JPS5955311A - Regenerating method of permselective membrane - Google Patents

Regenerating method of permselective membrane

Info

Publication number
JPS5955311A
JPS5955311A JP16739982A JP16739982A JPS5955311A JP S5955311 A JPS5955311 A JP S5955311A JP 16739982 A JP16739982 A JP 16739982A JP 16739982 A JP16739982 A JP 16739982A JP S5955311 A JPS5955311 A JP S5955311A
Authority
JP
Japan
Prior art keywords
membrane
rate
permeable membrane
selectively permeable
polypeptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16739982A
Other languages
Japanese (ja)
Inventor
Yoshiyasu Kamiyama
神山 義康
Keisuke Nakagome
中込 敬祐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP16739982A priority Critical patent/JPS5955311A/en
Publication of JPS5955311A publication Critical patent/JPS5955311A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/168Use of other chemical agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To restore easily the decreased performance of a permeable membrane by treating the polypeptide deposited strongly on the membrane surface with an aq. soln. contg. alkali metal salts and/or alkaline earth metals and a halogen oxidizing agent. CONSTITUTION:When a reverse osmotic membrane consisting of cellulose acetate is mounted to a flow type cell and an extracted liquid of fermentation is supplied to said cell continuously for 100hr at an ordinary temp. and 40kg/cm<2> pressure, the rate of permeation decreases from initial 0.70m<3>/m<2>.day to 0.20m<3>/m<2>. day. Thereupon when an aq. soln. contg. 2wt% sodium sulfate and 10ppm sodium dihypochlorite is circulated to the cell for 1hr under the conditions of 25 deg.C and 3kg/cm<2> pressure, the rate of permeation is recovered up to 93% of the initial rate. The rate of permeation decreased as a result of contamination with polypeptide after the membrane is used in handling process liquids for food, medical goods, fermentation, etc., is recovered in a shoft time by the simple operation.

Description

【発明の詳細な説明】 本発明は選択性透過膜の再生方法に関し、詳しくは、ポ
リペプチドが膜面に沈積して、膜性能、特に透水量が低
下した選択性透過膜を洗浄して、ポリペプチドを除去し
、その膜性能を回復させる選択性透過膜の再生方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for regenerating a selectively permeable membrane, and more specifically, the present invention relates to a method for regenerating a selectively permeable membrane. The present invention relates to a method for regenerating a selectively permeable membrane that removes polypeptides and restores its membrane performance.

近年、産業排水の処理、食品、医薬、化学品等の製造に
おける分離、濃縮のプロセス等において、逆浸透膜や限
外濾過膜のような選択性透過膜を用いる膜処理が実用化
されるに至っている。しかし、このような膜処理におい
ては、処理原液中の成分、特に有機物質が次第に膜面に
沈着し、膜を汚染するので、膜性能、特に透水量の低下
が避けられない。
In recent years, membrane treatment using selective permeable membranes such as reverse osmosis membranes and ultrafiltration membranes has been put into practical use in the treatment of industrial wastewater, separation and concentration processes in the production of foods, medicines, chemicals, etc. It has been reached. However, in such membrane treatment, components in the treatment stock solution, especially organic substances, gradually deposit on the membrane surface and contaminate the membrane, so that a decrease in membrane performance, especially water permeation rate, is unavoidable.

そこで、従来、このように有機物質が沈積した膜面を洗
浄し、膜性能を回復させる方法が種々提案されている。
Therefore, various methods have been proposed in the past for cleaning the membrane surface on which organic substances have been deposited and restoring the membrane performance.

例えば、市販の合成洗剤に代表されるアニオン性及びノ
ニオン性界面活性剤水溶液を用いる方法、プロテアーゼ
やα−アミラーゼ等の酵素水溶液を用いる方法、次亜塩
素酸塩、過酸化水素等の酸化剤を用いる方法等が提案さ
れているが、これらの方法は、沈積物質によっては、膜
面からの除去効果が殆どなく、或いは膜性能の回復に極
めて長時間を要し、更には、膜を変質劣化させる等の問
題もある。特に、タンパク質のようなポリペプチドによ
り汚染された膜は、従来の洗浄方法によっては、容易に
膜性能を回復しない。
For example, methods using aqueous solutions of anionic and nonionic surfactants such as commercially available synthetic detergents, methods using aqueous solutions of enzymes such as protease and α-amylase, and methods using oxidizing agents such as hypochlorite and hydrogen peroxide. However, depending on the deposited substances, these methods have little effect on removing the deposited substances from the membrane surface, or take an extremely long time to recover the membrane performance, and furthermore, they may deteriorate the membrane. There are also issues such as how to In particular, membranes contaminated with polypeptides such as proteins do not easily recover membrane performance by conventional cleaning methods.

