、被処理水を貯留するための被処理水槽10を備えてもよい。逆浸透膜処理システム5は、被処理水中の1価カチオンおよび2価カチオンの量を測定するイオン量測定手段として、イオン量測定装置24を備えることが好ましい。2価カチオン添加配管26の設置位置は、イオン量測定装置24と同じ槽、またはイオン量測定装置24よりも上流側であればよく、特に限定されない。例えば、被処理水槽10において2価カチオンを添加し、そのイオン量を被処理水供給配管16または濃縮水配管20で測定してもよい。また、逆浸透膜処理システム5は、pH測定手段としてpH測定装置を備えてもよい。pH測定手段の設置位置は、2価カチオン添加配管26および殺菌剤添加配管22の下流側であればよく、特に限定されない。2価カチオンを水酸化物として添加する場合、2価カチオンの添加とともにpH調整を行うことができるため、pH測定装置を備えることが好ましい。   The reverse osmosis membrane processing system 5 shown in FIG. 3 includes a reverse osmosis membrane processing device 12 having a polyamide-based reverse osmosis membrane as a reverse osmosis membrane processing means, and a divalent cation adding means for adding divalent cations to the water to be treated And a divalent cation addition pipe 26. Reverse osmosis membrane processing system 5 may be provided with treated water tank 10 for storing treated water. The reverse osmosis membrane processing system 5 preferably includes an ion amount measuring device 24 as an ion amount measuring means for measuring the amount of monovalent cations and divalent cations in the water to be treated. The installation position of the divalent cation addition pipe 26 may be the same tank as the ion amount measuring device 24 or the upstream side of the ion amount measuring device 24 and is not particularly limited. For example, divalent cations may be added in the water tank 10 to be treated, and the amount of ions may be measured by the water supply pipe 16 or the concentrated water pipe 20. Moreover, the reverse osmosis membrane processing system 5 may be equipped with a pH measuring device as a pH measuring means. The installation position of the pH measurement means is not particularly limited as long as it is on the downstream side of the divalent cation addition piping 26 and the sterilizing agent addition piping 22. In the case of adding a divalent cation as a hydroxide, it is preferable to provide a pH measuring device because pH adjustment can be performed together with the addition of the divalent cation.

逆浸透膜処理システム5において、被処理水槽10の入口には、被処理水配管14が接続されている。被処理水槽10の出口と、逆浸透膜処理装置12の入口とは、被処理水供給配管16により接続されている。逆浸透膜処理装置12の透過水出口には、透過水配管18が接続され、濃縮水出口には、濃縮水配管20が接続されている。被処理水槽10には、殺菌剤添加手段として殺菌剤添加配管22および2価カチオン添加配管26が接続されている。また、被処理水槽10には、イオン量測定装置24が設置されている。   In the reverse osmosis membrane treatment system 5, a treated water pipe 14 is connected to the inlet of the treated water tank 10. The outlet of the treated water tank 10 and the inlet of the reverse osmosis membrane treatment apparatus 12 are connected by a treated water supply pipe 16. A permeated water pipe 18 is connected to the permeated water outlet of the reverse osmosis membrane treatment apparatus 12, and a concentrated water pipe 20 is connected to the concentrated water outlet. A sterilizing agent addition pipe 22 and a divalent cation addition pipe 26 are connected to the water tank 10 as a sterilizing agent addition means. Further, an ion amount measuring device 24 is installed in the treated water tank 10.

逆浸透膜処理システム5において、被処理水は、被処理水配管14を通して、必要に応じて被処理水槽10に送液され、貯留される。被処理水槽10において、被処理水中の1価カチオンおよび2価カチオンの量が測定される(イオン量測定工程)。被処理水中の1価カチオンの総量が2価カチオンの総量に対してモル数で4倍以上である場合には、被処理水槽10において、被処理水中に2価カチオンが2価カチオン添加配管26を通して添加され、被処理水中の1価カチオンの総量が2価カチオンの総量に対してモル数で4倍未満にされる(2価カチオン添加工程)。次に、ハロゲン系酸化剤を含む殺菌剤が殺菌剤添加配管22を通して添加され、殺菌剤を存在させる(殺菌剤添加工程)。殺菌剤は、図4に示す逆浸透膜処理システム7のように被処理水供給配管16において添加されてもよい。   In the reverse osmosis membrane treatment system 5, the water to be treated is sent to the water tank 10 to be treated as needed through the water pipe 14 to be treated and stored. In the treated water tank 10, the amounts of monovalent cations and divalent cations in the treated water are measured (ion amount measuring step). When the total amount of monovalent cations in the water to be treated is four or more times the total number of divalent cations in moles, in the water tank 10, divalent cations are added to the water to be treated in the water to be treated with divalent cations 26 The total amount of monovalent cations in the water to be treated is less than 4 times the number of moles with respect to the total amount of divalent cations (divalent cation addition step). Next, a bactericide containing a halogen-based oxidizing agent is added through the bactericide addition pipe 22 to make the bactericide present (bactericide addition step). The sterilizing agent may be added to the treated water supply pipe 16 as in the reverse osmosis membrane treatment system 7 shown in FIG.

殺菌剤を存在させた殺菌剤含有水は、被処理水供給配管16を通して、逆浸透膜処理装置12に供給され、逆浸透膜処理装置12において、逆浸透膜処理が行われる(逆浸透膜処理工程)。逆浸透膜処理で得られた透過水は、処理水として透過水配管18を通して排出され、濃縮水は濃縮水配管20を通して排出される。   The bactericide-containing water containing the bactericidal agent is supplied to the reverse osmosis membrane treatment apparatus 12 through the treated water supply pipe 16, and the reverse osmosis membrane treatment is performed in the reverse osmosis membrane treatment apparatus 12 (reverse osmosis membrane treatment) Process). The permeated water obtained by the reverse osmosis membrane treatment is discharged as treated water through the permeated water pipe 18, and the concentrated water is discharged through the concentrated water pipe 20.

1価カチオンとしては、例えば、ナトリウムイオン、カリウムイオン等が挙げられ、ナトリウムイオンを含むことが好ましい。   Examples of the monovalent cation include sodium ion, potassium ion and the like, and it is preferable to include sodium ion.

2価カチオンとしては、カルシウムイオン、マグネシウムイオン等の硬度成分等が挙げられ、カルシウムイオンを含むことが好ましい。   As a bivalent cation, hardness components, such as a calcium ion and a magnesium ion, etc. are mentioned, It is preferable that calcium ion is included.

被処理水中の1価カチオンの含有量は、例えば、0.1〜15000mg/Lの範囲であり、好ましくは、1〜2000mg/Lの範囲である。   The content of monovalent cations in the water to be treated is, for example, in the range of 0.1 to 15000 mg / L, and preferably in the range of 1 to 2000 mg / L.

被処理水中の2価カチオンの含有量は、例えば、0.04〜7000mg/Lの範囲であり、好ましくは、0.4〜1000mg/Lの範囲である。   The content of divalent cations in the water to be treated is, for example, in the range of 0.04 to 7000 mg / L, and preferably in the range of 0.4 to 1000 mg / L.

2価カチオンの添加形態は特に限定されないが、塩化カルシウム、水酸化カルシウム、塩化マグネシウム、水酸化マグネシウム、硫酸マグネシウム、硝酸マグネシウム等の2価の無機塩を必要に応じて水溶化させたものを用いることができる。2価の無機塩として水酸化物を用いると、2価カチオンの添加とともにpH調整を行うことができるため、pH調整が必要な場合は好適に用いることができる。   Although the addition form of the divalent cation is not particularly limited, it is possible to use, as necessary, water solubilization of a divalent inorganic salt such as calcium chloride, calcium hydroxide, magnesium chloride, magnesium hydroxide, magnesium sulfate or magnesium nitrate. be able to. When a hydroxide is used as the divalent inorganic salt, the pH can be adjusted with the addition of the divalent cation, so that it can be suitably used when pH adjustment is required.

イオン量測定装置24としては、被処理水中の1価カチオンおよび2価カチオンの量を測定することができるものであればよく、特に制限はないが、例えば、イオンクロマト装置、原子吸光分析装置等が挙げられ、分析の簡便さ等の点からイオンクロマト装置が好ましい。イオン量測定装置24によるイオン量の測定は、常時行ってもよいし、定期的に行ってもよいし、非定期的に行ってもよい。   The amount of ions measuring device 24 is not particularly limited as long as it can measure the amount of monovalent cations and divalent cations in the water to be treated, but, for example, an ion chromatograph, an atomic absorption analyzer, etc. An ion chromatography apparatus is preferred from the viewpoint of simplicity of analysis and the like. The measurement of the ion amount by the ion amount measuring device 24 may be performed constantly, may be performed periodically, or may be performed irregularly.

