JP2020058972A - Positive osmosis membrane treatment method, positive osmosis membrane treatment system, water treatment method, and water treatment system - Google Patents

Positive osmosis membrane treatment method, positive osmosis membrane treatment system, water treatment method, and water treatment system Download PDF

Info

Publication number
JP2020058972A
JP2020058972A JP2018190744A JP2018190744A JP2020058972A JP 2020058972 A JP2020058972 A JP 2020058972A JP 2018190744 A JP2018190744 A JP 2018190744A JP 2018190744 A JP2018190744 A JP 2018190744A JP 2020058972 A JP2020058972 A JP 2020058972A
Authority
JP
Japan
Prior art keywords
osmosis membrane
water
membrane treatment
treated
forward osmosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018190744A
Other languages
Japanese (ja)
Inventor
勇規 中村
Yuki Nakamura
勇規 中村
徹 中野
Toru Nakano
徹 中野
佳介 瀧口
Keisuke Takiguchi
佳介 瀧口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2018190744A priority Critical patent/JP2020058972A/en
Priority to PCT/JP2019/037279 priority patent/WO2020071177A1/en
Priority to CN201980064798.7A priority patent/CN112805247B/en
Priority to TW108135957A priority patent/TWI835878B/en
Priority to TW112136510A priority patent/TW202404904A/en
Publication of JP2020058972A publication Critical patent/JP2020058972A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

To provide a positive osmosis membrane treatment method and a positive osmosis membrane treatment system, which prevent a fungicide from penetrating the positive osmosis membrane and enable a reuse of dilute attracting solutions; and a water treatment method and water treatment system using the positive osmosis membrane treatment method and the positive osmosis membrane treatment system.SOLUTION: A positive osmotic membrane treatment method comprising a positive osmotic membrane treatment step with a positive osmotic membrane treatment device 10, in which a concentrated water and a dilute attractive solution are obtained by contacting a treated water with attractive solution having a higher concentration than the treated water through a positive osmotic membrane 12, and in which a disinfectant comprising a bromine oxidizer or a chlorine oxidizer and a sulfamic acid compound is present in the treated water.SELECTED DRAWING: Figure 1

Description

本発明は、正浸透膜処理方法、正浸透膜処理システム、および、その正浸透膜処理方法、正浸透膜処理システムを用いる水処理方法、水処理システムに関する。   The present invention relates to a forward osmosis membrane treatment method, a forward osmosis membrane treatment system, a forward osmosis membrane treatment method thereof, a water treatment method using the forward osmosis membrane treatment system, and a water treatment system.

被処理水と被処理水よりも高濃度の誘引溶液とを正浸透膜を介して接触させることによって濃縮水と希薄誘引溶液とを得る正浸透(FO)膜処理システムにおいて、膜のファウリングの制御が重要な課題である。正浸透膜処理システムの殺菌方法として、次亜塩素酸やクロラミン等の塩素系殺菌剤や、過酸化水素等の酸化剤、または5−クロロ−2−メチル−4−イソチアゾリン−3−オン等の有機系殺菌剤が用いられている(例えば、特許文献1,2参照)。   In a forward osmosis (FO) membrane treatment system, a concentrated water and a dilute attractant solution are obtained by contacting treated water and an attractant solution having a higher concentration than the treated water through a forward osmosis membrane. Control is an important issue. As a sterilizing method of the forward osmosis membrane treatment system, a chlorine-based sterilizing agent such as hypochlorous acid and chloramine, an oxidizing agent such as hydrogen peroxide, or 5-chloro-2-methyl-4-isothiazolin-3-one or the like is used. Organic fungicides are used (see, for example, Patent Documents 1 and 2).

しかし、これらの殺菌剤(塩素系殺菌剤、酸化剤、有機系殺菌剤)は正浸透膜を透過してしまうため、殺菌剤の殺菌有効成分が正浸透膜処理装置の出口側まで十分に行きわたらず、正浸透膜を十分に殺菌することができないという問題が生じる。また、特に有機系殺菌剤は生体、環境等に対して影響を与える場合がある。特に加熱等の処理によって希薄誘引溶液中から生産水を分離して利用する場合、生産水中に有機系殺菌剤が含まれていると、工業用途、食品用途、飲的用途等への用途適応が著しく制限される。また、正浸透膜を透過した殺菌剤を含む希薄誘引溶液の一部または全部を系外に排出するためには、それらを除去する必要がある。さらに、塩素系殺菌剤や酸化剤は、逆浸透膜、特にポリアミド系逆浸透膜の性能を低下させることがあるため、希薄誘引溶液の一部または全部を逆浸透膜で再処理する場合、これら殺菌剤が逆浸透膜の性能を低下させる懸念がある。   However, these bactericides (chlorine-based bactericides, oxidizers, organic bactericides) permeate the normal osmosis membrane, so the bactericidal active ingredient of the bactericide does not reach the outlet side of the normal osmosis membrane treatment device sufficiently. Therefore, there is a problem that the forward osmosis membrane cannot be sterilized sufficiently. In particular, the organic bactericide may affect the living body and environment. Especially when the product water is separated from the diluted attractant solution by treatment such as heating and the product water contains an organic fungicide, it is suitable for industrial applications, food applications, drinking applications, etc. Significantly limited. Moreover, in order to discharge a part or all of the diluted attractant solution containing the bactericide that has permeated the forward osmosis membrane, it is necessary to remove them. Furthermore, since chlorine-based bactericides and oxidants may reduce the performance of reverse osmosis membranes, especially polyamide-based reverse osmosis membranes, when re-treating a part or all of the diluted attractant solution with a reverse osmosis membrane, these There is a concern that the bactericide may deteriorate the performance of the reverse osmosis membrane.

特開2015−188787号公報JP, 2005-188787, A 特開2018−015684号公報JP, 2018-015684, A

本発明の目的は、殺菌剤が正浸透膜を透過するのを抑制し、希薄誘引溶液の再利用が可能となる正浸透膜処理方法、正浸透膜処理システム、および、その正浸透膜処理方法、正浸透膜処理システムを用いる水処理方法、水処理システムを提供することにある。   An object of the present invention is to suppress a sterilizing agent from permeating a normal osmosis membrane, and to reuse a dilute attractant solution, a normal osmosis membrane treatment method, a normal osmosis membrane treatment system, and a normal osmosis membrane treatment method thereof. A water treatment method and a water treatment system using the forward osmosis membrane treatment system.

本発明は、被処理水と、前記被処理水よりも高濃度の誘引溶液とを、正浸透膜を介して接触させることによって、濃縮水と希薄誘引溶液とを得る正浸透膜処理工程を含み、前記被処理水中に、臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを含む殺菌剤を存在させる、正浸透膜処理方法である。   The present invention includes a normal osmosis membrane treatment step of obtaining a concentrated water and a dilute attractant solution by contacting treated water and an attractant solution having a concentration higher than that of the treated water through a normal osmosis membrane. A method for treating a normal osmosis membrane in which a bactericide containing a bromine-based oxidant or a chlorine-based oxidant and a sulfamic acid compound is present in the water to be treated.

本発明は、被処理水と、前記被処理水よりも高濃度の誘引溶液とを、正浸透膜を介して接触させることによって、濃縮水と希薄誘引溶液とを得る正浸透膜処理工程を含み、前記被処理水中に、臭素系酸化剤とスルファミン酸化合物とを含む殺菌剤を存在させる、正浸透膜処理方法である。   The present invention includes a normal osmosis membrane treatment step of obtaining a concentrated water and a dilute attractant solution by contacting treated water and an attractant solution having a concentration higher than that of the treated water through a normal osmosis membrane. A method for treating a normal osmosis membrane, wherein a bactericide containing a brominated oxidant and a sulfamic acid compound is present in the water to be treated.

本発明は、被処理水と、前記被処理水よりも高濃度の誘引溶液とを、正浸透膜を介して接触させることによって、濃縮水と希薄誘引溶液とを得る正浸透膜処理工程を含み、前記被処理水中に、臭素とスルファミン酸化合物とを含む殺菌剤を存在させる、正浸透膜処理方法である。   The present invention includes a normal osmosis membrane treatment step of obtaining a concentrated water and a dilute attractant solution by contacting treated water and an attractant solution having a concentration higher than that of the treated water through a normal osmosis membrane. A method for treating a normal osmosis membrane, wherein a bactericide containing bromine and a sulfamic acid compound is present in the water to be treated.

本発明は、前記正浸透膜処理方法を含み、前記正浸透膜処理工程の前段に、前処理工程および逆浸透膜処理工程を含み、前記正浸透膜処理工程により得られた希薄誘引溶液を、前記前処理工程で使用する、水処理方法である。   The present invention includes the forward osmosis membrane treatment method, in the preceding stage of the forward osmosis membrane treatment step, including a pretreatment step and a reverse osmosis membrane treatment step, the diluted attractant solution obtained by the forward osmosis membrane treatment step, It is a water treatment method used in the pretreatment step.

本発明は、被処理水と、前記被処理水よりも高濃度の誘引溶液とを、正浸透膜を介して接触させることによって、濃縮水と希薄誘引溶液とを得る正浸透膜処理手段を備え、前記被処理水中に、臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを含む殺菌剤を存在させる、正浸透膜処理システムである。   The present invention comprises a normal osmosis membrane treatment means for obtaining concentrated water and a dilute attractant solution by contacting treated water and an attractant solution having a higher concentration than the treated water through a normal osmosis membrane. A forward osmosis membrane treatment system in which a bactericide containing a bromine-based oxidant or a chlorine-based oxidant and a sulfamic acid compound is present in the water to be treated.

本発明は、被処理水と、前記被処理水よりも高濃度の誘引溶液とを、正浸透膜を介して接触させることによって、濃縮水と希薄誘引溶液とを得る正浸透膜処理手段を備え、前記被処理水中に、臭素系酸化剤とスルファミン酸化合物とを含む殺菌剤を存在させる、正浸透膜処理システムである。   The present invention comprises a normal osmosis membrane treatment means for obtaining concentrated water and a dilute attractant solution by contacting treated water and an attractant solution having a higher concentration than the treated water through a normal osmosis membrane. A osmotic membrane treatment system in which a bactericide containing a brominated oxidant and a sulfamic acid compound is present in the water to be treated.

本発明は、被処理水と、前記被処理水よりも高濃度の誘引溶液とを、正浸透膜を介して接触させることによって、濃縮水と希薄誘引溶液とを得る正浸透膜処理手段を備え、前記被処理水中に、臭素とスルファミン酸化合物とを含む殺菌剤を存在させる、正浸透膜処理システムである。   The present invention comprises a normal osmosis membrane treatment means for obtaining concentrated water and a dilute attractant solution by contacting treated water and an attractant solution having a higher concentration than the treated water through a normal osmosis membrane. A forward osmosis membrane treatment system in which a bactericide containing bromine and a sulfamic acid compound is present in the water to be treated.

本発明は、前記正浸透膜処理システムを備え、前記正浸透膜処理手段の前段に、前処理手段および逆浸透膜処理手段を備え、前記正浸透膜処理手段により得られた希薄誘引溶液が、前記前処理手段で使用される、水処理システムである。   The present invention comprises the forward osmosis membrane treatment system, the pre-treatment means and the reverse osmosis membrane treatment means before the forward osmosis membrane treatment means, and the diluted attractant solution obtained by the forward osmosis membrane treatment means, A water treatment system used in the pretreatment means.

本発明により、殺菌剤が正浸透膜を透過するのを抑制し、希薄誘引溶液の再利用が可能となる正浸透膜処理方法、正浸透膜処理システム、および、その正浸透膜処理方法、正浸透膜処理システムを用いる水処理方法、水処理システムを提供することができる。   According to the present invention, the sterilizing agent is suppressed from permeating the normal osmosis membrane, and the normal osmosis membrane treatment method, the normal osmosis membrane treatment system, and the normal osmosis membrane treatment method, in which the diluted attractant solution can be reused, A water treatment method and a water treatment system using the osmosis membrane treatment system can be provided.

本発明の実施形態に係る正浸透膜処理システムの一例を示す概略構成図である。It is a schematic structure figure showing an example of the forward osmosis membrane treatment system concerning the embodiment of the present invention. 本発明の実施形態に係る水処理システムの一例を示す概略構成図である。It is a schematic structure figure showing an example of a water treatment system concerning an embodiment of the present invention.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. The present embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

<正浸透膜処理方法および正浸透膜処理システム>
本発明の実施形態に係る正浸透膜処理システムの一例の概略を図1に示し、その構成について説明する。
<Normal osmosis membrane treatment method and forward osmosis membrane treatment system>
An example of the forward osmosis membrane treatment system according to the embodiment of the present invention is schematically shown in FIG. 1, and its configuration will be described.

本実施形態に係る正浸透膜処理システム1は、被処理水(FO被処理水)と、被処理水(FO被処理水)よりも高濃度の誘引溶液とを、正浸透膜12を介して接触させることによって、濃縮水(FO濃縮水)と希薄誘引溶液とを得る正浸透膜処理手段としての正浸透膜処理装置10を備える。   The forward osmosis membrane treatment system 1 according to the present embodiment provides treated water (FO treated water) and an attractant solution having a higher concentration than the treated water (FO treated water) via the forward osmosis membrane 12. A normal osmosis membrane treatment apparatus 10 is provided as a normal osmosis membrane treatment means for obtaining concentrated water (FO concentrated water) and a diluted attractant solution by bringing them into contact with each other.

図1の正浸透膜処理システム1において、正浸透膜処理装置10のFO被処理水入口には、FO被処理水配管14が接続され、FO濃縮水出口には、FO濃縮水配管16が接続されている。正浸透膜処理装置10の誘引溶液入口には、誘引溶液配管18が接続され、希薄誘引溶液出口には、希薄誘引溶液配管20が接続されている。FO被処理水配管14には、殺菌剤添加手段として、殺菌剤添加配管22が接続されている。   In the normal osmosis membrane treatment system 1 of FIG. 1, the FO treated water pipe 14 is connected to the FO treated water inlet of the forward osmosis membrane treatment device 10, and the FO concentrated water pipe 16 is connected to the FO concentrated water outlet. Has been done. The attractant solution inlet of the forward osmosis membrane treatment apparatus 10 is connected to the attractant solution pipe 18, and the dilute attractant solution outlet is connected to the dilute attractant solution pipe 20. A sterilizing agent addition pipe 22 is connected to the FO treated water pipe 14 as a sterilizing agent adding means.

本実施形態に係る正浸透膜処理方法および正浸透膜処理システム1の動作について説明する。   The operation of the forward osmosis membrane treatment method and the forward osmosis membrane treatment system 1 according to the present embodiment will be described.

FO被処理水は、FO被処理水配管14を通して正浸透膜処理装置10の1次側へ送液され、正浸透膜処理装置10において正浸透膜処理される(正浸透膜処理工程)。正浸透膜処理装置10において、誘引溶液が誘引溶液配管18を通して正浸透膜の2次側に送液され、正浸透膜12を介して、FO被処理水と誘引溶液を存在させることにより、浸透圧で水が誘引溶液に移動される。正浸透膜処理工程で使用された希薄誘引溶液は、希薄誘引溶液配管20を通して排出される。正浸透膜処理工程で得られたFO濃縮水は、FO濃縮水配管16を通して排出される。希薄誘引溶液およびFO濃縮水のうちの少なくとも1つは、回収、再利用されてもよい。   The FO treated water is sent to the primary side of the forward osmosis membrane treatment apparatus 10 through the FO treated water pipe 14 and is subjected to the forward osmosis membrane treatment in the forward osmosis membrane treatment apparatus 10 (forward osmosis membrane treatment step). In the forward osmosis membrane treatment apparatus 10, the attractant solution is sent to the secondary side of the forward osmosis membrane through the attractant solution pipe 18, and the FO treated water and the attractant solution are allowed to exist through the forward osmosis membrane 12 so that the osmosis is permeated. Water is transferred under pressure to the attractant solution. The diluted attractant solution used in the forward osmosis membrane treatment step is discharged through the diluted attractant solution pipe 20. The FO concentrated water obtained in the forward osmosis membrane treatment step is discharged through the FO concentrated water pipe 16. At least one of the diluted attractant solution and the FO retentate may be recovered and reused.