本発明者らは上記した問題を解決するために鋭意研究し
た結果、ポリペプチドが膜面に沈積して、膜性能の低下
した選択性透過膜をハロゲン系酸化剤と共にある種の無
機塩を含有する水溶液にて洗浄することにより、短時間
でポリペプチドが除去されて、膜性能が容易に回復する
ことを見出して、本発明に至ったものである。
The present inventors have conducted extensive research to solve the above-mentioned problems, and have found that polypeptides are deposited on the membrane surface, resulting in a selectively permeable membrane with reduced membrane performance. The present invention was achieved based on the discovery that by washing with an aqueous solution, the polypeptide can be removed in a short time and the membrane performance can be easily restored.

本発明による選択性透過膜の再生方法は、ポリペプチド
が膜面に沈積した選択性透過膜を、アルカリ金属塩及び
アルカリ土類金属塩より選ばれる少なくとも1種と、ハ
ロゲン系酸化剤とを含有する水溶液で処理することを特
徴とする。
The method for regenerating a selectively permeable membrane according to the present invention includes regenerating a selectively permeable membrane in which a polypeptide is deposited on the membrane surface by using a method containing at least one selected from alkali metal salts and alkaline earth metal salts and a halogen-based oxidizing agent. It is characterized by being treated with an aqueous solution.

本発明において、選択性透過膜とは、代表的には、逆浸
透膜や限外濾過膜のように、溶液中の特定の溶質成分を
選択的に透過させない膜をいい、既に種々のものが知ら
れている。具体例として、例えば、酢酸セルロース等の
セルロースエステル、ポリアミド、ポリイミド、ポリヘ
ンツイミダゾロン、ポリスルホン、ポリエーテルスルホ
ン、スルホン化ポリスルホン、ポリオレフィン、ポリ塩
化ビニル、ポリアクリロニトリル等の重合体からなる異
方性膜や、また、ボッスルホン限外瀘過膜上にポリアミ
ド、ポリ尿素、ポリフラン等からなる超薄膜を直接形成
させた複合膜を挙げることができる。但し、本発明の方
法を適用し得る膜は、後述するハロゲン系酸化剤をI 
9111以上含有する水溶液によって劣化しないもので
あることを要する。
In the present invention, a selectively permeable membrane typically refers to a membrane that does not selectively permeate a specific solute component in a solution, such as a reverse osmosis membrane or an ultrafiltration membrane, and various types of membranes are already available. Are known. Specific examples include anisotropic membranes made of polymers such as cellulose esters such as cellulose acetate, polyamides, polyimides, polyhenzimidazolone, polysulfones, polyethersulfones, sulfonated polysulfones, polyolefins, polyvinyl chloride, and polyacrylonitrile. Alternatively, there may be mentioned a composite membrane in which an ultra-thin membrane made of polyamide, polyurea, polyfuran, etc. is directly formed on a Bossulphone ultrafiltration membrane. However, the film to which the method of the present invention can be applied does not contain the halogen-based oxidizing agent described below.
It is required that it not be deteriorated by an aqueous solution containing 9111 or more.

本発明において、ポリペプチドとは、ペプチド結合によ
り主鎖が形成されているオリゴマー及びホリマーをいう
が、その分子量は特に制限されず、例えば、分子量敵方
以上のポリマーから分子量数百の低分子量オリゴマーま
で含まれる。かかるポリペプチドの代表例はタンパク質
である。膜がこのようなポリペプチドにより汚染された
ことば、例えば、赤外吸収スペクトル等の表面分析手段
によって知ることができる。ポリペプチドは、食品、医
薬、発酵等のプロセスに多く含まれ、また、その製造プ
ロセスから多く排出される。
In the present invention, polypeptides refer to oligomers and polymers whose main chains are formed by peptide bonds, but their molecular weights are not particularly limited. Includes up to Representative examples of such polypeptides are proteins. Contamination of a membrane with such polypeptides can be determined by surface analysis means such as, for example, infrared absorption spectroscopy. Polypeptides are often contained in food, medicine, fermentation, and other processes, and are also excreted in large quantities from the manufacturing process.