ハロゲン系酸化剤としては、塩素、臭素等のハロゲンを含有し、酸化作用があるものであればよく、特に制限はないが、例えば、塩素系酸化剤、臭素系酸化剤、安定化次亜塩素酸組成物、安定化次亜臭素酸組成物等が挙げられる。   The halogen-based oxidizing agent is not particularly limited as long as it contains halogen such as chlorine and bromine and has an oxidizing action, and there is no particular limitation, but, for example, chlorine-based oxidizing agent, bromine-based oxidizing agent, stabilized hypochlorous acid An acid composition, a stabilized hypobromous acid composition, etc. are mentioned.

塩素系酸化剤としては、例えば、塩素ガス、二酸化塩素、次亜塩素酸またはその塩、亜塩素酸またはその塩、塩素酸またはその塩、過塩素酸またはその塩、塩素化イソシアヌル酸またはその塩等が挙げられる。これらのうち、塩としては、例えば、次亜塩素酸ナトリウム、次亜塩素酸カリウム等の次亜塩素酸アルカリ金属塩、次亜塩素酸カルシウム、次亜塩素酸バリウム等の次亜塩素酸アルカリ土類金属塩、亜塩素酸ナトリウム、亜塩素酸カリウム等の亜塩素酸アルカリ金属塩、亜塩素酸バリウム等の亜塩素酸アルカリ土類金属塩、亜塩素酸ニッケル等の他の亜塩素酸金属塩、塩素酸アンモニウム、塩素酸ナトリウム、塩素酸カリウム等の塩素酸アルカリ金属塩、塩素酸カルシウム、塩素酸バリウム等の塩素酸アルカリ土類金属塩等が挙げられる。これらの塩素系酸化剤は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。塩素系酸化剤としては、取り扱い性等の点から、次亜塩素酸ナトリウムを用いるのが好ましい。   As the chlorine-based oxidizing agent, for example, chlorine gas, chlorine dioxide, hypochlorous acid or its salt, chlorous acid or its salt, chloric acid or its salt, perchloric acid or its salt, chlorinated isocyanuric acid or its salt Etc. Among these, as salts, for example, alkali metal hypochlorite such as sodium hypochlorite and potassium hypochlorite, calcium hypochlorite, alkaline earth hypochlorite such as barium hypochlorite and the like Metal salts, alkali metal chlorite such as sodium chlorite and potassium chlorite, alkaline earth metal chlorite such as barium chlorite, and other metal chlorite such as nickel chlorite And alkali metal salts of chlorate such as ammonium chlorate, sodium chlorate and potassium chlorate, and alkali earth metal chlorates such as calcium chlorate and barium chlorate. One of these chlorine-based oxidizing agents may be used alone, or two or more thereof may be used in combination. As a chlorine-based oxidizing agent, sodium hypochlorite is preferably used in terms of handleability and the like.

臭素系酸化剤としては、臭素(液体臭素)、塩化臭素、臭素酸、臭素酸塩、次亜臭素酸等が挙げられる。次亜臭素酸は、臭化ナトリウム等の臭化物と次亜塩素酸等の塩素系酸化剤とを反応させて生成させたものであってもよい。   Bromine-based oxidizing agents include bromine (liquid bromine), bromine chloride, bromic acid, bromate, hypobromous acid and the like. Hypobromous acid may be produced by reacting a bromide such as sodium bromide with a chlorine-based oxidizing agent such as hypochlorous acid.

安定化次亜塩素酸組成物は、塩素系酸化剤とスルファミン酸化合物とを含むものである。「塩素系酸化剤とスルファミン酸化合物とを含む安定化次亜塩素酸組成物」は、「塩素系酸化剤」と「スルファミン酸化合物」との混合物を含む安定化次亜塩素酸組成物であってもよいし、「塩素系酸化剤とスルファミン酸化合物との反応生成物」を含む安定化次亜塩素酸組成物であってもよい。   The stabilized hypochlorous acid composition comprises a chlorine-based oxidizing agent and a sulfamic acid compound. "Stabilized hypochlorous acid composition containing a chlorine-based oxidizing agent and a sulfamic acid compound" is a stabilized hypochlorous acid composition containing a mixture of a "chlorine-based oxidizing agent" and a "sulfamic acid compound" It may be a stabilized hypochlorous acid composition containing “a reaction product of a chlorine-based oxidizing agent and a sulfamic acid compound”.

安定化次亜臭素酸組成物は、臭素系酸化剤とスルファミン酸化合物とを含むものである。「臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物」は、「臭素系酸化剤」と「スルファミン酸化合物」との混合物を含む安定化次亜臭素酸組成物であってもよいし、「臭素系酸化剤とスルファミン酸化合物との反応生成物」を含む安定化次亜臭素酸組成物であってもよい。   The stabilized hypobromous acid composition comprises a bromine-based oxidizing agent and a sulfamic acid compound. The “stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound” is a stabilized hypobromous acid composition containing a mixture of a “bromine-based oxidizing agent” and a “sulfamic acid compound”. It may be a stabilized hypobromous acid composition containing “a reaction product of a bromine-based oxidizing agent and a sulfamic acid compound”.

ハロゲン系酸化剤としては、これらのうち、安定化次亜塩素酸組成物または安定化次亜臭素酸組成物が好ましく、安定化次亜臭素酸組成物がより好ましい。安定化次亜塩素酸組成物または安定化次亜臭素酸組成物、特に安定化次亜臭素酸組成物は、次亜塩素酸等の塩素系酸化剤と同等以上のスライム抑制効果を発揮するにも関わらず、塩素系酸化剤と比較すると、逆浸透膜への劣化影響が低いため、逆浸透膜でのファウリングを抑制しながら、逆浸透膜の酸化劣化を抑制できる。このため、本実施形態に係る逆浸透膜を用いる逆浸透膜処理方法および逆浸透膜処理システムで用いられる安定化次亜塩素酸組成物または安定化次亜臭素酸組成物、特に安定化次亜臭素酸組成物は、被処理水を逆浸透膜で処理する逆浸透膜処理方法および逆浸透膜処理システムで用いるスライム抑制剤としては好適である。   Among these, as the halogen-based oxidizing agent, a stabilized hypochlorous acid composition or a stabilized hypobromous acid composition is preferable, and a stabilized hypobromous acid composition is more preferable. A stabilized hypochlorous acid composition or a stabilized hypochlorous acid composition, in particular a stabilized hypobromous acid composition, to exert a slime suppressing effect equal to or more than a chlorine-based oxidizing agent such as hypochlorous acid Nevertheless, compared with a chlorine-based oxidizing agent, since the deterioration impact on the reverse osmosis membrane is low, the oxidation deterioration of the reverse osmosis membrane can be suppressed while suppressing the fouling in the reverse osmosis membrane. Therefore, a method of reverse osmosis membrane treatment using the reverse osmosis membrane according to the present embodiment and a stabilized hypochlorous acid composition or a stabilized hypobromous acid composition used in the reverse osmosis membrane treatment system, particularly stabilized hypochlorous acid The bromic acid composition is suitable as a reverse osmosis membrane treatment method for treating treated water with a reverse osmosis membrane and as a slime inhibitor used in a reverse osmosis membrane treatment system.

本実施形態に係る逆浸透膜処理方法および逆浸透膜処理システムにおいて、「臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物」は、塩素系酸化剤が存在しないため、逆浸透膜への劣化影響がより低い。塩素系酸化剤を含む場合は、塩素酸の生成が懸念される。   In the reverse osmosis membrane treatment method and the reverse osmosis membrane treatment system according to the present embodiment, “the stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound” has no chlorine-based oxidizing agent, so Lower degradation impact on reverse osmosis membranes. In the case of containing a chlorine-based oxidizing agent, the formation of chloric acid is a concern.

すなわち、本発明の実施形態に係る逆浸透膜処理方法および逆浸透膜処理システムでは、好ましくは、被処理水中に、「臭素系酸化剤」と「スルファミン酸化合物」との混合物を存在させる。これにより、被処理水中で、安定化次亜臭素酸組成物が生成すると考えられる。   That is, in the reverse osmosis membrane treatment method and the reverse osmosis membrane treatment system according to the embodiment of the present invention, preferably, a mixture of “bromine-based oxidizing agent” and “sulfamic acid compound” is present in the water to be treated. It is believed that this produces a stabilized hypobromous acid composition in the water to be treated.

また、本発明の実施形態に係る逆浸透膜処理方法および逆浸透膜処理システムでは、好ましくは、被処理水中に、「臭素系酸化剤とスルファミン酸化合物との反応生成物」である安定化次亜臭素酸組成物を存在させる。   Further, in the reverse osmosis membrane treatment method and the reverse osmosis membrane treatment system according to the embodiment of the present invention, preferably, the stabilized water which is a “reaction product of a bromine-based oxidizing agent and a sulfamic acid compound” in the water to be treated A brominated acid composition is present.