ここで、FO被処理水中に、臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを含む殺菌剤(以下、「正浸透膜用殺菌剤」と呼ぶ場合がある)を存在させる。例えば、正浸透膜用殺菌剤は、殺菌剤添加配管22を通してFO被処理水配管14においてFO被処理水に添加される。正浸透膜処理装置10の前段にFO被処理水を貯留するFO被処理水槽を別途設け、FO被処理水槽において正浸透膜用殺菌剤が添加されてもよい。   Here, a bactericide containing a bromine-based oxidant or chlorine-based oxidizer and a sulfamic acid compound (hereinafter, may be referred to as a “normal osmosis membrane bactericide”) is present in the FO treated water. For example, the normal osmosis membrane bactericide is added to the FO treated water in the FO treated water pipe 14 through the bactericide addition pipe 22. A FO treated water tank for storing the FO treated water may be separately provided in front of the forward osmosis membrane treatment apparatus 10, and the sterilizing agent for the forward osmosis membrane may be added to the FO treated water tank.

このように、本実施形態に係る正浸透膜処理方法および正浸透膜処理システム1では、被処理水を正浸透膜処理する際、正浸透膜処理の被処理水(FO被処理水)に臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを含む正浸透膜用殺菌剤を存在させる。本発明者らは、臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを含む正浸透膜用殺菌剤は、正浸透膜をほとんど透過しないことを見出した。この正浸透膜用殺菌剤は、従来の塩素系殺菌剤、酸化剤、有機系殺菌剤よりも、正浸透膜に対して十分な殺菌効果を発揮する。また、誘引溶液中への殺菌剤のリークがほとんどないため、希薄誘引溶液の再利用が可能になる。   As described above, in the forward osmosis membrane treatment method and the forward osmosis membrane treatment system 1 according to the present embodiment, when the treated water is subjected to the forward osmosis membrane treatment, bromine is added to the treated water of the forward osmosis membrane treatment (FO treated water). A sterilizing agent for a forward osmosis membrane containing a oxidant or chlorine oxidant and a sulfamic acid compound is present. The present inventors have found that a bactericide for a normal osmosis membrane containing a bromine-based oxidant or a chlorine-based oxidizer and a sulfamic acid compound hardly permeates the normal osmosis membrane. This normal osmosis membrane bactericide exhibits a sufficient bactericidal effect on the normal osmosis membrane as compared with conventional chlorine-based bactericides, oxidizing agents, and organic bactericides. In addition, since the germicide hardly leaks into the attractant solution, the diluted attractant solution can be reused.

この正浸透膜用殺菌剤は、殺菌有効成分が正浸透膜をほとんど透過しないため、正浸透膜処理装置10の出口(FO濃縮水出口)に行くに従い、濃縮される。そのため、殺菌剤の殺菌有効成分が正浸透膜処理装置10の出口(FO濃縮水出口)側まで十分に行きわたり、正浸透膜の出口側まで十分に殺菌することができる。   Since the bactericidal active ingredient hardly permeates the normal osmosis membrane, the bactericide for normal osmosis membrane is concentrated as it goes to the outlet (FO concentrated water outlet) of the normal osmosis membrane treatment apparatus 10. Therefore, the bactericidal active ingredient of the bactericide can be sufficiently spread to the outlet (FO concentrated water outlet) side of the forward osmosis membrane treatment apparatus 10, and can be sufficiently sterilized to the outlet side of the forward osmosis membrane.

従来の方法では、FO被処理水中に次亜塩素酸、クロラミン、過酸化水素、有機系殺菌剤等の殺菌剤を添加すると、誘引溶液との浸透圧差によってFO被処理水の一部が誘引溶液側に移動するとともに、殺菌剤の一部が誘引溶液側に移動する。これに対して、本実施形態に係る正浸透膜処理方法および正浸透膜処理システム1では、上記正浸透膜用殺菌剤を用いることにより、殺菌剤が正浸透膜を透過するのを抑制し、希薄誘引溶液の再利用が可能となる。   In the conventional method, when a bactericide such as hypochlorous acid, chloramine, hydrogen peroxide, and an organic bactericide is added to the FO treated water, a part of the FO treated water is attracted by the osmotic pressure difference from the attractant solution. While moving to the side, a part of the bactericide moves to the attractant solution side. On the other hand, in the forward osmosis membrane treatment method and the forward osmosis membrane treatment system 1 according to the present embodiment, the use of the forward osmosis membrane sterilizing agent suppresses the sterilizing agent from permeating the forward osmosis membrane, The diluted attractant solution can be reused.

「臭素系酸化剤とスルファミン酸化合物とを含む殺菌剤」は、「臭素系酸化剤」と「スルファミン酸化合物」との混合物を含む安定化次亜臭素酸組成物を含有する殺菌剤であってもよいし、「臭素系酸化剤とスルファミン酸化合物との反応生成物」を含む安定化次亜臭素酸組成物を含有する殺菌剤であってもよい。「塩素系酸化剤とスルファミン酸化合物とを含む殺菌剤」は、「塩素系酸化剤」と「スルファミン酸化合物」との混合物を含む安定化次亜塩素酸組成物を含有する殺菌剤であってもよいし、「塩素系酸化剤とスルファミン酸化合物との反応生成物」を含む安定化次亜塩素酸組成物を含有する殺菌剤であってもよい。   “A bactericide containing a bromine-based oxidant and a sulfamic acid compound” is a bactericide containing a stabilized hypobromite composition containing a mixture of a “bromine-based oxidizer” and a “sulfamic acid compound”. Alternatively, it may be a bactericide containing a stabilized hypobromite composition containing a "reaction product of a brominated oxidant and a sulfamic acid compound". The "bactericide containing a chlorine-based oxidizing agent and a sulfamic acid compound" is a fungicide containing a stabilized hypochlorous acid composition containing a mixture of a "chlorine-based oxidizing agent" and a "sulfamic acid compound". Alternatively, it may be a bactericide containing a stabilized hypochlorous acid composition containing a "reaction product of a chlorine-based oxidizing agent and a sulfamic acid compound".

すなわち、本発明の実施形態に係る正浸透膜処理方法は、被処理水(FO被処理水)中に、「臭素系酸化剤」と「スルファミン酸化合物」との混合物、または「塩素系酸化剤」と「スルファミン酸化合物」との混合物を存在させる方法である。これにより、被処理水中で、安定化次亜臭素酸組成物または安定化次亜塩素酸組成物が生成すると考えられる。   That is, the method for treating a normal osmosis membrane according to the embodiment of the present invention is a mixture of a “bromine-based oxidizing agent” and a “sulfamic acid compound” in the water to be treated (FO treated water), or a “chlorine-based oxidizing agent”. And a "sulfamic acid compound". It is considered that this produces a stabilized hypobromic acid composition or a stabilized hypochlorous acid composition in the water to be treated.

また、本発明の実施形態に係る正浸透膜処理方法は、被処理水(FO被処理水)中に、「臭素系酸化剤とスルファミン酸化合物との反応生成物」である安定化次亜臭素酸組成物、または「塩素系酸化剤とスルファミン酸化合物との反応生成物」である安定化次亜塩素酸組成物を存在させる方法である。   Further, the method for treating a normal osmosis membrane according to the embodiment of the present invention is a stabilized hypobromite which is a “reaction product of a brominated oxidant and a sulfamic acid compound” in water to be treated (FO treated water). An acid composition or a stabilized hypochlorous acid composition which is a “reaction product of a chlorine-based oxidizing agent and a sulfamic acid compound” is present.

具体的には本発明の実施形態に係る正浸透膜処理方法は、被処理水中に、「臭素」、「塩化臭素」、「次亜臭素酸」または「臭化ナトリウムと次亜塩素酸との反応物」と、「スルファミン酸化合物」との混合物を存在させる方法である。または、被処理水中に、「次亜塩素酸」と、「スルファミン酸化合物」との混合物を存在させる方法である。   Specifically, the forward osmosis membrane treatment method according to the embodiment of the present invention, in the water to be treated, "bromine", "bromine chloride", "hypobromous acid" or "sodium bromide and hypochlorous acid In this method, a mixture of "reactant" and "sulfamic acid compound" is present. Alternatively, it is a method in which a mixture of "hypochlorous acid" and "sulfamic acid compound" is present in the water to be treated.

また、本発明の実施形態に係る正浸透膜処理方法は、被処理水中に、例えば、「臭素とスルファミン酸化合物との反応生成物」、「塩化臭素とスルファミン酸化合物との反応生成物」、「次亜臭素酸とスルファミン酸化合物との反応生成物」、または「臭化ナトリウムと次亜塩素酸との反応物と、スルファミン酸化合物と、の反応生成物」である安定化次亜臭素酸組成物を存在させる方法である。または、被処理水中に、「次亜塩素酸とスルファミン酸化合物との反応生成物」である安定化次亜塩素酸組成物を存在させる方法である。   Further, the method for treating a normal osmosis membrane according to the embodiment of the present invention, in the water to be treated, for example, "reaction product of bromine and sulfamic acid compound", "reaction product of bromine chloride and sulfamic acid compound", Stabilized hypobromous acid which is a "reaction product of a hypobromous acid and a sulfamic acid compound" or "a reaction product of a reaction product of sodium bromide and a hypochlorous acid and a sulfamic acid compound" A method of causing the composition to be present. Alternatively, it is a method in which a stabilized hypochlorous acid composition which is a "reaction product of a hypochlorous acid and a sulfamic acid compound" is present in water to be treated.

本実施形態に係る正浸透膜処理方法において、安定化次亜臭素酸組成物または安定化次亜塩素酸組成物は次亜塩素酸等の塩素系酸化剤等の従来の殺菌剤と同等以上の殺菌効果を発揮するにも関わらず、塩素系酸化剤等の従来の殺菌剤と比較すると、正浸透膜への劣化影響が低いため、正浸透膜でのファウリングを抑制しながら、正浸透膜の酸化劣化を抑制できる。このため、本実施形態に係る正浸透膜処理方法で用いられる安定化次亜臭素酸組成物または安定化次亜塩素酸組成物は、被処理水を正浸透膜で処理する方法で用いる殺菌剤としては好適である。   In the forward osmosis membrane treatment method according to the present embodiment, the stabilized hypobromous acid composition or the stabilized hypochlorous acid composition is equal to or more than a conventional bactericide such as a chlorine-based oxidizing agent such as hypochlorous acid. Despite exhibiting a bactericidal effect, compared to conventional bactericides such as chlorine-based oxidizers, the effect of deterioration on the forward osmosis membrane is low, so while suppressing fouling on the forward osmosis membrane, Oxidative deterioration of the can be suppressed. Therefore, the stabilized hypobromous acid composition or the stabilized hypochlorous acid composition used in the forward osmosis membrane treatment method according to the present embodiment is a bactericide used in the method of treating the water to be treated with the forward osmosis membrane. Is suitable as

本実施形態に係る正浸透膜処理方法のうち、「臭素系酸化剤とスルファミン酸化合物とを含む殺菌剤」の場合、塩素系酸化剤が存在しないため、正浸透膜への劣化影響がより低い。塩素系酸化剤を含む場合は、塩素酸の生成が懸念される。   Among the methods for treating a normal osmosis membrane according to the present embodiment, in the case of “a bactericidal agent containing a bromine-based oxidizing agent and a sulfamic acid compound”, since there is no chlorine-based oxidizing agent, the deterioration effect on the forward osmosis membrane is lower. . When a chlorine-based oxidant is contained, the formation of chloric acid is a concern.

本実施形態に係る正浸透膜処理方法のうち、「臭素系酸化剤」が、臭素である場合、塩素系酸化剤が存在しないため、正浸透膜への劣化影響が著しく低い。   In the method of treating a normal osmosis membrane according to the present embodiment, when the “bromine-based oxidizing agent” is bromine, the chlorine-based oxidizing agent does not exist, and therefore the deterioration effect on the normal osmosis membrane is extremely low.

本実施形態に係る正浸透膜処理方法では、例えば、被処理水中に、「臭素系酸化剤」または「塩素系酸化剤」と「スルファミン酸化合物」とを薬注ポンプ等により注入してもよい。「臭素系酸化剤」または「塩素系酸化剤」と「スルファミン酸化合物」とは別々に被処理水に添加してもよく、または、原液同士で混合させてから被処理水に添加してもよい。   In the forward osmosis membrane treatment method according to the present embodiment, for example, “bromine-based oxidizing agent” or “chlorine-based oxidizing agent” and “sulfamic acid compound” may be injected into the water to be treated by a chemical injection pump or the like. . The "bromine-based oxidizing agent" or "chlorine-based oxidizing agent" and the "sulfamic acid compound" may be added to the water to be treated separately, or may be added to the water to be treated after mixing the undiluted solutions. Good.

また、例えば、被処理水中に、「臭素系酸化剤とスルファミン酸化合物との反応生成物」または「塩素系酸化剤とスルファミン酸化合物との反応生成物」を薬注ポンプ等により注入してもよい。   Further, for example, even if the "reaction product of a bromine-based oxidizing agent and a sulfamic acid compound" or "reaction product of a chlorine-based oxidizing agent and a sulfamic acid compound" is injected into the water to be treated by a chemical injection pump or the like. Good.

本実施形態に係る正浸透膜処理方法において、「臭素系酸化剤」または「塩素系酸化剤」の当量に対する「スルファミン酸化合物」の当量の比は、1以上であることが好ましく、1以上2以下の範囲であることがより好ましい。「臭素系酸化剤」または「塩素系酸化剤」の当量に対する「スルファミン酸化合物」の当量の比が1未満であると、膜を劣化させる可能性があり、2を超えると、製造コストが増加する場合がある。   In the forward osmosis membrane treatment method according to the present embodiment, the ratio of the equivalent of the "sulfamic acid compound" to the equivalent of the "bromine-based oxidizing agent" or the "chlorine-based oxidizing agent" is preferably 1 or more, and 1 or more 2 The following range is more preferable. If the ratio of the equivalent of the "sulfamic acid compound" to the equivalent of the "bromine-based oxidizing agent" or the "chlorine-based oxidizing agent" is less than 1, the film may be deteriorated, and if it exceeds 2, the production cost increases. There is a case.

正浸透膜に接触する全塩素濃度は有効塩素濃度換算で、0.01〜100mg/Lであることが好ましい。0.01mg/L未満であると、十分な殺菌効果を得ることができない場合があり、100mg/Lより多いと、正浸透膜の劣化、配管等の腐食を引き起こす可能性がある。   The total chlorine concentration in contact with the forward osmosis membrane is preferably 0.01 to 100 mg / L in terms of effective chlorine concentration. If it is less than 0.01 mg / L, a sufficient bactericidal effect may not be obtained in some cases, and if it is more than 100 mg / L, deterioration of the forward osmosis membrane and corrosion of piping etc. may occur.

臭素系酸化剤としては、臭素(液体臭素)、塩化臭素、臭素酸、臭素酸塩、次亜臭素酸等が挙げられる。次亜臭素酸は、臭化ナトリウム等の臭化物と次亜塩素酸等の塩素系酸化剤とを反応させて生成させたものであってもよい。   Examples of the bromine-based oxidizing agent include bromine (liquid bromine), bromine chloride, bromic acid, bromate and hypobromite. The hypobromous acid may be produced by reacting a bromide such as sodium bromide with a chlorine-based oxidizing agent such as hypochlorous acid.

これらのうち、臭素を用いた「臭素とスルファミン酸化合物(臭素とスルファミン酸化合物の混合物)」または「臭素とスルファミン酸化合物との反応生成物」の製剤は、「次亜塩素酸と臭素化合物とスルファミン酸」の製剤および「塩化臭素とスルファミン酸」の製剤等に比べて、臭素酸の副生が少なく、正浸透膜をより劣化させないため、正浸透膜用の殺菌剤としてはより好ましい。   Among these, the formulation of "bromine and sulfamic acid compound (mixture of bromine and sulfamic acid compound)" or "reaction product of bromine and sulfamic acid compound" using bromine, "hypochlorous acid and bromine compound Compared with the formulation of "sulfamic acid" and the formulation of "bromine chloride and sulfamic acid", etc., the bromic acid is less by-produced and the normal osmosis membrane is not further deteriorated.