本発明において用いるアルカリ金属塩及びアルカリ土類
金属塩は、リチウム、ナトリウム、カリウム、カルシウ
ム、マグネシウム等の水溶性塩であり、好ましくは、そ
の水溶液のp■が6〜8である水溶性中性塩であり、硫
酸塩、ハロゲン化水素酸塩、リン酸塩等の中性塩が好ま
しく用いられる。
The alkali metal salts and alkaline earth metal salts used in the present invention are water-soluble salts of lithium, sodium, potassium, calcium, magnesium, etc., and are preferably water-soluble neutral salts whose aqueous solution has a p■ of 6 to 8. It is a salt, and neutral salts such as sulfate, hydrohalide, and phosphate are preferably used.

ここに、水溶性とは、常温において水に対して1重量%
以上の溶解性を有することをいう。従って、好ましくは
、硫酸塩及びハロゲン化水素酸塩が用いられる。上記中
性塩の好ましい具体例として、硫酸ナトリウム、硫酸カ
リウム、硫酸マグネシウム等の硫酸塩、塩化リチウム、
塩化ナトリウム、塩化カリウム、塩化マグネシウム、塩
化カルシウム、臭化ナトリウム等のハロゲン化水素酸塩
、リン酸二水素ナトリウム、リン酸二水素カリウム等の
リン酸塩を挙げることができる。また、上記無機塩類の
濃度は、通常、0.1〜10重量%、好ましくは0.5
〜5重量%である。
Here, water-soluble means 1% by weight in water at room temperature.
It means that the solubility is higher than that. Therefore, preferably sulfates and hydrohalides are used. Preferred specific examples of the neutral salts include sulfates such as sodium sulfate, potassium sulfate, and magnesium sulfate, lithium chloride,
Examples include hydrohalides such as sodium chloride, potassium chloride, magnesium chloride, calcium chloride, and sodium bromide, and phosphates such as sodium dihydrogen phosphate and potassium dihydrogen phosphate. Further, the concentration of the above-mentioned inorganic salts is usually 0.1 to 10% by weight, preferably 0.5% by weight.
~5% by weight.

また、本発明において用いられるハロゲン系酸化剤は、
次亜塩素酸ナトリウム、臭素、ヨウ素及び二酸化塩素よ
り選ばれる少なくとも1種であり、その濃度は1〜11
00pp、好ましくは10〜70  ppmである。
Furthermore, the halogen-based oxidizing agent used in the present invention is
At least one selected from sodium hypochlorite, bromine, iodine, and chlorine dioxide, and its concentration is 1 to 11.
00 ppm, preferably 10-70 ppm.

これらの無機塩類やハロゲン系酸化剤の種類は、ポリペ
プチドが沈積した選択性透過膜をその水溶液で処理した
ときに、膜性能、特に透水量の回復が最大になるように
、膜の素材、構造、ポリペプチドの性状等に応じて、実
験的に選ぶのがよい。
The types of these inorganic salts and halogen-based oxidizing agents are selected based on the membrane material, so that when the selectively permeable membrane on which polypeptide is deposited is treated with the aqueous solution, the membrane performance, especially the water permeation rate, is maximized. It is best to select it experimentally depending on the structure, properties of the polypeptide, etc.

一般的には、次亜塩素酸ナトリウムと中性硫酸塩の組合
せが好適である。
Generally, a combination of sodium hypochlorite and a neutral sulfate is preferred.

上記のような無機塩類及びハロゲン系酸化剤を含有する
水溶液で膜を処理するには、好ましくはこの水溶液を加
圧下に膜面に循環して供給することにより行なわれる。
The treatment of a membrane with an aqueous solution containing an inorganic salt and a halogen-based oxidizing agent as described above is preferably carried out by circulating and supplying this aqueous solution to the membrane surface under pressure.