具体的には本発明の実施形態に係る逆浸透膜処理方法および逆浸透膜処理システムでは、好ましくは、被処理水中に、「臭素」、「塩化臭素」、「次亜臭素酸」または「臭化ナトリウムと次亜塩素酸との反応物」と、「スルファミン酸化合物」との混合物を存在させる。   Specifically, in the reverse osmosis membrane treatment method and the reverse osmosis membrane treatment system according to the embodiment of the present invention, preferably, “bromine”, “bromine chloride”, “hypobromous acid” or “odor in the water to be treated is preferably used. A mixture of sodium hydroxide and a reaction product of hypochlorous acid and a sulfamic acid compound is present.

また、本発明の実施形態に係る逆浸透膜処理方法および逆浸透膜処理システムでは、好ましくは、被処理水中に、例えば、「臭素とスルファミン酸化合物との反応生成物」、「塩化臭素とスルファミン酸化合物との反応生成物」、「次亜臭素酸とスルファミン酸化合物との反応生成物」、または「臭化ナトリウムと次亜塩素酸との反応物と、スルファミン酸化合物と、の反応生成物」である安定化次亜臭素酸組成物を存在させる。   In the reverse osmosis membrane treatment method and the reverse osmosis membrane treatment system according to an embodiment of the present invention, preferably, for example, “reaction product of bromine and sulfamic acid compound”, “bromine chloride and sulfamine, preferably in water to be treated. Product of reaction with acid compound, reaction product of hypobromous acid and sulfamic acid compound, or reaction product of reaction product of sodium bromide and hypochlorous acid with sulfamic acid compound A stabilized hypobromous acid composition is present.

本実施形態に係る逆浸透膜処理方法および逆浸透膜処理システムでは、例えば、被処理水中に、「臭素系酸化剤」と「スルファミン酸化合物」とを薬注ポンプ等により注入してもよい。「臭素系酸化剤」と「スルファミン酸化合物」とは別々に被処理水に添加してもよく、または、原液同士で混合させてから被処理水に添加してもよい。   In the reverse osmosis membrane treatment method and the reverse osmosis membrane treatment system according to the present embodiment, for example, a “bromine-based oxidizing agent” and a “sulfamic acid compound” may be injected into the water to be treated by a chemical pump or the like. The “bromine-based oxidizing agent” and the “sulfamic acid compound” may be separately added to the water to be treated, or may be added to the water to be treated after being mixed with the stock solution.

また、例えば、被処理水中に、「臭素系酸化剤とスルファミン酸化合物との反応生成物」を薬注ポンプ等により注入してもよい。   Also, for example, “a reaction product of a bromine-based oxidizing agent and a sulfamic acid compound” may be injected into the water to be treated by a chemical pump or the like.

本実施形態に係る逆浸透膜処理方法および逆浸透膜処理システムにおいて、「臭素系酸化剤」または「塩素系酸化剤」の当量に対する「スルファミン酸化合物」の当量の比は、1以上であることが好ましく、1以上2以下の範囲であることがより好ましい。「臭素系酸化剤」または「塩素系酸化剤」の当量に対する「スルファミン酸化合物」の当量の比が1未満であると、逆浸透膜を劣化させる可能性があり、2を超えると、製造コストが増加する場合がある。   In the reverse osmosis membrane treatment method and the reverse osmosis membrane treatment system according to the present embodiment, the ratio of the equivalent weight of the “sulfamic acid compound” to the equivalent weight of the “bromine-based oxidizing agent” or the “chlorine-based oxidizing agent” is 1 or more Is preferable, and the range of 1 or more and 2 or less is more preferable. If the ratio of the equivalent of "sulfamic acid compound" to the equivalent of "bromine-based oxidizing agent" or "chlorinated oxidizing agent" is less than 1, the reverse osmosis membrane may be deteriorated, and if it exceeds 2, the manufacturing cost May increase.

逆浸透膜に接触するハロゲン系酸化剤の濃度(全塩素濃度)は有効塩素濃度換算で、0.01〜100mg/Lの範囲であることが好ましい。逆浸透膜に接触するハロゲン系酸化剤の濃度(全塩素濃度)が0.01mg/L未満であると、十分なスライム抑制効果を得ることができない場合があり、100mg/Lより多いと、逆浸透膜の劣化、配管等の腐食を引き起こす可能性がある。   The concentration (total chlorine concentration) of the halogen-based oxidizing agent in contact with the reverse osmosis membrane is preferably in the range of 0.01 to 100 mg / L in terms of available chlorine concentration. If the concentration (total chlorine concentration) of the halogen-based oxidizing agent in contact with the reverse osmosis membrane is less than 0.01 mg / L, sufficient slime suppression effect may not be obtained, and if it is more than 100 mg / L, the reverse It may cause deterioration of the permeable membrane and corrosion of piping and the like.

臭素化合物としては、臭化ナトリウム、臭化カリウム、臭化リチウム、臭化アンモニウムおよび臭化水素酸等が挙げられる。これらのうち、製剤コスト等の点から、臭化ナトリウムが好ましい。   Examples of the bromine compound include sodium bromide, potassium bromide, lithium bromide, ammonium bromide and hydrobromic acid. Among these, sodium bromide is preferable in terms of formulation cost and the like.

スルファミン酸化合物は、以下の一般式(1)で示される化合物である。
NSOH (1)
(式中、Rは独立して水素原子または炭素数1〜8のアルキル基である。)
The sulfamic acid compound is a compound represented by the following general formula (1).
R 2 NSO 3 H (1)
(Wherein, R is independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms)

スルファミン酸化合物としては、例えば、2個のR基の両方が水素原子であるスルファミン酸(アミド硫酸)の他に、N−メチルスルファミン酸、N−エチルスルファミン酸、N−プロピルスルファミン酸、N−イソプロピルスルファミン酸、N−ブチルスルファミン酸等の2個のR基の一方が水素原子であり、他方が炭素数1〜8のアルキル基であるスルファミン酸化合物、N,N−ジメチルスルファミン酸、N,N−ジエチルスルファミン酸、N,N−ジプロピルスルファミン酸、N,N−ジブチルスルファミン酸、N−メチル−N−エチルスルファミン酸、N−メチル−N−プロピルスルファミン酸等の2個のR基の両方が炭素数1〜8のアルキル基であるスルファミン酸化合物、N−フェニルスルファミン酸等の2個のR基の一方が水素原子であり、他方が炭素数6〜10のアリール基であるスルファミン酸化合物、またはこれらの塩等が挙げられる。スルファミン酸塩としては、例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩、カルシウム塩、ストロンチウム塩、バリウム塩等のアルカリ土類金属塩、マンガン塩、銅塩、亜鉛塩、鉄塩、コバルト塩、ニッケル塩等の他の金属塩、アンモニウム塩およびグアニジン塩等が挙げられる。スルファミン酸化合物およびこれらの塩は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。スルファミン酸化合物としては、環境負荷等の点から、スルファミン酸(アミド硫酸)を用いるのが好ましい。   As a sulfamic acid compound, for example, in addition to sulfamic acid (amidosulfuric acid) in which both of two R groups are hydrogen atoms, N-methylsulfamic acid, N-ethylsulfamic acid, N-propylsulfamic acid, N- A sulfamic acid compound in which one of two R groups such as isopropyl sulfamic acid and N-butyl sulfamic acid is a hydrogen atom and the other is an alkyl group having 1 to 8 carbon atoms, N, N-dimethyl sulfamic acid, N, Two R groups such as N-diethylsulfamic acid, N, N-dipropylsulfamic acid, N, N-dibutylsulfamic acid, N-methyl-N-ethylsulfamic acid, N-methyl-N-propylsulfamic acid, etc. One of two R groups such as sulfamic acid compounds and N-phenylsulfamic acid, both of which are alkyl groups of 1 to 8 carbon atoms An atom, the other is sulfamic acid compound or a salt thereof, such as an aryl group having 6 to 10 carbon atoms. Examples of sulfamate salts include alkali metal salts such as sodium salts and potassium salts, alkaline earth metal salts such as calcium salts, strontium salts and barium salts, manganese salts, copper salts, zinc salts, iron salts, cobalt salts, Other metal salts such as nickel salts, ammonium salts and guanidine salts can be mentioned. The sulfamic acid compounds and their salts may be used alone or in combination of two or more. As the sulfamic acid compound, sulfamic acid (amidosulfuric acid) is preferably used from the viewpoint of environmental load and the like.