すなわち、本発明の実施形態に係る正浸透膜処理方法は、被処理水中に、臭素と、スルファミン酸化合物とを存在させる(臭素とスルファミン酸化合物の混合物を存在させる)ことが好ましい。また、被処理水中に、臭素とスルファミン酸化合物との反応生成物を存在させることが好ましい。   That is, in the forward osmosis membrane treatment method according to the embodiment of the present invention, it is preferable that bromine and a sulfamic acid compound are present in the water to be treated (a mixture of the bromine and the sulfamic acid compound is present). Further, it is preferable that a reaction product of bromine and a sulfamic acid compound is present in the water to be treated.

臭素化合物としては、臭化ナトリウム、臭化カリウム、臭化リチウム、臭化アンモニウムおよび臭化水素酸等が挙げられる。これらのうち、製剤コスト等の点から、臭化ナトリウムが好ましい。   Examples of the bromine compound include sodium bromide, potassium bromide, lithium bromide, ammonium bromide and hydrobromic acid. Of these, sodium bromide is preferable from the viewpoint of formulation cost and the like.

塩素系酸化剤としては、例えば、塩素ガス、二酸化塩素、次亜塩素酸またはその塩、亜塩素酸またはその塩、塩素酸またはその塩、過塩素酸またはその塩、塩素化イソシアヌル酸またはその塩等が挙げられる。これらのうち、塩としては、例えば、次亜塩素酸ナトリウム、次亜塩素酸カリウム等の次亜塩素酸アルカリ金属塩、次亜塩素酸カルシウム、次亜塩素酸バリウム等の次亜塩素酸アルカリ土類金属塩、亜塩素酸ナトリウム、亜塩素酸カリウム等の亜塩素酸アルカリ金属塩、亜塩素酸バリウム等の亜塩素酸アルカリ土類金属塩、亜塩素酸ニッケル等の他の亜塩素酸金属塩、塩素酸アンモニウム、塩素酸ナトリウム、塩素酸カリウム等の塩素酸アルカリ金属塩、塩素酸カルシウム、塩素酸バリウム等の塩素酸アルカリ土類金属塩等が挙げられる。これらの塩素系酸化剤は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。塩素系酸化剤としては、取り扱い性等の点から、次亜塩素酸ナトリウムを用いるのが好ましい。   Examples of chlorine-based oxidizing agents include chlorine gas, chlorine dioxide, hypochlorous acid or a salt thereof, chlorous acid or a salt thereof, chloric acid or a salt thereof, perchloric acid or a salt thereof, chlorinated isocyanuric acid or a salt thereof. Etc. Among these, as salts, for example, sodium hypochlorite, alkali metal hypochlorite such as potassium hypochlorite, calcium hypochlorite, alkaline earth hypochlorite such as barium hypochlorite. Metal salts, alkali metal chlorites such as sodium chlorite, potassium chlorite, alkaline earth metal chlorites such as barium chlorite, and other metal chlorites such as nickel chlorite , Ammonium chlorate, sodium chlorate, potassium chlorate and other alkali metal chlorates, calcium chlorate, barium chlorate and other alkaline earth metal chlorates, and the like. These chlorine-based oxidizing agents may be used alone or in combination of two or more. It is preferable to use sodium hypochlorite as the chlorine-based oxidant from the viewpoint of handleability and the like.

スルファミン酸化合物は、以下の一般式(1)で示される化合物である。
NSOH (1)
(式中、Rは独立して水素原子または炭素数1〜8のアルキル基である。)
The sulfamic acid compound is a compound represented by the following general formula (1).
R 2 NSO 3 H (1)
(In the formula, R is independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.)

スルファミン酸化合物としては、例えば、2個のR基の両方が水素原子であるスルファミン酸(アミド硫酸)の他に、N−メチルスルファミン酸、N−エチルスルファミン酸、N−プロピルスルファミン酸、N−イソプロピルスルファミン酸、N−ブチルスルファミン酸等の2個のR基の一方が水素原子であり、他方が炭素数1〜8のアルキル基であるスルファミン酸化合物、N,N−ジメチルスルファミン酸、N,N−ジエチルスルファミン酸、N,N−ジプロピルスルファミン酸、N,N−ジブチルスルファミン酸、N−メチル−N−エチルスルファミン酸、N−メチル−N−プロピルスルファミン酸等の2個のR基の両方が炭素数1〜8のアルキル基であるスルファミン酸化合物、N−フェニルスルファミン酸等の2個のR基の一方が水素原子であり、他方が炭素数6〜10のアリール基であるスルファミン酸化合物、またはこれらの塩等が挙げられる。スルファミン酸塩としては、例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩、カルシウム塩、ストロンチウム塩、バリウム塩等のアルカリ土類金属塩、マンガン塩、銅塩、亜鉛塩、鉄塩、コバルト塩、ニッケル塩等の他の金属塩、アンモニウム塩およびグアニジン塩等が挙げられる。スルファミン酸化合物およびこれらの塩は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。スルファミン酸化合物としては、環境負荷等の点から、スルファミン酸(アミド硫酸)を用いるのが好ましい。   Examples of the sulfamic acid compound include N-methylsulfamic acid, N-ethylsulfamic acid, N-propylsulfamic acid and N-, in addition to sulfamic acid (amidosulfate) in which both two R groups are hydrogen atoms. A sulfamic acid compound in which one of two R groups such as isopropylsulfamic acid and N-butylsulfamic acid is a hydrogen atom and the other is an alkyl group having 1 to 8 carbon atoms, N, N-dimethylsulfamic acid, N, Of two R groups such as N-diethylsulfamic acid, N, N-dipropylsulfamic acid, N, N-dibutylsulfamic acid, N-methyl-N-ethylsulfamic acid, N-methyl-N-propylsulfamic acid One of two R groups such as a sulfamic acid compound and N-phenylsulfamic acid, both of which are alkyl groups having 1 to 8 carbon atoms, An atom, the other is sulfamic acid compound or a salt thereof, such as an aryl group having 6 to 10 carbon atoms. As the sulfamate, for example, alkali metal salts such as sodium salt, potassium salt, calcium salt, strontium salt, alkaline earth metal salts such as barium salt, manganese salt, copper salt, zinc salt, iron salt, cobalt salt, Other metal salts such as nickel salts, ammonium salts and guanidine salts may be mentioned. The sulfamic acid compounds and salts thereof may be used alone or in combination of two or more. As the sulfamic acid compound, it is preferable to use sulfamic acid (amidosulfuric acid) from the viewpoint of environmental load.

本実施形態に係る正浸透膜処理方法において、さらにアルカリを存在させてもよい。アルカリとしては、水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ等が挙げられる。低温の製品安定性等の点から、水酸化ナトリウムと水酸化カリウムとを併用してもよい。また、アルカリは、固形でなく、水溶液として用いてもよい。   In the forward osmosis membrane treatment method according to this embodiment, an alkali may be further present. Examples of the alkali include alkali hydroxides such as sodium hydroxide and potassium hydroxide. From the viewpoint of product stability at low temperatures, sodium hydroxide and potassium hydroxide may be used in combination. Further, the alkali may be used as an aqueous solution instead of a solid.

正浸透膜処理工程で用いられる正浸透膜の形状としては、特に制限はないが、例えば、中空糸膜、スパイラル膜、チューブラ膜、プレートアンドフレーム構造の膜等を使用することができる。正浸透膜の膜材質としては、芳香族ポリアミド系、酢酸セルロース系、ポリケトン系等が挙げられる。また、分離膜の基材に、機能性たんぱく質や無機材料等を組み込んで分離性能や透水性等を付与した膜を用いることも可能である。本実施形態に係る正浸透膜処理方法は、正浸透膜として芳香族ポリアミド系、アミド系の基材に機能性たんぱく質や無機材料等を組み込んで分離性能や透水性等を付与した膜に対して好適に適用することができる。これらの膜は、従来用いられる塩素系酸化剤による劣化の影響を特に受けやすいことが知られている。   The shape of the forward osmosis membrane used in the forward osmosis membrane treatment step is not particularly limited, but for example, a hollow fiber membrane, a spiral wound membrane, a tubular membrane, a plate-and-frame structured membrane, or the like can be used. Examples of the material of the forward osmosis membrane include aromatic polyamide type, cellulose acetate type and polyketone type. Further, it is also possible to use a membrane in which a functional protein, an inorganic material or the like is incorporated into the base material of the separation membrane to impart separation performance or water permeability. The normal osmosis membrane treatment method according to the present embodiment is an aromatic polyamide-based membrane as a normal osmosis membrane, and a functional protein, an inorganic material, or the like is incorporated into a base material of an amide-based membrane to impart separation performance or water permeability to a membrane. It can be applied suitably. It is known that these films are particularly susceptible to deterioration due to conventionally used chlorine-based oxidizing agents.

正浸透膜としては、例えば、HP5230(東洋紡製)、HFFO2(アクアポリン製)、OsmoF2O(Fruid Technology Solutions製)が挙げられる。これら正浸透膜は、単段で使用してもよいし、複数段を直列に接続して使用してもよい。すなわち、第1の正浸透膜処理によって得られた濃縮水を第2の正浸透膜処理によってさらに濃縮してもよい。   Examples of the normal osmosis membrane include HP5230 (manufactured by Toyobo), HFFO2 (manufactured by Aquaporin), and OsmoF2O (manufactured by Fluid Technology Solutions). These forward osmosis membranes may be used in a single stage or may be used by connecting a plurality of stages in series. That is, the concentrated water obtained by the first forward osmosis membrane treatment may be further concentrated by the second forward osmosis membrane treatment.

ところで、正浸透膜と逆浸透膜は、その運転方法の違いにより膜の構造、性質が異なるものである。逆浸透膜は、膜の一次側に高い圧力をかけるため、圧力に耐えうる機械的強度を保持するために膜厚を厚くする必要がある。一方、正浸透膜は、膜にかける圧力は逆浸透膜よりも低いため、逆浸透膜ほどの機械的強度を有さなくてもよく、さらに膜内部の濃度分極を抑制する必要があるため、膜厚を薄くすることが求められる。求められる運転条件に膜を最適化した結果、逆浸透膜と正浸透膜は、膜材質こそ同じものの、異なった膜構造を取っており、透過性能、阻止性能は異なったものである。そのため、逆浸透膜処理で使用されている逆浸透膜を正浸透用途に用いると、十分な性能が得られないことになる。   By the way, the forward osmosis membrane and the reverse osmosis membrane have different membrane structures and properties due to the difference in their operating methods. Since the reverse osmosis membrane applies a high pressure to the primary side of the membrane, it is necessary to increase the film thickness in order to maintain the mechanical strength capable of withstanding the pressure. On the other hand, the forward osmosis membrane does not need to have the mechanical strength of the reverse osmosis membrane because the pressure applied to the membrane is lower than that of the reverse osmosis membrane, and further it is necessary to suppress the concentration polarization inside the membrane. It is required to reduce the film thickness. As a result of optimizing the membrane to the required operating conditions, the reverse osmosis membrane and the normal osmosis membrane have different membrane structures, although the membrane materials are the same, but the permeation performance and the blocking performance are different. Therefore, if the reverse osmosis membrane used in the reverse osmosis membrane treatment is used for forward osmosis, sufficient performance cannot be obtained.

正浸透膜処理工程で用いられる誘引溶液としては、炭酸アンモニウム水溶液、マグネシウム塩水溶液、ナトリウム塩水溶液等の無機塩水溶液、ショ糖、グルコース、有機性ポリマ等の有機物水溶液、イオン液体等が挙げられる。正浸透膜処理工程で使用された希薄誘引溶液はそのまま別工程で使用してもよいし、希薄誘引溶液に加熱、膜分離等の操作を加えることによって希薄誘引溶液から水を分離し、得られた水および濃縮誘引溶液を再利用してもよい。正浸透膜処理工程において複数段の正浸透膜処理を行う場合、上記誘引溶液を組み合わせて用いてもよい。   Examples of the attractant solution used in the forward osmosis membrane treatment step include an aqueous solution of an inorganic salt such as an aqueous solution of ammonium carbonate, an aqueous solution of magnesium salt and an aqueous solution of sodium salt, an aqueous solution of an organic substance such as sucrose, glucose and an organic polymer, and an ionic liquid. The diluted attractant solution used in the forward osmosis membrane treatment step may be used as it is in another step, or the diluted attractant solution may be heated or subjected to membrane separation or the like to separate water from the diluted attractant solution to obtain a solution. The water and concentrated attractant solution may be reused. In the case of performing a plurality of steps of the forward osmosis membrane treatment in the forward osmosis membrane treatment step, the attracting solution may be used in combination.

被処理水(FO被処理水)としては、特に制限はないが、例えば、工業用水、表層水、水道水、地下水、海水、海水を逆浸透法または蒸発法等によって脱塩した海水淡水化処理水、各種排水、例えば半導体製造工程等で排出される排水等が挙げられる。   The treated water (FO treated water) is not particularly limited, but for example, industrial water, surface water, tap water, groundwater, seawater, seawater desalination treatment in which seawater is desalted by a reverse osmosis method, an evaporation method, or the like. Examples thereof include water and various wastewater, such as wastewater discharged in the semiconductor manufacturing process and the like.

被処理水のpHは、例えば、2〜12の範囲であり、4〜11の範囲であることが好ましい。被処理水のpHが2未満、または12を超えると、正浸透膜が劣化する場合がある。   The pH of the water to be treated is, for example, in the range of 2 to 12, and preferably in the range of 4 to 11. If the pH of the water to be treated is less than 2 or more than 12, the forward osmosis membrane may deteriorate.

正浸透膜処理装置において、被処理水のpH5.5以上でスケールが発生する場合には、スケール抑制のために分散剤を上記殺菌剤と併用してもよい。分散剤としては、例えば、ポリアクリル酸、ポリマレイン酸、ホスホン酸等が挙げられる。分散剤の被処理水への添加量は、例えば、FO濃縮水中の濃度として0.1〜1,000mg/Lの範囲である。   In the forward osmosis membrane treatment apparatus, when scale is generated at pH 5.5 or higher of the water to be treated, a dispersant may be used in combination with the disinfectant in order to suppress scale. Examples of the dispersant include polyacrylic acid, polymaleic acid, phosphonic acid and the like. The amount of the dispersant added to the water to be treated is, for example, in the range of 0.1 to 1,000 mg / L as the concentration in the FO concentrated water.

また、分散剤を使用せずにスケールの発生を抑制するためには、例えば、FO濃縮水中のシリカ濃度を溶解度以下に、カルシウムスケールの指標であるランゲリア指数を0以下になるように、正浸透膜処理装置の回収率、水温、pH等の運転条件を調整することが挙げられる。   Further, in order to suppress the generation of scale without using a dispersant, for example, normal osmosis is performed so that the silica concentration in the FO concentrated water is less than or equal to the solubility and the Langereria index, which is an index of calcium scale, is less than or equal to 0. Adjustment of operating conditions such as the recovery rate of the membrane treatment device, water temperature, and pH may be mentioned.

正浸透膜処理システムの用途としては、例えば、海水淡水化、排水の減容化、有価物の濃縮、食品および飲料の濃縮等が挙げられる。   Examples of the application of the forward osmosis membrane treatment system include desalination of seawater, volume reduction of waste water, concentration of valuables, concentration of foods and beverages, and the like.

<水処理方法、水処理システム>
次に、上記正浸透膜処理方法、正浸透膜処理システムを用いる水処理方法、水処理システムについて説明する。
<Water treatment method, water treatment system>
Next, the above-mentioned normal osmosis membrane treatment method, water treatment method using the normal osmosis membrane treatment system, and water treatment system will be described.

本発明の実施形態に係る水処理方法は、上記正浸透膜処理方法を含み、正浸透膜処理工程の前段に、前処理工程および逆浸透膜処理工程を含み、正浸透膜処理工程により得られた希薄誘引溶液を、前処理工程で使用する、水処理方法である。また、本発明の実施形態に係る水処理システムは、上記正浸透膜処理システムを備え、正浸透膜処理手段の前段に、前処理手段および逆浸透膜処理手段を備え、正浸透膜処理手段により得られた希薄誘引溶液が、前処理手段で使用される、水処理システムである。   A water treatment method according to an embodiment of the present invention includes the above-mentioned forward osmosis membrane treatment method, and includes a pretreatment step and a reverse osmosis membrane treatment step before the forward osmosis membrane treatment step and is obtained by the forward osmosis membrane treatment step. It is a water treatment method in which the diluted attractant solution is used in the pretreatment step. Further, the water treatment system according to the embodiment of the present invention comprises the above-mentioned normal osmosis membrane treatment system, and comprises a pretreatment means and a reverse osmosis membrane treatment means before the forward osmosis membrane treatment means. The diluted attractant solution obtained is the water treatment system used in the pretreatment means.