処理温度は特に制限されるものではないが、通常、5〜
80℃、好ましくは20〜50°Cあり、且つ、対象で
ある膜の耐熱温度以下に選ばれる。但し、膜の素材によ
っては、上記範囲を越えて高温で処理することができる
のは勿論である。処理時間はポリペプチドの性状や、用
いる無機塩及び酸化剤の種類、濃度等にもよるが、一般
的には10分乃至数日間、好ましくは0゜5〜5時間で
よい。再生処理の他の方法として、無機塩水溶液中に膜
を浸漬静置する方法、加圧下に水溶液を透過させる方法
等を挙げることができる。
Although the treatment temperature is not particularly limited, it is usually 5~
The temperature is selected to be 80°C, preferably 20 to 50°C, and lower than the heat resistance temperature of the target film. However, depending on the material of the film, it is of course possible to process at a high temperature exceeding the above range. Although the treatment time depends on the properties of the polypeptide and the type and concentration of the inorganic salt and oxidizing agent used, it is generally 10 minutes to several days, preferably 0°5 to 5 hours. Other methods of regeneration treatment include a method in which the membrane is immersed in an aqueous inorganic salt solution and a method in which the membrane is allowed to stand still, a method in which an aqueous solution is permeated under pressure, and the like.

本発明の方法によって処理される膜の形態は何ら制限さ
れず、平板状、管状、スパイラル状、中空糸状等任意で
ある。また、膜の洗浄再生効果を高めるために、膜形態
に応じて、攪拌、摩擦、超音波洗浄等の物理的な洗浄を
併用してもよい。
The shape of the membrane treated by the method of the present invention is not limited in any way, and may be any shape such as a flat plate, a tube, a spiral, and a hollow fiber. Further, in order to enhance the cleaning and regeneration effect of the membrane, physical cleaning such as stirring, friction, ultrasonic cleaning, etc. may be used in combination depending on the membrane form.

本発明の方法によれば、ポリペプチドが膜面に沈着して
、膜性能、特に透水量が低下した選択性透過膜を、アル
カリ金属及び/又はアルカリ土類金属の塩とハロゲン系
酸化剤とを含有する水溶液で洗浄することにより、ポリ
ペプチドが特異的に膜面から除去され、かくして、膜は
ほぼ初期の性能を回復すると共に、膜の変質、劣化のお
それもない。このようにハロゲン系酸化剤と共に無機塩
を併用した水溶液で膜を処理することにより、ポリペプ
チドが特異的に除去される理由は必ずしも明らかではな
いが、ハロゲン系酸化剤の酸化作用と共に、無機塩の金
属イオンがポリペプチドの膜からの脱離に何らかの影響
を及ぼしているのであろう。
According to the method of the present invention, a selectively permeable membrane in which polypeptides have been deposited on the membrane surface and membrane performance, particularly water permeability, has decreased, is treated with an alkali metal and/or alkaline earth metal salt and a halogen-based oxidizing agent. By washing with an aqueous solution containing the polypeptide, the polypeptide is specifically removed from the membrane surface, and thus the membrane recovers almost its initial performance and there is no fear of alteration or deterioration of the membrane. Although it is not necessarily clear why polypeptides are specifically removed by treating the membrane with an aqueous solution containing an inorganic salt in combination with a halogen oxidizing agent, the oxidizing effect of the halogen oxidizing agent as well as the inorganic salt This metal ion probably has some effect on the desorption of the polypeptide from the membrane.

以下に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例により何ら限定されるものではない。
The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples in any way.

実施例1 酢酸セルロースよりなる逆浸透膜を流通型セルに装着し
て実験用モジュールとした。この膜モジュールに発酵抽
出液を常温、40kg/cdの圧力で100時間連続し
て供給したところ、透水量は初期の0.70rrr10
f・日から0.2On?/r+(・日ニ低下した。
Example 1 A reverse osmosis membrane made of cellulose acetate was attached to a flow cell to prepare an experimental module. When the fermentation extract was continuously supplied to this membrane module at room temperature and a pressure of 40 kg/cd for 100 hours, the water permeation rate was 0.70 rrr10
0.2 On from f day? /r+(・Decreased daily.