本実施形態に係る逆浸透膜処理方法および逆浸透膜処理システムにおいて、被処理水中に、さらにアルカリを存在させてもよい。アルカリとしては、水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ等が挙げられる。低温の製品安定性等の点から、水酸化ナトリウムと水酸化カリウムとを併用してもよい。また、アルカリは、固形でなく、水溶液として用いてもよい。   In the reverse osmosis membrane treatment method and the reverse osmosis membrane treatment system according to the present embodiment, an alkali may be further present in the water to be treated. Examples of the alkali include alkali hydroxides such as sodium hydroxide and potassium hydroxide. Sodium hydroxide and potassium hydroxide may be used in combination from the viewpoint of low temperature product stability and the like. Further, the alkali is not solid but may be used as an aqueous solution.

本実施形態に係る逆浸透膜処理方法および逆浸透膜処理システムは、逆浸透膜として昨今主流であるポリアミド系高分子膜に適用される。ポリアミド系高分子膜は、酸化剤に対する耐性が比較的低く、遊離塩素等をポリアミド系高分子膜に連続的に接触させると、膜性能の著しい低下が起こる場合がある。しかしながら、本実施形態に係る逆浸透膜処理方法および逆浸透膜処理システムでは、好ましくは安定化次亜臭素酸組成物および安定化次亜塩素酸組成物のうち少なくとも1つ、特に安定化次亜臭素酸組成物を用い、被処理水中の1価カチオンの総量が2価カチオンの総量に対してモル数で4倍未満であることにより、ポリアミド系高分子膜においても、このような著しい膜性能の低下は抑制される。   The reverse osmosis membrane treatment method and the reverse osmosis membrane treatment system according to the present embodiment are applied to polyamide-based polymer membranes, which are currently mainstream as reverse osmosis membranes. The polyamide-based polymer membrane has a relatively low resistance to an oxidizing agent, and when free chlorine and the like are continuously brought into contact with the polyamide-based polymer membrane, the membrane performance may be significantly reduced. However, in the reverse osmosis membrane treatment method and the reverse osmosis membrane treatment system according to the present embodiment, preferably at least one of the stabilized hypochlorous acid composition and the stabilized hypochlorous acid composition, particularly the stabilized hypochlorous acid composition Such a remarkable film performance is also achieved in a polyamide polymer film by using a bromic acid composition and the total amount of monovalent cations in the water to be treated being less than 4 times the number of moles with respect to the total amount of divalent cations. The decrease in

本実施形態に係る逆浸透膜処理方法および逆浸透膜処理システムは、逆浸透膜として、ポリアミド系の逆浸透膜にハロゲン系酸化剤を接触させることにより、阻止率を変更した改質逆浸透膜にも適用される。   In the reverse osmosis membrane treatment method and the reverse osmosis membrane treatment system according to the present embodiment, as the reverse osmosis membrane, a modified reverse osmosis membrane in which the blocking ratio is changed by bringing a halogen-based oxidizing agent into contact with a polyamide-based reverse osmosis membrane. It also applies to

本実施形態に係る逆浸透膜処理方法および逆浸透膜処理システムにおいて、逆浸透膜を備える逆浸透膜処理装置へ給水される被処理水のpHが4〜8の範囲であることが好ましく、5〜7.5の範囲であることがより好ましい。被処理水のpHが4未満であると、2価カチオンと1価カチオンの量にかかわらず透過水量が低下する場合がある。また、被処理水のpHの上限値については、通常の逆浸透膜の適用上限pH(例えば、pH10)以下であれば特に制限はないが、カルシウム等の硬度成分のスケール析出を考慮すると、pHは例えば9.0以下で運転することが好ましく、8以下で運転することがより好ましい。本実施形態に係る逆浸透膜を用いる逆浸透膜処理方法および逆浸透膜処理システムを用いる場合、被処理水のpHが5.5以上で運転することにより、逆浸透膜の劣化、処理水(透過水)の水質悪化を抑制し、十分なスライム抑制効果を発揮しつつ、十分な透過水量の確保も可能となる。   In the reverse osmosis membrane treatment method and the reverse osmosis membrane treatment system according to the present embodiment, the pH of the water to be treated supplied to the reverse osmosis membrane treatment apparatus provided with the reverse osmosis membrane is preferably in the range of 4 to 8, More preferably, it is in the range of -7.5. If the pH of the water to be treated is less than 4, the amount of permeated water may decrease regardless of the amounts of divalent cations and monovalent cations. The upper limit of the pH of the water to be treated is not particularly limited as long as it is equal to or lower than the application upper limit pH (for example, pH 10) of a normal reverse osmosis membrane, but considering pH precipitation of hardness components such as calcium, pH For example, it is preferable to operate at 9.0 or less, and it is more preferable to operate at 8 or less. In the case of using the reverse osmosis membrane treatment method and the reverse osmosis membrane treatment system using the reverse osmosis membrane according to the present embodiment, the reverse osmosis membrane is deteriorated by operating the treatment water at a pH of 5.5 or more. While suppressing the deterioration of the water quality of the permeated water) and exhibiting a sufficient slime suppressing effect, it is also possible to secure a sufficient amount of permeated water.

逆浸透膜処理装置において、被処理水のpH4以上でスケールが発生する場合には、スケール抑制のために分散剤を上記殺菌剤と併用してもよい。分散剤としては、例えば、ポリアクリル酸、ポリマレイン酸、ホスホン酸等が挙げられる。分散剤の被処理水への添加量は、例えば、RO濃縮水中の濃度として0.1〜1,000mg/Lの範囲である。   In the reverse osmosis membrane treatment apparatus, when scale is generated at pH 4 or more of the water to be treated, a dispersant may be used in combination with the above-mentioned bactericide for scale suppression. Examples of the dispersant include polyacrylic acid, polymaleic acid, phosphonic acid and the like. The amount of the dispersant added to the water to be treated is, for example, in the range of 0.1 to 1,000 mg / L as the concentration in the RO concentrated water.

また、分散剤を使用せずにスケールの発生を抑制するためには、例えば、RO濃縮水中のシリカ濃度を溶解度以下に、カルシウムスケールの指標であるランゲリア指数を0以下になるように、逆浸透膜処理装置の回収率等の運転条件を調整することが挙げられる。   Also, in order to suppress the generation of scale without using a dispersant, for example, reverse osmosis so that the silica concentration in RO concentrated water is less than the solubility and the Langeria index, which is an indicator of calcium scale, is less than 0. Adjusting the operating conditions such as the recovery rate of the membrane processing apparatus may be mentioned.

逆浸透膜処理システムの用途としては、例えば、純水製造、海水淡水化、排水回収等が挙げられる。   Examples of applications of the reverse osmosis membrane treatment system include pure water production, seawater desalination, waste water recovery and the like.

被処理水としては、工業用水、井水、表流水、水道水や、例えば、除害系より排出される除害系排水、酸アルカリの中和排水といった、半導体製造工程より排出される水、冷却塔ブロー水等が挙げられる。被処理水は、海水、汽水であってもよい。   Water to be treated includes industrial water, well water, surface water, tap water, water discharged from semiconductor manufacturing processes such as abatement waste water discharged from abatement system, acid and alkali neutralization waste water, etc. Cooling tower blow water etc. are mentioned. The water to be treated may be seawater or brackish water.

本実施形態に係る逆浸透膜処理方法および逆浸透膜処理システムにおいて、逆浸透膜処理装置12の被処理水について処理を行う、pH調整、生物処理、凝集処理、凝集沈殿処理、加圧浮上処理、ろ過処理、膜分離処理、活性炭処理、オゾン処理、紫外線照射処理、脱炭酸処理等の生物学的、物理的または化学的な前処理のうちの少なくとも1つの処理を行う装置を備え、逆浸透膜処理装置12(逆浸透膜処理工程)の被処理水について、pH調整、生物処理、凝集処理、凝集沈殿処理、加圧浮上処理、ろ過処理、膜分離処理、活性炭処理、オゾン処理、紫外線照射処理、脱炭酸処理等の生物学的、物理的または化学的な前処理のうちの少なくとも1つの処理を行ってもよい。   In the reverse osmosis membrane treatment method and the reverse osmosis membrane treatment system according to the present embodiment, pH adjustment, biological treatment, aggregation treatment, aggregation sedimentation treatment, pressure levitation treatment, which treats the water to be treated of the reverse osmosis membrane treatment device 12 , Equipment for performing at least one of biological, physical or chemical pretreatment such as filtration treatment, membrane separation treatment, activated carbon treatment, ozone treatment, ultraviolet radiation treatment, decarboxylation treatment, etc., reverse osmosis The water to be treated in the membrane treatment apparatus 12 (reverse osmosis membrane treatment step), pH adjustment, biological treatment, aggregation treatment, aggregation sedimentation treatment, pressure flotation treatment, filtration treatment, membrane separation treatment, activated carbon treatment, ozone treatment, ultraviolet irradiation Treatment, at least one treatment of biological, physical or chemical pretreatment such as decarboxylation may be performed.