本発明の実施形態に係る水処理装置の一例の概略を図2に示し、その構成について説明する。   An outline of an example of the water treatment device according to the embodiment of the present invention is shown in FIG. 2, and its configuration will be described.

本実施形態に係る水処理システム3は、被処理水の前処理を行う前処理手段としての前処理装置24と、前処理により得られた前処理水の逆浸透膜処理を行い、RO濃縮水とRO透過水とを得る逆浸透膜処理手段としての逆浸透膜処理装置28と、逆浸透膜処理により得られたRO濃縮水の正浸透膜処理を行う正浸透膜処理手段としての正浸透膜処理装置10とを備える。水処理システム3は、前処理により得られた前処理水の濁質除去処理を行う濁質除去手段として、濁質除去装置26を備えてもよい。   The water treatment system 3 according to the present embodiment includes a pretreatment device 24 as pretreatment means for pretreatment of water to be treated, a reverse osmosis membrane treatment of pretreatment water obtained by the pretreatment, and RO concentrated water. Reverse osmosis membrane treatment device 28 as a reverse osmosis membrane treatment means for obtaining RO permeated water, and a forward osmosis membrane as a forward osmosis membrane treatment means for performing a forward osmosis membrane treatment of RO concentrated water obtained by the reverse osmosis membrane treatment. And a processing device 10. The water treatment system 3 may include a turbidity removal device 26 as a turbidity removal unit that performs a turbidity removal process of the pretreated water obtained by the pretreatment.

図2の水処理システム3において、被処理水配管30が前処理装置24の被処理水入口に接続され、前処理装置24の出口と濁質除去装置26の入口とは、配管32により接続され、濁質除去装置26の出口と逆浸透膜処理装置28の入口とは、配管34により接続されている。逆浸透膜処理装置28のRO濃縮水出口と正浸透膜処理装置10のFO被処理水入口とは、FO被処理水配管14により接続され、逆浸透膜処理装置28のRO透過水出口には、RO透過水配管36が接続されている。正浸透膜処理装置10の誘引溶液入口には、誘引溶液配管18が接続され、正浸透膜処理装置10の希薄誘引溶液出口と、前処理装置24の希薄誘引溶液入口とは、希薄誘引溶液配管20により接続され、正浸透膜処理装置10のFO濃縮水出口には、FO濃縮水配管16が接続されている。濁質除去装置26の逆洗排水出口には、逆洗排水配管38が接続されていてもよい。   In the water treatment system 3 of FIG. 2, the treated water pipe 30 is connected to the treated water inlet of the pretreatment device 24, and the outlet of the pretreatment device 24 and the inlet of the suspended matter removing device 26 are connected by the pipe 32. The outlet of the suspended matter removing device 26 and the inlet of the reverse osmosis membrane processing device 28 are connected by a pipe 34. The RO concentrated water outlet of the reverse osmosis membrane treatment device 28 and the FO treated water inlet of the forward osmosis membrane treatment device 10 are connected by the FO treated water pipe 14, and the RO permeated water outlet of the reverse osmosis membrane treatment device 28 is connected to the RO permeated water outlet. , RO permeated water pipe 36 is connected. The attractant solution pipe 18 is connected to the attractant solution inlet of the forward osmosis membrane treatment apparatus 10, and the dilute attractant solution outlet of the forward osmosis membrane treater 10 and the dilute attractant solution inlet of the pretreatment unit 24 are the dilute attractant solution pipes. FO concentrated water pipe 16 is connected to the FO concentrated water outlet of normal osmosis membrane treatment apparatus 10. A backwash drainage pipe 38 may be connected to the backwash drainage outlet of the suspended matter removing device 26.

本実施形態に係る水処理方法および水処理システム3の動作について説明する。   The operation of the water treatment method and the water treatment system 3 according to this embodiment will be described.

被処理水は、被処理水配管30を通して前処理装置24へ送液される。前処理装置24において、例えば、被処理水に含まれる溶解性シリカ、硬度成分等の除去処理が行われる(前処理工程)。   The treated water is sent to the pretreatment device 24 through the treated water pipe 30. In the pretreatment device 24, for example, a treatment for removing soluble silica, hardness components, etc. contained in the water to be treated is performed (pretreatment step).

被処理水が溶解性シリカを含む場合、前処理装置24は、例えば、被処理水にマグネシウム塩を添加して反応させ、溶解性シリカを不溶化させるマグネシウム反応手段と、反応後の被処理水に凝集剤を添加して、凝集させる凝集処理手段と、凝集処理させた被処理水から凝集物を分離する固液分離手段と、を有する。前処理装置24において、例えばアルカリ条件(例えば、pH10〜12)下で被処理水にマグネシウム塩が添加され、溶解性シリカが不溶化される(マグネシウム反応工程)。その後、必要に応じて凝集剤が添加されて、凝集処理され(凝集処理工程)、凝集物が固液分離される(固液分離工程)。固液分離で得られた固液分離処理水は、前処理水として配管32を通して、濁質除去装置26へ送液され、UF膜等による濁質除去処理が行われ、濁質成分等が除去された後(濁質除去工程)、逆浸透膜処理装置28へ送液される。   When the water to be treated contains soluble silica, the pretreatment device 24 may, for example, add a magnesium salt to the water to be treated to cause a reaction, and to make the soluble silica insoluble, and the treated water after the reaction. It has an aggregating treatment means for adding an aggregating agent to agglomerate, and a solid-liquid separating means for separating an agglomerate from the aggregating treated water. In the pretreatment device 24, for example, magnesium salt is added to the water to be treated under alkaline conditions (for example, pH 10 to 12) to insolubilize the soluble silica (magnesium reaction step). After that, an aggregating agent is added if necessary, and an aggregating treatment is performed (aggregating treatment step), and an aggregate is subjected to solid-liquid separation (solid-liquid separation step). The solid-liquid separation treated water obtained by the solid-liquid separation is sent as pretreatment water to the turbidity removal device 26 through the pipe 32, and turbidity removal processing by a UF membrane or the like is performed to remove turbidity components and the like. After being treated (turbidity removing step), the solution is sent to the reverse osmosis membrane treatment device 28.

被処理水が硬度成分を含み、石灰軟化法により硬度成分の除去が行われる場合、前処理装置24は、例えば、被処理水にアルカリ剤を添加して反応させ、硬度成分を不溶化させるアルカリ剤反応手段と、反応後の被処理水に必要に応じて凝集剤を添加して、凝集させる凝集処理手段と、凝集処理させた被処理水から凝集物を分離する固液分離手段と、を有する。前処理装置24において、例えば被処理水にアルカリ剤が添加され、硬度成分が不溶化される(アルカリ剤反応工程)。その後、必要に応じて凝集剤が添加されて、凝集処理され(凝集処理工程)、凝集物が固液分離される(固液分離工程)。固液分離で得られた固液分離処理水は、前処理水として配管32を通して、濁質除去装置26へ送液され、UF膜等による濁質除去処理が行われ、濁質成分等が除去された後(濁質除去工程)、逆浸透膜処理装置28へ送液される。   When the water to be treated contains a hardness component and the hardness component is removed by the lime softening method, the pretreatment device 24 may, for example, add an alkaline agent to the water to be treated and cause the reaction to cause an insolubility of the hardness component. It has a reaction means, an aggregating treatment means for aggregating by adding an aggregating agent to the treated water after the reaction as necessary, and a solid-liquid separation means for separating an aggregate from the aggregating treated water. . In the pretreatment device 24, for example, an alkaline agent is added to the water to be treated to insolubilize the hardness component (alkali agent reaction step). After that, an aggregating agent is added if necessary, and an aggregating treatment is performed (aggregating treatment step), and an aggregate is subjected to solid-liquid separation (solid-liquid separation step). The solid-liquid separation treated water obtained by the solid-liquid separation is sent as pretreatment water to the turbidity removal device 26 through the pipe 32, and turbidity removal processing by a UF membrane or the like is performed to remove turbidity components and the like. After being treated (turbidity removing step), the solution is sent to the reverse osmosis membrane treatment device 28.

被処理水が硬度成分を含み、樹脂軟化法により硬度成分の除去が行われる場合、前処理装置24は、例えば、イオン交換樹脂等を用いてイオン交換処理を行うイオン交換処理手段を有する。前処理装置24において、例えばイオン交換処理手段としてイオン交換樹脂が充填されたイオン交換塔に被処理水が通液され、硬度成分が吸着除去される(イオン交換工程)。イオン交換処理で得られた前処理水は、配管32を通して、濁質除去装置26へ送液され、UF膜等による濁質除去処理が行われ、濁質成分等が除去された後(濁質除去工程)、逆浸透膜処理装置28へ送液される。イオン交換樹脂の再生が必要になった場合は、再生剤が通液されることによりイオン交換樹脂が再生される。   When the water to be treated contains a hardness component and the hardness component is removed by the resin softening method, the pretreatment device 24 has, for example, an ion exchange treatment means for performing an ion exchange treatment using an ion exchange resin or the like. In the pretreatment device 24, for example, water to be treated is passed through an ion exchange column filled with an ion exchange resin as an ion exchange treatment means, and a hardness component is adsorbed and removed (ion exchange step). The pretreated water obtained by the ion exchange treatment is sent to the turbidity removal device 26 through the pipe 32 and subjected to turbidity removal processing using a UF membrane or the like to remove turbidity components and the like (turbidity (Removing step), and the solution is sent to the reverse osmosis membrane treatment device 28. When it becomes necessary to regenerate the ion exchange resin, the regenerant is passed to regenerate the ion exchange resin.

次に、濁質除去処理された前処理水は、逆浸透膜処理装置28において逆浸透膜処理されて、RO濃縮水とRO透過水とが得られる(逆浸透膜処理工程)。逆浸透膜処理により得られたRO濃縮水は、FO被処理水としてFO被処理水配管14を通して正浸透膜処理装置10の1次側へ送液され、RO透過水は、RO透過水配管36を通して排出される。なお、濁質除去装置26では、所定に時間毎に膜の逆洗を行ってもよい。例えば、RO透過水等が逆洗水として濁質除去装置26へ供給され、逆洗排水は、逆洗排水配管38を通して排出される。   Next, the pretreatment water subjected to the turbidity removal treatment is subjected to reverse osmosis membrane treatment in the reverse osmosis membrane treatment device 28 to obtain RO concentrated water and RO permeated water (reverse osmosis membrane treatment step). The RO concentrated water obtained by the reverse osmosis membrane treatment is sent to the primary side of the forward osmosis membrane treatment apparatus 10 as the FO treated water through the FO treated water pipe 14, and the RO permeated water is the RO permeated water pipe 36. Exhausted through. In the turbidity removing device 26, the membrane may be backwashed at predetermined intervals. For example, RO permeated water or the like is supplied as backwash water to the turbidity removal device 26, and the backwash drainage is discharged through the backwash drainage pipe 38.

逆浸透膜処理により得られたRO濃縮水は、正浸透膜処理装置10において正浸透膜処理される(正浸透膜処理工程)。正浸透膜処理装置10において、誘引溶液が誘引溶液配管18を通して正浸透膜の2次側に送液され、正浸透膜を介して、RO濃縮水と誘引溶液を存在させることにより、浸透圧で水が誘引溶液に移動される。   The RO concentrated water obtained by the reverse osmosis membrane treatment is subjected to a forward osmosis membrane treatment in the forward osmosis membrane treatment apparatus 10 (a forward osmosis membrane treatment step). In the forward osmosis membrane treatment apparatus 10, the attractant solution is sent to the secondary side of the forward osmosis membrane through the attractant solution pipe 18, and the RO concentrated water and the attractant solution are allowed to exist through the forward osmosis membrane, thereby increasing the osmotic pressure. Water is transferred to the attractant solution.

ここで、RO濃縮水(FO被処理水)中に、臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを含む正浸透膜用殺菌剤を存在させる。例えば、正浸透膜用殺菌剤は、殺菌剤添加配管22を通してFO被処理水配管14においてRO濃縮水(FO被処理水)に添加される。正浸透膜処理装置10の前段、例えば、逆浸透膜処理装置28と正浸透膜処理装置10との間にRO濃縮水(FO被処理水)を貯留するFO被処理水槽を別途設け、FO被処理水槽において正浸透膜用殺菌剤が添加されてもよい。   Here, the osmotic agent for a normal osmosis membrane containing a brominated oxidant or a chlorine oxidant and a sulfamic acid compound is present in RO concentrated water (FO treated water). For example, the normal osmosis membrane sterilizer is added to the RO concentrated water (FO treated water) in the FO treated water pipe 14 through the sterilizing agent addition pipe 22. Before the forward osmosis membrane treatment apparatus 10, for example, between the reverse osmosis membrane treatment apparatus 28 and the forward osmosis membrane treatment apparatus 10, a FO treated water tank for storing RO concentrated water (FO treated water) is separately provided. A sterilizing agent for a forward osmosis membrane may be added in the treated water tank.

この正浸透膜用殺菌剤は、従来の塩素系殺菌剤、酸化剤、有機系殺菌剤よりも、正浸透膜に対して十分な殺菌効果を発揮する。本実施形態に係る水処理方法では上記正浸透膜用殺菌剤を用いることにより、殺菌有効成分が正浸透膜をほとんど透過しないので、正浸透膜処理により希釈された希薄誘引溶液を前処理で用いることができ、希薄誘引溶液の再利用が可能になる。希薄誘引溶液に有機系殺菌剤が含まれる場合、殺菌有効成分は濁質除去装置26の逆洗排水や、逆浸透膜処理装置28のRO透過水に含まれることになる。希薄誘引溶液に塩素系殺菌剤や酸化剤が含まれる場合、塩素系殺菌剤や酸化剤が濁質除去装置26や逆浸透膜処理装置28に流入すると、膜を劣化させてしまう。上記正浸透膜用殺菌剤を用いると、殺菌有効成分が正浸透膜をほとんど透過しないため、このようなリスクが抑制される。   This normal osmosis membrane bactericide exhibits a sufficient bactericidal effect on the normal osmosis membrane as compared with conventional chlorine-based bactericides, oxidizing agents, and organic bactericides. In the water treatment method according to the present embodiment, by using the sterilizing agent for the forward osmosis membrane, since the bactericidal active ingredient hardly penetrates the forward osmosis membrane, the diluted attractant solution diluted by the forward osmosis membrane treatment is used in the pretreatment. It is possible to reuse the diluted attractant solution. When the diluted attractant solution contains an organic germicide, the germicidal active ingredient is contained in the backwash drainage of the suspended matter removing device 26 and the RO permeate of the reverse osmosis membrane treatment device 28. When the dilute attractant solution contains a chlorine-based germicide or an oxidant, if the chlorine-based germicide or the oxidant flows into the turbidity removal device 26 or the reverse osmosis membrane treatment device 28, the membrane is deteriorated. When the sterilizing agent for a normal osmosis membrane is used, such a risk is suppressed because the bactericidal active ingredient hardly permeates the normal osmosis membrane.

正浸透膜処理工程で使用された希薄誘引溶液は、希薄誘引溶液配管20を通して前処理装置24へ送液され、前処理装置24において前処理工程で使用される。正浸透膜処理工程で得られたFO濃縮水は、FO濃縮水配管16を通して排出される。FO濃縮水は、回収、再利用されてもよい。   The diluted attractant solution used in the forward osmosis membrane treatment step is sent to the pretreatment device 24 through the diluted attractant solution pipe 20, and is used in the pretreatment device 24 in the pretreatment step. The FO concentrated water obtained in the forward osmosis membrane treatment step is discharged through the FO concentrated water pipe 16. The FO concentrated water may be collected and reused.