そこで、硫酸すトリウム2重量%と次亜塩素酸ナトリウ
ム10ppmとを含有する水溶液を温度25°C1圧力
3 kg / cII!の条件で1時間、上記膜に循環
供給したところ、前記と同じ条件で透水量は0゜65r
rr/m・日に回復した(回(夏率93%)。
Therefore, an aqueous solution containing 2% by weight of sodium sulfate and 10 ppm of sodium hypochlorite was heated at a temperature of 25°C and a pressure of 3 kg/cII! When circulating water was supplied to the above membrane for 1 hour under the above conditions, the water permeation amount was 0°65r under the same conditions as above.
It recovered to rr/m day (times (summer rate 93%)).

実施例2 実施例1において、次亜塩素酸ナトリウムの代わりにヨ
ウ素30ppmを用いた以外は、実施例1と全く同様に
して、連続運転後の膜を処理したところ、膜の透水量は
0.50 rd / m・日に回復した(回復率71%
)。
Example 2 The membrane after continuous operation was treated in exactly the same manner as in Example 1 except that 30 ppm of iodine was used instead of sodium hypochlorite, and the amount of water permeated through the membrane was 0. Recovered in 50 rd/m day (recovery rate 71%)
).

実施例3 特開昭5’l−27102号公報に記載されている方法
に従って調製したポリスルホン膜上で、ポリヒニルアル
コールとエチレンジアミンとをトリメシン酸クロライド
で架橋して、選択性複合透過膜を得、モジュール化した
Example 3 Polyhinyl alcohol and ethylenediamine were crosslinked with trimesic acid chloride on a polysulfone membrane prepared according to the method described in JP-A-5'1-27102 to obtain a selective composite permeable membrane. , modularized.

この膜モジュールに動物性タンパク質含有排水を品温、
30kg/c−の圧力で100時間連続して供給したと
ころ、透水量は初期の1.5 n? / rd・日から
0.63 rrr / g・日に低下した。
This membrane module feeds animal protein-containing wastewater at
When the water was continuously supplied for 100 hours at a pressure of 30 kg/c-, the water permeation rate was 1.5 n? /rd·day to 0.63 rrr/g·day.

そこで、硫酸マグネシウム2重量%と次亜塩素酸ナトリ
ウム30ppmとを含有する水溶液を温度30℃、圧力
3 kg / cn!の条件で1時間、上記膜に循環供
給したところ、前記と同し条件で透水量は1.4rI?
/m・日に回復した(回復率93%)。
Therefore, an aqueous solution containing 2% by weight of magnesium sulfate and 30 ppm of sodium hypochlorite was prepared at a temperature of 30°C and a pressure of 3 kg/cn! When it was circulated and supplied to the above membrane for 1 hour under the above conditions, the water permeation amount was 1.4rI? under the same conditions as above.
The patient recovered in 1/m day (recovery rate 93%).

比較例 実施例3において、硫酸マグネシウムを用いずに、次亜
塩素酸ナトリウムのみを含有する水溶性で膜を処理した
ところ、透水量は0.93m/rrr・口までしか回復
しなかった(回復率62%)。
Comparative Example In Example 3, when the membrane was treated with a water-soluble solution containing only sodium hypochlorite without using magnesium sulfate, the water permeation rate recovered only to 0.93 m/rrr. rate 62%).

Claims (5)