また、本実施形態に係る逆浸透膜処理方法および逆浸透膜処理システムにおいて、逆浸透膜処理装置12の透過水について処理を行う、再生型イオン交換処理装置、電気式脱塩処理装置(EDI)、非再生型イオン交換樹脂装置、脱気膜処理装置、UV殺菌処理装置、UV酸化処理装置、微粒子除去処理装置、第2の逆浸透膜処理装置のうちの少なくとも1つの装置を備え、逆浸透膜処理装置12(逆浸透膜処理工程)の透過水について、逆浸透膜処理装置12の透過水について処理を行う、再生型イオン交換処理、電気式脱塩処理、非再生型イオン交換樹脂処理、脱気膜処理、UV殺菌処理、UV酸化処理、微粒子除去処理、第2の逆浸透膜処理のうちの少なくとも1つの処理を行ってもよい。   Further, in the reverse osmosis membrane treatment method and the reverse osmosis membrane treatment system according to the present embodiment, a regeneration type ion exchange treatment device, an electrical deionization treatment device (EDI), which treats the permeated water of the reverse osmosis membrane treatment device 12 , Non-regenerative ion exchange resin device, deaerated membrane treatment device, UV sterilization treatment device, UV oxidation treatment device, particulate removal treatment device, at least one device of the second reverse osmosis membrane treatment device, reverse osmosis The permeated water of the membrane treatment unit 12 (reverse osmosis membrane treatment step) is treated with respect to the permeated water of the reverse osmosis membrane treatment unit 12: Regeneration type ion exchange treatment, electrical deionization treatment, non-regeneration type ion exchange resin treatment, At least one of degassing membrane treatment, UV sterilization treatment, UV oxidation treatment, particulate removal treatment, and second reverse osmosis membrane treatment may be performed.

<殺菌剤>
本実施形態に係る殺菌剤は、ハロゲン系酸化剤を含む。本実施形態に係る殺菌剤は、好ましくは「臭素系酸化剤」と「スルファミン酸化合物」との混合物を含む安定化次亜臭素酸組成物、または「塩素系酸化剤」と「スルファミン酸化合物」との混合物を含む安定化次亜塩素酸組成物を含有するものであり、さらにアルカリを含有してもよい。
<Fungicide>
The germicide according to the present embodiment contains a halogen-based oxidizing agent. The bactericidal agent according to the present embodiment is preferably a stabilized hypobromous acid composition containing a mixture of a "bromine-based oxidizing agent" and a "sulfamic acid compound", or a "chlorinated oxidizing agent" and a "sulfamic acid compound" And a stabilized hypochlorous acid composition containing the mixture thereof, and may further contain an alkali.

また、本実施形態に係る殺菌剤は、好ましくは「臭素系酸化剤とスルファミン酸化合物との反応生成物」を含む安定化次亜臭素酸組成物、または「塩素系酸化剤とスルファミン酸化合物との反応生成物」を含む安定化次亜塩素酸組成物を含有するものであり、さらにアルカリを含有してもよい。   Further, the bactericidal agent according to the present embodiment is preferably a stabilized hypobromous acid composition containing “a reaction product of a bromine-based oxidizing agent and a sulfamic acid compound”, or “a chlorine-based oxidizing agent and a sulfamic acid compound”. And a stabilized hypochlorous acid composition containing “the reaction product”, and may further contain an alkali.

臭素系酸化剤、臭素化合物、塩素系酸化剤およびスルファミン酸化合物については、上述した通りである。   The bromine-based oxidizing agent, the bromine compound, the chlorine-based oxidizing agent and the sulfamic acid compound are as described above.

塩素系酸化剤とスルファミン酸化合物とを含む安定化次亜塩素酸組成物の市販品としては、例えば、栗田工業株式会社製の「クリバーターIK−110」が挙げられる。   As a commercial item of the stabilized hypochlorous acid composition containing a chlorine-based oxidizing agent and a sulfamic acid compound, for example, “Krivator IK-110” manufactured by Kurita Kogyo Co., Ltd. can be mentioned.

本実施形態に係る殺菌剤としては、ポリアミド系逆浸透膜をより劣化させないため、臭素と、スルファミン酸化合物とを含有するもの(臭素とスルファミン酸化合物の混合物を含有するもの)、例えば、臭素とスルファミン酸化合物とアルカリと水との混合物、または、臭素とスルファミン酸化合物との反応生成物を含有するもの、例えば、臭素とスルファミン酸化合物との反応生成物と、アルカリと、水との混合物が好ましい。   As the bactericidal agent according to the present embodiment, one containing bromine and a sulfamic acid compound (containing a mixture of bromine and a sulfamic acid compound), for example, bromine, in order to prevent the polyamide-based reverse osmosis membrane from deteriorating further A mixture of a sulfamic acid compound, an alkali and water, or a reaction product of bromine and a sulfamic acid compound, such as a reaction product of a bromine and a sulfamic acid compound, a mixture of an alkali and water, preferable.

本実施形態に係る殺菌剤のうち、臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を含有する殺菌剤、特に臭素とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を含有する殺菌剤は、塩素系酸化剤とスルファミン酸化合物とを含む殺菌剤(クロロスルファミン酸等)と比較すると、酸化力が高く、スライム抑制力、スライム剥離力が著しく高いにもかかわらず、同じく酸化力の高い次亜塩素酸のような著しい膜劣化をほとんど引き起こすことがない。通常の使用濃度では、膜劣化への影響は実質的に無視することができる。このため、ポリアミド系の逆浸透膜の殺菌剤としては最適である。   Among the bactericidal agents according to this embodiment, a bactericidal agent containing a stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound, particularly a stabilized hypobromous acid containing bromine and a sulfamic acid compound The bactericidal agent containing the composition has a high oxidizing power and a remarkably high slime suppressing ability and slime peeling ability compared with a bactericidal agent (eg, chlorosulfamic acid) containing a chlorine-based oxidizing agent and a sulfamic acid compound. Also, it causes almost no significant film deterioration like hypochlorous acid, which is also highly oxidative. At normal use concentrations, the impact on membrane degradation can be substantially ignored. For this reason, it is optimal as a disinfectant for polyamide-based reverse osmosis membranes.

安定化次亜臭素酸組成物または安定化次亜塩素酸組成物を含む殺菌剤は、次亜塩素酸や、臭素を含む遊離塩素等とは異なり、逆浸透膜をほとんど透過しないため、処理水水質への影響がほとんどない。また、次亜塩素酸等と同様に現場で濃度を測定することができるため、より正確な濃度管理が可能である。   A disinfectant containing a stabilized hypochlorous acid composition or a stabilized hypochlorous acid composition, unlike hypochlorous acid, free chlorine containing bromine, etc., hardly permeates a reverse osmosis membrane, so treated water There is almost no impact on the water quality. Moreover, since the concentration can be measured on site in the same manner as hypochlorous acid etc., more accurate concentration control is possible.

安定化次亜臭素酸組成物を含む殺菌剤のpHは、例えば、13.0超であり、13.2超であることがより好ましい。殺菌剤のpHが13.0以下であると殺菌剤中の有効ハロゲンが不安定になる場合がある。   The pH of the bactericide comprising the stabilized hypobromous acid composition is, for example, more than 13.0, more preferably more than 13.2. When the pH of the bactericidal agent is 13.0 or less, the effective halogen in the bactericidal agent may be unstable.

安定化次亜臭素酸組成物を含む殺菌剤中の臭素酸濃度は、5mg/kg未満であることが好ましい。殺菌剤中の臭素酸濃度が5mg/kg以上であると、RO透過水の臭素酸イオンの濃度が高くなる場合がある。   Preferably, the bromate concentration in the microbicide comprising the stabilized hypobromous acid composition is less than 5 mg / kg. When the bromate concentration in the microbicide is 5 mg / kg or more, the bromate ion concentration in the RO permeated water may be high.

<殺菌剤の製造方法>
安定化次亜臭素酸組成物または安定化次亜塩素酸組成物を含む殺菌剤は、臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを混合することにより得られ、さらにアルカリを混合してもよい。
<Production method of disinfectant>
The sterilizing agent containing the stabilized hypobromous acid composition or the stabilized hypochlorous acid composition is obtained by mixing a bromine-based oxidizing agent or a chlorine-based oxidizing agent with a sulfamic acid compound, and the alkali is further mixed. May be

臭素と、スルファミン酸化合物とを含む安定化次亜臭素酸組成物を含有する殺菌剤の製造方法としては、水、アルカリおよびスルファミン酸化合物を含む混合液に臭素を不活性ガス雰囲気下で添加して反応させる工程、または、水、アルカリおよびスルファミン酸化合物を含む混合液に臭素を不活性ガス雰囲気下で添加する工程を含むことが好ましい。不活性ガス雰囲気下で添加して反応させる、または、不活性ガス雰囲気下で添加することにより、殺菌剤中の臭素酸イオン濃度が低くなり、RO透過水中の臭素酸イオン濃度が低くなる。   As a method for producing a bactericidal agent containing a stabilized hypobromous acid composition containing bromine and a sulfamic acid compound, bromine is added to a mixed solution containing water, an alkali and a sulfamic acid compound under an inert gas atmosphere. It is preferable to include the step of reacting or the step of adding bromine to a mixed solution containing water, an alkali and a sulfamic acid compound under an inert gas atmosphere. By adding and reacting under an inert gas atmosphere or by adding under an inert gas atmosphere, the bromate ion concentration in the bactericide decreases and the bromate ion concentration in the RO permeated water decreases.