前処理装置24が溶解性シリカ除去を行う装置を含む場合、例えば、正浸透膜処理装置10における誘引溶液として、マグネシウム塩水溶液が用いられ、正浸透膜処理装置10で使用された希薄誘引溶液(マグネシウム塩希薄水溶液)は、前処理装置24において添加されるマグネシウム塩として使用されればよい。   When the pretreatment device 24 includes a device for removing soluble silica, for example, a magnesium salt aqueous solution is used as the attractant solution in the forward osmosis membrane treatment device 10, and the diluted attractant solution ( The diluted magnesium salt solution) may be used as the magnesium salt added in the pretreatment device 24.

前処理装置24が石灰軟化法により硬度成分の除去を行う装置を含む場合、例えば、正浸透膜処理装置10における誘引溶液として、アルカリ剤水溶液が用いられ、正浸透膜処理装置10で使用された希薄誘引溶液(アルカリ剤希薄水溶液)は、前処理装置24において添加されるアルカリ剤として使用されればよい。   When the pretreatment device 24 includes a device that removes hardness components by the lime softening method, for example, an alkaline agent aqueous solution is used as the attracting solution in the forward osmosis membrane treatment device 10 and used in the forward osmosis membrane treatment device 10. The diluted attractant solution (alkaline agent diluted aqueous solution) may be used as the alkaline agent added in the pretreatment device 24.

前処理装置24が樹脂軟化法により硬度成分の除去を行う装置を含む場合、例えば、正浸透膜処理装置10における誘引溶液として、酸水溶液または塩化ナトリウム水溶液が用いられ、正浸透膜処理装置10で使用された希薄誘引溶液(酸希薄水溶液または塩化ナトリウム希薄水溶液)は、前処理装置24においてイオン交換樹脂の再生剤として使用されればよい。   When the pretreatment device 24 includes a device for removing the hardness component by the resin softening method, for example, an acid aqueous solution or an aqueous sodium chloride solution is used as the attracting solution in the forward osmosis membrane treatment device 10, and The dilute attracting solution (dilute aqueous acid solution or dilute aqueous sodium chloride solution) used may be used as a regenerant for the ion exchange resin in the pretreatment device 24.

本実施形態に係る水処理方法および水処理装置により、例えば溶解性シリカおよび硬度成分のうち少なくとも1つを含む被処理水を低コストで処理することができる。   With the water treatment method and the water treatment apparatus according to the present embodiment, for example, water to be treated containing at least one of soluble silica and hardness component can be treated at low cost.

正浸透膜処理で希釈された希薄誘引溶液が前処理工程で使用されることで、本来必要であった誘引溶液の再利用に必要なコストが削減され、また、再生設備を備えなくてもよい。希薄誘引溶液は前処理工程で本来使用するものが希釈されているだけなので、追加のコストがほとんど発生しない。   By using the diluted attractant solution diluted by the forward osmosis membrane treatment in the pretreatment step, the cost required for reusing the attractant solution, which was originally necessary, is reduced, and there is no need to provide a regeneration facility. . The diluted attractant solution is diluted with the one originally used in the pretreatment step, so that there is almost no additional cost.

本実施形態に係る水処理方法および水処理装置の処理対象となる被処理水は、特に制限はないが、例えば溶解性シリカおよび硬度成分のうち少なくとも1つを含む水であり、例えば、工業用水、表層水、水道水、地下水、海水、海水を逆浸透法もしくは蒸発法によって脱塩した海水淡水化処理水、各種排水、例えば半導体製造工程で排出される排水等が挙げられる。   The water to be treated, which is a treatment target of the water treatment method and the water treatment apparatus according to the present embodiment, is not particularly limited, but is, for example, water containing at least one of soluble silica and a hardness component, such as industrial water. , Surface water, tap water, groundwater, seawater, seawater desalination treated water obtained by desalting seawater by the reverse osmosis method or the evaporation method, various kinds of wastewater, such as wastewater discharged in the semiconductor manufacturing process.

被処理水中に溶解性シリカが含まれる場合、溶解性シリカの濃度は、例えば、5〜400mg/Lの範囲である。被処理水中に硬度成分が含まれる場合、カルシウム硬度成分の濃度は、5〜600mg/Lの範囲である。被処理水中の全蒸発残留物(TDS:Total Dissolved Solid)は、例えば、100〜50000mg/Lの範囲である。   When the water to be treated contains soluble silica, the concentration of the soluble silica is, for example, in the range of 5 to 400 mg / L. When the water to be treated contains a hardness component, the concentration of the calcium hardness component is in the range of 5 to 600 mg / L. The total evaporation residue (TDS: Total Dissolved Solid) in the water to be treated is, for example, in the range of 100 to 50,000 mg / L.

本実施形態に係る水処理方法および水処理装置において、被処理水が溶解性シリカおよび硬度成分の両者を含む場合は、前処理手段(前処理工程)は、溶解性シリカ除去手段(溶解性シリカ除去工程)および硬度成分除去手段(硬度成分除去工程)の両者を備えてもよい。溶解性シリカ除去手段(溶解性シリカ除去工程)および硬度成分除去手段(硬度成分除去工程)の順序は、第1に溶解性シリカ除去手段(溶解性シリカ除去工程)、第2に硬度成分除去手段(硬度成分除去工程)であっても、第1に硬度成分除去手段(硬度成分除去工程)、第2に溶解性シリカ除去手段(溶解性シリカ除去工程)であってもよい。   In the water treatment method and the water treatment apparatus according to the present embodiment, when the water to be treated contains both the soluble silica and the hardness component, the pretreatment means (pretreatment step) is the soluble silica removal means (soluble silica Both the removing step) and the hardness component removing means (hardness component removing step) may be provided. The order of the soluble silica removing means (soluble silica removing step) and the hardness component removing means (hardness component removing step) is as follows: first, the soluble silica removing means (soluble silica removing step); and secondly, the hardness component removing means. It may be (hardness component removal step), firstly hardness component removal means (hardness component removal step), and secondly soluble silica removal means (soluble silica removal step).

この場合、正浸透膜処理装置10(正浸透膜処理工程)における誘引溶液として、マグネシウム塩水溶液、アルカリ剤水溶液、酸水溶液および塩化ナトリウム水溶液のうち少なくとも1つが用いられ、正浸透膜処理装置10で使用された希薄誘引溶液(マグネシウム塩希薄水溶液、アルカリ剤希薄水溶液、酸希薄水溶液および塩化ナトリウム希薄水溶液のうち少なくとも1つ)が、前処理装置24(前処理工程)の溶解性シリカ除去手段(溶解性シリカ除去工程)および硬度成分除去手段(硬度成分除去工程)のうち適した方において使用されればよい。   In this case, at least one of an aqueous magnesium salt solution, an aqueous alkaline agent solution, an aqueous acid solution and an aqueous sodium chloride solution is used as the attracting solution in the forward osmosis membrane treatment apparatus 10 (forward osmosis membrane treatment step). The dilute attracting solution used (at least one of dilute aqueous solution of magnesium salt, dilute aqueous solution of alkaline agent, dilute aqueous solution of acid and dilute aqueous solution of sodium chloride) is a soluble silica removing means (dissolving solution) of the pretreatment device 24 (pretreatment step). It may be used in the more suitable one of the step (removing silica) and the hardness component removing means (hardness component removing process).

濁質除去手段としては、例えば、砂ろ過装置、限外ろ過(UF)膜等の膜ろ過装置、加圧浮上装置等が挙げられる。濁質除去手段の設置位置は、特に制限はなく、例えば、前処理装置24(前処理工程)の前段、または前処理装置24(前処理工程)と逆浸透膜処理装置28(逆浸透膜処理工程)との間である。   Examples of the suspended matter removing means include a sand filtration device, a membrane filtration device such as an ultrafiltration (UF) membrane, and a pressure flotation device. The installation position of the suspended matter removing unit is not particularly limited, and may be, for example, before the pretreatment device 24 (pretreatment process) or the pretreatment device 24 (pretreatment process) and the reverse osmosis membrane treatment device 28 (reverse osmosis membrane treatment). Process).

[前処理工程:溶解性シリカ除去]
被処理水が溶解性シリカを含む場合の前処理工程において、例えば、アルカリ条件下で被処理水にマグネシウム塩が添加され、溶解性シリカが不溶化される(マグネシウム反応工程)。
[Pretreatment step: Removal of soluble silica]
In the pretreatment step when the water to be treated contains soluble silica, for example, magnesium salt is added to the water to be treated under alkaline conditions to insolubilize the soluble silica (magnesium reaction step).

用いられるマグネシウム塩としては、塩化マグネシウム(MgCl)、硫酸マグネシウム(MgSO)等のマグネシウム塩またはその水和物であればよく、特に制限はないが、硫酸塩添加による難溶解性物質生成を抑制する等の観点から、塩化マグネシウムが好ましい。 The magnesium salt used may be a magnesium salt such as magnesium chloride (MgCl 2 ) or magnesium sulfate (MgSO 4 ) or a hydrate thereof, and is not particularly limited, but a hardly soluble substance is generated by addition of a sulfate salt. From the viewpoint of suppressing, magnesium chloride is preferable.

マグネシウム反応工程におけるpHはアルカリ条件であればよく、特に制限はないが、例えば、pH10〜12の範囲であり、10.5〜11.5の範囲であることが好ましく、11〜11.5の範囲であることがより好ましい。マグネシウム反応工程におけるpHが10未満、または12を超えると、シリカ除去率が低くなる場合がある。   The pH in the magnesium reaction step is not particularly limited as long as it is an alkaline condition. For example, the pH is in the range of 10 to 12, preferably in the range of 10.5 to 11.5, and preferably in the range of 11 to 11.5. The range is more preferable. If the pH in the magnesium reaction step is less than 10 or more than 12, the silica removal rate may be low.

pH調整剤としては、水酸化ナトリウム、水酸化カルシウム等のアルカリを用いればよく、必要に応じて塩酸、硫酸等の無機酸を用いてもよい。   As the pH adjuster, an alkali such as sodium hydroxide or calcium hydroxide may be used, and if necessary, an inorganic acid such as hydrochloric acid or sulfuric acid may be used.

マグネシウム反応工程における温度は、シリカの不溶化反応が進行する温度であればよく、特に制限はないが、例えば、1℃〜50℃未満の範囲であり、10℃〜50℃未満の範囲であることがより好ましい。マグネシウム反応工程における温度が1℃未満であると、シリカの不溶化反応が不十分となる場合があり、50℃以上であると、処理コストが高くなる場合がある。   The temperature in the magnesium reaction step is not particularly limited as long as it is a temperature at which the insolubilization reaction of silica proceeds, but is, for example, in the range of 1 ° C to less than 50 ° C, and in the range of 10 ° C to less than 50 ° C. Is more preferable. If the temperature in the magnesium reaction step is lower than 1 ° C, the insolubilization reaction of silica may be insufficient, and if it is 50 ° C or higher, the treatment cost may be high.

マグネシウム反応工程における反応時間は、シリカの不溶化反応が進行することができればよく、特に制限はないが、例えば、1分〜60分の範囲であり、5分〜30分の範囲であることがより好ましい。マグネシウム反応工程における反応時間が1分未満であると、シリカの不溶化反応が不十分となる場合があり、60分を超えると、反応槽が過大になる場合がある。   The reaction time in the magnesium reaction step is not particularly limited as long as the insolubilization reaction of silica can proceed, but is, for example, in the range of 1 minute to 60 minutes, and more preferably in the range of 5 minutes to 30 minutes. preferable. If the reaction time in the magnesium reaction step is less than 1 minute, the insolubilization reaction of silica may be insufficient, and if it exceeds 60 minutes, the reaction tank may be too large.

マグネシウム塩の添加量は、被処理水中のシリカの重量濃度に対して、マグネシウム濃度として0.1〜10倍量の範囲であることが好ましく、0.5〜5倍量の範囲であることがより好ましい。マグネシウム塩の添加量が被処理水中のシリカの重量濃度に対して0.1倍量未満であると、シリカの不溶化反応が不十分となる場合があり、10倍量を超えると、汚泥発生量が過剰になってしまう場合がある。   The amount of magnesium salt added is preferably in the range of 0.1 to 10 times, and more preferably in the range of 0.5 to 5 times the magnesium concentration with respect to the weight concentration of silica in the water to be treated. More preferable. If the amount of magnesium salt added is less than 0.1 times the weight concentration of silica in the water to be treated, the insolubilization reaction of silica may be insufficient, and if it exceeds 10 times the amount of sludge generated. May become excessive.

溶解性シリカを不溶化させるために、マグネシウム塩の他に、ポリ塩化アルミニウム(PAC)、硫酸アルミニウム等のアルミニウム塩、塩化第二鉄、硫酸第二鉄等の鉄塩等が用いられてもよい。シリカ除去率等の点から、マグネシウム塩を用いることが好ましい。   In addition to magnesium salts, aluminum salts such as polyaluminum chloride (PAC) and aluminum sulfate, iron salts such as ferric chloride and ferric sulfate, and the like may be used to insolubilize soluble silica. From the viewpoint of silica removal rate and the like, it is preferable to use a magnesium salt.

凝集処理工程では、例えば、凝集槽において、無機凝集剤が、マグネシウム反応後の被処理水に添加され、不溶化物が凝集される(凝集工程)。その後、フロック形成槽において、高分子凝集剤が、添加され、フロックが形成される(フロック形成工程)。   In the aggregating treatment step, for example, in the aggregating tank, the inorganic aggregating agent is added to the water to be treated after the magnesium reaction to aggregate the insoluble matter (aggregating step). Then, in a floc forming tank, a polymer flocculant is added to form flocs (floc forming step).

凝集工程で用いられる無機凝集剤としては、塩化鉄等の鉄系無機凝集剤、ポリ塩化アルミニウム(PAC)等のアルミニウム系無機凝集剤等が挙げられ、薬品コストおよび凝集pH範囲等の点から、鉄系無機凝集剤が好ましい。   Examples of the inorganic flocculant used in the flocculation step include iron-based inorganic flocculants such as iron chloride and aluminum-based inorganic flocculants such as polyaluminum chloride (PAC). Iron-based inorganic flocculants are preferred.

無機凝集剤の添加量は、添加したマグネシウム塩の量に対して重量比で0.1〜10倍量の範囲であることが好ましく、1〜5倍量の範囲であることがより好ましい。無機凝集剤の添加量が添加したマグネシウム塩の量に対して重量比で0.1倍量未満であると、凝集が不十分となる場合があり、10倍量を超えると、汚泥発生量が過剰になる場合がある。   The addition amount of the inorganic coagulant is preferably in the range of 0.1 to 10 times by weight, and more preferably in the range of 1 to 5 times by weight of the added magnesium salt. If the amount of the inorganic coagulant added is less than 0.1 times by weight the amount of the added magnesium salt, coagulation may be insufficient, and if it exceeds 10 times, the amount of sludge generated may increase. It may be excessive.

凝集工程におけるpHは、例えば、3〜11の範囲である。凝集工程におけるpHが3未満、または11を超えると、凝集不良を生じる場合がある。さらに、凝集工程におけるpHが9未満となると、フロックからシリカが溶け出してしまうことがあることから、pH9〜11の範囲で凝集工程を行うことが望ましい。   The pH in the aggregating step is, for example, in the range of 3-11. If the pH in the aggregating step is less than 3 or more than 11, poor aggregation may occur. Further, when the pH in the aggregating step is less than 9, silica may be dissolved out from the flocs, so it is desirable to perform the aggregating step in the pH range of 9 to 11.

凝集工程における温度は、例えば、1℃〜80℃の範囲である。凝集工程における温度が1℃未満、または80℃を超えると、凝集不良を生じる場合がある。   The temperature in the aggregation step is, for example, in the range of 1 ° C to 80 ° C. If the temperature in the aggregation step is lower than 1 ° C or higher than 80 ° C, poor aggregation may occur.

フロック形成工程で用いられる高分子凝集剤としては、ポリアクリルアミド系、ポリアクリル酸エステル系等のカチオン系高分子凝集剤、アニオン系高分子凝集剤、ノニオン系高分子凝集剤等が挙げられ、凝集性等の点から、アニオン系高分子凝集剤が好ましい。   Examples of the polymer flocculant used in the floc forming step include cationic polymer flocculants such as polyacrylamide-based and polyacrylic acid ester-based, anionic polymer flocculants, nonionic polymer flocculants, and the like. Anionic polymer flocculants are preferred from the standpoint of properties and the like.