【特許請求の範囲】[Claims] (1)  ポリペプチドが膜面に沈積した選択性透過膜
を、アルカリ金属塩及びアルカリ土類金属塩より選ばれ
る少なくとも1種と、ハロゲン系酸化剤とを含有する水
溶液で処理することを特徴とする選択性透過膜の再生方
法。
(1) A selectively permeable membrane on which a polypeptide is deposited is treated with an aqueous solution containing at least one selected from alkali metal salts and alkaline earth metal salts and a halogen-based oxidizing agent. A method for regenerating a selectively permeable membrane.
(2)金属塩が硫酸塩及び/又はノ\ロゲン化水素酸塩
であることを特徴とする特許請求の範囲第1項記載の選
択性透過膜の再生方法。
(2) The method for regenerating a selectively permeable membrane according to claim 1, wherein the metal salt is a sulfate and/or a hydrochloride.
(3)ハロゲン系酸化剤が次亜塩素酸ナトリウム、臭素
、ヨウ素及び二酸化塩素より選ばれる少なくとも1種で
あることを特徴とする特許請求の範囲第1項記載の選択
性透過膜の再生方法。
(3) The method for regenerating a selectively permeable membrane according to claim 1, wherein the halogen-based oxidizing agent is at least one selected from sodium hypochlorite, bromine, iodine, and chlorine dioxide.
(4)無機塩の濃度が0.1〜10重量%であることを
特徴とする特許請求の範囲第1項記載の選択性透過膜の
再生方法。
(4) The method for regenerating a selectively permeable membrane according to claim 1, wherein the concentration of the inorganic salt is 0.1 to 10% by weight.
(5)ハロゲン系酸化剤の濃度が1〜1100ppであ
ることを特徴とする特許請求の範囲第1項記載の選択性
透過膜の再生方法。
(5) The method for regenerating a selectively permeable membrane according to claim 1, wherein the concentration of the halogen-based oxidizing agent is 1 to 1100 pp.
JP16739982A 1982-09-24 1982-09-24 Regenerating method of permselective membrane Pending JPS5955311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16739982A JPS5955311A (en) 1982-09-24 1982-09-24 Regenerating method of permselective membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16739982A JPS5955311A (en) 1982-09-24 1982-09-24 Regenerating method of permselective membrane

Publications (1)

Publication Number Publication Date
JPS5955311A true JPS5955311A (en) 1984-03-30

Family

ID=15848976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16739982A Pending JPS5955311A (en) 1982-09-24 1982-09-24 Regenerating method of permselective membrane

Country Status (1)

Country Link
JP (1) JPS5955311A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019076864A (en) * 2017-10-26 2019-05-23 オルガノ株式会社 Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
JP2020104038A (en) * 2018-12-26 2020-07-09 三菱ケミカルアクア・ソリューションズ株式会社 Water treatment system operation method and water treatment system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019076864A (en) * 2017-10-26 2019-05-23 オルガノ株式会社 Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
JP2020104038A (en) * 2018-12-26 2020-07-09 三菱ケミカルアクア・ソリューションズ株式会社 Water treatment system operation method and water treatment system

Similar Documents

Publication Publication Date Title
EP0253287B1 (en) Combined membrane and sorption process for selective ion removal
JPS6322163B2 (en)
JPS6316089A (en) Method of treating solution of salt or hydroxide of alkali metal
JP2000281638A (en) Separation of urea
JPH0698277B2 (en) Membrane separation method
WO2015100087A1 (en) Pressurized forward osmosis process and system
CN101352659B (en) Polypiperazine-amide nanofiltration membrane and preparation method thereof
Belhocine et al. Optimization of plasma proteins concentration by ultrafiltration
JPS5955311A (en) Regenerating method of permselective membrane
WO2007029291A1 (en) Separation membrane cleaning composition
JPS59156402A (en) Concentration of organic substance by reverse osmosis membrane
JPS5955310A (en) Regenerating method of permselective membrane
JP2002095936A (en) Cleaning method for reverse osmosis membrane
JP3353810B2 (en) Reverse osmosis seawater desalination system
JPS58119304A (en) Treatment of osmotic membrane
JPH067787Y2 (en) Reverse osmosis membrane device
JP2004097911A (en) Treatment method for highly concentrated solution using reverse osmosis membrane
JP2834265B2 (en) Concentration method of organic valuables by reverse osmosis membrane
JPS61185372A (en) Apparatus for treating excretion sewage
JPH05329339A (en) Filtering apparatus
JPH09225324A (en) Regeneration of ion exchange resin or synthetic adsorbing material for removing organic impurities
JPH09155344A (en) Method for desalination of brackish water and apparatus therefor
JP3371783B2 (en) Cell isolation method
JPH11215980A (en) Treatment of liquid containing microbial cell
JPS5946675B2 (en) Dye recovery method in dye manufacturing process