用いる不活性ガスとしては限定されないが、製造等の面から窒素およびアルゴンのうち少なくとも1つが好ましく、特に製造コスト等の面から窒素が好ましい。   The inert gas used is not limited, but is preferably at least one of nitrogen and argon from the viewpoint of production etc., and particularly preferably nitrogen from the viewpoint of production cost and the like.

臭素の添加の際の反応器内の酸素濃度は6%以下が好ましいが、4%以下がより好ましく、2%以下がさらに好ましく、1%以下が特に好ましい。臭素の反応の際の反応器内の酸素濃度が6%を超えると、反応系内の臭素酸の生成量が増加する場合がある。   The oxygen concentration in the reactor at the time of addition of bromine is preferably 6% or less, more preferably 4% or less, still more preferably 2% or less, and particularly preferably 1% or less. If the oxygen concentration in the reactor during the reaction of bromine exceeds 6%, the amount of bromic acid produced in the reaction system may increase.

臭素の添加率は、殺菌剤全体の量に対して25重量%以下であることが好ましく、1重量%以上20重量%以下であることがより好ましい。臭素の添加率が殺菌剤全体の量に対して25重量%を超えると、反応系内の臭素酸の生成量が増加する場合がある。1重量%未満であると、殺菌力が劣る場合がある。   The addition rate of bromine is preferably 25% by weight or less, and more preferably 1% by weight to 20% by weight, based on the total amount of the germicide. When the addition rate of bromine exceeds 25% by weight with respect to the total amount of the germicide, the amount of bromate produced in the reaction system may increase. When it is less than 1% by weight, the bactericidal activity may be poor.

臭素添加の際の反応温度は、0℃以上25℃以下の範囲に制御することが好ましいが、製造コスト等の面から、0℃以上15℃以下の範囲に制御することがより好ましい。臭素添加の際の反応温度が25℃を超えると、反応系内の臭素酸の生成量が増加する場合があり、0℃未満であると、凍結する場合がある。   The reaction temperature at the time of bromine addition is preferably controlled in the range of 0 ° C. or more and 25 ° C. or less, but is more preferably controlled in the range of 0 ° C. or more and 15 ° C. or less from the viewpoint of production cost. When the reaction temperature at the time of bromine addition exceeds 25 ° C., the amount of bromic acid produced in the reaction system may increase, and when it is less than 0 ° C., freezing may occur.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail by way of examples and comparative examples, but the present invention is not limited to the following examples.

[安定化次亜臭素酸組成物(組成物1)の調製]
窒素雰囲気下で、液体臭素:16.9重量%(wt%)、スルファミン酸:10.7重量%、水酸化ナトリウム:12.9重量%、水酸化カリウム:3.94重量%、水:残分を混合して、安定化次亜臭素酸組成物(組成物1)を調製した。安定化次亜臭素酸組成物のpHは14、全塩素濃度は7.5重量%であった。全塩素濃度は、HACH社の多項目水質分析計DR/4000を用いて、全塩素測定法(DPD(ジエチル−p−フェニレンジアミン)法)により測定した値(mg/L asCl)である。安定化次亜臭素酸組成物の詳細な調製方法は以下の通りである。
[Preparation of Stabilized Hypobromous Acid Composition (Composition 1)]
Liquid nitrogen: 16.9 wt% (wt%), sulfamic acid: 10.7 wt%, sodium hydroxide: 12.9 wt%, potassium hydroxide: 3.94 wt%, water under a nitrogen atmosphere The ingredients were mixed to prepare a stabilized hypobromous acid composition (Composition 1). The pH of the stabilized hypobromous acid composition was 14, and the total chlorine concentration was 7.5% by weight. The total chlorine concentration is a value (mg / L asCl 2 ) measured by a total chlorine measurement method (DPD (diethyl-p-phenylenediamine) method) using a multi-item water quality analyzer DR / 4000 manufactured by HACH. The detailed preparation method of the stabilized hypobromous acid composition is as follows.

反応容器内の酸素濃度が1%に維持されるように、窒素ガスの流量をマスフローコントローラでコントロールしながら連続注入で封入した2Lの4つ口フラスコに1436gの水、361gの水酸化ナトリウムを加え混合し、次いで300gのスルファミン酸を加え混合した後、反応液の温度が0〜15℃になるように冷却を維持しながら、473gの液体臭素を加え、さらに48%水酸化カリウム溶液230gを加え、組成物全体の量に対する重量比でスルファミン酸10.7%、臭素16.9%、臭素の当量に対するスルファミン酸の当量比が1.04である、目的の安定化次亜臭素酸組成物(組成物1)を得た。生じた溶液のpHは、ガラス電極法にて測定したところ、14であった。生じた溶液の臭素含有率は、臭素をヨウ化カリウムによりヨウ素に転換後、チオ硫酸ナトリウムを用いて酸化還元滴定する方法により測定したところ16.9%であり、理論含有率(16.9%)の100.0%であった。また、臭素反応の際の反応容器内の酸素濃度は、株式会社ジコー製の「酸素モニタJKO−02 LJDII」を用いて測定した。なお、臭素酸濃度は5mg/kg未満であった。   Add 1436 g of water, 361 g of sodium hydroxide to a 2-liter 4-neck flask sealed by continuous injection while controlling the flow rate of nitrogen gas with a mass flow controller so that the oxygen concentration in the reaction vessel is maintained at 1% Mix, then add 300 g of sulfamic acid and mix, then add 473 g of liquid bromine while maintaining cooling so that the temperature of the reaction solution becomes 0 to 15 ° C., and then add 230 g of 48% potassium hydroxide solution An objective stabilized hypobromous acid composition having an sulfamic acid ratio of 10.7% sulfamic acid, 16.9% bromine, and an equivalent ratio of sulfamic acid to bromine equivalent of 1.04 in weight ratio to the total amount of the composition ( The composition 1) was obtained. The pH of the resulting solution was 14 as measured by the glass electrode method. The bromine content of the resulting solution is 16.9% as determined by a redox titration method using sodium thiosulfate after converting bromine to iodine with potassium iodide, and the theoretical content (16.9% 100.0% of the Moreover, the oxygen concentration in the reaction container in the case of a bromine reaction was measured using "oxygen monitor JKO-02 LJDII" made by Dicor Corporation. The bromate concentration was less than 5 mg / kg.

なお、pHの測定は、以下の条件で行った。
電極タイプ:ガラス電極式
pH測定計:東亜ディーケーケー社製、IOL−30型
電極の校正:関東化学社製中性リン酸塩pH(6.86)標準液(第2種)、同社製ホウ酸塩pH(9.18)標準液(第2種)の2点校正で行った
測定温度:25℃
測定値:測定液に電極を浸漬し、安定後の値を測定値とし、3回測定の平均値
In addition, the measurement of pH was performed on condition of the following.
Electrode type: Glass electrode type pH meter: IOL-30, manufactured by Toa DK K. Calibration of electrode: Neutral phosphate pH (6.86) manufactured by Kanto Chemical Co., Ltd. Standard solution (type 2), boric acid manufactured by the company Salt temperature (9.18) Standard solution (type 2) was measured by two-point calibration Measurement temperature: 25 ° C
Measured value: Immerse the electrode in the measurement solution, and let the value after stabilization be the measured value. Average value of three measurements.

<実施例1>
ポリアミド系の逆浸透膜として、ES20(日東電工社製)Φ75mm平膜に、Na濃度0.5mM/L、Ca濃度0.5mM/Lを含む被処理水(ナトリウムイオン:カルシウムイオンの総量モル比=1:1)を、圧力1.0MPa、水温25℃、pH=7の条件で通水し、透過水量を測定した。その後、殺菌剤として安定化次亜臭素酸組成物(組成物1)を1.5ppm−Clとなるように添加し、運転時間100時間後の透過水量(B[g/min])を測定し、安定化次亜臭素酸組成物(組成物1)添加前の透過水量(A[g/min])と比較し、透過水量比(B/A)×100[%]を求めた。結果を表1に示す。
Example 1
Treated water containing Na concentration 0.5 mM / L, Ca concentration 0.5 mM / L in ES20 (manufactured by Nitto Denko Corp.) Φ75 mm flat membrane as polyamide-based reverse osmosis membrane (total molar ratio of sodium ion: calcium ion) Water was passed through under the conditions of a pressure of 1.0 MPa, a water temperature of 25 ° C., and a pH of 7 to measure the amount of permeated water. Thereafter, a stabilized hypobromous acid composition (composition 1) was added as a bactericidal agent so as to be 1.5 ppm-Cl, and the amount of permeated water (B [g / min]) after 100 hours of operation time was measured. The permeated water amount ratio (B / A) × 100 [%] was determined in comparison with the permeated water amount (A [g / min]) before addition of the stabilized hypobromous acid composition (composition 1). The results are shown in Table 1.