市販の高分子凝集剤としては、オルフロックOA−3H(オルガノ株式会社製)等のアニオン系高分子凝集剤が挙げられる。   Examples of commercially available polymer flocculants include anionic polymer flocculants such as Orfloc OA-3H (manufactured by Organo Corporation).

高分子凝集剤の添加量は、原水の水量に対して0.1〜10mg/Lの範囲であることが好ましく、1〜5mg/Lの範囲であることがより好ましい。高分子凝集剤の添加量が原水の水量に対して0.1mg/L未満であると、フロック形成が向上しない場合があり、10mg/Lを超えると、処理水中に溶存の高分子凝集剤が残留してしまう場合がある。   The addition amount of the polymer flocculant is preferably in the range of 0.1 to 10 mg / L, and more preferably in the range of 1 to 5 mg / L with respect to the amount of raw water. If the addition amount of the polymer flocculant is less than 0.1 mg / L with respect to the amount of raw water, floc formation may not be improved, and if it exceeds 10 mg / L, the polymer flocculant dissolved in the treated water may be dissolved. It may remain.

フロック形成工程におけるpHは、例えば、3〜11の範囲である。フロック形成工程におけるpHが3未満、または11を超えると、凝集不良を生じる場合がある。さらに、フロック工程におけるpHが9未満となると、フロックからシリカが溶け出してしまうことがあることから、pH9〜11の範囲でフロック形成工程を行うことが望ましい。   The pH in the floc forming step is, for example, in the range of 3-11. If the pH in the floc formation step is less than 3 or more than 11, poor aggregation may occur. Further, when the pH in the floc process is less than 9, silica may be dissolved from the floc, so it is desirable to perform the floc forming process in the pH range of 9 to 11.

フロック形成工程における温度は、例えば、1℃〜80℃の範囲である。フロック形成工程における温度が1℃未満、または80℃を超えると、凝集不良を生じる場合がある。   The temperature in the floc forming step is, for example, in the range of 1 ° C to 80 ° C. If the temperature in the floc forming step is lower than 1 ° C or higher than 80 ° C, poor cohesion may occur.

上記凝集処理では、凝集工程およびフロック形成工程として、無機凝集剤および高分子凝集剤を用いているが、無機凝集剤、高分子凝集剤等のうちの少なくとも1つを用いればよく、鉄系無機凝集剤およびアニオン系高分子凝集剤のうちの少なくとも1つを用いることが好ましい。マグネシウム塩と反応し不溶化されたシリカを凝集させる際、鉄系無機凝集剤およびアニオン系高分子凝集剤のうちの少なくとも1つを用いることで、凝集性および固液分離性が向上する。   In the above-mentioned aggregating treatment, the inorganic aggregating agent and the polymer aggregating agent are used as the aggregating step and the floc forming step, but at least one of an inorganic aggregating agent, a polymer aggregating agent and the like may be used. It is preferable to use at least one of an aggregating agent and an anionic polymer aggregating agent. At the time of aggregating the insolubilized silica by reacting with the magnesium salt, by using at least one of the iron-based inorganic aggregating agent and the anionic polymer aggregating agent, the aggregating property and the solid-liquid separation property are improved.

固液分離工程では、例えば、沈殿槽において、フロック形成された凝集物が固液分離される(固液分離工程)。固液分離で得られた前処理水は、逆浸透膜処理装置28へ、または濁質除去装置26を通して逆浸透膜処理装置28へ送液される。一方、汚泥は、汚泥配管を通して排出される。汚泥は、回収、再利用されてもよい。   In the solid-liquid separation step, for example, floc-formed aggregates are solid-liquid separated in a settling tank (solid-liquid separation step). The pretreated water obtained by the solid-liquid separation is sent to the reverse osmosis membrane treatment device 28 or the reverse osmosis membrane treatment device 28 through the turbidity removal device 26. On the other hand, sludge is discharged through a sludge pipe. The sludge may be collected and reused.

固液分離工程における固液分離としては、自然沈降による沈降分離の他に、加圧浮上処理、膜ろ過処理等が挙げられ、分離性等の点から、沈降分離が好ましい。   As the solid-liquid separation in the solid-liquid separation step, in addition to sedimentation separation by natural sedimentation, pressure floating treatment, membrane filtration treatment and the like can be mentioned, and sedimentation separation is preferable from the viewpoint of separability and the like.

[前処理工程:石灰軟化法による硬度成分除去]
被処理水が硬度成分を含む場合、石灰軟化法により硬度成分を除去すればよい。硬度成分は一次硬度と永久硬度とに分類され、一次硬度は水酸化ナトリウム(NaOH)等のアルカリ剤によって、永久硬度は炭酸ナトリウム(NaCO)等の炭酸塩の添加によって除去される。本明細書では便宜上、炭酸塩もアルカリ剤として記載する。すなわち、前処理工程において、被処理水にアルカリ剤が添加され、硬度成分が不溶化される(アルカリ剤反応工程)。
[Pretreatment process: Hardening component removal by lime softening method]
When the water to be treated contains a hardness component, the hardness component may be removed by the lime softening method. Hardness components are classified into primary hardness and permanent hardness. The primary hardness is removed by an alkaline agent such as sodium hydroxide (NaOH), and the permanent hardness is removed by addition of a carbonate such as sodium carbonate (NaCO 3 ). In the present specification, carbonate is also described as an alkaline agent for convenience. That is, in the pretreatment step, the alkaline agent is added to the water to be treated to insolubilize the hardness component (alkali agent reaction step).

用いられるアルカリ剤としては、例えば、水酸化カルシウム(Ca(OH))、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、炭酸水素カルシウム(Ca(HCO)、炭酸水素マグネシウム(Mg(HCO)、炭酸ナトリウム(NaCO)、炭酸カリウム(KCO)等が挙げられ、これらのうち一つ以上を用いることができる。すなわち、必要に応じて水酸化ナトリウムと炭酸ナトリウムをそれぞれ添加することも可能である。不溶化効率等の観点から炭酸ナトリウムが好ましい。 Examples of the alkaline agent used include calcium hydroxide (Ca (OH) 2 ), sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydrogen carbonate (Ca (HCO 3 ) 2 ), magnesium hydrogen carbonate ( Mg (HCO 3 ) 2 ), sodium carbonate (Na 2 CO 3 ), potassium carbonate (K 2 CO 3 ), and the like can be given, and one or more of these can be used. That is, it is possible to add sodium hydroxide and sodium carbonate, respectively, if necessary. Sodium carbonate is preferable from the viewpoint of insolubilization efficiency and the like.

アルカリ剤反応工程におけるpHはアルカリ条件であればよく、特に制限はないが、例えば、pH9〜13の範囲であり、11〜12の範囲であることが好ましい。アルカリ剤反応工程におけるpHが9未満であると、硬度成分除去率が低くなり、13を超えると、アルカリ剤の添加量が多くなる場合がある。   The pH in the alkaline agent reaction step is not particularly limited as long as it is an alkaline condition. For example, the pH is in the range of 9 to 13, and preferably 11 to 12. If the pH in the alkaline agent reaction step is less than 9, the hardness component removal rate may be low, and if it exceeds 13, the amount of the alkaline agent added may increase.

アルカリ剤反応工程における温度は、硬度成分の不溶化反応が進行する温度であればよく、特に制限はないが、例えば、1℃〜80℃の範囲である。アルカリ剤反応工程における温度が1℃未満であると、硬度成分の不溶化反応が不十分となる場合があり、80℃を超えると、設備の耐熱温度が問題となる場合がある。   The temperature in the alkaline agent reaction step may be a temperature at which the insolubilization reaction of the hardness component proceeds, and is not particularly limited, but is in the range of 1 ° C to 80 ° C, for example. If the temperature in the alkaline agent reaction step is less than 1 ° C, the insolubilization reaction of the hardness component may be insufficient, and if it exceeds 80 ° C, the heat resistant temperature of the equipment may become a problem.

アルカリ剤反応工程における反応時間は、硬度成分の不溶化反応が進行することができればよく、特に制限はないが、例えば、10分〜30分の範囲である。アルカリ剤反応工程における反応時間が10分未満であると、硬度成分の不溶化反応が不十分となる場合があり、30分を超えると、反応槽が大きくなって設備コストが高くなる場合がある。   The reaction time in the alkaline agent reaction step is not particularly limited as long as the insolubilization reaction of the hardness component can proceed, and is, for example, 10 minutes to 30 minutes. If the reaction time in the alkaline agent reaction step is less than 10 minutes, the insolubilization reaction of the hardness component may be insufficient, and if it exceeds 30 minutes, the reaction tank may be large and the equipment cost may be high.

アルカリ剤の添加量は、被処理水中の硬度成分のモル濃度に対して、1.0〜2.0倍量の範囲であることが好ましく、1.0〜1.2倍量の範囲であることがより好ましい。アルカリ剤の添加量が被処理水中の硬度成分のモル濃度に対して1.0倍量未満であると、硬度成分の不溶化反応が不十分となる場合があり、2.0倍量を超えると、薬品コストが高くなる場合がある。   The addition amount of the alkaline agent is preferably in the range of 1.0 to 2.0 times, and in the range of 1.0 to 1.2 times the molar concentration of the hardness component in the water to be treated. Is more preferable. If the addition amount of the alkaline agent is less than 1.0 times the molar concentration of the hardness component in the water to be treated, the insolubilization reaction of the hardness component may be insufficient, and if it exceeds 2.0 times the amount. However, the cost of medicine may increase.

以降の凝集処理工程および固液分離工程は、上記前処理工程(マグネシウム塩によるシリカ除去)と同様である。固液分離で得られた前処理水は、逆浸透膜処理装置28へ、または濁質除去装置26を通して逆浸透膜処理装置28へ送液される。   The subsequent aggregation treatment step and solid-liquid separation step are the same as the above-mentioned pretreatment step (silica removal by magnesium salt). The pretreated water obtained by the solid-liquid separation is sent to the reverse osmosis membrane treatment device 28 or the reverse osmosis membrane treatment device 28 through the turbidity removal device 26.

[前処理工程:樹脂軟化法による硬度成分除去]
被処理水が硬度成分を含む場合の樹脂軟化法による前処理工程において、例えば、イオン交換樹脂が充填されたイオン交換塔に被処理水が通液され、硬度成分が吸着除去される(イオン交換工程)。イオン交換処理で得られた前処理水は、逆浸透膜処理装置28へ、または濁質除去装置26を通して逆浸透膜処理装置28へ送液される。
[Pretreatment process: Hardening component removal by resin softening method]
In the pretreatment process by the resin softening method when the water to be treated contains a hardness component, for example, the water to be treated is passed through an ion exchange column filled with an ion exchange resin to remove the hardness component by adsorption (ion exchange). Process). The pretreated water obtained by the ion exchange treatment is sent to the reverse osmosis membrane treatment device 28 or the reverse osmosis membrane treatment device 28 through the turbidity removal device 26.

イオン交換工程で用いられるイオン交換樹脂は、陽イオン交換樹脂であり、例えば、Amberrex100Na、IRC−76(オルガノ株式会社製)等が挙げられる。   The ion exchange resin used in the ion exchange step is a cation exchange resin, and examples thereof include Amberrex 100Na and IRC-76 (manufactured by Organo Corporation).

イオン交換樹脂の再生が必要になった場合は、再生剤が通液されることによりイオン交換樹脂が再生される。   When it becomes necessary to regenerate the ion exchange resin, the regenerant is passed to regenerate the ion exchange resin.

用いられる再生剤としては、塩酸、硫酸、硝酸等の酸水溶液、塩化ナトリウム水溶液、塩化カリウム水溶液等が挙げられ、これらのうち一つ以上を用いることができる。すなわち、必要に応じて酸水溶液で再生をしたのちに、塩化ナトリウム水溶液で追加再生をすることも可能である。誘引溶液の再利用等の観点から、酸水溶液、塩化ナトリウム水溶液が好ましい。酸水溶液で再生されれば、イオン交換樹脂はH形となり、塩化ナトリウム水溶液で再生されれば、イオン交換樹脂はNa形となる。   Examples of the regenerant to be used include aqueous acid solutions of hydrochloric acid, sulfuric acid, nitric acid and the like, aqueous sodium chloride solution, aqueous potassium chloride solution, and one or more of these can be used. That is, it is possible to regenerate with an aqueous acid solution and then regenerate with an aqueous solution of sodium chloride if necessary. From the viewpoint of reuse of the attractant solution, an aqueous acid solution and an aqueous sodium chloride solution are preferable. When regenerated with an aqueous acid solution, the ion exchange resin is in the H form, and when regenerated with an aqueous sodium chloride solution, the ion exchange resin is in the Na form.

[逆浸透膜処理工程]
逆浸透膜処理工程で用いられる逆浸透膜として昨今主流であるポリアミド系高分子膜に好適に適用することができる。ポリアミド系高分子膜は、酸化剤に対する耐性が比較的低く、遊離塩素等をポリアミド系高分子膜に連続的に接触させると、膜性能の著しい低下が起こる。しかしながら、本実施形態に係る水処理方法では上記正浸透膜用殺菌剤を用いることにより、殺菌有効成分が正浸透膜をほとんど透過しないので、ポリアミド系高分子膜においても、このような著しい膜性能の低下はほとんど起こらない。
[Reverse osmosis membrane treatment process]
As a reverse osmosis membrane used in a reverse osmosis membrane treatment step, it can be suitably applied to a polyamide-based polymer membrane which has been mainstream these days. The polyamide-based polymer film has a relatively low resistance to an oxidizing agent, and when free chlorine or the like is continuously brought into contact with the polyamide-based polymer film, the film performance is significantly deteriorated. However, in the water treatment method according to the present embodiment, by using the sterilizing agent for a normal osmosis membrane, since the bactericidal active ingredient hardly permeates the normal osmosis membrane, even in a polyamide polymer membrane, such a remarkable membrane performance Is almost never reduced.

逆浸透膜処理は、複数の逆浸透膜処理を直列または並列にして使用してもよい。第1の逆浸透膜処理によって得られた濃縮水を第2、第3の逆浸透膜処理によってさらに濃縮してもよく、第1の逆浸透膜処理によって得られた透過水について別の逆浸透膜処理を実施することで、水質をより高めることができる。   The reverse osmosis membrane treatment may use a plurality of reverse osmosis membrane treatments in series or in parallel. The concentrated water obtained by the first reverse osmosis membrane treatment may be further concentrated by the second and third reverse osmosis membrane treatments, and the permeated water obtained by the first reverse osmosis membrane treatment may be subjected to another reverse osmosis. By performing the membrane treatment, the water quality can be further improved.

逆浸透膜処理工程で使用される逆浸透膜としては、純水製造用途や排水回収等の用途に使用される超低圧逆浸透膜、低圧逆浸透膜の他に、海水淡水化等の用途に使用される中圧逆浸透膜や高圧逆浸透膜等が挙げられる。超低圧逆浸透膜、低圧逆浸透膜としては、例えば、ES15(日東電工製)、TM720D(東レ製)、BW30HRLE(ダウケミカル製)、LFC3−LD(Hydranautics製)が挙げられる。高圧逆浸透膜としては、例えば、SWC5−LD(Hydranautics製)、TM820V(東レ製)、XUS180808(ダウケミカル製)が挙げられる。逆浸透膜工程が複数段用いられる場合は、各段の被処理水のTDS、pH、水温等の条件に応じて、異種の膜を選択することができる。   Reverse osmosis membranes used in reverse osmosis membrane treatment process include ultra-low pressure reverse osmosis membranes and low pressure reverse osmosis membranes used for pure water production and wastewater recovery, as well as seawater desalination. The medium-pressure reverse osmosis membrane, the high-pressure reverse osmosis membrane, etc. used are mentioned. Examples of the ultra low pressure reverse osmosis membrane and the low pressure reverse osmosis membrane include ES15 (manufactured by Nitto Denko), TM720D (manufactured by Toray), BW30HRLE (manufactured by Dow Chemical), and LFC3-LD (manufactured by Hydronautics). Examples of the high-pressure reverse osmosis membrane include SWC5-LD (manufactured by Hydronautics), TM820V (manufactured by Toray), and XUS180808 (manufactured by Dow Chemical). When the reverse osmosis membrane step is used in multiple stages, different types of membranes can be selected according to the conditions such as TDS, pH, and water temperature of the water to be treated in each stage.

濃縮処理工程において、pH調整剤や、系内での無機塩のスケーリングを抑制するスケール分散剤、系内での微生物発生を抑制する殺菌剤等の薬品を添加してもよい。   In the concentration treatment step, chemicals such as a pH adjuster, a scale dispersant that suppresses scaling of the inorganic salt in the system, and a bactericide that suppresses microbial generation in the system may be added.

<正浸透膜用殺菌剤>
本実施形態に係る正浸透膜用殺菌剤は、「臭素系酸化剤または塩素系酸化剤」と「スルファミン酸化合物」との混合物を含む安定化次亜臭素酸組成物または安定化次亜塩素酸組成物を含有するものであり、さらにアルカリを含有してもよい。
<Fungicide for forward osmosis membrane>
The disinfectant for a forward osmosis membrane according to the present embodiment is a stabilized hypobromite composition or stabilized hypochlorous acid containing a mixture of a "bromine-based oxidizer or chlorine-based oxidizer" and a "sulfamic acid compound". It contains a composition and may further contain an alkali.

また、本実施形態に係る正浸透膜用殺菌剤は、「臭素系酸化剤とスルファミン酸化合物との反応生成物」を含む安定化次亜臭素酸組成物、または「塩素系酸化剤とスルファミン酸化合物との反応生成物」を含む安定化次亜塩素酸組成物を含有するものであり、さらにアルカリを含有してもよい。   Further, the sterilizing agent for a forward osmosis membrane according to the present embodiment is a stabilized hypobromite composition containing a "reaction product of a bromine-based oxidizing agent and a sulfamic acid compound", or "a chlorine-based oxidizing agent and a sulfamic acid. It contains a stabilized hypochlorous acid composition containing a "reaction product with a compound", and may further contain an alkali.

臭素系酸化剤、臭素化合物、塩素系酸化剤およびスルファミン酸化合物については、上述した通りである。   The bromine-based oxidizing agent, bromine compound, chlorine-based oxidizing agent, and sulfamic acid compound are as described above.

塩素系酸化剤とスルファミン酸化合物とを含む安定化次亜塩素酸組成物の市販品としては、例えば、栗田工業株式会社製の「クリバーターIK−110」が挙げられる。   As a commercially available product of the stabilized hypochlorous acid composition containing a chlorine-based oxidizing agent and a sulfamic acid compound, for example, "Clivater IK-110" manufactured by Kurita Water Industries Ltd. may be mentioned.

本実施形態に係る正浸透膜用殺菌剤としては、正浸透膜をより劣化させないため、臭素と、スルファミン酸化合物とを含有するもの(臭素とスルファミン酸化合物の混合物を含有するもの)、例えば、臭素とスルファミン酸化合物とアルカリと水との混合物、または、臭素とスルファミン酸化合物との反応生成物を含有するもの、例えば、臭素とスルファミン酸化合物との反応生成物と、アルカリと、水との混合物が好ましい。   As the sterilizing agent for a forward osmosis membrane according to the present embodiment, in order not to further deteriorate the forward osmosis membrane, one containing bromine and a sulfamic acid compound (one containing a mixture of bromine and a sulfamic acid compound), for example, A mixture of bromine, a sulfamic acid compound, an alkali and water, or one containing a reaction product of a bromine and a sulfamic acid compound, for example, a reaction product of a bromine and a sulfamic acid compound, an alkali and water. Mixtures are preferred.

本実施形態に係る正浸透膜用殺菌剤のうち、臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を含有する殺菌剤、特に臭素とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を含有する殺菌剤は、塩素系酸化剤とスルファミン酸化合物とを含む殺菌剤(クロロスルファミン酸等)と比較すると、酸化力が高く、スライム抑制力、スライム剥離力が著しく高いにもかかわらず、同じく酸化力の高い次亜塩素酸のような著しい膜劣化をほとんど引き起こすことがない。通常の使用濃度では、膜劣化への影響は実質的に無視することができる。このため、殺菌剤としては最適である。   Among the normal osmosis membrane bactericides according to the present embodiment, a bactericide containing a stabilized hypobromite composition containing a brominated oxidant and a sulfamic acid compound, particularly a stabilizer containing bromine and a sulfamic acid compound. The bactericide containing the hypobromous acid composition has a high oxidizing power, a slime suppressing power, and a remarkable slime peeling power as compared with a bactericide containing a chlorine-based oxidizer and a sulfamic acid compound (chlorosulfamic acid etc.). Despite its high price, it hardly causes significant film deterioration like hypochlorous acid, which also has a high oxidizing power. At normal use concentrations, the effect on film degradation can be substantially ignored. Therefore, it is optimal as a bactericide.

本実施形態に係る正浸透膜用殺菌剤は、次亜塩素酸等の殺菌剤とは異なり、正浸透膜をほとんど透過しないため、希薄誘引溶液への影響がほとんどない。また、次亜塩素酸等と同様に現場で濃度を測定することができるため、より正確な濃度管理が可能である。   Unlike the disinfectant such as hypochlorous acid, the disinfectant for a normal osmosis membrane according to the present embodiment hardly permeates the normal osmosis membrane, and therefore has almost no effect on the diluted attractant solution. Further, since the concentration can be measured on site like hypochlorous acid and the like, more accurate concentration control is possible.

正浸透膜用殺菌剤のpHは、例えば、13.0超であり、13.2超であることがより好ましい。正浸透膜用殺菌剤のpHが13.0以下であると正浸透膜用殺菌剤中の有効ハロゲンが不安定になる場合がある。   The pH of the germicide for forward osmosis membrane is, for example, more than 13.0, and more preferably more than 13.2. If the pH of the normal osmosis membrane bactericide is 13.0 or less, the effective halogen in the normal osmosis membrane bactericide may become unstable.

正浸透膜用殺菌剤中の臭素酸濃度は、5mg/kg未満であることが好ましい。正浸透膜用殺菌剤中の臭素酸濃度が5mg/kg以上であると、希薄誘引溶液の臭素酸イオンの濃度が高くなる場合がある。   The bromic acid concentration in the germicide for forward osmosis membrane is preferably less than 5 mg / kg. When the bromic acid concentration in the germicide for forward osmosis membrane is 5 mg / kg or more, the concentration of bromate ion in the diluted attractant solution may be high.

<正浸透膜用殺菌剤の製造方法>
本実施形態に係る正浸透膜用殺菌剤は、臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを混合することにより得られ、さらにアルカリを混合してもよい。
<Method for producing sterilizing agent for forward osmosis membrane>
The osmotic agent for a forward osmosis membrane according to the present embodiment is obtained by mixing a bromine-based oxidant or a chlorine-based oxidizer with a sulfamic acid compound, and may be further mixed with an alkali.

臭素と、スルファミン酸化合物とを含む安定化次亜臭素酸組成物を含有する正浸透膜用殺菌剤の製造方法としては、水、アルカリおよびスルファミン酸化合物を含む混合液に臭素を不活性ガス雰囲気下で添加して反応させる工程、または、水、アルカリおよびスルファミン酸化合物を含む混合液に臭素を不活性ガス雰囲気下で添加する工程を含むことが好ましい。不活性ガス雰囲気下で添加して反応させる、または、不活性ガス雰囲気下で添加することにより、正浸透膜用殺菌剤中の臭素酸イオン濃度が低くなり、希薄誘引溶液中の臭素酸イオン濃度が低くなる。   As a method for producing a sterilizing agent for a forward osmosis membrane containing a stabilized hypobromite composition containing bromine and a sulfamic acid compound, bromine is mixed with an inert gas atmosphere in a mixed solution containing water, an alkali and a sulfamic acid compound. It is preferable to include a step of adding and reacting below, or a step of adding bromine to a mixed solution containing water, an alkali and a sulfamic acid compound under an inert gas atmosphere. By adding and reacting in an inert gas atmosphere, or by adding in an inert gas atmosphere, the bromate ion concentration in the normal osmosis membrane bactericide becomes low, and the bromate ion concentration in the diluted attractant solution becomes low. Will be lower.

用いる不活性ガスとしては限定されないが、製造等の面から窒素およびアルゴンのうち少なくとも1つが好ましく、特に製造コスト等の面から窒素が好ましい。   The inert gas to be used is not limited, but at least one of nitrogen and argon is preferable from the viewpoint of manufacturing, etc., and nitrogen is particularly preferable from the viewpoint of manufacturing cost.

臭素の添加の際の反応器内の酸素濃度は6%以下が好ましいが、4%以下がより好ましく、2%以下がさらに好ましく、1%以下が特に好ましい。臭素の反応の際の反応器内の酸素濃度が6%を超えると、反応系内の臭素酸の生成量が増加する場合がある。   The oxygen concentration in the reactor upon addition of bromine is preferably 6% or less, more preferably 4% or less, further preferably 2% or less, particularly preferably 1% or less. If the oxygen concentration in the reactor during the bromine reaction exceeds 6%, the amount of bromic acid produced in the reaction system may increase.

臭素の添加率は、正浸透膜用殺菌剤全体の量に対して25重量%以下であることが好ましく、1重量%以上20重量%以下であることがより好ましい。臭素の添加率が正浸透膜用殺菌剤全体の量に対して25重量%を超えると、反応系内の臭素酸の生成量が増加する場合がある。1重量%未満であると、殺菌力が劣る場合がある。   The addition rate of bromine is preferably 25% by weight or less, and more preferably 1% by weight or more and 20% by weight or less, based on the total amount of the sterilizing agent for normal osmosis membrane. When the addition rate of bromine exceeds 25% by weight with respect to the total amount of the sterilizing agent for normal osmosis membranes, the production amount of bromic acid in the reaction system may increase. If it is less than 1% by weight, the bactericidal activity may be poor.

臭素添加の際の反応温度は、0℃以上25℃以下の範囲に制御することが好ましいが、製造コスト等の面から、0℃以上15℃以下の範囲に制御することがより好ましい。臭素添加の際の反応温度が25℃を超えると、反応系内の臭素酸の生成量が増加する場合があり、0℃未満であると、凍結する場合がある。   The reaction temperature at the time of bromine addition is preferably controlled in the range of 0 ° C. or higher and 25 ° C. or lower, but more preferably controlled in the range of 0 ° C. or higher and 15 ° C. or lower in terms of production cost and the like. If the reaction temperature at the time of bromine addition exceeds 25 ° C, the production amount of bromic acid in the reaction system may increase, and if it is less than 0 ° C, it may freeze.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

[安定化次亜臭素酸組成物(組成物1)の調製]
窒素雰囲気下で、液体臭素:16.9重量%(wt%)、スルファミン酸:10.7重量%、水酸化ナトリウム:12.9重量%、水酸化カリウム:3.94重量%、水:残分を混合して、安定化次亜臭素酸組成物(組成物1)を調製した。安定化次亜臭素酸組成物のpHは14、全塩素濃度は7.5重量%であった。全塩素濃度は、HACH社の多項目水質分析計DR/4000を用いて、全塩素測定法(DPD(ジエチル−p−フェニレンジアミン)法)により測定した値(mg/L asCl)である。安定化次亜臭素酸組成物の詳細な調製方法は以下の通りである。
[Preparation of Stabilized Hypobromous Acid Composition (Composition 1)]
Under a nitrogen atmosphere, liquid bromine: 16.9 wt% (wt%), sulfamic acid: 10.7 wt%, sodium hydroxide: 12.9 wt%, potassium hydroxide: 3.94 wt%, water: balance The components were mixed to prepare a stabilized hypobromite composition (composition 1). The stabilized hypobromite composition had a pH of 14 and a total chlorine concentration of 7.5% by weight. The total chlorine concentration is a value (mg / LasCl 2 ) measured by a total chlorine measuring method (DPD (diethyl-p-phenylenediamine) method) using a multi-item water quality analyzer DR / 4000 manufactured by HACH. The detailed preparation method of the stabilized hypobromite composition is as follows.

反応容器内の酸素濃度が1%に維持されるように、窒素ガスの流量をマスフローコントローラでコントロールしながら連続注入で封入した2Lの4つ口フラスコに1436gの水、361gの水酸化ナトリウムを加え混合し、次いで300gのスルファミン酸を加え混合した後、反応液の温度が0〜15℃になるように冷却を維持しながら、473gの液体臭素を加え、さらに48%水酸化カリウム溶液230gを加え、組成物全体の量に対する重量比でスルファミン酸10.7%、臭素16.9%、臭素の当量に対するスルファミン酸の当量比が1.04である、目的の安定化次亜臭素酸組成物(組成物1)を得た。生じた溶液のpHは、ガラス電極法にて測定したところ、14であった。生じた溶液の臭素含有率は、臭素をヨウ化カリウムによりヨウ素に転換後、チオ硫酸ナトリウムを用いて酸化還元滴定する方法により測定したところ16.9%であり、理論含有率(16.9%)の100.0%であった。また、臭素反応の際の反応容器内の酸素濃度は、株式会社ジコー製の「酸素モニタJKO−02 LJDII」を用いて測定した。なお、臭素酸濃度は5mg/kg未満であった。   1436 g of water and 361 g of sodium hydroxide were added to a 2 L four-necked flask sealed by continuous injection while controlling the flow rate of nitrogen gas with a mass flow controller so that the oxygen concentration in the reaction vessel was maintained at 1%. After mixing and then adding 300 g of sulfamic acid and mixing, 473 g of liquid bromine was added, and 230 g of 48% potassium hydroxide solution was further added while maintaining cooling so that the temperature of the reaction solution was 0 to 15 ° C. , 10.7% by weight of the total composition of sulfamic acid, 16.9% bromine, the equivalent ratio of sulfamic acid to the equivalent of bromine is 1.04, the objective stabilized hypobromous acid composition ( A composition 1) was obtained. The pH of the resulting solution was 14 as measured by the glass electrode method. The bromine content of the resulting solution was 16.9% as measured by a method of converting bromine to iodine with potassium iodide and then performing redox titration with sodium thiosulfate, which was a theoretical content (16.9%). ) Was 100.0%. The oxygen concentration in the reaction vessel during the bromine reaction was measured using "Oxygen Monitor JKO-02 LJDII" manufactured by Zicoh Co., Ltd. The bromic acid concentration was less than 5 mg / kg.

なお、pHの測定は、以下の条件で行った。
電極タイプ:ガラス電極式
pH測定計:東亜ディーケーケー社製、IOL−30型
電極の校正:関東化学社製中性リン酸塩pH(6.86)標準液(第2種)、同社製ホウ酸塩pH(9.18)標準液(第2種)の2点校正で行った
測定温度:25℃
測定値:測定液に電極を浸漬し、安定後の値を測定値とし、3回測定の平均値
The pH was measured under the following conditions.
Electrode type: Glass electrode pH meter: Toa DKK Co., IOL-30 type Electrode calibration: Kanto Chemical Co., Ltd. neutral phosphate pH (6.86) standard solution (second type), company boric acid Two-point calibration of salt pH (9.18) standard solution (type 2) was performed Measurement temperature: 25 ° C
Measured value: The value after the electrode is immersed in the measuring solution and stabilized is taken as the measured value, and the average value of three measurements

[安定化次亜塩素酸組成物(組成物2)の調製]
12%次亜塩素酸ナトリウム水溶液:50重量%、スルファミン酸:12重量%、水酸化ナトリウム:8重量%、水:残分を混合して、安定化次亜塩素酸組成物(組成物2)を調製した。組成物2のpHは13.7、全塩素濃度は、6.2重量%であった。
[Preparation of Stabilized Hypochlorous Acid Composition (Composition 2)]
12% aqueous sodium hypochlorite solution: 50% by weight, sulfamic acid: 12% by weight, sodium hydroxide: 8% by weight, water: balance to prepare a stabilized hypochlorous acid composition (composition 2) Was prepared. Composition 2 had a pH of 13.7 and a total chlorine concentration of 6.2% by weight.