<実施例2>
被処理水を、Na濃度0.6mM/L、Ca濃度0.3mM/Lを含む被処理水(ナトリウムイオン:カルシウムイオンの総量モル比=2:1)とした以外は、実施例1と同様の条件で通水を実施した。結果を表1に示す。
Example 2
The same as Example 1 except that the water to be treated was a water to be treated containing Na concentration 0.6 mM / L and Ca concentration 0.3 mM / L (sodium ion: total molar ratio of calcium ions = 2: 1). Water flow was conducted under the following conditions. The results are shown in Table 1.

<実施例3>
被処理水を、Ca濃度1mM/Lを含む被処理水(1価カチオン:カルシウムイオンの総量モル比=0:1)とした以外は、実施例1と同様の条件で通水を実施した。結果を表1に示す。
Example 3
Water passing was carried out under the same conditions as in Example 1 except that the water to be treated was changed to water to be treated containing a Ca concentration of 1 mM / L (monovalent cation: total molar ratio of calcium ions = 0: 1). The results are shown in Table 1.

<実施例4>
被処理水を、Mg濃度1mM/Lを含む被処理水(1価カチオン:マグネシウムイオンの総量モル比=0:1)とした以外は、実施例1と同様の条件で通水を実施した。結果を表1に示す。
Example 4
Water passing was carried out under the same conditions as in Example 1 except that the water to be treated was changed to the water to be treated containing 1 mM / L of Mg concentration (monovalent cation: total molar ratio of magnesium ions = 0: 1). The results are shown in Table 1.

<比較例1>
被処理水を、Na濃度0.8mM/L、Ca濃度0.2mM/Lを含む被処理水(ナトリウムイオン:カルシウムイオンの総量モル比=4:1)とした以外は、実施例1と同様の条件で通水を実施した。結果を表1に示す。
Comparative Example 1
The same as Example 1 except that the water to be treated was a water to be treated containing Na concentration 0.8 mM / L and Ca concentration 0.2 mM / L (total molar ratio of sodium ion: calcium ion = 4: 1). Water flow was conducted under the following conditions. The results are shown in Table 1.

<比較例2>
被処理水を、Na濃度1mM/Lを含む被処理水(ナトリウムイオン:2価カチオンの総量モル比=1:0)とした以外は、実施例1と同様の条件で通水を実施した。結果を表1に示す。
Comparative Example 2
Water passing was carried out under the same conditions as in Example 1 except that the water to be treated was changed to water to be treated (sodium ion: total molar ratio of divalent cations: 1: 0) containing Na concentration 1 mM / L. The results are shown in Table 1.

Figure 2019076864
Figure 2019076864

実施例では、ポリアミド系の逆浸透膜を用いる逆浸透膜処理において、殺菌剤として安定化次亜臭素酸組成物を用いても、逆浸透膜の透過水量の低下を抑制することができた。   In the examples, in the reverse osmosis membrane treatment using a polyamide-based reverse osmosis membrane, even when a stabilized hypobromous acid composition was used as a bactericide, it was possible to suppress a decrease in the amount of water permeated by the reverse osmosis membrane.

<実施例5>
殺菌剤として次亜塩素酸ナトリウムを用い、pH5の条件で通水した以外は、実施例1と同様の条件で通水を実施した。結果を表1に示す。
Example 5
Water passing was carried out under the same conditions as in Example 1 except that sodium hypochlorite was used as a germicide and water was fed under the condition of pH 5. The results are shown in Table 1.

<比較例3>
殺菌剤として次亜塩素酸ナトリウムを用い、pH5の条件で通水した以外は、比較例2と同様の条件で通水を実施した。結果を表1に示す。
Comparative Example 3
Water passing was carried out under the same conditions as Comparative Example 2 except that sodium hypochlorite was used as a germicide and water was fed under the condition of pH 5. The results are shown in Table 1.

実施例5では、ポリアミド系の逆浸透膜を用いる逆浸透膜処理において、殺菌剤として塩素系酸化剤を用いても、逆浸透膜の透過水量の低下を抑制することができた。   In Example 5, in the reverse osmosis membrane treatment using a polyamide-based reverse osmosis membrane, even when using a chlorine-based oxidizing agent as a bactericidal agent, it was possible to suppress a decrease in the amount of water permeated by the reverse osmosis membrane.

1,3,5,7 逆浸透膜処理システム、10 被処理水槽、12 逆浸透膜処理装置、14 被処理水配管、16 被処理水供給配管、18 透過水配管、20 濃縮水配管、22 殺菌剤添加配管、24 イオン量測定装置、26 2価カチオン添加配管。   1,3,5,7 reverse osmosis membrane treatment system, 10 treated water tank, 12 reverse osmosis membrane treatment device, 14 treated water piping, 16 treated water supply piping, 18 permeated water piping, 20 concentrated water piping, 22 sterilization Additive piping, 24 ion quantity measuring device, 26 divalent cation addition piping.

Claims (10)

ハロゲン系酸化剤を含む殺菌剤を存在させた被処理水を、ポリアミド系の逆浸透膜を用いて逆浸透膜処理する逆浸透膜処理工程を含み、
前記被処理水中の1価カチオンの総量が、2価カチオンの総量に対してモル数で4倍未満であることを特徴とする逆浸透膜処理方法。
The reverse osmosis membrane treatment step of reverse osmosis membrane treatment of treated water in the presence of a germicidal agent containing a halogen-based oxidizing agent using a polyamide-based reverse osmosis membrane,
The reverse osmosis membrane treatment method characterized in that the total amount of monovalent cations in the water to be treated is less than 4 times by mole the total amount of divalent cations.
請求項1に記載の逆浸透膜処理方法であって、
前記被処理水中の1価カチオンおよび2価カチオンの量を測定するイオン量測定工程をさらに含むことを特徴とする逆浸透膜処理方法。
The reverse osmosis membrane treatment method according to claim 1, wherein
The reverse osmosis membrane treatment method, further comprising an ion amount measuring step of measuring the amount of monovalent cation and divalent cation in the water to be treated.
請求項1または2に記載の逆浸透膜処理方法であって、
前記被処理水中の1価カチオンの総量が2価カチオンの総量に対してモル数で4倍以上である場合に、2価カチオンを添加することによって、1価カチオンの総量を2価カチオンの総量に対してモル数で4倍未満にすることを特徴とする逆浸透膜処理方法。
The reverse osmosis membrane treatment method according to claim 1 or 2, wherein
When the total amount of monovalent cations in the water to be treated is four or more times the number of moles with respect to the total amount of divalent cations, the total amount of monovalent cations is the total amount of divalent cations by adding divalent cations The reverse osmosis membrane treatment method characterized in that the number of moles thereof is less than 4 times.
請求項1〜3のいずれか1項に記載の逆浸透膜処理方法であって、
前記1価カチオンが、ナトリウムイオンを含むことを特徴とする逆浸透膜処理方法。
The reverse osmosis membrane treatment method according to any one of claims 1 to 3,
The reverse osmosis membrane treatment method characterized in that the monovalent cation contains sodium ion.
請求項1〜4のいずれか1項に記載の逆浸透膜処理方法であって、
前記2価カチオンが、カルシウムイオンを含むことを特徴とする逆浸透膜処理方法。
The reverse osmosis membrane treatment method according to any one of claims 1 to 4, wherein
The reverse osmosis membrane treatment method, wherein the divalent cation contains calcium ion.
請求項1〜5のいずれか1項に記載の逆浸透膜処理方法であって、
前記ハロゲン系酸化剤が、臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物であることを特徴とする逆浸透膜処理方法。
The reverse osmosis membrane treatment method according to any one of claims 1 to 5, wherein
The reverse osmosis membrane treatment method, wherein the halogen-based oxidizing agent is a stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound.
ハロゲン系酸化剤を含む殺菌剤を存在させた被処理水を、ポリアミド系の逆浸透膜を用いて逆浸透膜処理する逆浸透膜処理手段を備え、
前記逆浸透膜に流入する被処理水の1価カチオンの総量が、2価カチオンの総量に対してモル数で4倍未満であることを特徴とする逆浸透膜処理システム。
Reverse osmosis membrane treatment means for reverse osmosis membrane treatment of treated water containing a germicidal agent containing a halogen type oxidizing agent using a polyamide type reverse osmosis membrane,
The reverse osmosis membrane treatment system, wherein the total amount of monovalent cations of the water to be treated flowing into the reverse osmosis membrane is less than 4 times the number of moles with respect to the total amount of divalent cations.
請求項7に記載の逆浸透膜処理システムであって、
前記被処理水中の1価カチオンおよび2価カチオンの量を測定するイオン量測定手段をさらに備えることを特徴とする逆浸透膜処理システム。
The reverse osmosis membrane treatment system according to claim 7, wherein
The reverse osmosis membrane treatment system, further comprising an ion amount measuring unit that measures the amount of monovalent cation and divalent cation in the water to be treated.
請求項7または8に記載の逆浸透膜処理システムであって、
前記被処理水に2価カチオンを添加する2価カチオン添加手段をさらに備え、
前記被処理水中の1価カチオンの総量が2価カチオンの総量に対してモル数で4倍以上である場合に、2価カチオンを添加することによって、1価カチオンの総量を2価カチオンの総量に対してモル数で4倍未満にすることを特徴とする逆浸透膜処理システム。
The reverse osmosis membrane treatment system according to claim 7 or 8, wherein
The method further comprises divalent cation addition means for adding divalent cations to the water to be treated,
When the total amount of monovalent cations in the water to be treated is four or more times the number of moles with respect to the total amount of divalent cations, the total amount of monovalent cations is the total amount of divalent cations by adding divalent cations Reverse osmosis membrane processing system characterized in that the number of moles is less than 4 times.
請求項7〜9のいずれか1項に記載の逆浸透膜処理システムであって、
前記ハロゲン系酸化剤が、臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物であることを特徴とする逆浸透膜処理システム。
The reverse osmosis membrane treatment system according to any one of claims 7 to 9, wherein
The reverse osmosis membrane treatment system, wherein the halogen-based oxidizing agent is a stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound.
JP2017207490A 2017-10-26 2017-10-26 Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system Active JP7008470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017207490A JP7008470B2 (en) 2017-10-26 2017-10-26 Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017207490A JP7008470B2 (en) 2017-10-26 2017-10-26 Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system

Publications (2)

Publication Number Publication Date
JP2019076864A true JP2019076864A (en) 2019-05-23
JP7008470B2 JP7008470B2 (en) 2022-01-25

Family

ID=66627037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017207490A Active JP7008470B2 (en) 2017-10-26 2017-10-26 Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system

Country Status (1)

Country Link
JP (1) JP7008470B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114749028A (en) * 2022-05-20 2022-07-15 山东天庆科技发展有限公司 Reverse osmosis cleaning agent and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5955311A (en) * 1982-09-24 1984-03-30 Nitto Electric Ind Co Ltd Regenerating method of permselective membrane
JPH09893A (en) * 1995-06-21 1997-01-07 Nitto Denko Corp Method for treating raw water by means of membrane module
WO2002076594A1 (en) * 2001-03-19 2002-10-03 Nitto Denko Corporation Composite semipermeable membrane, method for preparing the same and method for water treatment using the same
JP2006263510A (en) * 2005-03-22 2006-10-05 Kurita Water Ind Ltd Slime preventing agent for membrane separation and membrane separation method
JP2010202524A (en) * 2009-02-27 2010-09-16 Kurita Water Ind Ltd Slime-control agent for activated carbon, method of passing water through activated carbon device, and method and apparatus for treating organic-containing water
JP2012192373A (en) * 2011-03-17 2012-10-11 Miura Co Ltd Water treatment apparatus
JP2015062889A (en) * 2013-08-28 2015-04-09 オルガノ株式会社 Method for inhibiting slime in separation membrane, slime inhibition agent composition for separation membrane, and method for producing slime inhibition agent composition for separation membrane
JP2016187788A (en) * 2015-03-30 2016-11-04 栗田工業株式会社 Water treatment method and water treatment equipment using reverse osmosis membrane
JP2016221500A (en) * 2015-06-01 2016-12-28 栗田工業株式会社 Pretreatment method of reverse osmosis membrane device and water treatment device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5955311A (en) * 1982-09-24 1984-03-30 Nitto Electric Ind Co Ltd Regenerating method of permselective membrane
JPH09893A (en) * 1995-06-21 1997-01-07 Nitto Denko Corp Method for treating raw water by means of membrane module
WO2002076594A1 (en) * 2001-03-19 2002-10-03 Nitto Denko Corporation Composite semipermeable membrane, method for preparing the same and method for water treatment using the same
JP2006263510A (en) * 2005-03-22 2006-10-05 Kurita Water Ind Ltd Slime preventing agent for membrane separation and membrane separation method
JP2010202524A (en) * 2009-02-27 2010-09-16 Kurita Water Ind Ltd Slime-control agent for activated carbon, method of passing water through activated carbon device, and method and apparatus for treating organic-containing water
JP2012192373A (en) * 2011-03-17 2012-10-11 Miura Co Ltd Water treatment apparatus
JP2015062889A (en) * 2013-08-28 2015-04-09 オルガノ株式会社 Method for inhibiting slime in separation membrane, slime inhibition agent composition for separation membrane, and method for producing slime inhibition agent composition for separation membrane
JP2016187788A (en) * 2015-03-30 2016-11-04 栗田工業株式会社 Water treatment method and water treatment equipment using reverse osmosis membrane
JP2016221500A (en) * 2015-06-01 2016-12-28 栗田工業株式会社 Pretreatment method of reverse osmosis membrane device and water treatment device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
小林 純: "日本の河川の平均水質とその特徴に関する研究", 農学研究, vol. 第48巻、第2号, JPN7021001962, February 1961 (1961-02-01), JP, pages 63 - 106, ISSN: 0004518322 *
村田正敏: "日本の湧水(6)〜神奈川県座間市の湧水と地下水〜", 「学会活動」、「湧水めぐり・地下水余話ほか 市民コミュニケーション委員会」、「各種資料(アーカイブ他, JPN7021001961, 4 August 2012 (2012-08-04), ISSN: 0004518321 *
池 晶子(ほか2名): "水道水のミネラル成分および物性によるグループ化と味の評価に関与する要因の抽出", 日本調理科学会誌, vol. 49, no. 1, JPN7021001960, 2016, pages 74 - 81, ISSN: 0004518323 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114749028A (en) * 2022-05-20 2022-07-15 山东天庆科技发展有限公司 Reverse osmosis cleaning agent and preparation method thereof

Also Published As

Publication number Publication date
JP7008470B2 (en) 2022-01-25

Similar Documents

Publication Publication Date Title
TWI597235B (en) Production method of hypobromous acid stabilized composition, hypobromous acid stabilized composition, and slime inhibition method of separation membrane
JP6807219B2 (en) Reverse osmosis membrane treatment system and reverse osmosis membrane treatment method
JP6534524B2 (en) Filtration treatment system and filtration treatment method
KR101966569B1 (en) Method for controlling slime on separation membrane
JPWO2018084061A1 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
JP7013141B2 (en) Water treatment method using reverse osmosis membrane
JP6970516B2 (en) Water treatment method using reverse osmosis membrane
WO2018078988A1 (en) Water treatment method using reverse osmosis membrane, and water treatment apparatus
JP6837301B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
JP6513424B2 (en) Method of sterilizing separation membrane
JP7008470B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
JP6823401B2 (en) Method for treating water containing low molecular weight organic substances and method for modifying reverse osmosis membranes
JP6682401B2 (en) Water treatment method using reverse osmosis membrane
JP2020058972A (en) Positive osmosis membrane treatment method, positive osmosis membrane treatment system, water treatment method, and water treatment system
JP6779706B2 (en) Water treatment method using reverse osmosis membrane
JP7144922B2 (en) Reverse osmosis membrane operation method and reverse osmosis membrane device
JP2018008182A (en) Water treatment method using reverse osmosis membrane, and agent for improving blocking rate of silica in reverse osmosis membrane
JP7050414B2 (en) Water treatment method using reverse osmosis membrane
JP6974936B2 (en) Water treatment method using reverse osmosis membrane
JP2022016897A (en) Water recovery method and water recovery device
JP7492876B2 (en) Water treatment method and water treatment device
WO2020179789A1 (en) Water treatment method and water treatment device using reverse osmosis membrane
JP7141919B2 (en) Reverse osmosis membrane treatment method, reverse osmosis membrane treatment system, water treatment method, and water treatment system
WO2024048154A1 (en) Method for producing slime-suppressing auxiliary agent for reverse osmosis membrane, slime-suppressing auxiliary agent for reverse osmosis membrane, and water treatment method
JP6933902B2 (en) Method for modifying reverse osmosis membrane and method for treating uncharged substance-containing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220111

R150 Certificate of patent or registration of utility model

Ref document number: 7008470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150