<実施例1>
FO被処理水として、全蒸発残留物(TDS)8重量%まで濃縮した工業排水を用い、誘引溶液を30重量%MgCl水溶液とし、正浸透膜処理を実施した。FO濃縮水出口の流量がFO被処理水入口の50%になるように(濃縮倍率2倍)、誘引溶液の流量を調整した。正浸透膜(FO膜)としては、酢酸セルロース製FO膜(HPC3205、東洋紡製)を用いた。FO被処理水中に、正浸透膜用殺菌剤として安定化次亜臭素酸組成物(組成物1)を、FO被処理水入口で全塩素濃度1ppmClとなるように添加した。本運転を計200時間継続し、正浸透膜処理装置のFO被処理水入口−FO濃縮水出口の圧力損失(通水差圧)および殺菌剤の阻止率を評価した。なお、運転開始直後の通水差圧は0.02MPaであった。結果を表1に示す。
殺菌剤の阻止率[%]=(1−(希薄誘引溶液流量×希薄誘引溶液全塩素濃度/FO被処理水流量×FO被処理水全塩素濃度))
<Example 1>
As the FO water to be treated, industrial wastewater concentrated to 8% by weight of total evaporation residue (TDS) was used, and the attracting solution was a 30% by weight MgCl 2 aqueous solution, and the forward osmosis membrane treatment was carried out. The flow rate of the attractant solution was adjusted so that the flow rate of the FO concentrated water outlet was 50% of that of the FO treated water inlet (concentration ratio: 2). As the forward osmosis membrane (FO membrane), a cellulose acetate FO membrane (HPC3205, manufactured by Toyobo) was used. A stabilized hypobromite composition (composition 1) was added as a sterilizing agent for a forward osmosis membrane to FO treated water so that the total chlorine concentration was 1 ppm Cl at the FO treated water inlet. This operation was continued for a total of 200 hours, and the pressure loss (water flow differential pressure) between the FO treated water inlet and the FO concentrated water outlet of the forward osmosis membrane treatment apparatus and the rejection rate of the bactericide were evaluated. The water pressure difference immediately after the start of operation was 0.02 MPa. The results are shown in Table 1.
Rejection rate of bactericide [%] = (1- (dilute attractant solution flow rate x dilute attractant solution total chlorine concentration / FO treated water flow rate x FO treated water total chlorine concentration))

<実施例2>
FO被処理水中に、正浸透膜用殺菌剤として安定化次亜臭素酸組成物(組成物1)の代わりに、安定化次亜塩素酸組成物(組成物2;クロロスルファミン酸)を、FO被処理水入口で全塩素濃度1ppmClとなるように添加した以外は、実施例1と同様にして正浸透膜処理を実施した。結果を表1に示す。
<Example 2>
In the FO treated water, a stabilized hypochlorous acid composition (composition 2; chlorosulfamic acid) was replaced with FO as a germicide for a forward osmosis membrane, instead of the stabilized hypobromite composition (composition 1). A forward osmosis membrane treatment was carried out in the same manner as in Example 1 except that the total chlorine concentration was 1 ppm Cl at the treated water inlet. The results are shown in Table 1.

<比較例1>
FO被処理水中に、正浸透膜用殺菌剤として安定化次亜臭素酸組成物(組成物1)の代わりに、塩素系殺菌剤である次亜塩素酸ナトリウムを、FO被処理水入口で遊離塩素濃度1ppmClとなるように添加した以外は、実施例1と同様にして正浸透膜処理を実施した。結果を表1に示す。
<Comparative Example 1>
Instead of the stabilized hypobromite composition (composition 1) as a sterilizing agent for forward osmosis membranes in FO treated water, sodium hypochlorite, which is a chlorine-based sterilizing agent, is released at the FO treated water inlet. A forward osmosis membrane treatment was carried out in the same manner as in Example 1 except that the chlorine concentration was 1 ppm Cl. The results are shown in Table 1.

<比較例2>
FO被処理水中に、正浸透膜用殺菌剤として安定化次亜臭素酸組成物(組成物1)の代わりに、有機系殺菌剤である5−クロロ−2−メチル−4−イソチアゾリン−3−オンを、FO被処理水入口においてTOCで10ppmとなるように添加した以外は、実施例1と同様にして正浸透膜処理を実施した。結果を表1に示す。
<Comparative example 2>
Instead of the stabilized hypobromite composition (composition 1) as a sterilizing agent for a forward osmosis membrane in FO treated water, 5-chloro-2-methyl-4-isothiazoline-3-as an organic sterilizing agent is used. The forward osmosis membrane treatment was carried out in the same manner as in Example 1 except that ON was added so that the TOC was 10 ppm at the FO treated water inlet. The results are shown in Table 1.

Figure 2020058972
Figure 2020058972

[結果]
実施例1では、正浸透膜の通水差圧の上昇を抑制することができた。殺菌剤も99%以上が阻止された。実施例2でも同様の傾向だが、通水差圧はやや上昇した。比較例1,2では、通水差圧が>0.2MPaとなり、膜の許容通水差圧(0.2MPa)を超えた。殺菌剤阻止率も85%以下であり、希薄誘引溶液中への殺菌有効成分のリークが確認された。
[result]
In Example 1, it was possible to suppress an increase in the water flow differential pressure of the forward osmosis membrane. Over 99% of the germicide was also blocked. The same tendency was observed in Example 2, but the water differential pressure slightly increased. In Comparative Examples 1 and 2, the water flow differential pressure was> 0.2 MPa, which exceeded the permissible water flow differential pressure (0.2 MPa) of the membrane. The bactericidal agent inhibition rate was also 85% or less, and leakage of the bactericidal active ingredient into the diluted attractant solution was confirmed.

このように、殺菌剤として、安定化次亜臭素酸組成物または安定化次亜塩素酸組成物を用いることにより、殺菌剤が正浸透膜を透過するのを抑制し、希薄誘引溶液の再利用が可能となることがわかった。   Thus, by using a stabilized hypobromous acid composition or a stabilized hypochlorous acid composition as a bactericide, the bactericide is suppressed from permeating the forward osmosis membrane, and the diluted attractant solution is reused. It turns out that is possible.

1 正浸透膜処理システム、3 水処理システム、10 正浸透膜処理装置、12 正浸透膜、14 FO被処理水配管、16 FO濃縮水配管、18 誘引溶液配管、20 希薄誘引溶液配管、22 殺菌剤添加配管、24 前処理装置、26 濁質除去装置、28 逆浸透膜処理装置、30 被処理水配管、32,34 配管、36 RO透過水配管、38 逆洗排水配管。   1 forward osmosis membrane treatment system, 3 water treatment system, 10 forward osmosis membrane treatment device, 12 forward osmosis membrane, 14 FO treated water piping, 16 FO concentrated water piping, 18 attractant solution piping, 20 dilute attractant solution piping, 22 sterilization Agent addition pipe, 24 pretreatment device, 26 turbidity removal device, 28 reverse osmosis membrane treatment device, 30 treated water pipe, 32, 34 pipe, 36 RO permeated water pipe, 38 backwash drainage pipe.

Claims (8)

被処理水と、前記被処理水よりも高濃度の誘引溶液とを、正浸透膜を介して接触させることによって、濃縮水と希薄誘引溶液とを得る正浸透膜処理工程を含み、
前記被処理水中に、臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを含む殺菌剤を存在させることを特徴とする正浸透膜処理方法。
Water to be treated and an attractant solution having a higher concentration than the to-be-treated water are brought into contact with each other through a normal osmosis membrane, and include a normal osmosis membrane treatment step of obtaining concentrated water and a diluted attractant solution,
A forward osmosis membrane treatment method, characterized in that a bactericide containing a bromine-based oxidant or a chlorine-based oxidant and a sulfamic acid compound is present in the water to be treated.
被処理水と、前記被処理水よりも高濃度の誘引溶液とを、正浸透膜を介して接触させることによって、濃縮水と希薄誘引溶液とを得る正浸透膜処理工程を含み、
前記被処理水中に、臭素系酸化剤とスルファミン酸化合物とを含む殺菌剤を存在させることを特徴とする正浸透膜処理方法。
Water to be treated and an attractant solution having a higher concentration than the to-be-treated water are brought into contact with each other through a normal osmosis membrane, and include a normal osmosis membrane treatment step of obtaining concentrated water and a diluted attractant solution,
A forward osmosis membrane treatment method, characterized in that a bactericide containing a brominated oxidant and a sulfamic acid compound is present in the water to be treated.
被処理水と、前記被処理水よりも高濃度の誘引溶液とを、正浸透膜を介して接触させることによって、濃縮水と希薄誘引溶液とを得る正浸透膜処理工程を含み、
前記被処理水中に、臭素とスルファミン酸化合物とを含む殺菌剤を存在させることを特徴とする正浸透膜処理方法。
Water to be treated and an attractant solution having a higher concentration than the to-be-treated water are brought into contact with each other through a normal osmosis membrane, and include a normal osmosis membrane treatment step of obtaining concentrated water and a diluted attractant solution,
A forward osmosis membrane treatment method, characterized in that a bactericide containing bromine and a sulfamic acid compound is present in the water to be treated.
請求項1〜3のいずれか1項に記載の正浸透膜処理方法を含み、
前記正浸透膜処理工程の前段に、前処理工程および逆浸透膜処理工程を含み、
前記正浸透膜処理工程により得られた希薄誘引溶液を、前記前処理工程で使用することを特徴とする水処理方法。
A method for treating a normal osmosis membrane according to any one of claims 1 to 3,
In the preceding stage of the forward osmosis membrane treatment step, a pretreatment step and a reverse osmosis membrane treatment step are included.
The water treatment method, wherein the diluted attractant solution obtained in the forward osmosis membrane treatment step is used in the pretreatment step.
被処理水と、前記被処理水よりも高濃度の誘引溶液とを、正浸透膜を介して接触させることによって、濃縮水と希薄誘引溶液とを得る正浸透膜処理手段を備え、
前記被処理水中に、臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを含む殺菌剤を存在させることを特徴とする正浸透膜処理システム。
The water to be treated and the attractant solution having a higher concentration than the water to be treated are brought into contact with each other through a normal osmosis membrane, and a normal osmosis membrane treatment means for obtaining a concentrated water and a diluted attractant solution is provided,
A forward osmosis membrane treatment system, wherein a bactericide containing a bromine-based oxidant or a chlorine-based oxidant and a sulfamic acid compound is present in the water to be treated.
被処理水と、前記被処理水よりも高濃度の誘引溶液とを、正浸透膜を介して接触させることによって、濃縮水と希薄誘引溶液とを得る正浸透膜処理手段を備え、
前記被処理水中に、臭素系酸化剤とスルファミン酸化合物とを含む殺菌剤を存在させることを特徴とする正浸透膜処理システム。
The water to be treated and the attractant solution having a higher concentration than the water to be treated are brought into contact with each other through a normal osmosis membrane, and a normal osmosis membrane treatment means for obtaining a concentrated water and a diluted attractant solution is provided,
A forward osmosis membrane treatment system, wherein a disinfectant containing a brominated oxidant and a sulfamic acid compound is present in the water to be treated.
被処理水と、前記被処理水よりも高濃度の誘引溶液とを、正浸透膜を介して接触させることによって、濃縮水と希薄誘引溶液とを得る正浸透膜処理手段を備え、
前記被処理水中に、臭素とスルファミン酸化合物とを含む殺菌剤を存在させることを特徴とする正浸透膜処理システム。
The water to be treated and the attractant solution having a higher concentration than the water to be treated are brought into contact with each other through a normal osmosis membrane, and a normal osmosis membrane treatment means for obtaining a concentrated water and a diluted attractant solution is provided,
A forward osmosis membrane treatment system, wherein a disinfectant containing bromine and a sulfamic acid compound is present in the water to be treated.
請求項5〜7のいずれか1項に記載の正浸透膜処理システムを備え、
前記正浸透膜処理手段の前段に、前処理手段および逆浸透膜処理手段を備え、
前記正浸透膜処理手段により得られた希薄誘引溶液が、前記前処理手段で使用されることを特徴とする水処理システム。
A forward osmosis membrane treatment system according to any one of claims 5 to 7,
A pretreatment unit and a reverse osmosis membrane treatment unit are provided in the preceding stage of the normal osmosis membrane treatment unit,
The water treatment system, wherein the diluted attractant solution obtained by the forward osmosis membrane treatment means is used in the pretreatment means.
JP2018190744A 2018-10-05 2018-10-09 Positive osmosis membrane treatment method, positive osmosis membrane treatment system, water treatment method, and water treatment system Pending JP2020058972A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018190744A JP2020058972A (en) 2018-10-09 2018-10-09 Positive osmosis membrane treatment method, positive osmosis membrane treatment system, water treatment method, and water treatment system
PCT/JP2019/037279 WO2020071177A1 (en) 2018-10-05 2019-09-24 Water treatment device, water treatment method, forward osmosis membrane treatment method, forward osmosis membrane treatment system, and water treatment system
CN201980064798.7A CN112805247B (en) 2018-10-05 2019-09-24 Water treatment device, water treatment method, forward osmosis membrane treatment system, and water treatment system
TW108135957A TWI835878B (en) 2018-10-05 2019-10-04 Water treatment device, and water treatment method
TW112136510A TW202404904A (en) 2018-10-05 2019-10-04 Water treatment device, and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018190744A JP2020058972A (en) 2018-10-09 2018-10-09 Positive osmosis membrane treatment method, positive osmosis membrane treatment system, water treatment method, and water treatment system

Publications (1)

Publication Number Publication Date
JP2020058972A true JP2020058972A (en) 2020-04-16

Family

ID=70220658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018190744A Pending JP2020058972A (en) 2018-10-05 2018-10-09 Positive osmosis membrane treatment method, positive osmosis membrane treatment system, water treatment method, and water treatment system

Country Status (1)

Country Link
JP (1) JP2020058972A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111453911A (en) * 2020-04-30 2020-07-28 成都思达能环保设备有限公司 Treatment method and system of ternary precursor washing water
WO2023008394A1 (en) * 2021-07-26 2023-02-02 住友重機械工業株式会社 Carbonate production apparatus and carbonate production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111453911A (en) * 2020-04-30 2020-07-28 成都思达能环保设备有限公司 Treatment method and system of ternary precursor washing water
WO2023008394A1 (en) * 2021-07-26 2023-02-02 住友重機械工業株式会社 Carbonate production apparatus and carbonate production method

Similar Documents

Publication Publication Date Title
TWI835878B (en) Water treatment device, and water treatment method
TWI532525B (en) Combined chlorine agent, preparation method thereof, and use thereof
TW201603876A (en) Filtration treatment system and filtration treatment method
JP6807219B2 (en) Reverse osmosis membrane treatment system and reverse osmosis membrane treatment method
CN107108277B (en) Method for inhibiting viscosity of separation membrane
JP6534524B2 (en) Filtration treatment system and filtration treatment method
JP2020058972A (en) Positive osmosis membrane treatment method, positive osmosis membrane treatment system, water treatment method, and water treatment system
JP7013141B2 (en) Water treatment method using reverse osmosis membrane
WO2018078988A1 (en) Water treatment method using reverse osmosis membrane, and water treatment apparatus
JP6970516B2 (en) Water treatment method using reverse osmosis membrane
JP2016155071A (en) Sterilization method for separation membrane
WO2021192582A1 (en) Water treatment method, water treatment device and slime inhibitor for membranes
WO2018142904A1 (en) Method for modifying reverse osmosis membrane, reverse osmosis membrane, method for treating water containing non-charged substance, operation method for reverse osmosis membrane, and reverse osmosis membrane device
JP7008470B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
JP6457807B2 (en) Water treatment apparatus and water treatment method
JP2019122943A (en) Water treatment method and water treatment equipment
JP7050414B2 (en) Water treatment method using reverse osmosis membrane
JP2022016897A (en) Water recovery method and water recovery device
JP6974936B2 (en) Water treatment method using reverse osmosis membrane
JP7144922B2 (en) Reverse osmosis membrane operation method and reverse osmosis membrane device
JP7141919B2 (en) Reverse osmosis membrane treatment method, reverse osmosis membrane treatment system, water treatment method, and water treatment system
JP6823401B2 (en) Method for treating water containing low molecular weight organic substances and method for modifying reverse osmosis membranes
JP7492876B2 (en) Water treatment method and water treatment device
JP6706702B1 (en) Water treatment method and water treatment apparatus using reverse osmosis membrane